2,069 research outputs found

    A Study on the Integration of a High-Speed Flywheel as an Energy Storage Device in Hybrid Vehicles

    Get PDF
    The last couple of decades have seen the rise of the hybrid electric vehicle as a compromise between the outstanding specific energy of petrol fuels and its low-cost technology, and the zero tail-gate emissions of the electric vehicle. Despite this, considerable reductions in cost and further increases in fuel economy are needed for their widespread adoption. An alternative low-cost energy storage technology for vehicles is the high-speed flywheel. The flywheel has important limitations that exclude it from being used as a primary energy source for vehicles, but its power characteristics and low-cost materials make it a powerful complement to a vehicle's primary propulsion system. This thesis presents an analysis on the integration of a high-speed flywheel for use as a secondary energy storage device in hybrid vehicles. Unlike other energy storage technologies, the energy content of the flywheel has a direct impact on the velocity of transmission. This presents an important challenge, as it means that the flywheel must be able to rotate at a speed independent of the vehicle's velocity and therefore it must be coupled via a variable speed transmission. This thesis presents some practical ways in which to accomplish this in conventional road vehicles, namely with the use of a variator, a planetary gear set or with the use of a power-split continuously variable transmission. Fundamental analyses on the kinematic behaviour of these transmissions particularly as they pertain to flywheel powertrains are presented. Computer simulations were carried out to compare the performance of various transmissions, and the models developed are presented as well. Finally the thesis also contains an investigation on the driving and road conditions that have the most beneficial effect on hybrid vehicle performance, with a particular emphasis on the effect that the road topography has on fuel economy and the significance of this

    Comparison of energy consumption and costs of different HEVs and PHEVs in European and American context

    Get PDF
    This paper will analyse on the one hand the potential of Plug in Hybrid electric Vehicles to significantly reduce fuel consumption and displace it torward various primary energies thanks to the electricity sector. On the other hand the total cost of ownership of two different PHEV architectures will be compared to a conventional cehicle and a HEV without external charging

    Electric Waterborne Public Transportation in Venice: a Case Study

    Get PDF
    The paper reports the results of a study for moving the present diesel-based watercraft propulsion technology used for public transportation in Venice city and lagoon to a more efficient and smart electric propulsion technology, in view of its adopted in a near future. Energy generation and storage systems, electrical machines and drives, as well as economic, environmental and social issues are presented and discussed. Some alternative solutions based on hybrid diesel engine and electric and full electric powertrains are compared in terms of weights, costs and payback times. Previews researches on ship propulsion and electric energy storage developed by the University of Padua and preliminary experiences on electric boats carried out in Venice lagoon by the municipal transportation company ACTV and other stakeholders are the starting point for this study. Results can be transferred to other waterborne mobility systems

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    Electricity powering combustion: hydrogen engines

    Get PDF
    Hydrogen is ameans to chemically store energy. It can be used to buffer energy in a society increasingly relying on renewable but intermittent energy or as an energy vector for sustainable transportation. It is also attractive for its potential to power vehicles with (near-) zero tailpipe emissions. The use of hydrogen as an energy carrier for transport applications is mostly associated with fuel cells. However, hydrogen can also be used in an internal combustion engine (ICE). When converted to or designed for hydrogen operation, an ICE can attain high power output, high efficiency and ultra low emissions. Also, because of the possibility of bi-fuel operation, the hydrogen engine can act as an accelerator for building up a hydrogen infrastructure. The properties of hydrogen are quite different from the presently used hydrocarbon fuels, which is reflected in the design and operation of a hydrogen fueled ICE (H2ICE). These characteristics also result in more flexibility in engine control strategies and thus more routes for engine optimization. This article describes the most characteristic features of H2ICEs, the current state of H2ICE research and demonstration, and the future prospects

    WELL-TO-WHEELS Report version 4.a : JEC WELL-TO-WHEELS ANALYSIS

    Get PDF
    The JEC research partners [Joint Research Centre of the European Commission, EUCAR and CONCAWE] have updated their joint evaluation of the well-to-wheels energy use and greenhouse gas emissions for a wide range of potential future fuel and powertrain options. This document reports on the fourth release of this study replacing Version 3c published in July 2011. The original version was published in December 2003.JRC.F.8-Sustainable Transpor
    • 

    corecore