103 research outputs found

    Event detection in location-based social networks

    Get PDF
    With the advent of social networks and the rise of mobile technologies, users have become ubiquitous sensors capable of monitoring various real-world events in a crowd-sourced manner. Location-based social networks have proven to be faster than traditional media channels in reporting and geo-locating breaking news, i.e. Osama Bin Laden’s death was first confirmed on Twitter even before the announcement from the communication department at the White House. However, the deluge of user-generated data on these networks requires intelligent systems capable of identifying and characterizing such events in a comprehensive manner. The data mining community coined the term, event detection , to refer to the task of uncovering emerging patterns in data streams . Nonetheless, most data mining techniques do not reproduce the underlying data generation process, hampering to self-adapt in fast-changing scenarios. Because of this, we propose a probabilistic machine learning approach to event detection which explicitly models the data generation process and enables reasoning about the discovered events. With the aim to set forth the differences between both approaches, we present two techniques for the problem of event detection in Twitter : a data mining technique called Tweet-SCAN and a machine learning technique called Warble. We assess and compare both techniques in a dataset of tweets geo-located in the city of Barcelona during its annual festivities. Last but not least, we present the algorithmic changes and data processing frameworks to scale up the proposed techniques to big data workloads.This work is partially supported by Obra Social “la Caixa”, by the Spanish Ministry of Science and Innovation under contract (TIN2015-65316), by the Severo Ochoa Program (SEV2015-0493), by SGR programs of the Catalan Government (2014-SGR-1051, 2014-SGR-118), Collectiveware (TIN2015-66863-C2-1-R) and BSC/UPC NVIDIA GPU Center of Excellence.We would also like to thank the reviewers for their constructive feedback.Peer ReviewedPostprint (author's final draft

    The Probabilistic Backbone of Data-Driven Complex Networks: An example in Climate

    Full text link
    Correlation Networks (CNs) inherently suffer from redundant information in their network topology. Bayesian Networks (BNs), on the other hand, include only non-redundant information (from a probabilistic perspective) resulting in a sparse topology from which generalizable physical features can be extracted. We advocate the use of BNs to construct data-driven complex networks as they can be regarded as the probabilistic backbone of the underlying complex system. Results are illustrated at the hand of a global climate dataset

    Exploring the topical structure of short text through probability models : from tasks to fundamentals

    Get PDF
    Recent technological advances have radically changed the way we communicate. Today’s communication has become ubiquitous and it has fostered the need for information that is easier to create, spread and consume. As a consequence, we have experienced the shortening of text messages in mediums ranging from electronic mailing, instant messaging to microblogging. Moreover, the ubiquity and fast-paced nature of these mediums have promoted their use for unthinkable tasks. For instance, reporting real-world events was classically carried out by news reporters, but, nowadays, most interesting events are first disclosed on social networks like Twitter by eyewitness through short text messages. As a result, the exploitation of the thematic content in short text has captured the interest of both research and industry. Topic models are a type of probability models that have traditionally been used to explore this thematic content, a.k.a. topics, in regular text. Most popular topic models fall into the sub-class of LVMs (Latent Variable Models), which include several latent variables at the corpus, document and word levels to summarise the topics at each level. However, classical LVM-based topic models struggle to learn semantically meaningful topics in short text because the lack of co-occurring words within a document hampers the estimation of the local latent variables at the document level. To overcome this limitation, pooling and hierarchical Bayesian strategies that leverage on contextual information have been essential to improve the quality of topics in short text. In this thesis, we study the problem of learning semantically meaningful and predictive representations of text in two distinct phases: • In the first phase, Part I, we investigate the use of LVM-based topic models for the specific task of event detection in Twitter. In this situation, the use of contextual information to pool tweets together comes naturally. Thus, we first extend an existing clustering algorithm for event detection to use the topics learned from pooled tweets. Then, we propose a probability model that integrates topic modelling and clustering to enable the flow of information between both components. • In the second phase, Part II and Part III, we challenge the use of local latent variables in LVMs, specially when the context of short messages is not available. First of all, we study the evaluation of the generalization capabilities of LVMs like PFA (Poisson Factor Analysis) and propose unbiased estimation methods to approximate it. With the most accurate method, we compare the generalization of chordal models without latent variables to that of PFA topic models in short and regular text collections. In summary, we demonstrate that by integrating clustering and topic modelling, the performance of event detection techniques in Twitter is improved due to the interaction between both components. Moreover, we develop several unbiased likelihood estimation methods for assessing the generalization of PFA and we empirically validate their accuracy in different document collections. Finally, we show that we can learn chordal models without latent variables in text through Chordalysis, and that they can be a competitive alternative to classical topic models, specially in short text.Els avenços tecnològics han canviat radicalment la forma que ens comuniquem. Avui en dia, la comunicació és ubiqua, la qual cosa fomenta l’ús de informació fàcil de crear, difondre i consumir. Com a resultat, hem experimentat l’escurçament dels missatges de text en diferents medis de comunicació, des del correu electrònic, a la missatgeria instantània, al microblogging. A més de la ubiqüitat, la naturalesa accelerada d’aquests medis ha promogut el seu ús per tasques fins ara inimaginables. Per exemple, el relat d’esdeveniments era clàssicament dut a terme per periodistes a peu de carrer, però, en l’actualitat, el successos més interessants es publiquen directament en xarxes socials com Twitter a través de missatges curts. Conseqüentment, l’explotació de la informació temàtica del text curt ha atret l'interès tant de la recerca com de la indústria. Els models temàtics (o topic models) són un tipus de models de probabilitat que tradicionalment s’han utilitzat per explotar la informació temàtica en documents de text. Els models més populars pertanyen al subgrup de models amb variables latents, els quals incorporen varies variables a nivell de corpus, document i paraula amb la finalitat de descriure el contingut temàtic a cada nivell. Tanmateix, aquests models tenen dificultats per aprendre la semàntica en documents curts degut a la manca de coocurrència en les paraules d’un mateix document, la qual cosa impedeix una correcta estimació de les variables locals. Per tal de solucionar aquesta limitació, l’agregació de missatges segons el context i l’ús d’estratègies jeràrquiques Bayesianes són essencials per millorar la qualitat dels temes apresos. En aquesta tesi, estudiem en dos fases el problema d’aprenentatge d’estructures semàntiques i predictives en documents de text: En la primera fase, Part I, investiguem l’ús de models temàtics amb variables latents per la detecció d’esdeveniments a Twitter. En aquest escenari, l’ús del context per agregar tweets sorgeix de forma natural. Per això, primer estenem un algorisme de clustering per detectar esdeveniments a partir dels temes apresos en els tweets agregats. I seguidament, proposem un nou model de probabilitat que integra el model temàtic i el de clustering per tal que la informació flueixi entre ambdós components. En la segona fase, Part II i Part III, qüestionem l’ús de variables latents locals en models per a text curt sense context. Primer de tot, estudiem com avaluar la capacitat de generalització d’un model amb variables latents com el PFA (Poisson Factor Analysis) a través del càlcul de la likelihood. Atès que aquest càlcul és computacionalment intractable, proposem diferents mètodes d estimació. Amb el mètode més acurat, comparem la generalització de models chordals sense variables latents amb la del models PFA, tant en text curt com estàndard. En resum, demostrem que integrant clustering i models temàtics, el rendiment de les tècniques de detecció d’esdeveniments a Twitter millora degut a la interacció entre ambdós components. A més a més, desenvolupem diferents mètodes d’estimació per avaluar la capacitat generalizadora dels models PFA i validem empíricament la seva exactitud en diverses col·leccions de text. Finalment, mostrem que podem aprendre models chordals sense variables latents en text a través de Chordalysis i que aquests models poden ser una bona alternativa als models temàtics clàssics, especialment en text curt.Postprint (published version

    Combining Multiple Sensors for Event Detection of Older People

    Get PDF
    International audienceWe herein present a hierarchical model-based framework for event detection using multiple sensors. Event models combine a priori knowledge of the scene (3D geometric and semantic information, such as contextual zones and equipment) with moving objects (e.g., a Person) detected by a video monitoring system. The event models follow a generic ontology based on natural language, which allows domain experts to easily adapt them. The framework novelty lies on combining multiple sensors at decision (event) level, and handling their conflict using a proba-bilistic approach. The event conflict handling consists of computing the reliability of each sensor before their fusion using an alternative combination rule for Dempster-Shafer Theory. The framework evaluation is performed on multisensor recording of instrumental activities of daily living (e.g., watching TV, writing a check, preparing tea, organizing week intake of prescribed medication) of participants of a clinical trial for Alzheimer's disease study. Two fusion cases are presented: the combination of events (or activities) from heterogeneous sensors (RGB ambient camera and a wearable inertial sensor) following a deterministic fashion, and the combination of conflicting events from video cameras with partially overlapped field of view (a RGB-and a RGB-D-camera, Kinect). Results showed the framework improves the event detection rate in both cases

    Mining urban events from the tweet stream through a probabilistic mixture model

    Get PDF
    The geographical identification of content in Social Networks have enabled to bridge the gap between online social platforms and the physical world. Although vast amounts of data in such networks are due to breaking news or global occurrences, local events witnessed by users in situ are also present in these streams and of great importance for many city entities. Nowadays, unsupervised machine learning techniques, such as Tweet-SCAN, are able to retrospectively detect these local events from tweets. However, these approaches have limited abilities to reason about unseen observations in a principled way due to the lack of a proper probabilistic foundation. Probabilistic models have also been proposed for the task, but their event identification capabilities are far from those of Tweet-SCAN. In this paper, we identify two key factors which, when combined, boost the accuracy of such models. As a first key factor, we notice that the large amount of meaningless social data requires explicitly modeling non-event observations.Therefore, we propose to incorporate a background model that captures spatio-temporal fluctuations of non-event tweets. As a second key factor, we observe that the shortness of tweets hampers the application of traditional topic models. Thus, we integrate event detection and topic modeling, assigning topic proportions to events instead of assigning them to individual tweets. As a result, we propose Warble, a new probabilistic model and learning scheme for retrospective event detection that incorporates these two key factors. We evaluate Warble in a data set of tweets located in Barcelona during its festivities. The empirical results show that the model outperforms other state-of-the-art techniques in detecting various types of events while relying on a principled probabilistic framework that enables to reason under uncertainty.This work is partially supported by Obra Social “la Caixa”, by the Spanish Ministry of Science and Innovation under contract (TIN2015-65316), by the Severo Ochoa Program (SEV2015-0493), by SGR programs of the Catalan Government (2014-SGR-1051, 2014-SGR-118), Collectiveware (TIN2015-66863-C2-1-R) and BSC/UPC NVIDIA GPU Center of Excellence.We would also like to thank the reviewers for their constructive feedback.Peer ReviewedPostprint (author's final draft

    Electroencephalography brain computer interface using an asynchronous protocol

    Get PDF
    A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in ful llment of the requirements for the degree of Master of Science. October 31, 2016.Brain Computer Interface (BCI) technology is a promising new channel for communication between humans and computers, and consequently other humans. This technology has the potential to form the basis for a paradigm shift in communication for people with disabilities or neuro-degenerative ailments. The objective of this work is to create an asynchronous BCI that is based on a commercial-grade electroencephalography (EEG) sensor. The BCI is intended to allow a user of possibly low income means to issue control signals to a computer by using modulated cortical activation patterns as a control signal. The user achieves this modulation by performing a mental task such as imagining waving the left arm until the computer performs the action intended by the user. In our work, we make use of the Emotiv EPOC headset to perform the EEG measurements. We validate our models by assessing their performance when the experimental data is collected using clinical-grade EEG technology. We make use of a publicly available data-set in the validation phase. We apply signal processing concepts to extract the power spectrum of each electrode from the EEG time-series data. In particular, we make use of the fast Fourier transform (FFT). Specific bands in the power spectra are used to construct a vector that represents an abstract state the brain is in at that particular moment. The selected bands are motivated by insights from neuroscience. The state vector is used in conjunction with a model that performs classification. The exact purpose of the model is to associate the input data with an abstract classification result which can then used to select the appropriate set of instructions to be executed by the computer. In our work, we make use of probabilistic graphical models to perform this association. The performance of two probabilistic graphical models is evaluated in this work. As a preliminary step, we perform classification on pre-segmented data and we assess the performance of the hidden conditional random fields (HCRF) model. The pre-segmented data has a trial structure such that each data le contains the power spectra measurements associated with only one mental task. The objective of the assessment is to determine how well the HCRF models the spatio-spectral and temporal relationships in the EEG data when mental tasks are performed in the aforementioned manner. In other words, the HCRF is to model the internal dynamics of the data corresponding to the mental task. The performance of the HCRF is assessed over three and four classes. We find that the HCRF can model the internal structure of the data corresponding to different mental tasks. As the final step, we perform classification on continuous data that is not segmented and assess the performance of the latent dynamic conditional random fields (LDCRF). The LDCRF is used to perform sequence segmentation and labeling at each time-step so as to allow the program to determine which action should be taken at that moment. The sequence segmentation and labeling is the primary capability that we require in order to facilitate an asynchronous BCI protocol. The continuous data has a trial structure such that each data le contains the power spectra measurements associated with three different mental tasks. The mental tasks are randomly selected at 15 second intervals. The objective of the assessment is to determine how well the LDCRF models the spatio-spectral and temporal relationships in the EEG data, both within each mental task and in the transitions between mental tasks. The performance of the LDCRF is assessed over three classes for both the publicly available data and the data we obtained using the Emotiv EPOC headset. We find that the LDCRF produces a true positive classification rate of 82.31% averaged over three subjects, on the validation data which is in the publicly available data. On the data collected using the Emotiv EPOC, we find that the LDCRF produces a true positive classification rate of 42.55% averaged over two subjects. In the two assessments involving the LDCRF, the random classification strategy would produce a true positive classification rate of 33.34%. It is thus clear that our classification strategy provides above random performance on the two groups of data-sets. We conclude that our results indicate that creating low-cost EEG based BCI technology holds potential for future development. However, as discussed in the final chapter, further work on both the software and low-cost hardware aspects is required in order to improve the performance of the technology as it relates to the low-cost context.LG201

    Knowledge will Propel Machine Understanding of Content: Extrapolating from Current Examples

    Full text link
    Machine Learning has been a big success story during the AI resurgence. One particular stand out success relates to learning from a massive amount of data. In spite of early assertions of the unreasonable effectiveness of data, there is increasing recognition for utilizing knowledge whenever it is available or can be created purposefully. In this paper, we discuss the indispensable role of knowledge for deeper understanding of content where (i) large amounts of training data are unavailable, (ii) the objects to be recognized are complex, (e.g., implicit entities and highly subjective content), and (iii) applications need to use complementary or related data in multiple modalities/media. What brings us to the cusp of rapid progress is our ability to (a) create relevant and reliable knowledge and (b) carefully exploit knowledge to enhance ML/NLP techniques. Using diverse examples, we seek to foretell unprecedented progress in our ability for deeper understanding and exploitation of multimodal data and continued incorporation of knowledge in learning techniques.Comment: Pre-print of the paper accepted at 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI). arXiv admin note: substantial text overlap with arXiv:1610.0770

    Uncertainty Modeling Framework for Constraint-based Elementary Scenario Detection in Vision System

    Get PDF
    International audienceEvent detection has advanced significantly in the past decades relying on pixel- and feature-level representations of video-clips. Although effective those representations have difficulty on incorporating scene se- mantics. Ontology and description-based approaches can explicitly em- bed scene semantics, but their deterministic nature is susceptible to noise from underlying components of vision systems. We propose a proba- bilistic framework to handle uncertainty on a constraint-based ontol- ogy framework for event detection. This work focuses on elementary event (scenario) uncertainty and proposes probabilistic constraints to quantify the spatial relationship between person and contextual objects. The uncertainty modeling framework is demonstrated on the detection of activities of daily living of participants of an Alzheimer's disease study, monitored by a vision system using a RGB-D sensor (Kinect , Microsoft c ) as input. Two evaluations were carried out: the first, a 3- fold cross-validation focusing on elementary scenario detection (n:10 par- ticipants); and the second devoted for complex scenario detection (semi- probabilistic approach, n:45). Results showed the uncertainty modeling improves the detection of elementary scenarios in recall (e.g., In zone phone: 85 to 100 %) and precision indices (e.g., In zone Reading: 54.71 to 73.15%), and the recall of Complex scenarios. Future work will extend the uncertainty modeling for composite event level

    Combining Multiple Sensors for Event Detection of Older People

    Get PDF
    International audienceWe herein present a hierarchical model-based framework for event detection using multiple sensors. Event models combine a priori knowledge of the scene (3D geometric and semantic information, such as contextual zones and equipment) with moving objects (e.g., a Person) detected by a video monitoring system. The event models follow a generic ontology based on natural language, which allows domain experts to easily adapt them. The framework novelty lies on combining multiple sensors at decision (event) level, and handling their conflict using a proba-bilistic approach. The event conflict handling consists of computing the reliability of each sensor before their fusion using an alternative combination rule for Dempster-Shafer Theory. The framework evaluation is performed on multisensor recording of instrumental activities of daily living (e.g., watching TV, writing a check, preparing tea, organizing week intake of prescribed medication) of participants of a clinical trial for Alzheimer's disease study. Two fusion cases are presented: the combination of events (or activities) from heterogeneous sensors (RGB ambient camera and a wearable inertial sensor) following a deterministic fashion, and the combination of conflicting events from video cameras with partially overlapped field of view (a RGB-and a RGB-D-camera, Kinect). Results showed the framework improves the event detection rate in both cases

    Bayesian Hierarchical Models for Remote Assessment of Atmospheric Dust

    Get PDF
    Dust storms emerging in the Earth's major desert regions significantly influence weather processes, the CO2-cycle and the climate on a global scale. Their effects on organisms range from providing nutrition to vegetation and microbes to direct impact on human settlements, transportation and health. The detection of dust storms, the prediction of their development, and the estimation of sources are therefore of immediate interest to a wide range of scientific disciplines. Recent spatio-temporal resolution increases of remote sensing instruments have created new opportunities to understand these phenomena. The scale of the data and their inherent stochasticity, however, pose significant challenges. This thesis develops a combination of methods from statistics, image processing, and physics that paves the way for efficient probabilistic dust assessment using satellite imagery. As a first step, we propose a BHM that maps SEVIRI measurements to a predictor of the dust density. Case studies demonstrate that, as compared to linear methods, our LSM approach mitigates effects of signal intrinsic noise on further processing steps. Furthermore, an extensive cross-validation study is employed to show that LSM successfully adapts to intra-daily changes of the infrared data and yields outstanding dust detection accuracy. Physically, the dust density and its transport process are tied together by the continuity equation. A traditional approach to determine the flow field for a given density is the variational method of Horn and Schunck (HS), which simplifies the equation to compression free motion. We characterize the equation's solution as a GMRF and introduce compressible dynamics. This link between probabilistic and variational perspectives leads to applied and theoretical advances. It enables us to employ the INLA technique for computationally efficient inference and integration over hyper-parameters. The importance of allowing for compressible motion and treating the problem in a statistical manner is emphasized by simulation and case studies showing a significant reduction in errors of the estimated flow field. In addition, we demonstrate how our methodology provides uncertainty quantification, dust storm forecasts and estimation of emission sources. The thesis is concluded by examining the analytical properties of our approach. It is shown that, under mild restrictions on an underlying Sobolev space, existence and uniqueness of the compressible flow can be guaranteed on a continuous domain and a well-posed discretization exists. Lastly, our variational calculations point to an interpretation of the density as a solution to flow-parameterized SPDE naturally extending Matern fields to non-isotropy, which provides a further step towards a joint model of dust density and flow field
    corecore