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Abstract The geographical identification of content in Social Networks have en-
abled to bridge the gap between online social platforms and the physical world. Al-
though vast amounts of data in such networks are due to breaking news or global oc-
currences, local events witnessed by users in situ are also present in these streams and
of great importance for many city entities. Nowadays, unsupervised machine learning
techniques, such as Tweet-SCAN, are able to retrospectively detect these local events
from tweets. However, these approaches have limited abilities to reason about unseen
observations in a principled way due to the lack of a proper probabilistic foundation.
Probabilistic models have also been proposed for the task, but their event identifica-
tion capabilities are far from those of Tweet-SCAN. In this paper, we identify two
key factors which, when combined, boost the accuracy of such models. As a first key
factor, we notice that the large amount of meaningless social data requires explicitly
modeling non-event observations.Therefore, we propose to incorporate a background
model that captures spatio-temporal fluctuations of non-event tweets. As a second
key factor, we observe that the shortness of tweets hampers the application of tradi-
tional topic models. Thus, we integrate event detection and topic modeling, assigning
topic proportions to events instead of assigning them to individual tweets. As a result,
we propose WARBLE, a new probabilistic model and learning scheme for retrospec-
tive event detection that incorporates these two key factors. We evaluate WARBLE in
a data set of tweets located in Barcelona during its festivities. The empirical results
show that the model outperforms other state-of-the-art techniques in detecting vari-
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ous types of events while relying on a principled probabilistic framework that enables
to reason under uncertainty.

Keywords Event detection · Social Networks · Probabilistic Models · Variational
Inference

1 INTRODUCTION

Social Networks, such as Twitter or Instagram, have turned citizens into social sen-
sors capable of reporting and spreading interesting events straightaway from their
mobile device (e.g. Mumbai terrorist attacks (Stelter and Cohen, 2008), Osama Bin
Laden raid (Newman, 2011)). Moreover, through the geographical identification of
content, i.e. geo-location, these networks have enabled to associate physical locations
to some of these events (Zheng, 2012). Local events refer to happenings witnessed by
users at some specific time and place (Lee, 2012), and differ from more general event
types in the fact that the latter are not generally spatially bounded (Weng and Lee,
2011; Becker et al., 2011). Identifying automatically such events, their temporal and
spatial extent, the social structure, etc. has become an interesting research problem
with a broad range of applications (Panagiotou et al., 2016).

Some local events, such as music concerts, protests, conferences, etc., are badly
covered by traditional media but of a great importance for many social and economic
actors. For example, the city council might want to know about events that have hap-
pened in its urban area during the past week, month or year in order to plan future
events, prepare communication strategies and arrange logistics. Spreading a team of
pollsters over the city might be too costly and still incapable of identifying certain
types of events (e.g. unscheduled events) or data dimensions (e.g. social relation-
ships). On the contrary, leveraging social network analysis to automatize the detection
and summarization of these local events seems a much more plausible approach.

Twitter has become the de facto Social Network to perform this event detection
task, mainly because the shortness of tweet messages fosters the quick consumption
and spreading of information (Atefeh and Khreich, 2015). In this article, we focus
on the retrospective detection of local events from the stream of geo-located tweets.
Others have already proved that this subset of tweets is sufficient to precisely uncover
various types of local events ranging from earthquakes (Sakaki et al., 2010) to social
events (Lee and Sumiya, 2010) or traffic jam (Krumm and Horvitz, 2015). Nonethe-
less, Twitter poses a set of features that makes the task of event detection particular
and calls for novel approaches that go beyond standard topic models (Blei, 2012)
used in Topic Detection and Tracking (TDT) (Allan et al., 1998) for news articles.
Next, we highlight three of these well-known challenges:

rarity. Event-related publications are masked by tones of non-event data such as
memes, user conversations or retweet activities, making it very hard to uncover
interesting patterns (Becker et al., 2011).

text-shortness. The length limit in the textual component of tweets hampers the ap-
plication of standard text models which rely on the co-occurrence of words such
as traditional topic models (Hong and Davison, 2010).
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variability. The tweeting activity is not flat along a day (it peaks during late night
and falls in early morning, i.e. see Fig. 4a), nor over a urban area (it concentrates
in the city center and spreads in suburbs, i.e. see Fig. 4b) (Li et al., 2013).

Capdevila et al. (2017) proposed a technique called Tweet-SCAN capable of deal-
ing with rarity and text-shortness, but unable to capture the temporal and spatial
variability of tweets. The technique extends DBSCAN (Density-based spatial clus-
tering of applications with noise) (Ester et al., 1996) to cluster tweets as per their
spatial, temporal and textual features. DBSCAN, and by extension Tweet-SCAN, in-
trinsically address rarity since both distinguish between noise points, associated with
non-event tweets, and cluster points, related to event tweets. Tweet-SCAN tackles
text-shortness by aggregating tweets with the same hashtag or key term and training
traditional topic models like HDP (Teh et al., 2006) with them. However, Tweet-
SCAN does not address variability, given that DBSCAN-like algorithms use a single
constant threshold to distinguish between noise and cluster points.

McInerney and Blei (2014) presented a probabilistic model that also clusters
tweets as per their spatial, temporal and textual features. They leverage text-shortness
by learning topics from an external news dataset and transferring them to the model.
However, this approach does not explicitly address rarity, nor variability, compromis-
ing the overall precision since many discovered clusters will not correspond to any
existing event, but to groups of similar non-event tweets.

Against this background, we propose WARBLE, a probabilistic model and learn-
ing scheme that explicitly addresses all three challenges. To address rarity, our model
groups non-event tweets together in a separate background component. The spatio-
temporal features of this background component are preset through empirical back-
grounds learned from geo-located tweets prior to the period of interest. These spatio-
temporal empirical priors also enable to capture varying tweet densities in space and
time. In this manner, we can overcome previous models’ shortcomings to detect
events in areas/periods of low tweeting activity (e.g. suburbs, off-peak hours) like-
wise in those of high activity (e.g. downtown, peak hours). Furthermore, by learning
topics and events simultaneously the proposed method is able to exclusively use the
tweet stream, thus dropping the dependence on an external data set.

Contributions from this work 1 are the following:

1. We present a new probabilistic model, the so-called WARBLE model, which ex-
plicitly addresses rarity, text-shortness and variability.

2. We propose a variational inference algorithm to approximate the posterior distri-
bution given the data.

3. We show that the WARBLE model outperforms state-of-the-art event detection
techniques in a data set made of geo-located tweets in the city of Barcelona during
its local festivities.

The rest of the paper is structured as follows. In section 2, we present related
work on event detection in social networks with special focus to local events. In

1 This is an extended version of an unpublished paper that was presented at the ICML Anomaly De-
tection Workshop 2016 (Capdevila et al., 2016a). The present work also incorporates event summaries,
evaluation in terms of BCubed metrics, further details on the model and learning algorithm as well as the
release of the WARBLE code and “La Mercè” datasets.
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section 3, we introduce the WARBLE model in full detail. The learning scheme for the
background model and the variational inference algorithm are described in section 4.
In section 5, we show the detection performance of the proposed model in terms of set
matching and BCubed metrics and compare against other state-of-the-art techniques.
We conclude this work in section 6 by presenting some remarks and future work.

2 RELATED WORK

Event detection in Twitter has been deeply influenced by the Topic Detection and
Tracking (TDT) project (Allan et al., 1998). According to this project, an event is
“something that happens at specific time and place with consequences” (Panagiotou
et al., 2016). Therefore, many event detection approaches have been based on measur-
ing these consequences to uncover the true occurrence. However, consequences can
be extremely diverse, ranging from an increase on the number of publications (Becker
et al., 2011) to the use of certain language structures (Ritter et al., 2012), presence of
posts about specific subjects (Akbari et al., 2016) or about personal and time-specific
topics (Li and Cardie, 2014). In this work, we follow the most common approach to
event detection in social networks (Becker et al., 2011; Lee, 2012) which assumes
that the consequences of an event are translated into an increase of publications in
the network.

Initial techniques for event detection have focused on extending existing TDT
approaches for text collections to social networks. For example, authors in (Petrović
et al., 2010) have proposed a document-pivot model which represents tweets through
the traditional term vector model and scales up nearest neighbor search through
locality-sensitive hashing. Others in (Long et al., 2011) have identified Twitter-specific
features that determine topical words and detect events by clustering co-occurrent
topical words over a graph. The frequency domain has also been explored by Weng
and Lee (2011), who proposed to construct wavelet signals from words and per-
formed clustering based on the cross correlation between signals. Lately, authors
in (Becker et al., 2011) addressed rarity in the tweet stream by post-processing result-
ing clusters and deciding whether or not they were event-related through a supervised
classifier.

None of the above approaches considered geo-location, hampering the associa-
tion of discovered clusters to local events. One of the first works to take into ac-
count geo-located tweets was an earthquake detection and monitoring system based
on Kalman filtering (Sakaki et al., 2010). Nonetheless, this system filters earthquake-
related tweets beforehand, limiting its capacity to discover events about other sub-
jects. A different approach to circumvent this issue consists in simply comparing the
expected tweeting behavior in a spatio-temporal subregion against the actual behav-
ior. For instance, Lee and Sumiya (2010) defined Regions of Interest (RoI) through
a clustering-based space partition method and constantly monitored these subregions
to detect abnormal behaviors through outlying indicators. Krumm and Horvitz (2015)
employed instead a uniform tessellation to partition the space and a detection scheme
that compares the predicted number of tweets against the actual number. A shortcom-
ing with both techniques is that finer partitions tend to perform badly for large events
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that affects several subregions, while coarser partitions perform poorly for small
events (Wong and Neill, 2009). Space-Time Scan Statistic (STSS) methods (Kull-
dorff et al., 2005) were proposed to overcome these problems and they have been
applied to detect spatio-temporal events in Twitter (Cheng and Wicks, 2014). How-
ever, all these techniques do not explicitly consider text, limiting the capabilities to
identify different types of event inside the monitored subregion.

DBSCAN-like techniques, which have been categorized as bottom-up detection
approaches in Wong and Neill (2009), have also been considered for this task due to
the noise resilience capabilities (Ester et al., 1996). EventRadar (Boettcher and Lee,
2012) proposed to incorporate the original DBSCAN into a processing pipeline with
different stages to detect local events from tweets. Authors in (Gomide et al., 2011;
Tamura and Ichimura, 2013) proposed to use instead the spatio-temporal extension
called ST-DBSCAN (Birant and Kut, 2007) to detect predefined events (precipitation
and dengue) from text filtered tweets. Lately, others (Singh, 2015) extended DB-
SCAN to incorporate text through cosine similarity over term vectors to discover
various types of unspecified events. Capdevila et al. (2017) presented Tweet-SCAN
which relies on Jensen-Shannon distance over topic distributions. Topics are learned
by pooling tweets per hashtag and training a HDP topic model (Teh et al., 2006) from
these aggregated documents. However, one of the major limitations of DBSCAN-like
approaches to event detection from tweets is that they fail to detect events that are
not dense enough. In other words, DBSCAN-like techniques cannot capture varying
tweet densities along time and space.

Probabilistic models were already considered for the TDT project. For instance, Li
et al. (2005) proposed a generative model that incorporates content and time in-
formation in a unified framework with latent events for retrospective event detec-
tion. Similarly, Pan and Mitra (2011) adapted the Spatial Latent Dirichlet Alloca-
tion (SLDA) (Wang and Grimson, 2008) typically used in image segmentation for
spatio-temporal event detection on text. The influence of these methods in Twitter
can be found in the work by McInerney and Blei (2014). The model was proposed
for uncovering newsworthy events from tweets by using of an external news data
set, from which topics were transferred from this external dataset. However, these
models assigned a latent event to each tweet without distinguishing between event
and non-event tweets. This assumption might compromise the overall precision when
performing local event detection in Twitter because events are very rare.

This work extends the probabilistic model presented in (McInerney and Blei,
2014) to effectively deal with rarity by considering non-event tweets as first class citi-
zen. These non-event tweets are explicitly modeled through an empirical background
which captures the varying tweeting activities along time and space. Moreover, the
fact that we learn distinct spatial precision matrices and temporal precision scalars for
each event, enables to overcome a major issue of DBSCAN-like algorithms, that is
the inability to capture events with different density levels. By simultaneously learn-
ing topics and events, we are also able to mitigate the lack of word co-occurrence
problem that arise in traditional topic models. Furthermore, in contrast to models
that disregard text, we are capable of distinguishing between events that overlap in
space-time but are from different topics.
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3 PROBABILISTIC MODEL

In this section we explain how the WARBLE model explicitly addresses rarity, vari-
ability and text-shortness. In the remaining, Tn is a random variable which represents
the time, geolocation and message for the n-th tweet, and T = {T1, . . . ,TN} is the
whole collection of observed tweets.

3.1 Modeling rarity through Heterogeneous Mixture Models

The model proposed by McInerney and Blei (2014) is a mixture model in which ev-
ery mixture component shares the same distributional form. Fig. 1a shows the proba-
bilistic graphical model (PGM) (Koller and Friedman, 2009) for McInerney and Blei
proposal. They assume the existence of K latent events. The model assigns to each
event k a proportion πk of the tweets. Furthermore, there is a set of parameters βk
which characterizes the probability distribution function (pdf) of the tweets of that
event. Furthermore, for each tweet n, they assume the existence of a latent event,
encoded in the discrete hidden variable en, from which the data for the n-th tweet is
generated. Given en, the distribution of Tn is

Tn ∼ f (βen) (1)

where f is the pdf, common for all mixture components. That is, the only difference
between two events k and k′ is that their parameters βk and βk′ are different, but the
functional form of f remains the same among components.

The joint probability distribution for McInerney and Blei’s model can be ex-
pressed as follows,

p(T, e, β, π) = p(π|απ)
N∏
n=1

p(Tn |βen)p(en|π)
K∏
k=1

p(βk|αβ) (2)

where p(π|απ) follows a Dirichlet distribution, p(en|π) is a Categorical distri-
bution with parameters π and the functional form of p(Tn |βen) is common for all
K components. Moreover, the model considers a prior over the event parameters
p(βk|αβ).

As argued in the introduction, a vast majority of tweets is not event related. We
would like to address rarity of event data by introducing a new mixture component,
to which we will refer as background, which contains those tweets which are not
part of any event. In probabilistic terms, it seems clear that the distribution of tweets
inside the background component should be widely different from that inside events.
McInerney and Blei’s model assumes (Eq. 1) that all components follow the same
base distribution f , and thus it is unable to deal with the introduction of a background
component whose distribution is widely different from that of events.

Accordingly, we propose to generalize McInerney and Blei’s model to handle
heterogeneous components. To do that, for each component k, we enable a different
base function fk as shown in Eq (3).

Tn ∼ fen (βen) . (3)
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(a) McInerney and Blei’s model
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(b) Simplified WARBLE model

Fig. 1: Probabilistic Graphical Models (PGMs)

Our model fits into the framework proposed by Banfield and Raftery (1993). To the
best of our knowledge no application of that framework to event modeling has been
reported.

The WARBLE model depicted in Fig. 1b is the PGM representation for an het-
erogeneous mixture model of tweets in which the K-th component (the background)
follows a different statistical distribution. This component corresponds to the back-
ground and is represented through a set of parameters γB . Moreover, the latent vari-
ables are now symbolized through cn to denote that a tweet might be generated by
event components (cn < K) or by background (cn = K).

The joint probability distribution for Fig. 1b can be written as,

p(T, c, β, π) = p(π|απ)
N∏
n=1

pcn(Tn |βcn , γB)p(cn|π)
K−1∏
k=1

p(βk|αβ) (4)

where now the tweet distribution depends on the component assignment, pcn(Tn |
βcn , γB). Moreover, we observe that the background component does not consider
a prior over its parameters. The next section provides additional details on how we
model the distribution of the background component.

3.2 Modeling variability through a spatio-temporal background

Geo-located social data such as tweets tends to be unevenly distributed through space
and time. For example, it is known that users are more likely to tweet during late
evening and from highly populated regions (Li et al., 2013). Because of this, we fore-
see the need to explicitly take this variability into account in order to identify events
at peak hours as well as during valleys. This challenge has been deeply studied in
classical sensor networks where the spatial scan statistic has been extended to con-
sider non-homogeneous Poisson process as the baseline process (Kulldorff, 1997).
It occurs in spatial clustering of trees in forestry, identifying clusters of a particular
kind of star in astronomy or geographical clustering of disease in epidemics.

The WARBLE model proposed in Fig. 1b enables to consider a density varying
distribution with parameters γB for the background component. Here, we propose to
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model this background through two independent histogram distributions with param-
eters TB and LB , respectively.

The temporal histogram distribution can be represented through a piecewise-
continuous function which takes constant values (TB1 , TB2 , ...TBIT ) over the IT con-
tiguous intervals in the variable domain. For example, Fig. 2 shows the 1D-histogram
distribution in the temporal range from tmin to tmax, in which there are IT intervals
of length b. Moreover, we must note that the piecewise function has to be normalized
to sum 1 in order to fulfill the properties of probability distributions.

tmin tmax

TB1

TB2

TBIT

b

Fig. 2: Temporal histogram distribution 1d-Hist(.)

Similarly, the spatial background is modeled through a 2D-histogram distribu-
tion over the geographical space, which is represented in a Cartesian coordinate sys-
tem. The 2d-piecewise-continuous function is expressed through IL constant values
(LB1 , LB2 , ...LBIL ) in a grid of squares with size b x b each.

Through these histogram distributions, the WARBLE model can consider different
spatio-temporal backgrounds which can be learned from tweets as we will see in
section 4.1.

3.3 The complete WARBLE model

We present here the complete WARBLE model to perform event detection from tweets.
The probabilistic graphical model in Fig. 3 provides a more detailed version of the
model depicted in Fig. 1b.

In the complete WARBLE model tweets Tn are now represented by their temporal
tn, spatial ln and textual wn,. features. The parameters βk for the k-th event com-
prise the set of variables βk = {τk, λk, µk, ∆k, θk}. As for the hyperparameters, αβ
in Fig. 1b corresponds to the set of hyperparameters mτ , βτ , aλ, bλ, mµ, βµ, ν∆,
W∆, αθ in Fig. 3. Finally, the hyperparameter of the background component γB in
Fig. 1b is composed of the hyperparameters for the temporal (TB) and spatial (LB)
features in Fig. 3. Furthermore, in this detailed model we add two additional variables
φ = {φ1, . . . , φT }, where φt encodes parameters of the distribution over words of
the t-th topic and θK which encodes the distribution over topics for the background
component. We also add an additional hyperparameter αφ.
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wn,mzn,m
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cn

tn

π

τk λk µk ∆k θk

απ

mµ, βµ ν∆,W∆aλ, bλmτ , βτ αθ

φt

αφ

TB

LB Mn

N

K-1 K

T

Fig. 3: The WARBLE model in detail

In Eq. (5) we provide the joint probability distribution, which fully describes the
WARBLE model in probabilistic terms.

p(T, c, β, π, φ, θK) = p(π|απ)
N∏
n=1

pcn(Tn |βcn , γB)p(cn|π)

K−1∏
k=1

p(βk|αβ)p(φ|αφ)p(θK |αβ) (5)

In the remaining we specify each of the factors in the right hand side of Eq. (5).
As explained above p(π|απ) follows a Dirichlet distribution, that is p(π|απ) =

Dir(π|απ). As usual in probabilistic topic models (Blei, 2012), p(φ|αφ) =
∏T
t=1

Dir(φt|αφ) is the product of T Dirichlet distributions with hyperparameter αφ.
As for the tweet probability distribution pcn(Tn |βcn , γB), we have that

pcn(Tn |βcn , γB) = pcn(tn|τcn , λcn , TB) · pcn(ln|µcn , ∆cn , LB)

p(wn,.|θcn , φ) (6)

Here, the posting time tn of event-related tweets arises from a Normal distribution
N(.) with unknown mean τcn and precision λcn , and that of non-event tweets is
generated by a 1D histogram distribution Hist(.) with parameter TB , formally

pcn(tn|τcn , λcn , TB) =

{
Hist(tn|TB) , if cn = K

N(tn|τcn , λcn) , otherwise.
(7)

Similarly, the geographical locations ln of event-related tweets comes from a mul-
tivariate Normal distribution with unknown mean µcn and precision ∆cn and that of
non-event tweets is generated by a 2D histogram distribution Hist(.) with parameter
LB :

pcn(ln|µcn , ∆cn , LB) =

{
Hist(ln|LB) , if cn = K

N(ln|µcn , ∆cn) , otherwise.
(8)
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Regarding textual features, in WARBLE the m-th word of the n-th tweet is gen-
erated as follows. First a topic zn,m is drawn from a Categorical distribution over
topics with parameter θcn . Then, the word wn,m is sampled from the assigned topic
distribution over words with parameter φzn,m . Formally,

p(wn,.|θcn , φ) =
Mn∏
m=1

Cat(zn,m|θcn)Cat(wn,m|φzn,m). (9)

The prior over event component parameters p(βk|αβ) is

p(βk|αβ) =N(µk|mµ, βµ∆k)W (∆k|ν∆,W∆)

N(τk|mτ , βτλk)G(λk|aλ, bλ)
Dir(θk|αθ) (10)

where the unknown means and precisions are drawn from a Normal-Gamma N(.)-
G(.) and a Normal-WishartN(.)-W (.). The Dirichlet distributionDir(.) with hyper-
parameters αθ is considered as conjugate prior for the Categorical distribution over
topics θcn . Similarly, the topic distribution of the background component is also a
Dirichlet, p(θK |αβ) = Dir(θK |αφ), completing the specification of the joint proba-
bility distribution.

3.4 Modeling text-shortness through event specific topic proportions

Finally, we note that the detailed WARBLE model presented above integrates clus-
tering and topic modeling, which has lately been found very promising in modeling
short and sparse text (Hong and Davison, 2010; Quan et al., 2015).

Following this approach, tweets are clustered into different components cn as per
its temporal tn, spatial ln and textual wn,. features, aggregating short text messages
into longer pseudo-documents. In our model, these pseudo-documents correspond to
the mixture components (events or background).

In contrast to traditional topic modeling where distributions over topics are document-
specific (Blei et al., 2003), we here assume that topics zn,m are drawn from component-
specific distributions θk. This enables to directly obtain topics that are event-related
or background-related, providing an interesting approach for automatic event sum-
marization (Long et al., 2011).

4 LEARNING FROM DATA

In this section we describe how to use the WARBLE model to identify a set of events
in a region during a period of interest. The procedure assumes the availability of a
recorded dataset of tweets from that region and follows two steps. First, we use the
tweets previous to the start of the period of interest to derive a background model.
Then, we use the tweets recorded during the period of interest to find the most prob-
able assignment of tweets to mixture components.
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4.1 Learning the background model

To learn the spatio-temporal background from tweets, we propose to collect tweets
previous to the period of interest and within the same region in order to add a sense
of typicality to the model.

From the collected tweets, the temporal background is built by first computing
the daily histogram with IT bins. Then, the daily histogram is smoothed by means
of a low pass Fourier filter in order to remove high frequency components. The
cut-off frequency fc determines the smoothness of the resulting signal. The normal-
ized and smoothed histogram provides the parameters for the temporal background
TB1

, TB2
, ...TBIT .

The spatial background is build following the same procedure. However, geo-
graphical location has to be first projected into a Cartesian coordinate system in order
to consider locations in a 2-d Euclidean space. The spatial range limits can be de-
termined from the most southwestern and northeastern points. We consider now a
two dimensional Gaussian filter with a given variance σ. The resulting 2D-histogram
provides the parameter for the spatial background LB1

, LB2
, ...LBIL .

We suggest to set the number of bins for the temporal and spatial histograms as
well as the cut-off frequency and variance empirically. Future work will examine how
to automatically adjust these parameters.

4.2 Assigning tweets to mixture components

We are interested in finding the most probable assignment of tweets to mixture com-
ponents, given the data at hand, that is finding c∗

c∗ = argmax
c

p(c|l, t, w;Γ ) (11)

where Γ stands for the model hyperparameters LB , TB , απ , αθ, αφ, mτ , βτ , aλ,
bλ, mµ, βµ, ν∆ and W∆. Exactly assessing c∗ is computationally intractable for the
WARBLE model. Therefore, we propose to

1. Use mean-field variational Bayesian inference (Fox and Roberts, 2012; Jordan
et al., 1999) to approximate p(X|D;Γ ) (where X stands for the set of random
variables containing c, z, π, τ , λ, µ, ∆, θ and φ, and D stands for our data,
namely l, t, and w) by a distribution q(X; η) (where η stands for the variational
parameters to be detailed later).

2. Assess c∗ from the approximation, that is

c∗ = argmax
c

q(c; η) = argmax
c

∫
X−c

q(X; η). (12)

In the following we provide detail on each of these two points.
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4.2.1 Mean-Field Variational Bayesian inference

Our mean-field variational inference algorithm relies on minimizing the Kullback-
Leibler (KL) divergence between p(X|D;Γ ) and a distribution q(X; η) which fac-
torizes as

q(X; η) = q(π)

T∏
t=1

q(φt)

N∏
n=1

q(cn)

Mn∏
m=1

q(zn,m)

q(θK)

K−1∏
k=1

q(τk)q(λk)q(µk)q(∆k)q(θk). (13)

The KL divergence is minimized through an iterative coordinate-descent scheme
until convergence is reached. Thus, the factors in Eq. (13) are sequentially updated,
one factor at a time. The mean-field variational update for the factor corresponding
to a random variable x whatsoever is

q(x) ∝ exp

(∫
X−x

q(X; η) log p(X,D;Γ )

)
(14)

where log p(X,D;Γ ) is the logarithm of the join probability distribution for the
WARBLE model defined in Eq. (5) . After all variables have been updated the KL
divergence is compared with that of the previous iteration. In case convergence has
not been reached yet, another round of updates is started.

We notice that due to the introduction of the background distributions, the model
is not conjugate-exponential (Fox and Roberts, 2012; Ghahramani and Beal, 2001).
Thus, the updates in Eq. (14) need to be manually derived for each variable. To exem-
plify the derivations, we include here the development of the most complex update,
that of the assignment variable cn. Since our distribution follows the Bayesian net-
work in Fig. 3, Eq. (14) can be simplified to

q(cn) ∝ exp

(∫
Z

q(Z) log p(cn, Z,D;Γ )

)
(15)

where Z is the set of variables in the Markov blanket of cn, which are π, tn, τ , λ, ln,
µ, ∆, zn,. and θ.

Given that the right side of Eq. (15) is proportional to the approximate distribution
q(cn), we can disregard terms that do not depend on cn and express the remaining as
a product,

q(cn) ∝ fprior(cn) · ftime(cn) · floc(cn) ·
Mn∏
m=1

fm-word(cn) (16)
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where

fprior(cn) = exp

(∫
π

q(π) log p(cn|π)
)

ftime(cn) = exp

(∫
τcn ,λcn

q(τcn)q(λcn) log p(tn|τcn , λcn)

)

floc(cn) = exp

(∫
µcn ,∆cn

q(µcn)q(∆cn) log p(ln|µcn , ∆cn)

)

fm-word(cn) = exp

(∫
θcn ,zn,m

q(θcn)q(zn,m) log p(zn,m|θcn)

)
. (17)

We observe that there are four factors, one for the mixture proportions and one for
each tweet feature (posting time, geographical location and text message).

Since cn is a discrete variable, q(cn) fits in the functional form of a Categorical
distribution with variational parameter c′n, defined as the normalization of c̃′nk,

c′nk =
c̃′nk∑K
k=1 c̃

′
nk

(18)

where c̃′nk can be obtained from Eq. (16):

c̃′nk = fprior(k) · ftime(k) · floc(k) ·
Mn∏
m=1

fm-word(k). (19)

Note that the background component takes no part in fprior and fm-word, whose
expressions can hence be derived following a standard procedure. Thus, we omitted
them next.

However, the introduction of a background model entails differences in the spatio-
temporal factors floc and ftime, since the background component (k = K) follows a
different distribution function. Considering the pdf in Eq. (7), the temporal factor can
be defined as follows,

ftime(k) =

{
Hist(tn|TB) k = K

exp
(∫

τk,λk
q(τk)q(λk) logN(tn|τk, λk)

)
otherwise

(20)

and from Eq. (8), the spatial factor is,

floc(k) =

{
Hist(ln|LB) k = K

exp
(∫

µk,∆k
q(µk)q(∆k) logN(ln|µk, ∆k)

)
otherwise

(21)

where in each equation the event components are computed from the corresponding
Normal distributions and the background component from the Histogram distribu-
tion.

Nonetheless, to find a closed-form expression for Eq. (20) we need to derive the
approximated distributions for q(τk) and q(λk). We provide a summary of the func-
tional forms for each variational distribution q(x) in Table 1. Full details on the up-
dates can be found in a technical report (Capdevila et al., 2016b).
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Table 1: Functional forms for q(X)

q(x) Functional form

q(π) Dir(π|π′
k)

q(cn) Cat(cn|c′nk)
q(zn,m) Cat(zn,m|z′n,m,t)
q(φt) Dir(φt|φ′t)
q(τk) N(τk|mτk , β′

τk

a′λ
b′
λ
)

q(λk) G(λk|a′λ, b
′
λ)

q(µk) N(µk|µ′k, β
′
µk
ν′W ′)

q(∆k) W (∆k|ν′,W ′)

q(θk) Dir(θk|θ′k)

4.2.2 Using the variational approximation to assign tweets to mixture components

Recall that our objective was to find the most likely assignment of tweets to mixture
components using the variational approximation to the posterior shown in Eq. (12).
Note that we can take benefit from the fact that q(X) factorizes as shown in Eq. (13)
to assess the mixture component for each tweet independently. Thus, the n-th tweet
will be assigned to the mixture component which maximizes the Categorical distri-
bution q(cn; c′n), that is,

c∗n = argmax
cn

q(cn; c
′
n) = argmax

k
c′n,k. (22)

5 EXPERIMENTS

In this section, we present the experimental dataset, the evaluation metrics, the WAR-
BLE settings for these experiments, the detection performance of WARBLE and com-
parative results against other state-of-the-art techniques. The code to reproduce all
the experiments can be found in this repository1.

5.1 Dataset description: “La Mercè 2014”

The availability of datasets for local event detection in Twitter is very limited, ham-
pering the advance of the research field. Because of this, we have crawled and pub-
lished our own dataset from geo-located in the city of Barcelona during its local
festivities on the 24th of September 2014, referred as “La Mercè 2014”. Local events
in this set of tweets were tagged by local experts helped with the official calendar of
the festivities2.

1 https://github.com/jcapde/WARBLE
2 https://github.com/jcapde/Twitter-DS/tree/master/MERCE/2014
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The data set is composed of 2173 tweets out of which 202 belong to 6 distinct
real-world events. “La Mercè 2014” events on the 24th of September consisted of a
music concert at Bogatell beach area, human towers exhibition at Plaça Sant Jaume,
open day at MACBA museum, a food market at Parc de la Ciutadella, a wine tasting
fair at Arc de Triomf and fireworks near Plaça d’Espanya. Moreover, experts identi-
fied a 7th event which arose in Bogatell area during the afternoon as a result of several
users reviving the earlier concert.

Tweets were processed beforehand as follows. The posting times were trans-
formed into ordered scalar values by considering 24-09-2014 00:00:00 time-stamp
as the reference value. The geographical coordinates, a.k.a latitude and longitude,
were transformed into UTM (Universal Transverse Mercator) to work with them as
in the euclidean space. Textual messages were cleaned by removing URLs, numbers,
emoticons and other special characters. Stopwords in Catalan, Spanish and English
were also removed from tweets and all words are converted into lower case.

5.2 Evaluation metrics

The assessment is performed in terms of extrinsic clustering evaluation (Amigó et al.,
2009). More specifically, we use common metrics in event detection based on set
matching such as purity, inverse purity and F-measure (Yang et al., 1998), but we also
propose to consider more robust clustering figures such as the BCubed family (Bagga
and Baldwin, 1998).

BCubed metrics, known as BCubed precision, recall and F-measure, defines cor-
rectness within a pair of points p and p′ as,

correctness(p, p′) =

{
1 L(p) = L(p′)⇐⇒ C(p) = C(p′)

0 otherwise
(23)

where L(p) corresponds to the label of point p andC(p), to its cluster. Therefore, cor-
rectness is one i.f.f. the labels of two points match as well as their clusters. BCubed
metrics satisfy desideratum which are not accomplished by set matching metrics (Amigó
et al., 2009). For event detection, an interesting properties satisfied by BCubed met-
rics is the so-called rag bag. A metric satisfying rag bag will prefer clusterings in
which all “miscellaneous” observations are grouped together into a diverse cluster.

Both family metrics define F-measure to avoid trivial solutions on purity(precision)
and inverse purity(recall). Purity or BCubed precision is trivially maximum when
each tweet is assigned to a different event and inverse purity or BCubed recall is
highest when all tweets are set to the same unique event, respectively (Amigó et al.,
2009). Therefore, F-measure, the harmonic mean of both metrics, is proposed to avoid
these trivial solutions and become a proper evaluation metric.

5.3 WARBLE settings for “La Mercè 2014”

In this section, we detail the parameters of the WARBLE model as well as the spatio-
temporal backgrounds for “La Mercè 2014”. The WARBLE model presented in Sec-
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tion 3 contains several parameters and hyperparameters. Although their optimization
is out of the scope of this paper, we have not experimented substantial differences in
the results when varying them. The number of components K is set to 8 so that the
model is able to capture the 7 events occurring. Following Capdevila et al. (2017),
we set the number of topics T to 30.

In addition to “La Mercè 2014” dataset, we also consider tweets previous to the
period of interest in order to learn the spatio-temporal backgrounds TB and LB as
explained in Section 4.1. In particular, we collected tweets from the 20th to the 23th
of September 2014 to build the following backgrounds.
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Fig. 4: Spatio-temporal backgrounds

Fig. 4a shows the daily histogram of tweets in which we observe a valley during
the early morning and a peak at night, indicating low and high tweeting activity dur-
ing these hours, respectively. The 1-d histogram has been computed with IT = 100
bins. Fig. 4a also contains the smoothed histogram distribution (black line) that is
used to set the temporal background parameters TB1

, TB2
, ...TBIT .

Fig. 4b is the smoothed histogram for all tweet locations, which give us the pa-
rameters for the spatial background LB1

, LB2
, ...LBIL . The 2-d histogram has been

computed with IL = 1600 bins. We observe that the most likely areas in the filtered
histogram (in bright yellow) correspond to highly dense regions of Barcelona like the
city center, while city surroundings are colored in blue indicating lower density of
tweets.

We note that the above backgrounds are in accordance with spatio-temporal be-
haviors founds in other studies (Li et al., 2013).

5.4 Results

First, we assess WARBLE in “La Mercè 2014” dataset through recall figures for each
labeled event. Then, we compare its F-measure performance against state-of-the-art
techniques such as McInerney & Blei model (McInerney and Blei, 2014) and Tweet-
SCAN (Capdevila et al., 2017).
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5.4.1 Assessment of WARBLE in “La Mercè 2014”

Table 2 summarizes the assessment of WARBLE in “La Mercè 2014” dataset. For each
event, set matching recall provides the fraction of relevant tweets that are correctly
identified and BCubed recall, shown in parentheses, provides the average correctness.
Despite their intrinsic differences, both recall figures show very similar results. We
observe that larger events (# tweets), such as concert and fireworks, are correctly
identified (high recall) while smaller ones, like museums open day or human towers
exhibition, are harder to detect.

However, we notice that the food market and wine tasting exposition could not
be discovered at all. We argue that this is because both were all-day events and had
fewer tweets in comparison to the rest. Future work could explore to treat all-day
events differently, for instance introducing priors for these events with greater tem-
poral variance.

Finally, the resulting mean coordinates (lat, long) and times from the probabilistic
model are also coherent with “La Mercè” schedule.

Table 2: Recall figures and spatio-temporal features per event

Event # tweets Recall (BCubed) Location (lat;long) Time (hh:mm:ss)

Concert 27/28 0.96 (0.93) 41.3931± 0.0014; 2.2058± 0.0018 02:32:40± 0:11:32
Human towers 11/20 0.55 (0.36) 41.3834± 0.0013; 2.1775± 0.0016 12:46:56± 0:08:40
Concert revival 26/30 0.86 (0.76) 41.3926± 0.0012; 2.2056± 0.0017 13:44:19± 0:10:17

Museums open day 18/25 0.72 (0.56) 41.3836± 0.0012; 2.1716± 0.0044 18:18:33± 0:08:27
Fireworks 62/65 0.95 (0.91) 41.3734± 0.0015; 2.1496± 0.0022 22:11:10± 0:06:18

The probabilistic model, apart from spatio-temporal information, also provides
information about which topics are linked to each event, enabling automatic event
summarization. Topic distributions plotted in Fig. 5, show that each event is mainly
about one topic, except for the last one which corresponds to background (k = K).
Therefore, there are two events whose main topic is number 17, one event for topic
24, another for topic 5 and one last event which is mainly about topic 14.

The content of each topic can be taken out of the corresponding word distri-
butions. Table 3 shows the most probable words for each topic, enabling to under-
stand topics and events. For example, Topic 17 refers to music since words concert,
txarango (local band) and manel (local band) are very likely. We have already seen
that this topic was linked to two resulting events in Fig. 5 which we can associated
with the music concert at Bogatell beach area and the revival on the afternoon. We
also note that top words in each topic usually refer to the event location, which can
be explained from the fact that most tweet messages explicitly mention the place.

5.4.2 Evaluation against state-of-the-art

In what follows, we compare WARBLE from section 3 against other event detection
techniques. In particular, we will compare the performance of:
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Fig. 5: Topic distributions per event θk

Table 3: Most probable words per topic from φt. English translations in italics.

Topic 5 Topic 14 Topic 17 Topic 24 Topic 26

museu museum piromusical fireworks platja beach plaça square im I’m
macba MACBA plaça square bogatell Bogatell dia day q that

contemporani contemporary despanya from Spain txarango Txarango jaume Jaume gran big
fan do font fountain concert concert catalunya Catalonia mercé Mercé

veient looking poder power manel Manel day day hoy today

(A) McInerney & Blei model (McInerney and Blei, 2014), which does not consider
background and does not perform simultaneous topic-event learning.

(B) The WARBLE model without simultaneous topic-event learning.
(C) The WARBLE model without modeling background.
(D) The complete WARBLE model.
(E) Tweet-SCAN with ε1 = 250m, ε2 = 3600s, ε3 = 0.9, µ = 0.5, MinPts = 7.

For those models that do not perform simultaneous topic-event learning, the La-
tent Dirichlet Allocation model (Blei et al., 2003) is separately trained with tweets
aggregated by key terms as proposed in (Hong and Davison, 2010).

Fig. 6a shows the results for each event detection model introduced earlier in
terms of set matching metrics. Results show that WARBLE outperforms the existing
state-of-the-art models (A & E) in terms of F-measure and purity. Moreover, by an-
alyzing the results of models B and C we see a clear synergy between background
modeling and simultaneous topic-event learning. Neither of them separately achieves
a large increase of the F-measure, but when combined they do. Fig. 6b shows that the
same conclusions can be drawn from the analysis of BCubed metrics.

Fig. 7 provides visual insight on the quality of the events detected by each of the
alternatives, by drawing tweets in a 3-dimensional space corresponding to the spatial
(lat, long) and temporal (time) features. Each tweet is colored with the maximum
likelihood event assignment (c∗n) for that tweet. Moreover, to improve visualization,
the most populated cluster, which usually is the background, is plotted with tiny dots
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Fig. 6: Detection performance. (A) McInerney & Blei model (B) WARBLE w/o si-
multaneous topic-event learning (C) WARBLE w/o background model (D) WARBLE
model (E) Tweet-SCAN

for all models, except model A, which fails to capture a clear background cluster. The
figure shows that the similarity between hand-labeled data and the WARBLE model
can only be compared to that of Tweet-SCAN.

6 CONCLUSIONS

In this paper, we identified three main challenges in event detection from Twit-
ter data, namely rarity, text-shortness and variability. In order to address them, we
proposed WARBLE, a new probabilistic model and variational learning algorithm
that uncovers real-world events from tweets in an unsupervised manner. The WAR-
BLE model explicitly tackles rarity and variability through a background component,
which captures varying tweet densities in time and space. To mitigate text-shortness,
our proposal simultaneously learn topics and events making it easier to find word
co-occurrences among tweets within the same event. Furthermore, this probabilistic
approach to event detection paves the way to reason about unseen observations or
partially observed data in a probabilistically well principled way.

The experimental results show that WARBLE outperforms other state-of-the-art
techniques in detecting local events from “La Mercè 2014” dataset. Moreover, the
evaluation highlights the need to simultaneously consider the spatio-temporal back-
ground and joint topic-event learning. The event detection model also provides au-
tomatic summarization about the event, enabling to describe different aspects of the
event (“When?”, “Where?”, “What?”).

Despite Gaussian distributions are computationally convenient for spatio-temporal
features, future work should consider the use of more complex statistical models for
these dimension to study the impact of these assumptions in the trade-off between
detection accuracy and computational complexity. Furthermore, understanding the
influence of hyperparameters in the detection capabilities of the proposed model as
well as tunning up them through Bayesian non-parametric, seems a promising avenue
for future research in this area.



20 Joan Capdevila et al.

lat
long

tim
e

A

lat
long

tim
e

B

lat
long

tim
e

C

lat
long

tim
e

D

lat
long

tim
e

E

lat
long

tim
e

F

Fig. 7: (A) McInerney & Blei model (B) WARBLE w/o simultaneous topic-event
learning (C) WARBLE w/o background model (D) WARBLE model (E) Tweet-SCAN
(F) Labeled events

Acknowledgements This work is partially supported by Obra Social “la Caixa”, by the Spanish Ministry
of Science and Innovation under contract (TIN2015-65316), by the Severo Ochoa Program (SEV2015-
0493), by SGR programs of the Catalan Government (2014-SGR-1051, 2014-SGR-118), Collectiveware
(TIN2015-66863-C2-1-R) and BSC/UPC NVIDIA GPU Center of Excellence. We would also like to thank
the reviewers for their constructive feedback.

References

Akbari M, Hu X, Liqiang N, Chua TS (2016) From tweets to wellness: wellness event
detection from Twitter streams. In: Proceedings of the 30th AAAI Conference on
Artificial Intelligence

Allan J, Carbonell JG, Doddington G, Yamron J, Yang Y (1998) Topic detection and
tracking pilot study final report. In: Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop
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