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Abstract 
This paper will analyse on the one hand the potential of Plug in Hybrid Electric Vehicles (PHEVs) to 

significantly reduce fuel consumption and displace it toward various primary energies thanks to the 

electricity sector. On the other hand the total cost of ownership (TCO) of two different PHEV architectures 

will be compared to a conventional vehicle and a HEV without external charging.  

The vehicles energy consumptions have been calculated using simulation softwares at Argonne National 

Lab and IFP Energies nouvelles. 

The TCO analysis carried out by DLR and Argonne National Lab includes the vehicle initial price together 

with the maintenance, energy consumptions and other costs during their life. 

The impact of driving behaviour variations between Europe and the US will be addressed in the paper 

through its influence on component sizing and fuel consumption benefits. 

Keywords:  Hybrid electric vehicles - Energy Efficiency  - Costs 

 

1 Introduction 
Car manufacturers and components suppliers 
have been facing these years very stringent 
constraints in the development of their vehicles, 
mainly: 
• The decrease of the Green House Gases 

(GHG) emitted by the vehicles (mainly the 

CO2) with very severe targets fixed by 
numerous countries around the world ; 

• The decrease of local harmful effects such as 
atmospheric pollutants or noise which are 
recognized as being a major problem in large 
urban centers. The ultimate goal being here the 
vehicle with zero local emissions (ZEV) which 
will require an electric drive ; 

• The decrease of fossil fuel consumption which 
will require the use of new fuels, such as 
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electricity, to transfer more transportation 
energy consumption towards other more 
sustainable primary energies such as 
renewables ; 

• The need for the vehicle to have an 
environmental and energy footprint as 
limited as possible on its entire life cycle 
(from its construction to its recycling 
phases); 

• The need for the vehicle to have an 
economic balance over its entire life 
(purchase, energy(ies) consumption(s) , 
maintenance, resale, recycling) close to, or 
better than the conventional ones to ensure 
its significant penetration in the market. 

 
In response to these constraints, industrialists 
have developed numerous solutions; among the 
existing panel of technologies, we will address in 
this paper three of many possible hybrid (HEV) 
and plug-in hybrid (PHEV) drivetrains. 
 
Understanding the real potential of such 
drivetrains is a very complex task as it will 
depend on a high number of parameters, the main 
ones being: 

• The vehicle hybrid drivetrain architecture 
and functionalities (all electric range, plug 
in capabilities...); 

• The vehicle body type (compact, sedan, 
SUV, 4WD...) and dynamic performances; 

• The vehicle type of use (urban, extra urban, 
motorway, combined, type of standard 
regulatory procedures); 

• For the specific case of the PHEVs, the 
electricity mix used for the battery charge 
from the mains; 

• The type of drivetrain components 
implemented (conventional or advanced 
technologies); 

• The type of powertrain configuration 
(combination of components, including 
sizing) and energy management strategy 
implemented; 

 
With the aim to assess the energy consumption 
potential and the economic balance of HEVs and 
PHEVs,  Argonne National Lab (ANL) in the 
US, the German Aerospace Center (DLR) in 
Germany and IFP Energies nouvelles (IFPEN) in 
France have collaborated to develop a specific 
methodology. The methodology and obtained 
results are detailed in [1] and [2] for a panel of 
drivetrain architectures with different choices for 
the All electric Range (AER).  

The present paper details the methodology used to 
evaluate the vehicles, their drivetrain and type of 
use with standard procedures and actual use 
driving cycles. Cross-national perspectives and 
results obtained in energy and costs for a selected 
subset of those cases are presented and discussed 
in the paper.   
 

2 Methodology 
The first question is whether recent advances in 
battery technology based on lithium-ion 
chemistries will allow HEV and particularly PHEV 
powertrains, produced at reasonably high volume 
(100,000 units in this paper) to compete with a 
reference conventional gasoline vehicle (CV).  If 
so, can electrified powertrains of these types 
universally compete with the CV, or are they only 
competitive under certain patterns of customer 
use?  Do current average prices for gasoline and 
electricity paid by consumers in Europe and the 
U.S. give reason to believe that government 
encouragement of the development of these 
powertrains will ultimately lead to market success?  
However, for the next decade, this is a primary 
question.  If the answer is that there do appear to 
be market segments where such powertrains could 
compete, development and refinement over the 
years will determine whether they become very 
common, or only contribute in a small way to 
energy security and GHG reduction in the 
participating nations.  If there is evidence here that 
PHEVs can compete, then the many more 
powertrain combination and permutations possible 
than examined here ref [1] deserve detailed 
evaluation against the portfolio of competing 
options such as direct injection turbocharged diesel 
and gasoline fuelled engines and pure electric 
vehicles. 
 

2.1 Tools 
For the vehicle components sizing and energy 
consumptions evaluations ANL and IFPEN used 
their own tools i.e. MATLB-based software 
Autonomie for ANL and LMS.IMAGINE.Lab  
AMESim® for IFPEN. Before starting the study a 
crosscheck of the 2 softwares on a reference 
vehicle has been carried out it order  to ensure 
consistency between Autonomie and AMESim. 
Details are provided in [1]. 
For the TCO analysis, ANL BatPAC and DLR in 
house tools have been used, details are provided in 
[2]. 

EEVC European Electric Vehicle Congress  2



2.2 Vehicle characteristics • Dynamic performances, from 0 to 100km/h in 
9 sec +/−0.1 sec using both engine and electric 
machine.  This exceeds the performance of 
many commercial HEVs; 

The type of vehicle considered is a compact size 
sedan (C segment) with a body in white mass of 
800 kg, a frontal area of 2,18 m2, a Cd coefficient 
of 0,3, and a Crr1 coefficient of 0,006. • Maximum grade of 5% at 110km/h at gross 

vehicle weight with engine power only;  
• Maximum vehicle speed >150km/h with 

engine power only.  This exceeds the 
performance of commercial electric vehicles; 

2.3 Drivetrains architectures 
For this paper, the following powertrain 
architectures have been taken into account for 
comparison (see fig 1) : 

• Rated all electric Range (AER) for the input 
split (IS) type architecture has been developed 
using the UDDS driving schedule for the US 
and the Artemis Urban driving schedule for 
Europe.  This is a limited all electric capability 
which is less than available in commercial 
electric vehicles, but is adequate for city 
centres worldwide due to the Artemis Urban 
driving schedule requirement. Such 
configuration may be called Urban capable 
PHEV [3].  Although the Artemis Urban cycle 
dominated component sizing choices, the 
supplemental tests for UDDS capability 
assured that the input split PHEV could obtain 
regulatory credit in California. The IS PHEV 
example in this paper is required to have 30 
km of rated AER 

• Conventional 5 speed vehicle, with an 
automatic gearbox ; 

• Pre-transmission parallel HEV ; 
• Input-split PHEV (Toyota HSD-like 

transmission). For this architecture an AER 
of 30 km has been considered ; 

• Series hybrid, for this architecture, an AER 
of 70 km has been considered. 
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• For the specific case of the series architecture, 
the all electric charge depleting (CD) mode 
provides a capability for the vehicle to meet all 
other performance requirements (acceleration, 
grade and maximum speed) using only battery 
power. The series PHEV example in this paper 
is required to have 70 km of rated (and actual) 
AER.  In this case the term AER is literally 
always correct; however, for the input split 
there are some circumstances (example: 
Artemis Motorway cycle) where the CD phase 
of operation will use the engine momentarily 
in blended mode. ICE EM EM

Batt.

Series

ICE EM EM

Batt.

ICE EM EMICE EM EM

Batt.

Series

 
 
The components sizing for the different cases 
considered is indicated in Table 1.  The 
requirements imposed result in very large 
increases in both battery pack power (kW) and 
energy storage capability (kWh) as one 
transitions from HEV to IS PHEV30 to series 
PHEV70.  As one goes through these steps, the 
power to energy (P/E) ratios for the battery 
packs decrease, as illustrated in Table 1, this will 
have an influence on the cost evaluation 
presented in section 2.6. 

Figure 1: Hybrid powertrain architectures 
considered 

 

2.4 Drivetrains components sizing 
Components sizing have been carried out 
according to the following design limits based on 
assumptions about consumer demand for a 
typical vehicle: 
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Tab 1 : Vehicle components sizing 

Conventional Parallel 
Hybrid

Input split 
Hybrid

Series 
Hybrid

Vehicle Mass kg 1220 1271 1340 1614
ICE power kW 105,9 80,2 50,7 78
El. machine 1 power kW 25 70,3 103
El. machine 2 power kW 34,9 78
Battery power kW 30 60,5 135
Battery energy kWh 0,97 5,44 13,56
Battery P/E ratio h-1 31 11 10

Vehicle Mass kg 1220 1278 1330 1610
ICE power kW 105,9 80,2 50,5 78
El. machine 1 power kW 25 69,9 103
El. machine 2 power kW 34,8 78
Battery power kW 30 60,2 135
Battery energy kWh 0,97 4,97 13,03
Battery P/E ratio h-1 31 12 10

PHEV 70PHEV 30HEVAutomatic
Eu

ro
pe

U
S

 
 

2.5 Vehicle types of mission 
considered 

Different situations have been considered to 
evaluate energy consumptions and operating 
costs of the vehicles, according to the driving 
schedules used and to the procedure 
implemented. 

2.5.1 Driving schedules 
As far as driving schedule is concerned, there are 
two types of driving cycle evaluation that have 
been conducted: Standard procedure 
certification test cycles that have been used since 
the 1970s, and actual use related procedure 
which implement cycles resulting from on-road 
testing that has taken place more recently (see 
Annex 1). Within the full complement of 
simulations conducted for vehicles characterized 
by both IFP Energies nouvelles and Argonne 
National Laboratory, the on-road cycles used in 
this paper include a very low speed jammed 
urban case for the US (UL1), and three Artemis 
test cycles developed in the European research 
program on evaluation of on-road driving 
ARTEMIS (Urban type, Road and Motorway 
types) [4]. The standard procedure certification 
test cycles include the NEDC for the European 
case and UDDS and HWFET for the U.S. case.  
These standard procedure cycles are used for 
official ratings of compliance with fuel economy  
 

and GHG regulations.  However, as a result of 
recognition that consumer experience was not well 
represented by rough adjustments of these cycles, 
studies in the U.S. led to a decision to develop a 
new set of test cycles that are now being used to 
construct an improved consumer information 
sticker placed on new cars [5].  One of the driving 
cycles that led to those U.S. revisions (LA92, also 
called the California Unified Cycle) was an update 
for California driving developed in 1992. Annex 1 
shows that it is similar to the Artemis Urban cycle 
with respect to acceleration and deceleration rates, 
but stop time is much less and average speed 
higher.  Consumer information presented to the 
U.S. consumer for highway (or motorway) driving 
now relies almost exclusively on the US06 
Highway cycle, which is similar to the Artemis 
Motorway cycle in most respects. 
 

2.5.2 Procedures 
For the Standard procedures, two cases were 
considered, i.e. : 
• For the US regulatory certification case, we 

implemented the SAE J1711 procedure, more 
information in [6] : The simulation on the 
UDDS cycle is started with a battery at 100 % 
State of Charge (SOC) to simulate the Full 
Charge Test (FCT) and implement the Charge 
Depleting (CD) behaviour. The calculation is 
stopped when the simulated vehicle has 
reached its Charge Sustaining (CS) operation 
mode (the battery SOC difference over one 
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cycle being close to 0). The Charge 
Depleting Range (CDR) together with the 
two fuel consumptions characteristic of a 
PHEV may then be assessed, i.e. the charge 
depleting consumption FCdep and the 
sustaining one FCsus (expressed in gallons 
per mile - gpm). One could note that for 
certain types of PHEVs (urban capable and 
E-REVs) the UDDS FCdep is nil. The 
aggregation of the two fuel consumptions 
(FCglob) may then be computed thanks to the 
Utility Factor (UF) established by the US 
Department of Transportation [7] and which 
accounts for the fraction of driven miles 
expected in CD according to the CDR (see 
Figure2), using the following equation (1) : 
FCglob (gpm) = FCdep .UF + (1-UF).FCsus 

 
The same equation may be used to compute the 
electricity consumption of the PHEV. 

 

 
Figure 2: Utility factor according to AER (from US 

DOT survey 2001) 

 
• For the EU regulatory certification case, 

the ECE R101 procedure has been 
implemented, see details in [8] : The first 
step is the evaluation of the vehicle’s All 
Electric Range (AER). The simulation is run 
using the NEDC driving schedule, with the 
vehicle in electric mode and with a fully 
charged battery. The AER is obtained when 
the SOC reaches its minimum (the procedure 
allows the vehicle not to follow the cycle for 
speeds above 50 km/h though this has not 
been necessary for our cases). Once this has 
been done, the procedure itself consists of 
two phases, in the first (A), the simulation of 
the NEDC cycle is carried out in hybrid 
mode with the battery again fully charged to 
evaluate the Fuel Consumption (FCA in 
L/100 km) and the Electricity Consumed 

from the grid to recharge the battery at the end 
of the cycle (ECA in Wh/km) in Charge 
Depleting condition. The value of FCA may be 
nil if the engine is not started during the 
NEDC procedure (the speed tolerance 
indicated above being respected). In the 2nd 
phase (B), the calculation is run again on the 
NEDC cycle but with a fully discharged 
battery to evaluate the Fuel Consumption 
(FCB) and the Electricity Consumed from the 
grid to recharge the battery (ECB). The 
equivalent fuel consumption of the PHEV may 
then be computed thanks to the following 
equation : 

    
FCglob (L/100 km) = 
    (AER.FCA + 25.FCB) / (AER + 25)     (2) 
 
 One could note that the evaluation of the 

fraction of distance covered in CD mode is 
taken into account through the distance of 25 
km that would have been covered by the vehicle 
after its AER and prior to its battery charge 
from the grid. The same equation may be used 
to compute the electricity consumption of the 
PHEV. 

 
For the Actual use related procedure. While 
regulatory compliance is one very important 
evaluation measure for the simulated vehicles, the 
actual on-road consumption determines how much 
fuel cost they will experience.  A long standing 
problem has been that the standard certification 
cycles predicted lower fuel consumption than 
consumers experienced.  The primary reason for 
this problem for CVs has been the much more 
rapid rates of acceleration in on-road driving than 
is used in the standard certification cycles (see 
Annex 1).  Another is extreme temperature 
operations, both cold and hot. On a percentage 
basis, climate control increases electricity 
consumption more than gasoline ICE consumption.  
On-road climatic energy consumption increases 
are neglected in the TCO portion of this analysis, 
and for the non-adjusted standard test procedures. 
This inconsistency between certification cycle 
predictions and on-road experience has led to 
repeated revisions of consumer information 
estimates (window label estimates) in the U.S.  [9]. 
In Europe a set of real-world driving cycles has 
been developed in the ARTEMIS project, under 
the financial support of the European Commission. 
The aim of the ARTEMIS project was to enable a 
better understanding of the actual vehicle pollutant 
emissions through the integration of a large 
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amount of European measurements into the real 
world cycles generation procedure [4]. For this 
paper, to estimate on-road fuel economy, we use 
three Artemis cycles to simulate fuel and 
electricity consumption estimates both for the 
European and U.S. examples.  The similarity of 
the Artemis cycles to U.S. on-road driving 
conditions illustrated by the U.S. LA92 and 
US06 cycles has been discussed and illustrated 
(see Annex 1).   
DLR has demonstrated that there is a strong 
statistical correlation between measured daily 
driving and the consumer’s estimated annual 
driving in Germany (see Figure 3).  Z. Lin, [10] 
has demonstrated a strong statistical correlation 
between daily driving of vehicles used for work 
and the consumer’s estimated annual driving in 
the U.S. Both DLR and Argonne analysts have 
studied national transportation surveys and 
documented that the average speed for vehicles 
increases with both length of trip and daily 
distance driven (see Figure 4)  [11]. 
 

 
Figure 3: Statistical correlation between annual 

mileage and average trip distance in Germany (DLR 
analysis based on MiD 2008 data) 

 
Comparison of the DLR and Argonne results on 
typical driving patterns per vehicle show that 
average speeds and annual distances are 
significantly higher in the U.S. than in Germany, 
which shows up in our total cost of ownership 
estimates.  Methods of predicting appropriate 
fuel consumption per km developed by DLR and 
Argonne are similar in linking average speed to 
the mix of driving cycles used to construct the 
estimated fuel consumption.   
The driving schedules for the U.S. and European 
cases have been constructed using pairs of 
Artemis cycles, weighted in distance shares to 
create a match to the desired speed for the daily 
driving distance chosen.   

 
Figure 4 : Average driving speed in Germany as a 

function of average trip distance and place of 
residence (DLR analysis based on MiD 2008 data) 

 
The U.S. cases assume 293 days of operation with 
285 days of charging at the dwelling and other 
locations such as work, such that on average 1.25 
charges per day are achieved.  For the German 
case an average of 1 charge per day has been 
considered. 
The number of days of charging does not change 
with daily and annual distance in the U.S. and 
German cases, so the share of km driven 
electrically declines as daily distance increases.  
This means that the CS fuel consumption becomes 
more important as daily and annual distance rise. 
For the U.S. and German yearly covered distances, 
we have considered the nominal case of 
respectively 18000 km and 14000 km, together 
with a short distance case (resp. 6500 and 7000 
km) and a longer case (resp 32500 and 20000 km). 
The overall average speed in the U.S. is faster and 
the two higher annual distance cases for the U.S. 
are greater.  
 

2.6 Costs evaluation 
The costs evaluation have been conducted in 
Dollars for the U.S. case and in Euros for the 
German case, the comparisons being carried out 
considering the CV case as a reference in both 
countries. An annual discount rate of 5% has been 
assumed for the TCO assessment. For a more 
detailed description of the DLR cost model which 
has been applied to analyse the cost 
competitiveness of different powertrain options in 
the German context see [12]. 
The main hypotheses considered in the method are 
detailed hereafter. 
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Energy costs :  
For the U.S. case, the cost of gasoline is 
assumed to be $0,92 per liter, corresponding to a 
recent annual value [13]. For electricity 12 dollar 
cents per kWh is assumed. The cost of charging 
is assumed to be the same in all locations and is 
equal to the current U.S. residential average, 
which is higher than commercial and industrial 
rates [13].  “Off-peak” rates are not assumed.  
Sales taxes of 7 percent are assumed in the U.S.  
[14].  
For the German case, the cost of gasoline 
reflects the general European situation with a 
higher value of 1,60 €/L and for electricity also a 
higher value of 0,27 €/kWh is used. 

Vehicle holding period 
For the U.S. case, a quite long period of 10 years 
has been considered, under these conditions, the 
resale value of the vehicle has been considered as 
negligible and then has not been taken into 
account. For the German situation a shorter 
holding period of 4 years has been retained, 
leading to the evaluation of an expected resale 
value which enables the calculation of the first 
owner’s net fixed cost and therefore total cost of 
ownership and average cost per km. 
 
Battery cost evaluation 
The sizing procedure for the different cases 
considered led to a wide range of P/E ratios, 
values decreasing with the energy contained in 
the pack. Although the costs per kWh of capacity 
drop sharply in this same ordering, it is 
nevertheless true that batteries remain expensive.  
Battery pack cost has a significant effect on the 
difference in cost across the powertrains.   
Battery pack costs for Europe and the U.S. are 
determined by different cost models used by 
DLR and Argonne.  The DLR model is 
proprietary and not publicly available.  The 
Argonne model, BatPAC, is publicly available 
[15].  Three different li-ion battery chemistries 
are assumed in the cost estimates.  For the 
European case, the parallel HEV uses NCA while 
the two PHEVs use NMC.  In the U.S. all three 
of the cost estimates are based on LMO, which 
BatPAC estimates to be less expensive than NCA 
and two NMC chemistries. For the series 
PHEV70 the U.S. estimates of costs, mass and 
volume of the packs with LMO and NMC441-G 
chemistry in the model are very close, and 
depend on the assumed maximum electrode 
thickness allowed by the manufacturing process.  
With the Argonne assumptions, the costs of 

LMO for a series PHEV70 are a bit lower than for 
both NMC chemistries. The relative attractiveness 
of NMC chemistries increases as pack energy to 
power ratio rises, which is the case as one goes 
from HEV to IS PHEV30 to series PHEV70. 
 
Other costs 
The method also account for other operating costs 
including maintenance and repair cost, vehicle tax, 
general inspection which have been gathered under 
the item Other costs. 
 
Incentives 
Our TCO analysis does not account for any 
incentives, subsidies or CO2 penalties (as it is the 
case in the U.S. or in France). 
 

3 Results 
 

3.1 Energy consumption evaluation 
Table 2 provides the fuel, and PHEV's electricity 
consumption for the 4 drivetrains considered, 
obtained on the standard procedures. If we 
compare the drivetrains architectures, we may note 
that in both cases the HEV performs better than the 
CV with 40% less in EEC case and 27% in the 
U.S. case non adjusted. For the PHEVs cases it 
appears that the fuel consumption may be 
significantly decreased, from 65% to 80% (non 
adjusted) with a transfer to electricity.  
If we compare results from EEC and U.S. 
procedures, it appears that US unadjusted values 
are close to those of EEC, even if the driving 
patterns are different. Table 2 also provides U.S. 
adjusted values, which are increased to take into 
account the real world driving conditions (different 
type of cycles, use of auxiliaries such as A/C…).  
These values appear to be significantly higher than 
those of the European test procedure. These 
comparisons are easier for the CV and HEV cases, 
for the PHEV cases the electric consumption has 
also to be taken into account. 
 
If, the standard tests present the advantage to 
generate comparable figures for each procedure, 
irrespective of the vehicle types, it should be noted 
that the values obtained are then relative to the 
procedures and do not cover real cases, especially 
if the CD to CS range ratio is considered ; more 
realistic cases will be presented in the cost analysis 
hereafter. 
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Annex 2 and 3 provide the simulated fuel and/or 
electricity consumption in CS and CD operation 
for the four selected powertrains. These results 
will be used in the next section in order to 
evaluate the energy(ies) consumption(s), and 
cost(s) for the different hypotheses considered. 
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A noteworthy prediction is that the parallel HEV 
has higher fuel consumption than the CV in the  
 
HWFET, but lower fuel consumption than the 
CV in the Artemis Motorway cycle.  This implies  
that a parallel HEV will be inappropriately 
penalized by the U.S. standard certification 
measures and will fail to win appropriate credit 
for its on-road fuel consumption reduction in real 

world highway driving.  This possibility deserves 
further investigation and verification.   
 
 
For charge sustaining operation, the NEDC 
favours the parallel HEV over the IS-PHEV30, 
while the UDDS and HWFET tests favour the IS-
PHEV30 over the parallel HEV (Annex 2).  
European Artemis on-road cycle simulations 
favour the IS-PHEV30.  In fact, the only result 
where the HEV is favoured is the NEDC.  This 
difference, which should be further investigated, 
could contribute to inconsistent priorities in the EU 
and U.S. 
 

 
Table 2 : Gasoline and electricity consumption for standard European and US test procedures 

Conventional Parallel Input split Series

Fuel [L/100km] 5,98 3,51 1,46 1,31

CO2 (g/km) 140 82 34 31

Electricity [W.h/km] 0 0 60,5 101,0

Fuel [L/100km] 7,18 5,43 3,4 2,83

Electricity [W.h/km] 0 0 32,2 81,2

Fuel [L/100km] 5,3 3,86 2,28 1,82

Electricity [W.h/km] 0 0 32,2 81,2U
S 
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3.2 Costs evaluation 
Annex 4 to 6 provide the total cost of ownership 
results for the different cases considered. Figures 
5 and 6 illustrate the details of the costs. An 
important fact to be highlighted is the effect of 
the distance covered, due to the 10 year holding 
period the US c$/km figures are lower than 4 
year holding period German ones and are 
therefore well beyond the Euro to Dollar 
exchange rate. Another fact to be noted is the 
magnitude of the initial vehicle costs in the TCO. 
U.S. maintenance cost estimates only account for 
scheduled maintenance, and do not cover all 
components.  The DLR estimates include 
component failure in addition to scheduled 
maintenance. 

Figure 5 : Details of the German case  

(4 years, 14000 km/yr) 
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Figure 6 : Details of the US case  

(10 years, 18000 km/yr 
 
Figure 7 summarize the benefits in TCO 
according to the different cases : 
• As far as architecture is concerned, it 

appears that the series PHEV70 consistently 
has the highest total cost of ownership 
(TCO), always exceeding the cost of the CV, 
excepted one case for the longer distance in 
Germany.  Although the large battery pack 
of the series PHEV70 allows it to drive all 
electrically for many km per day and realize 
the greatest substitution of electricity for 
gasoline, it is simply too expensive. The 
parallel HEV is most often (but not always) 
the lowest TCO option, but the IS-PHEV30 
is often nearly as inexpensive and has lower 
TCO than the CV in the U.S. and in Europe 
for the two longer annual distances.  The 
TCO of the parallel HEV and IS-PHEV30 
are always less than the series PHEV70.  The 
IS-PHEV30 is particularly efficient in CS 
mode in the two highway driving cycles, so 
higher shares of CS highway driving 
improve its TCO relative to the parallel 
HEV; 

• As far as distance covered is concerned, it 
appears that all hybrid technologies need 
long distances to highlight lower TCO than 
the CV, this trend increases with the size of 
the battery; 

• As far as country is considered, it appears 
that higher retail gasoline prices in Germany 
leads to better values in TCO than in the US 
when distances are the same, but U.S. 
vehicles are driven further on average, which 
increases the benefit of the HEV and IS-
PHEV30.  The high retail price of gasoline 
in Germany are primarily a result of much 
higher taxes than in the U.S. 
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Figure 7 : Benefit in TCO according to drivetrain  and 

distance considered 
 

4 Elements of conclusion 
This paper present the results in energy 
consumption(s) and cost evaluations for different 
vehicle drivetrain configurations and types of use 
(standard procedures and actual types of use). 
The vehicle drivetrain components have been sized 
to meet the same program of demand. Their all 
electric ranges have been expressed for the UDDS 
cycle in the U.S. and for the ARTEMIS urban 
cycle for Europe.  For a large amount of cases the 
component sizes for the U.S. and European cases 
appeared to be very similar. 
As far as energy consumption is concerned, it 
appears that the benefits for the HEVs are higher 
for the European standard procedure than for the 
U.S. standard procedure, this may lead to different 
choices for vehicles manufacturers. 
Moreover, the results highlighted the fact that 
European standard procedure was leading to lower 
energy consumption values than U.S. adjusted 
ones and comparable to those of non-adjusted 
standard methods. This has to be taken into 
account when comparing fuel consumption 
standards on a worldwide basis. 
As far as drivetrain technologies are concerned, the 
results indicated that a significant gain could be 
obtained on fuel consumption with the HEV on the 
standard procedures (24 to 40%) and in urban 
conditions. Our evaluations also confirmed that 
these percentage fuel benefits where lower in 
extra-urban use with even a unfavourable case 
under HWFET conditions. For the PHEV cases, an 
even more important gas consumption decrease 
could be obtained on the driving cycles thanks to a 
transfer to electricity. However, for the PHEVs 
cases these gains will be dependant on the distance 
covered between two charges of the battery. 
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As far as costs evaluation is concerned, results 
are consistent with the findings of Propfe [2], 
Redelbach [12] and Santini [16] with respect to 
the prediction that greater than average amounts 
of annual driving favour the HEV and modest 
range PHEV relative to the CV.   This suggests 
that comparisons such as that by Kristien, Koen 
and Johan [17], which consider the diesel CV as 
well as gasoline CV are necessary.  It is the 
diesel CV that is driven more than average.  The 
findings that a long range series PHEV designed 
with the electric drive power of an all-electric 
vehicle is not financially competitive with shorter 
range IS-PHEVs is consistent with a prior U.S.-
based analysis by Moawad et al [18], for on-road 
driving in a medium sized U.S. city. 
Some further developments of the methodology 
presented in this paper will be accessed in the 
future with different hypotheses concerning the 
TCO evaluation or the introduction of the 
electricity mix for the PHEV cases, in order to 
calculate their overall Green House Gas balance. 
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Annex 1  Selected driving cycle attributes, for on-road and standard certification cycles 

Mean 
speed 

Stop 
time 

 
Time  
at 

cruise 

 
Time 
accel‐
erating 

 
Time  
decel‐
erating

Max 
accel‐
eration 

Mean
accel‐
eration 

Max. 
decel‐
eration 

 
 

Mean 
decel‐
eration

Top 
speed 

Cycle Info 
  O

ri
gi
n 

kph  %  %  %  %  m/s2  m/s2  m/s2  m/s2  kph 
Actual use Cycles 

UL1  EU  3,8  34,8  4,9  28,3  31,9  1,86  0,24  ‐2,47  ‐0,48  14,6 
Artemis 
Urban 

EU  17,4  28,2  4,3  35,1  32,5  2,86  0,73  ‐3,14  ‐0,79  57,4 

LA92  US  39,4  16,2  11,4  38,2  34,1  3,08  0,67  ‐3,93  ‐0,75  107,6 
Artemis 
Road 

EU  60,0  2,4  17,0  41,0  39,7  2,36  0,48  ‐4,08  ‐0,50  110,9 

US06 
Highway 

US  96,8  3,0  8,4  48,5  40,1  3,07  0,34  ‐3,07  ‐0,41  127,8 

Artemis 
Highway 

EU  99,0  1,5  25,0  40,0  33,5  1,92  0,43  ‐3,36  ‐0,51  149,6 

Certification Cycles 
UDDS  US  31,3  18,9  6,8  39,7  34,7  1,48  0,5  ‐1,48  ‐0,58  90,8 
NEDC  EU  33,4  24,8  38,5  20,9  15,8  1,07  0,59  ‐1,43  ‐0,79  119,4 
HWFET  US  77,3  0,5  16,6  44,2  38,7  1,43  0,19  ‐1,48  ‐0,22  95,9 
 

Annex 2 : Gasoline consumption in charge sustaining on various drive cycles 

Conventional Parallel Input split Series

UL1 29,1 7,16 6,4 5,53

Artemis Urban 10,4 3,74 3,66 4,34

NEDC 6 3,51 3,58 4,68

Artemis Road 5,3 3,67 3,63 4,68

Artemis Highway 6,65 6,1 5,91 7,79

UL1 29,1 7,16 6,38 5,53

UDDS 6,3 3,6 3,06 4,16

HWFET 4,05 4,18 3,45 4,99

HEV PHEV 30 PHEV 70

Eu
ro

pe
U

S

Auto.

 
 
Annex 3 : Gasoline, electricity consumption, CD range  and time to depletion for the PHEVs  in charge 

depleting on various drive cycles 

Input split Series Input split Series Input split Series Input split Series

UL1 0 0 153 156 23,0 55,2 6:02 14:31

Artemis Urban 0 0 129 127 30,5 70,5 1:45 4:03

NEDC 0 0 102 140 36,5 64,0 1:05 1:54

Artemis Road 0 0 135 142 31,3 63,1 0:31 1:03

Artemis Highway 0,96 0 217 245 19,2 36,6 0:11 0:22

UL1 0 0 152 156 17,4 57,5 4:33 15:07

UDDS 0 0 110 123 28,4 70,0 0:54 2:14

HWFET 0 0 125 151 25,0 57,0 0:19 0:44

Eu
ro

pe
U

S

CD Fuel 
consumption 

[L/100km]

PHEV 30

CD Electricity 
consumption 

[W.h/km]

PHEV 30 PHEV 70 PHEV 70 PHEV 30 PHEV 70

CD range 
[km]

Time to depletion
[h : mn]

PHEV 30 PHEV 70
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Annex 4 : Total cost of ownership estimates for EU and U.S. cases (short distances cases) 

CV HEV IS-PHEV 30 PHEV 70 CV HEV IS-PHEV 30 PHEV 70

Purchase cost € 28 343 31 012 33 910 37 401 $ 24 628 28 097 30 501 36 227
Expected resale value € 10 069 11 019 12 050 13 293 $ 0 0 0
Fuel cost € 3 924 1 804 810 453 $ 3 631 1 817 49 61
Electricity cost € 605 866 $ 822 842
Maintenance & repair € 1 884 1 976 1 793 1 366 $ 381 381 336 213
Other costs € 425 181 147 178 $ 0 0 0
Total of fixed cost € 18 274 19 993 21 859 24 108 $ 24 628 28 097 30 501 36 227
Total of operating cost € 6 232 3 961 3 354 2 863 $ 4 011 2 197 1 207 1 117
Total Cost of Ownership € 24 506 23 954 25 213 26 971 $ 28 639 30 295 31 708 37 344
Fixed costs c€/km 65,3 71,4 78,1 86,1 c$/km 37,6 42,9 46,5 55,3
Operating costs c€/km 22,3 14,1 12,0 10,2 c$/km 6,1 3,4 1,8 1,7
   Fuel costs c€/km 14,0 6,4 2,9 1,6 c$/km 5,5 2,8 0,1 0,1
   Electricity costs c€/km 2,2 3,1 c$/km 1,3 1,3
   Other operating costs c€/km 8,2 7,7 6,9 5,5 c$/km 0,6 0,6 0,5 0,3
Total Cost of Ownership c€/km 87,5 85,6 90,0 96,3 c$/km 43,7 46,2 48,4 57,0
HEVs cost benefit % 2,3 -2,9 -10,1 % -5,8 -10,7 -30,4
Share CD-Mode (electric) % in dist 57 79 % in dist 97 97
Share CS-Mode % in dist 43 21 % in dist 3 3

German Case (4 yr, 7000 km/yr) US Case (10 yr, 6550 km/yr)

0

0

 
 

Annex 5 : Total cost of ownership estimates for EU and U.S. cases (typical distances cases) 

CV HEV IS-PHEV 30 PHEV 70 CV HEV IS-PHEV 30 PHEV 70

Purchase cost € 28 343 31 012 33 910 37 401 $ 24 628 28 097 30 501 36 227
Expected resale value € 9 064 9 919 10 848 11 966 $ 0 0 0 0
Fuel cost € 7 652 3 731 1 990 1 258 $ 8 537 5 016 1 007 135
Electricity cost € 1 064 1 655 $ 1 886 2 392
Maintenance & repair € 3 768 3 953 3 585 2 732 $ 2 606 2 346 2 100 1 415
Other costs € 425 181 147 178 $ 0 0 0 0
Total of fixed cost € 19 279 21 093 23 062 25 435 $ 24 628 28 097 30 501 36 227
Total of operating cost € 11 845 7 865 6 787 5 822 $ 11 143 7 362 4 993 3 942
Total Cost of Ownership € 31 123 28 958 29 849 31 257 $ 35 772 35 459 35 494 40 169
Fixed cost c€/km 34,4 37,7 41,2 45,4 c$/km 13,6 15,5 16,8 19,9
Operating cost c€/km 21,2 14,0 12,1 10,4 c$/km 6,1 4,1 2,7 2,2
   Fuel costs c€/km 13,7 6,7 3,6 2,2 c$/km 4,7 2,8 0,6 0,1
   Electricity costs c€/km 1,9 3,0 c$/km 1,0 1,3
   Other operating costs c€/km 7,5 7,4 6,7 5,2 c$/km 1,4 1,3 1,2 0,8
Total Cost of Ownership c€/km 55,6 51,7 53,3 55,8 c$/km 19,7 19,5 19,5 22,1
HEVs cost benefit % 7,0 4,1 -0,4 % 0,9 0,8 -12,3
Share CD-Mode % in dist 49 72 % in dist 80 97
Share CS-Mode % in dist 51 28 % in dist 20 3

German Case (4 yr, 14000 km/yr) US Case (10 yr, 18000 km/yr)

 
 

Annex 6 : Total cost of ownership estimates for EU and U.S. cases (long distances cases) 

CV HEV IS-PHEV 30 PHEV 70 CV HEV IS-PHEV 30 PHEV 70

Purchase cost € 28 343 31 012 33 910 37 401 $ 24 628 28 097 30 501 36 227
Expected resale value € 8 203 8 977 9 817 10 829 $ 0 0 0 0
Fuel cost € 10 741 5 450 3 136 2 103 $ 13 917 8 961 5 127 2 634
Electricity cost € 1 419 2 305 $ 1 782 3 418
Maintenance & repair € 5 383 5 646 5 122 3 903 $ 5 171 4 647 3 761 3 431
Other cost € 425 181 147 178 $ 0 0 0 0
Total of fixed cost € 20 140 22 036 24 093 26 572 $ 24 628 28 097 30 501 36 227
Total of operating cost € 16 549 11 277 9 824 8 489 $ 19 087 13 608 10 671 9 484
Total Cost of Ownership € 36 689 33 313 33 917 35 061 43 716 41 705 41 172 45 711
Fixed cost c€/km 25,2 27,5 30,1 33,2 c$/km 7,6 8,6 9,4 11,1
Operating cost c€/km 20,7 14,1 12,3 10,6 c$/km 5,9 4,2 3,3 2,
   Fuel costs c€/km 13,4 6,8 3,9 2,6 c$/km 4,3 2,8 1,6 0,
   Electricity costs c€/km 1,8 2,9 c$/km 0,5 1,1
   Other operating costs c€/km 7,3 7,3 6,6 5,1 c$/km 1,6 1,4 1,2 1,
Total Cost of Ownership c€/km 45,9 41,6 42,4 43,8 c$/km 13,4 12,8 12,7 14,1

HEVs cost benefit % 9,2 7,6 4,4 % 4,6 5,8 -4,6
Share CD-Mode (electric) % in dist 44 68 % in dist 42 77
Share CS-Mode % in dist 56 32 % in dist 58 23

German Case (4 yr, 20000 km/yr) US Case (10 yr, 32500 km/yr)

9
8

1
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