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Abstract

Dust storms emerging in the Earth’s major desert regions significantly influence
weather processes, the CO2-cycle and the climate on a global scale. Their effects
on organisms range from providing nutrition to vegetation and microbes to direct
impact on human settlements, transportation and health. The detection of dust
storms, the prediction of their development, and the estimation of sources are
therefore of immediate interest to a wide range of scientific disciplines. Recent
spatio-temporal resolution increases of remote sensing instruments have created new
opportunities to understand these phenomena. The scale of the data and their
inherent stochasticity, however, pose significant challenges. This thesis develops a
combination of methods from statistics, image processing, and physics that paves
the way for efficient probabilistic dust assessment using satellite imagery. As a
first step, we propose a Bayesian hierarchical model (BHM) that maps Spinning
Enhanced Visible and Infrared Imager (SEVIRI) measurements to a predictor of
the dust density. Case studies demonstrate that, as compared to linear methods,
our latent signal mapping (LSM) approach mitigates effects of signal intrinsic noise
on further processing steps. Furthermore, an extensive cross-validation study is
employed to show that LSM successfully adapts to intra-daily changes of the infrared
data and yields outstanding dust detection accuracy. Physically, the dust density
and its transport process are tied together by the continuity equation. A traditional
approach to determine the flow field for a given density is the variational method of
Horn and Schunck (HS), which simplifies the equation to compression free motion.
We characterize the equation’s solution as a Gaussian Markov random field (GMRF)
and introduce compressible dynamics. This link between probabilistic and variational
perspectives leads to applied and theoretical advances. It enables us to employ
the integrated nested Laplace approximation (INLA) technique for computationally
efficient inference and integration over hyper-parameters. The importance of allowing
for compressible motion and treating the problem in a statistical manner is emphasized
by simulation and case studies showing a significant reduction in errors of the
estimated flow field. In addition, we demonstrate how our methodology provides
uncertainty quantification, dust storm forecasts and estimation of emission sources.
The thesis is concluded by examining the analytical properties of our approach. It is
shown that, under mild restrictions on an underlying Sobolev space, existence and
uniqueness of the compressible flow can be guaranteed on a continuous domain and
a well-posed discretization exists. Lastly, our variational calculations point to an
interpretation of the density as a solution to flow-parameterized stochastic partial
differential equations (SPDEs) naturally extending Matérn fields to non-isotropy,
which provides a further step towards a joint model of dust density and flow field.
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Zusammenfassung

Weltweit entstehen in Wüstenregionen Sandstürme, die einen signifikanten Einfluss
auf Wetterprozesse, den CO2-Zyklus sowie das Klima in globalem Maßstab ausüben.
Sie stellen der Vegetation und Organismen lebensnotwendige Nährstoffe zur Verfügung
und wirken sich gleichzeitig auf menschliche Siedlingsräume, das Transportwesen
sowie die Gesundheit aus. Die Detektion von Sandstürmen, die Vorhersage ihrer
Entwicklung und die Ermittlung von Quellregionen sind daher von großem Interesse
für ein breites Spektrum wissenschaftlicher Disziplinen. Die aktuelle Progression
der raumzeitlichen Auflösung von Instrumenten der Satellitenfernerkundung bietet
in dieser Hinsicht neuartige Möglichkeiten, diese Phänomene zu untersuchen. Der
Umfang der gewonnenen Daten und ihre inhärente Stochastizität bedeuten jedoch
gleichzeitig eine signifikante Herausforderung. In der vorliegenden Dissertation wird
ein System zur effizienten probabilistischen Erfassung von Sandstürmen entwickelt,
welches Methoden der Statistik, Bildverarbeitung und Physik miteinander vereint.
Zunächst wird ein Bayesianisches hierarchisches Modell (BHM) vorgestellt, welches
Spinning Enhanced Visible and Infrared Imager (SEVIRI) Messungen auf einen
Prädiktor der Staubdichte abbildet. Anhand von Fallstudien zeigen wir auf, dass
unser latent signal mapping (LSM) Ansatz im Vergleich zu linearen Methoden durch
Rauschunterdrückung darauf aufbauende Verarbeitungsschritte erleichtert. Mittels
einer umfangreichen Kreuzvalidierungsstudie wird zudem die herausragende Detek-
tionsgenauigkeit der LSM-Methode in Anbetracht von täglichen Schwankungen des
Infrarotsignals belegt. Aus physikalischer Sicht wird der Zusammenhang zwischen der
Staubdichte und ihrem Transportprozess durch die Kontinuitätsgleichung beschrieben.
Ein traditioneller Ansatz der Variationsrechnung zur Bestimmung des inkompressiblen
Flusses aus gegebener Dichte ist die Methode von Horn und Schunck (HS). Wir cha-
rakterisieren die Lösung der Gleichung als ein Gaussian Markov random field (GMRF)
und integrieren kompressible Flüsse in das Modell. Diese Verbindung zwischen Pro-
babilistischer Modellierung und Variationsrechnung führt aus Sicht der Anwendung
sowie Theorie zu weitreichenden Fortschritten. Mittels der integrated nested Laplace
approximation (INLA) Methode erlaubt sie effiziente computergestützte Integration
über Modellparameter. Die bedeutende Rolle dieses Vorgehens sowie der Kompres-
sibilität demonstrieren wir mittels einer Simulationsstudie, welche eine signifikante
Reduktion von Fehlern im ermittelten Flussfeld nachweist. Des Weiteren zeigen wir,
wie unsere Methode Unsicherheit quantifiziert, der Vorhersage von Sandstürmen
dient und zur Ermittlung von Emissionsquellen eingesetzt werden kann. Abschließend
werden die analytischen Eigenschaften unseres Ansatzes vertiefend untersucht. Unter
der Annahme eines schwach eingeschränkten Sobolev-Raumes zeigen wir Existenz
und Eindeutigkeit des kompressiblen Flusses über einem kontinuierlichen Definitions-
bereich sowie einer wohldefinierten Diskretisierung. Durch Variationsrechnung wird
zudem eine Verbindung zu einer Klasse von stochastischen Differentialgleichungen
(SPDEs) aufgezeigt, welche Matérn-Felder anisotrop fortsetzen. Ihre Parametrisierung
durch Flussfelder und Lösung durch Materialdichten bietet einen weiteren Schritt in
Richtung probabilistischer Modellierung der gemeinsamen Verteilung von Staubdichte
und Bewegung.
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1 Introduction

1.1 Motivation

Dust storms are global meteorological phenomena originating from arid and semi-arid
regions all over the earth. Strong winds blow loose sand and dirt from the ground
and carry them into the atmosphere where they are transported for thousands of
kilometers and ultimately deposited worldwide. These mixtures of atmospheric
gases and particulate matter are called aerosols and interact with other atmospheric
components, oceanic and terrestrial chemistry and physics as well as living organisms
ranging from microbes and vegetation to human beings.

One immediate effect can be intuited from Figure 1.1 showing a dust plume over
northern Africa. Layers of atmospheric dust block the solar radiation from reaching
the surface of the earth and cause the latter to cool down1. The atmosphere, however,
undergoes the opposite effect as more radiative energy is absorbed than under
pristine sky conditions. This change of (thermal) energy distribution in turn leads to
changes in vertical and advective atmospheric transport processes, which stabilize the
atmosphere (Heinold et al., 2008). In addition to this direct impact on the earth’s
radiation budget and atmosphere circulation there are also significant indirect effects.
Dust particles interact with water clouds on a microphysical basis. Thereby cloud
formation processes are altered and optical properties are changed, which directly
influence weather conditions like precipitation rates (Rosenfeld et al., 2001). Local
dust event detection and spatial estimation of its strength days after its genesis is thus
of two-fold importance in this context. Integration of such estimates in respective
models can yield improved accuracy in weather forecasts. Most importantly, their
analysis conveys additional insight into the aforementioned climate processes to
environmental scientist.

In addition, human modes of living are affected on a short and long term basis. As
dust filters radiation, the respective reduction in range of vision causes road and
airport closures. In particular, human settlements that are in the vicinity of desert
regions have great interest in immediate detection as well as short and medium range
spatial forecasts of dust events. Even more concerning is the effect on human health.
Some dust particles are small enough to surpass the natural human defense system
and can cause illnesses like asthma by causing damage to the respiratory system

1If not stated otherwise, all Figures in this thesis the author’s work.
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Figure 1.1: Northern hemisphere of the earth showing a dust storm on January 18,
2010 at 12h GMT over northern Africa (pink area). Blue to cyan areas
show the surface of the earth under pristine sky conditions. Black and
nearby orange to red regions reflect the presence of ordinary water clouds.

(Griffin and Kellogg, 2004). Moreover, bacteria and fungal spores travel with the
dust and are suspected to be connected to the so Valley fever in the San Joaquin
Valley in California and severe meningitis epidemics between Senegal and Ethiopia
(Sultan et al., 2005).

Marine and terrestrial ecosystems are a third factor that underlines the importance
of an exact understanding of aerosol genesis and deposition. Minerals that are trans-
ported with the dust act as a nutrient to a variety of life forms. Their mineralogical
composition is identical to that of the source region the dust was emitted from and
hence determines their nutritional properties. For instance, iron makes up about 4%
of northern African soil and is at the same time an essential prerequisite to the open
ocean phytoplankton production. Changes in dust composition and hence iron fluxes
can therefore lead to species shifts. These again have an effect on the global climate
as oceanic CO2 uptake is changed by the efficiency of organic carbon export to deep
water (Jickells et al., 2005).

The detection of dust storms, the prediction of their development, and the localization
of sources are therefore of immediate interest for a wide range of environmental
applications. During the last decades space-born remote sensing systems have gained
an indispensable role in this context. By capturing propagated signals like gravitation
and electromagnetic radiation from the earth’s surface, objects in the atmosphere
as well as the ocean they allow for a spatial and temporal range of environmental
information retrieval that is not feasible with earth bound in situ measurements.

2



(a) (b)

Figure 1.2: Spaceborn remote sensing. Panel (a): Passive sensors capture signals
emission of which is self induced by the object that is probed. Active
instruments emit a signal and record the object’s response to this probing,
e.g., the reflection of an emitted electromagnetic beam. Satellites are
either non-stationary or geostationary, as shown in Panel (b). Geosta-
tionary satellites do not move relative to the point of the earth’s surface
that is closest (nadir) and thus have a constant field of view in terms
of probing data. Non-stationary satellites change their location relative
to the earth’s surface. Their trajectory leads to a variable field of view,
called the swath of the satellite.

The respective measurement techniques and instruments can be divided into active
and passive approaches (see Figure 1.2(a)). In active remote sensing a signal is
emitted from the satellite and the response is recorded. For instance, laser altimeters
determine local elevations like ocean waves by measuring the time a light beam needs
to travel to the water surface and return to the satellite. From this data wind speeds
and direction can be estimated. Passive techniques do not probe by recording the
response to a signal but measure signals self-induced by object of interest.

In this thesis data gathered by a passive remote sensing instrument aboard the
Meteosat Second Generation (MSG) 9 platform is analyzed. Meteosat, short for
Meteorological satellite, is a series of meteorological platforms operated in a coop-
eration between the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) and the European Space Agency (ESA). The SEVIRI
instrument aboard MSG-9 poses an unique opportunity for the analysis of local and
sub-daily as well as large scale long term processes of dust emission and transport
for multiple reasons.

Infrared measurements do not depend on the illumination provided by the sun and
indicate dust events spanning several days even during night. Since MSG platforms
are stationary, it is also guaranteed that the spatial and temporal imagery coverage is
permanent and a dust event can not be overlooked due to being outside the swath of

3



Figure 1.3: Distribution of dusty (red markers) and pristine sky (blue markers) pixels
in the color space of the SEVIRI falsecolor imagery. The abscissa and
ordinate are the red and green channel intensities. The background color
is determined according to these axis and a fully saturated blue channel.

the satellite (see Figure 1.2(b) for an explanation of geostationarity). Most important,
however, is the resolution of SEVIRI. At nadir (the earth’s surface point that is
closest to the satellite) it provides a spatial resolution of 3×3 km decreasing with
increasing distance from that point. These measurements are taken every 15 minutes
at 12 distinct frequency windows ranging from visible spectra to infrared radiation
within 3.9 to 13.4 µm. Figure 1.1 shows this data depicted in falsecolor scheme.
The color channels represent differences of frequency specific infrared radiation. As
discussed earlier, dust absorbs this radiation depending on the frequency such that
the differences represent its presence. Falsecolor imagery is a common mode of visual
dust aerosol assessment by scientists and forms the basis of the data analysis carried
out throughout this document.

Although SEVIRI’s properties in principle lend themselves towards increased insight
into aerosol processes the amount of the data collected and the inherent stochasticity
pose significant challenges.

A main question that arises is whether a particular pixel in a given SEVIRI image
represents a region that is affected by dust presence. At first, when considering
Figure 1.1, visual inspection suggests that this might be deemed as an easy task
since the pink color representing dust is easily identified by the human eye. Evidence
that this is a misleading perception can, however, be seen in the same figure. A large
region in north-western Africa that lies mostly inside Morocco appears slightly pink
as well, which is caused by the radiative properties of the local ground conditions
but not by dust. In Figure 1.3 this issue is quantified by showing a distribution
of dusty and pristine sky pixel samples in the color space. Is is easy to see that
a simple threshold in one or both of the falsecolor channels is not sufficient for a
discrimination of the two kinds.

4



(a) (b) (c)

Figure 1.4: Intradaily signal variability of SEVIRI. Panels (a) to (c) visualize the
development of a dust plume emerging in northern Chad on January 18,
2010 at 7.30 am, 8.30 am and 9.30 am GMT, respectively. A temporal
change of the data can also be seen in pristine region, e.g. the loss of
yellow tone in the left upper corner and an increase of blue intensity in
the right bottom corner.

Figure 1.4 gives an idea about another intricacy dust detection comes with. Among
atmospheric changes like water clouds that may visually cover dust plumes the
intradaily thermal energy change of the surface due to solar radiation is the most
significant contributor to changes in the SEVIRI signal. These and other stochastic
influences lead to the insight that a probabilistic model is required to characterize
dust presence in the signal. The first thread of this thesis is dedicated to this issue:
Bayesian hierarchical models for dust detection.

Once an indication scheme for dust presence available, the second main question
arises. In order to mathematically describe the genesis, transport and deposition of
dust aerosols characterization of their flow through the atmosphere is required. As
this flow is mostly determined by atmospheric winds a readily available approach is
to employ wind field estimates derived for weather forecasts and climate analysis.
Unfortunately, these fields are usually determined on a spatial scale that is too coarse
to describe small scale variabilities of dust events, especially during genesis. A second
factor is that the vertical extent of a dust plume given in the imagery is not known.
It is hence not clear which atmospheric layer and corresponding wind field estimate
to assume to be correct.

An alternative approach, the one that is pursued throughout this thesis, is to infer
the flow field of dust aerosols directly from the previously determined dust indicator.
The general intuition behind the strategy is to employ the local gradient information
of the indicator to obtain a dense estimate of the flow field under the assumption
that this field is smooth. In Figure 1.5 such a flow field is depicted together with
the corresponding dust indicator. This way rise is given to further predictions with
respect to the behavior of the aerosol. As opposed to studies where this was done
manually by experts the flow field can now serve as a mean to identify regions that
initially emit the dust by a simulated back-transport of a given plume. Furthermore,
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Figure 1.5: Flow field of a dust event over northern Africa on January 17, 2010 at
12h GMT.

the same idea can be employed to simulate the future development of a dust plume
and thus give the forecasts that are so highly desirable for the abovementioned
reasons.

1.2 Related Work

Contemporary detection schemes for dust aerosols follow two different paradigms.
Motivated by physical models of conditions for dust emission, transport via wind
fields and radiative filtering properties of aerosols, the work of Klüser and Schepanski
(2009), and Brindley et al. (2012) is based on connections between falsecolor imagery
and aerosol optical depth (AOD). Here, the presence of dust is quantified by a
combination of different thresholds derived from case- and simulation-studies. Two
of these proposed thresholds are depicted in Figure 1.3. In contrast, the work of
Rivas-Perea et al. (2010) and Eissa et al. (2012) employs methods from machine
learning and image processing by using neural nets to learn non-linear dust detection
criteria from a data set with labels set by a human expert.

From a statistical viewpoint, both approaches suffer from shortcomings. Directly
imposing thresholds partly based on physical assumptions, simulations studies and
qualitative inspection of the data by an expert might lead to misleading conclusions
if premises are not met or due to human subjectivity. Also, neither Klüser and
Schepanski (2009) nor Brindley et al. (2012) include quantification of uncertainty in
their analysis. On the other hand, even though interpretable in a probabilistic sense
and directly driven by data, the inner mechanics of image processing tools like neural
nets are not physically motivated and intransparent to the user. Especially in the
context of the environmental sciences this hinders such an approach to further elevate
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the understanding of the data. Alongside the purely local detection or quantification
of dust of a second objective of concern has, to the best of our knowledge, not yet
been addressed.

Further, none of the previously mentioned approaches imposes or performs inference
on a coherent spatio-temporal structure like an underlying aerosol transport process.
This omits valuable information. Previous attempts to localize and characterize
areas being sources of dust storms by Schepanski et al. (2012) have to rely on human
visual data inspection and indication or simple temporal averaging. Alternatively,
Alonso-Pérez et al. (2012) employ Lagrangian trajectories derived from wind field
averages to infer the source of a given in-situ sample.

However, various approaches in different scientific fields capture problems that are
related to the task at hand. Statistical approaches are predominantly driven by
applications related to either the verification of numerical weather predictions or
the issuing of nowcasts, forecasts for very short lead-times, see e.g. Gilleland et al.
(2010) and Xu et al. (2005). Here, a transformation between two spatial fields (e.g. a
prediction and the corresponding observation) is determined via a deformation field
that associates spatial locations of the two fields in a smooth fashion. In prediction
problems, the deformation field then serves as a tool to assess the field both in terms
of mis-localization and quantification error. In contrast, in nowcasting a current
spatial observation and a given deformation field are utilized to predict the spatial
field representing future realizations.

Xu et al. (2005) apply a integro-difference equation where information is propagated
between the two fields through a kernel function. In image processing differential
approaches–which can be interpreted as special cases of the integro-difference equation–
have been popular since the advent of the Horn & Schunck method for optical
flow (HS) (Horn and Schunck, 1981). The latter derives a displacement field between
two images, e.g. in a video sequence, and has two appealing properties. A treatment
in variational frameworks is straight forward due to its simple analytic properties.
For instance, Schnörr (1991) shows existence and uniqueness properties of the HS
optical flow under the assumptions of a mildly restricted underlying Sobolev space.
Corpetti et al. (2002) point out that the assumptions underlying the HS approach
are a special case of the integrated continuity equation, a physical model of matter
transport.

These methods have only entered the statistics community to some extent, see e.g.
Marzban and Sandgathe (2010) who employ the connate optical flow approach of
Lucas and Kanade (1981). A coherent probabilistic framework is therefore missing
although recent statistical research clearly indicates a respective tendency. Lindgren
et al. (2011) show a connection between Gaussian fields and GMRFs via SPDEs (see
also Simpson et al. (2012)). They employ SPDEs to set forth the concept of Matérn
covariances for Gaussian fields that Guttorp and Gneiting (2006) conclude to naturally
appear in a number of scientific fields related to environmental research. Most
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interestingly, Lindgren et al. (2011) also point out a respective interpretation of the
image warping method of Sampson and Guttorp (1992), which itself is closely related
to the method of optical flow. In this context, the flow field in fact parameterizes the
SPDE and thereby defines the spatio-temporal coherence model imposed on the field
that is performed inference on and would, in case of aerosols, model the intensity
of the dust itself. Probabilistic inference on the parameters of the SPDE, i.e. the
flow field, on the other hand is not treated in these publications and thus remains an
open problem.

1.3 Contribution

This thesis and the associated publications contribute to the scientific research with
respect to the detection, flow estimation, forecasting and source estimation of dust
aerosols from remote sensing data. In particular, a strong emphasis is put on the
development and definition of probabilistic graphical models that at the same time
capture the stochastic properties of these processes and reflect physically mean-
ingful quantities and interrelationship while maintaining reasonable computational
complexity.

The first main topic of this thesis is the detection of dust aerosols from SEVIRI
data. Brindley et al. (2012) show that the appearance of the SEVIRI falsecolor
data representation described by Lensky and Rosenfeld (2008) is correlated with the
AOD at a particular wavelength and propose a thresholding scheme to flag pixels
containing dust activity. An initial step towards a respective probabilistic formulation
is the logit regression model elaborated on in chapter 3 and introduced by Bachl
and Garbe (2012). By introducing spatially varying random effects that depend on
an estimate of the earth’s infrared radiation under clear sky conditions (further on
called background estimate) this model is flexible enough to adapt for non-linear
dust presence contributions to the SEVIRI falsecolor imagery (SFI) that are not
covered by linear discriminant analysis (LDA) and related methods.

This detection method is then extended to adapt for a problem that occurs when
employing its linear predictor for later tasks like the estimation of dust flow. As
shown in Bachl et al. (2012) the intrinsic linear projection of the approach directly
passes on signal noise of the falsecolor imagery, e.g., atmospheric disturbances. The
remedy chosen here is to waive the linear projection by interpreting the signal as
one of two domains of the functions contributing to the linear predictor rather than
as their multiplicative factor. Due to the imposed regularity assumptions for these
random functions this leads to a significantly increased signal to noise ratio with
respect to the linear predictor.

Lastly, as pointed out by Bachl et al. (2013a), background estimation is an impeding
aspect of these approaches as the respective selection criterion is only applicable at
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day time. This is critical as dust plume genesis often takes place in the early morning.
It is shown, however, that a monthly average of surface emissivity estimates can
serve the same purpose as background estimates. Moreover, with these at hand, dust
detection with outstandingly high levels of specificity and sensitivity are feasible.

The second main topic is the estimation of aerosol flow. For this purpose, the HS
method is analyzed and it is shown how to formulate this approach as a Bayesian
hierarchical model. As initially elaborated in Bachl and Garbe (2012) this gives a
probabilistic interpretation of the optical flow as a latent GMRF. While the link
is relatively straightforward, to the best of the author’s knowledge, this is the first
time that the full distributional aspects and the associated uncertainty are taken
into account for the HS method. The intrinsic smoothness parameter of the method
then finds a clear meaning as the precision hyper-parameter of the conditional
autoregression model imposed on the flow. This perspective comes with several long
and short term benefits. Firstly, inference can be performed using computationally
efficient integrated nested Laplace approximations (INLA) (Rue et al., 2009). A
second benefit is the interpretability of the flow field in terms of the physical nature
of the phenomenon under consideration. Even in case the HS method is elevated
to more robust error penalties this allows for computationally efficient and precise
assessment of the posterior flow and its incorporated uncertainties as well as for the
hyperparameters.

A second contribution to flow estimation is to leverage the hierarchical Bayesian
framework to overcome deficiencies in the HS formulation (Bachl et al., 2013a,b). A
typical quirk of statistical warping and optical flow is the underlying preservation
assumption of the respective quantity along its trajectory. In dust aerosols (as
well as other natural phenomenon) this might lead to false conclusions. Gaseous
solutions are compressible and remote sensing often only leads to a non-bijective
mapping of a three dimensional quantity to a two dimensional data space. Alongside
advection, observations are therefore clearly prone to convective effects resulting
from compression of the solution or material exchange inside a projected atmospheric
column. As a remedy we extend the HS method to incorporate the water vapor
related work of Corpetti et al. (2002) and put it in a Bayesian hierarchical model
context. As our work shows in a simulation study, the integrated continuity equation
(ICE) considerably reduces errors in the estimated flow field. The main advantage of
the ICE comes from the fact that it implicitly considers a multiplicative convective
effect that is driven by the divergence of the flow field itself. A motion trajectory
starting at a point where the divergence is positive (negative) leads to a low (high)
multiplicative effect mimicking the dispersion (accumulation) of the modeled quantity.
In case of pure advection, i.e. the absence of divergence, the multiplicative factor is 1
and the usual preservation assumption is retained.

Lastly, it is elucidated how the variational framework popular in image processing
can be employed to gain guarantees in terms of the existence and uniqueness of the
continuous solution of the ICE energy functional within a mildly restricted Sobolev

9



space. This implies that the Ritz method for discretization of this problem becomes
a finite element formulation for which the solution is equivalent to mean inference on
the (now proper) latent GMRF employed for the discrete ICE approach. Moreover,
it is shown that if the motion field is held fixed, the Euler-Lagrange equations with
respect to the moving matter reveal a connection to the approach SPDE of Lindgren
et al. (2011).

1.4 Organization

This thesis is organized as follows. Chapter 2 begins with an introduction to the basic
objects and terminology of probability as well as graph theory. With these powerful
mathematical tools at hand, probabilistic graphical models (PGMs) are defined and
categorized into directed and undirected modes of expressing relationships among
random variables. A precise overview is given of how properties of the respective
graphs translate into probabilistic independence assumptions and vice versa. As
a first example for such models BHMs enter the focus of the chapter. These play
a significant role throughout this thesis by providing a consistent framework to
impose structure onto the variables interest: observed data, an unknown (latent)
process that generates these observations as well as parameters of the process itself.
Consecutively, generalized linear models (GLMs) and GMRFs receive the attention
of this manuscript. GLMs describe the class of probabilistic dependencies between
the observed data and latent processes that are assumed to hold throughout the
experiments conducted within this work. Thereby a perspective is taken that describes
how the latent process generates the observations from other kinds of data. The
properties in terms of prior assumptions about these processes are expressed by the
distributional class of GMRFs for multiple reasons. GMRF naturally emerge from
particular physical mechanisms, imply a desirable amount of uncertainty where no
information from observations is available and provide a computationally exceptional
convenient way for discrete approximations to a broad class of continuous models.
Chapter 2 is concluded by a comprehensive analysis of INLAs. This technique provides
the algorithmic basis for probabilistic inference within the class of aforementioned
models and hence the conducted experiments.

Chapter 3 is dedicated to the detection of atmospheric dust using SEVIRI measure-
ments. The data itself and related methods for dust detection like thresholding
concepts and LDA are introduced in Section 3.1. Thereafter, Section 3.2 describes
our first approach to generate a spatio-temporal dust predictor. It extends LDA
using non-parametrically modeled functions represented by GMRFs over estimates
of the data under pristine sky conditions. This method, called latent projection
functions (LPFs), is then generalized in Section 3.3 to latent signal mapping (LSM).
LSM allows for arbitrary mappings instead of linear data projections and thereby
reduces noise carried over to the dust predictor. Lastly, Section 3.4 describes an
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integration of surface emissivity estimates to the domain of LSM and employs a
cross-validation study to demonstrate a superior detection accuracy as compared to
other methods.

Having an (approximation) to the dust density available, Chapter 4 develops methods
to infer the underlying atmospheric transport process. For this purpose, Section 4.1
provides the reader with basic knowledge concerning fluid dynamics, the Horn and
Schunck (HS) approach to flow estimation, variational methods in general and a class
of SPDEs that was recently pointed out to be related to the estimation of spatio-
temporal correlation. Section 4.2 then elucidates on a probabilistic interpretation
of the HS approach, i.e. a BHM in which the unknown variables correspond to the
flow field we yield to determine as well as the hyper-parameters of the method. First
results are shown for flow fields determined using the INLA technique. In Section 4.3
we analyze how susceptible such flow estimates are to different choices of the dust
prediction method and in particular to the noise level the respective predictors come
with. A major caveat of the HS approach that also holds for our corresponding
BHM is the assumption of a divergence free (incompressible) flow field. Section 4.4
elaborates on how to dismiss this restriction and introduces a BHM for estimation
of compressible flow fields. Simulation and case studies are employed to show how
this approach clearly reduces errors in the estimated field and yields procedures
to forecast dust events or rewind a given dust plume to its source. The Chapter
is concluded by Section 4.5, a mathematical analysis of compressible flow and its
connection to the material density via the continuity equation.

In Chapter 5 we provide a summarizing conclusion on the work this thesis presents.
Concomitantly, we point out a multitude of directions for future research on the
topic of probabilistic motion estimation.
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2 Graphical Models

Graphical models (GMs) reside at the intersection of two well established mathemat-
ical fields. Graph theory provides a framework to express structure primarily from a
discrete point of view where objects of interest are either related or not. Probability
theory on the other hand has its strengths in the analytical characterization of such
relationships. This chapter provides the foundations of both scientific disciplines,
introduces graphical models (GMs) and consecutively gives insight into two types of
models employed in the context of this thesis as well as the respective algorithmic
framework for computational inference.

2.1 Probability Theory

The foundations of modern probability theory, the branch of mathematics that yields
to express the intrinsic uncertainty of random phenomena, were laid by the axiomatic
basis coined by Andrey Nikolaevich Kolmogorov. These culminate to the core object
of the theory, the probability space.

Definition 1 (Probability Space). A probability space W = (Ω,F , P ) is a triple of
a sample space Ω, a σ-algebra (a set of events) F ⊆ P(Ω) and probability measure
P : F → [0, 1] ⊆ R.

In an experimental setting, the sample space governs the possible outcomes or obser-
vations. Yet, the quantity corresponding to the intuitive likelihood that is intended
to be modeled is not directly associated with the sample space. The probability
measure, which has to fulfil the Kolmogorov axioms and expresses probabilities in
terms of a real number, is defined on a set of events F called σ-algebra.

Definition 2 (σ-Algebra). A σ-Algebra F of a set X is a non-empty subset of the
power set P(X) such that the following conditions are fulfilled

• X ∈ F

• F is closed under complementation: if A ∈ F then X \A ∈ F

• F is closed under countable unions: let {Ai ∈ F}i∈I then F 3 ∪IAi,

where I is a countable index set.
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Note that the closure under countable set intersections then follows from the De
Morgan’s laws. A subtlety of this approach is that it abstracts from the type of
events that are considered. In particular this depends upon the cardinality of the
sample space, i.e. whether it is countable and thus discrete events are modeled or
uncountable infinite as in assigning a probabilities to subsets of a continuous domain
like the real numbers. For the sake of simplicity of the document at hand a notation
will be adapted that suffices to express both cases in a adequate fashion. In both
cases we will term an event x a realization of a random variable X and will do not
differentiate between a probability mass function P (X ) and a probability density
function p(x) by using the generalizing term probability distribution.

Vector valued random variables give rise to a characterization of the dependency
between different events. Alongside the marginal distribution p(x) of a random
variable X one then analyses the joint distribution p(x, y) of X with Y. From the
Kolmogorov axioms it then follows that

p(x) =

∫
p(x, y) dy and

∫
p(x) dx = 1,

where the integral stands for a summation in the discrete case. Subsequently, the
conditional distribution defined as p(y|x) = p(x, y)/p(x) allows to assess the properties
of a hidden or latent random variable Y if the outcome x of X is assumed to be
known. With respect to this, a major result of probability theory is expressed by
Bayes’ theorem

p(y|x) =
p(x|y)p(y)

p(x)
, (2.1)

which stipulates how the conditional p(y|x) relates to p(x|y). In this context, the
former is referred to as the posterior distribution of y given x, p(x|y) is the likelihood
of the observations x and p(y) is the prior distribution (or simply prior) the hidden
variables are assumed to come from. The denominator p(x), called normalization
constant, plays a special role within this framework when it comes to actual inference
on the latent variables. Although there has been a steady methodological progress
the normalization constant typically comes with the intricacy of analytical and/or
computational intractability.

Throughout the next sections the concept of (conditional) independence plays an
important role. Two random variables X and Y are called independent (denoted
by X ⊥⊥ Y) if and only if their joint distribution p(x, y) equals the product of the
respective marginal distributions, i.e. p(x, y) = p(x)p(y). From the definition of
the conditional distribution it is then easy to see that this implies equality of the
conditional to the marginal distribution for both variables and hence that knowledge
about the state of one variable does not result in additional knowledge about the
state of the other. Yet, even though two variables might not be independent, their
dependence might be resolved by a third variable Z. Accordingly, X and Y are
called conditionally independent given Z (denoted by X ⊥⊥ Y|Z) if and only if the
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conditional distributions factorize, i.e. whenever p(x, y|z) = p(x|z)p(y|z). Conditional
independence and its important role in graphical models will be elucidated in section
2.3 where the following theorem is applied extensively.

Theorem 1 (Factorization criterion for conditional independence). Given a distri-
bution p(x, y, z) the two random variables X and Y are conditionally independent
given Z if and only if p factorizes into components depending on either x or y but
not both, i.e.

x ⊥ y|z ⇔ p(x, y, z) = f(x, z)g(y, z) (2.2)

for some functions f and g and for all z with p(z) > 0.

A detailed explanation on this an related theorems is given by Lauritzen (1996,
Chapter 3.2). As a last point, we will make use of the expectation E of a function f
under a random variable X ,

Ef [X ] =

∫
f(x)p(x) dx,

as well as the mean,

X̄ = Eid[X ] =

∫
xp(x) dx

and the variance,

Var(X ) = E(x−X̄ )2 [X ] =

∫
(x− X̄ )2p(x) dx.

2.2 Graph Theory

Ever since Leonhard Euler first formulated the problem of the ”Seven Bridges of
Königsberg” in 1736 graph theory has evolved to a powerful mathematical tool that
found application to a wide range of scientific disciplines. The main reason for this is
the simplicity of the involved mathematical objects as well as their straight forward
and intuitive approach to express relationships in a way that is congruent with
human perception of the every day mechanics of the world. The following paragraphs
introduce graphs as well as some of their properties and respective terminology as a
guide through the remainder of this thesis. A graph is an ordered pair of two entities,
a set of nodes (vertices) that represent objects and a set of edges each representing a
relation among two of these nodes. The following definition is embraced throughout
this thesis.

Definition 3 (Graph). A graph G = (V,E) is a tuple of a set of vertices V and a
set of edges E ⊆ {(a, b) ∈ V × V |a 6= b}.
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(a) (b) (c)

Figure 2.1: Directed and undirected Graphs. Panel (a) depicts an undi-
rected graph with vertices V = {a1, a2, a3, a4} and edge set E =
{{a1, a2}, {a2, a3}, {a2, a4}, {a3, a4}}. Panels (b) and (c) both depict
directed graphs and indicate the direction of an edge by an arrow. While
the graph in Panel (c) is cyclic due to the path (a2, a3, a4) the graph in
Panel (b) is free of such cycles and called a DAG.

So far, no assumption about the symmetry of these relations is made except for
the exclusion of edges from a node to itself. This changes when considering either
directed or undirected graphs. Figure 2.1 displays a typical way of sketching these. In
undirected graphs (see Figure 2.1(a)) the edges are unordered pairs, i.e. one has that
an edge e = (a, b) equals a set e = {a, b} = {b, a}. The relation this edge encodes for
the two nodes is thus understood to be symmetric. Directed graphs take a different
approach. They represent edges as ordered pairs e = (a, b) for which the order reflects
a direction of the relation. That is, for instance, the causality of two consecutive
events. Figure 2.1(b) shows how this idea leads to a graph representation modeling a
chain of events that influence each other. The interpretation of an edge in terms of
causality reveals an intricacy of these graphs that is pointed out by Figure 2.1(c). In
a classical sense causality requires that an event that influences another event has
to precede the latter in time. As this sets forth to chains of events it is common
practice to only consider acyclic graphs as opposed to cyclic graphs. The proper
definition of these graph types as well as other characterizations of graph properties
is greatly facilitated by the following definitions.

Definition 4 (Relations in a Graph). Let G = (V,E) be a directed or undirected
graph, A ⊆ V and a ∈ V . Then

ne(A) = {b ∈ V \A|∃a ∈ A : {(a, b), (b, a), {a, b}} ∩ E 6= ∅} (2.3)

deg(a) = |ne(a)| (2.4)

pa(A) = {b ∈ V \A|∃a ∈ A : (b, a) ∈ E} (2.5)

ch(A) = {b ∈ V \A|∃a ∈ A : (a, b) ∈ E} (2.6)

de(A) = {b ∈ V |∃(c1, . . . , ck) : c1 ∈ A, ck = b,

∀i ∈ {1, . . . , k − 1}(ci, ci+1) ∈ E}, (2.7)

where for f ∈ {ne, pa, ch,de} f(a) denotes f({a}).
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These can be thought of as follows. If there is an edge connecting two nodes, these
nodes are said to be neighbors w.r.t. the given graph. The set of neighbors of a
node a ∈ V or a set of nodes A ⊆ V is denoted by ne(a) and ne(A), respectively
(see Equation (2.3)). Counting the number of neighbors of a node results in the
degree deg(a) of the node. Throughout this thesis an emphasis is put on graphs for
which the degree of the nodes is small compared to the total number of nodes in
the respective graph. In this case and by embracing the nomenclature popular for
general matrices (which will later encode the edges of a graph) a graph is said to be
sparse. If, on the other hand, the degree of the nodes is relatively high the graph is
called dense. The respective limiting case, a complete graph, is a graph for which
each node is connected by an edge to all of the other nodes of the graph.

In directed graphs the edges are are not symmetric and hence encode more than
just neighborhood in the graph. If there is a directed edge from a node a to a node
b then a is said to be a parent of node b. This is set forth by the definition of the
set of parents pa(A) of a subset A ⊆ V of the nodes (see Equation (2.5)), which
accumulates all parents of the nodes in A. Conversely, b is called a child of a if graph
contains a directed edge from a to b. The set of all children of a subset A ⊆ V is
defined in Equation (2.6).

The property of neighborship is set forth in a transitive fashion by considering paths
along the edges of a graph. That is, a path is a sequence (a1, . . . , ak) of distinct
nodes of the graph such that for each i ∈ {1, . . . , k − 1} the nodes ai and ai+1 are
neighbors. The length of this path is the number of contained edges k − 1. Two
nodes a and b are then said to be connected with respect to a given graph if and only
if there exists at least one path between a and b. If all edges on a path from a to b
are directed to b the path is called directed as well. Using paths a precise definition
of acyclic graphs is advisable. The descendants of a node a (see Equation (2.7))
constitute a set of nodes for which a directed path exists from a to the respective
node. Now, if a is an element of its own descendants, it is easy to see that there
exists a directed path from node a to itself. This directed cycle is in dissent with a
potential cause-and-effect interpretation of the relations modeled by the graph. A
widespread strategy is thus to only consider DAGs, which are the basis of Bayesian
networks to be discussed in Section 2.3.2. These preclude the occurrence of directed
cycles.

In general, paths play an integral role in the analysis of probabilistic interpretations
of graphs, i.e. probabilistic graphical models (PGMs). They allow to define so called
separation properties that characterize the conditional independence assumptions of
a probability distribution associated with the respective graph. At the same time,
paths are a very intuitive mode of thinking in terms of network connectivity and
hence form the basis of a wide range of algorithms based on graph structures, e.g. by
solving combinatorial problems with graph cuts (Boykov et al., 2001). The following
sections go into more detail on PGMs and their practical implications.
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2.3 Probabilistic Graphical Models

With the fundamentals of probability and graph theory at hand the definition of
probabilistic graphical models (PGMs) is straight forward. A PGM M is a pair
M = (X , G) of a random vector X and a graph G = (V,E). Each of the nodes of the
latter is associated with a component of the random vector via a bijective mapping.
This mapping is employed to index the components of the random vector by the
nodes of the graph, i.e., the component of X that is represented by a node a ∈ V
is written as Xa with realization xa. The indexed component of X can again be a
random vector or a univariate random variable. In may cases an indexing by a subset
I of the natural numbers eases up the notation. A node is then referred to as node
i ∈ V = I ⊆ N with corresponding random component Xi. The involved part of the
connection between the graph and the random vector concerns the actual distribution
p(x) and the graph structure. This is apparent from the following definition.

Definition 5 (Probabilistic Graphical Model). A PGM is a pair (X , G) of a graph
G = (V,E) and a random vector X . The graph defines a ternary relation (· ⊥⊥ G · |·)
such that for all S ⊂ V and any disjoint sets A,B ⊂ V \ S it holds that

A ⊥⊥ GB|S ⇒ XA ⊥⊥ XB|XS . (2.8)

The intuition behind this Definition 5 is that the graph allows to deduce the con-
ditional independence structure of the random vector from its edges and vertices.
At the same time the factorization criterion (Theorem 1) then paves the way to
deduce information about the analytic structure of the distribution p. For instance,
if a component XS is given by an observation and inference on XA and XB is to be
performed, G might stipulate that the respective posteriors can be assessed inde-
pendently, e.g., in parallel. The definition of the relation ⊥⊥ G, however, intrinsically
depends strongly on the type of graph that is considered.

Undirected graphical models are examined in more detail in section 2.3.1. For these
models the rather simple separation property is sufficient to define the relation ⊥⊥ G.
The independence statements that follow from this property are commonly referred to
as Markov properties, which lead to the widespread nomenclature of Markov networks
and Markov random fields (MRFs).

For directed graphs the more involved formulation of d-separation coined by Pearl
(1988) is required. A comprehensive overview on the topic of PGMs is also given
by Koller and Friedman (2009), who additionally provide a perspective of mapping
assertions about graphs to distributions and vice versa. A short introduction to these
models, also known as Bayesian Networks, is given in section 2.3.2.

18



2.3.1 Undirected Graphical Models (Markov Networks)

In undirected GMs, also known as Markov random fields (MRFs) or Markov networks
the definition of the relation ⊥⊥ G is based on the following separation property.

Definition 6 (Separation). Let G = (V,E) be an undirected graph and let S,A,B ⊂
V be subsets of the vertices with A∩B = ∅. Then S is said to separate A,B ⊂ V \S
if in the subgraph GV \S there exists no path between any node in A and any node in
B. The separation property is denoted by the relation (· ⊥G ·|·).

The definition of an undirected GM is then as follows.

Definition 7 (Undirected Graphical Model). An undirected graphical model M is a
graphical model M = (X , G) with relation ⊥⊥ G defined via the separation property,
i.e. ⊥⊥ G :=⊥G.

Here it is apparent that, by definition, undirected GMs imply conditional indepen-
dence by the lack of particular paths between the sets of nodes that represent the
variables under consideration. This feature is the first in a list of so called Markov
properties:

Definition 8 (Markov Properties). Let G = (V,E) be an undirected graph and X
be a random vector with index set V. We then define that X has

(G) the global Markov property with respect to G, if for each triple (A,B, S) of
disjoint subsets of V such that S separates A and B in G the conditional
independence XA ⊥⊥ XB|XS holds.

(L) the local Markov property with respect to G, if for all nodes i ∈ V the conditional
independence Xi ⊥⊥ XV \{ne(i),i}|Xne(i) holds.

(P) the pairwise Markov property with respect to G, if for all pairs of non-adjacent
nodes i and j, the conditional independence Xi ⊥⊥ Xj |XV \{i,j} holds.

Figure 2.2 provides an intuition on the character of these properties. When comparing
the respective Panels (a) and (b) it is easy to see that the local Markov property is
a special case of the global property as the neighbors (blue) of the red node in (b)
separate the red node from the other nodes. The blue nodes in this Panel act as
what is commonly referred to as a Markov blanket for the red node. Likewise, the
pairwise Markov property is a special case of the local Markov property. Since the
two nodes in (c) are not adjacent, each of their sets of neighbors can act as a Markov
blanket that is a subset of the blue nodes, respectively. Theorem 2 summarizes these
observations.
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(a)

(b)

(c)

Figure 2.2: Illustration of the Markov properties, adapted from Rue and Held (2005).
Panel (a) depicts the global Markov property. The blue nodes separate
the red and green nodes, which are thus independent given the former.
The local Markov property, shown in Panel (b), stipulates that conditional
on its neighbors (blue) the red node is independent from all other nodes
of the graph (white). The two red nodes in Panel 2.2(c) are independent
given the blue nodes since every path that connects them passes a blue
node. Hence, the pairwise Markov property holds.
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Theorem 2 (Markov Property Implications). For an arbitrary random vector X
the global Markov property (G) implies the local Markov property (L) and the local
Markov property implies the pairwise Markov property (P), i.e.;

(G)⇒ (L)⇒ (P ). (2.9)

Moreover, a under a mild restriction it is possible to show that these implications are
circular, i.e., that the pairwise Markov property implies the global Markov property.
It suffices to require that the distribution p ensures that

X ⊥⊥ Y |Z ∧X ⊥⊥ Z|Y ⇒ X ⊥⊥ (Y, Z)

holds. As shown by Pearl and Paz (1985) this can be achieved by restricting the
model to strictly positive distributions:

Theorem 3 (Equivalence of Markov Properties). For a random vector with a strict
positive distribution, i.e., p(x) > 0, the pairwise Markov property implies the global
Markov property, i.e.: (P) ⇒(G).

For undirected Graphical models with a strictly positive distribution of X the Markov
properties are thus equivalent. An example for such a class of models are Gaussian
Markov random fields (GMRFs), which are introduced in section 2.6.

2.3.2 Directed Graphical Models (Bayesian Networks)

Bayesian Networks or directed graphical models (DGMs) lend themselves towards
expressing causal relationships among the incorporated randoms variable and in
particular between a node and its parents. Bayes theorem, on the other hand, allows
to characterize the joint distribution of two random variables as proportional to the
product of a conditional and a marginal. It does not come as a surprise that the
most common definition of a DGM builds upon this similarity.

Definition 9 (Directed Graphical Model). A directed graphical model M is a pair
M = (X , G) of a random vector X and a directed acyclic graph G = (V,E) such that
the joint distribution p(x) of X factorizes into a product of conditional distributions
of the form

p(x) =
∏
a∈V

p(xa|xpa(a)). (2.10)

As opposed to undirected GMs this definition does not explicitly state a ternary
relation ⊥⊥ G implying conditional independence. However, using the notion of the
d-separation, it is possible to show that the class of probabilistic models defined
by Equation (2.10) is characterized by such a relation as well. Throughout this
thesis DGMs appear in the form of Bayesian hierarchical models (BHMs), which
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(a) (b) (c)

Figure 2.3: Path types in DGMs, adapted from Bishop (2006). Node a2 is said so be
(a) head-to-tail, (b) tail-to-tail or (c) head-to-head with respect to the
path (a1, a2, a3).

will be introduced in section 2.4. As these models are of rather simple nature in
terms of their graph structure only the main conditional independence Theorem
that incorporates d-separation is stated here. It allows to read the conditional
independence assumptions to be read directly from the graph and thus without
further inspection of probabilistic properties of the distribution.

Theorem 4. In a directed graph G = (V,E) the set S ⊂ V d-separates the disjoint
subsets A,B ⊂ V \ S (denoted by A ⊥G B|S) if S blocks all paths between A and B.
A path between a node a ∈ A and a node b ∈ B is defined to be blocked if it includes
a node s such that either

i) s ∈ S and s is head-to-tail or tail-to-head node in this path

ii) ({s ∪ ne(s)}) ∩ S = ∅ and s is head-to-head node in this path.

For a directed graphical model (GM) M = (X , G) the relation ⊥G implies conditional
independence, i.e.

A ⊥G B|S ⇒ XA ⊥⊥ XB|XS .

More details on the theorem and a proof are given by Pearl (1988). Figure 2.3
provides an intuition on the terminology of head-to-tail, tail-to-tail and head-to-tail
blocking of a path.

2.4 Bayesian Hierarchical Models

With the increase of amount and complexity of collected data during the last decades
probabilistic models have become common that structurally reflect the generative
nature of the observations at hand. As opposed to building a marginal model by
defining a data likelihood for which parameters are inferred, hierarchical models (HMs)
yield a clear separation between the involved stochastic components (Cressie and
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Wikle, 2011). Following the terminology of Berliner (1996), the general idea is to
distinguish between a bottom layer comprising a process model and top layer that
defines the data model conditional on the hidden process. On the one hand, this
allows to think of the observed data as a realization from a distribution reflecting the
intrinsic uncertainty of a measurement process. On the other hand, it is assumed
that the outcome of the measurement depends on a realization of a ”true” (hidden
or latent) process that has a distribution on its own and thereby represents the
uncertainty about assumptions on the underlying phenomenon the data is assumed
to be intrinsically generated by. Typically, these distributions are specified such as
to depend on further parameters that reside on an even lower level of the hierarchy
and are unknown as well. Models of this kind are commonly referred to as BHMs if
the distribution of this parameter layer is modeled jointly with the distribution of the
other unknown variables. An alternative approach is to assume that the parameters
are fixed and to estimate them using the data. This is commonly referred to as a
empirical hierarchical model (EHM) and inference on the process layer proceeds by
substitution of the fixed parameters into the process and data layers.

Due to the definition of conditional probabilities it is straightforward to put the
joint distribution of a BHM into an analytic form that reflects the aforementioned
causal structure. Let y be the random random vector of observed data, x the hidden
process and Θ the respective random parameters. We then have that

p(y,x,Θ) = p(y|x,Θ)p(x|Θ)p(Θ). (2.11)

A graphical representation of this BHM is given in Figure 2.4. It also also holds a
second graph that results from assuming independent sets of parameters ΘD and ΘP

for the data and process model, a situation not uncommon among BHMs applications.
Bayes’ theorem now gives the posterior distribution of the process model and the
parameters. Hence, by expressing the denominator p(y) in terms of an integrated
joint distribution one obtains

π(x,Θ|y) =
p(y|x,Θ)p(x|Θ)p(Θ)∫∫
p(y|x,Θ)p(x|Θ)p(Θ)dΘdx

. (2.12)

The denominator of Equation (2.12), i.e. the normalization constant that ensures
that the total probability equals 1, also illustrates the intricacy anticipated in Section
2.1. When no explicit marginal distribution for the data can be assumed (which
could also be seen as a dissent to the BHM paradigm itself), analytical or numerical
integration is inevitable. For special cases where the analytic integration is feasible or
the dimensionality of the latent variables and the parameters is small and therefore
methods like quadrature can be applied this does not pose a problem. However,
especially in applications with spatio-temporal models the dimensions can easily get
on the order of thousands and more sophisticated methods are required.

A class of computational approaches that lead to respective breakthroughs during the
last twenty years are Monte Carlo methods like Markov chain Monte Carlo (MCMC)
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(a) (b)

Figure 2.4: Graphical representation of a BHM, adapted from Cressie and Wikle
(2011). (a) Observations Y depend on the parameters Θ as well as the
hidden process model X. The latter only depends on the parameters.
(b) The process model and the observation model are assumed to have
independent sets of parameters ΘP and ΘD which are therefore not
connected by an edge.

and importance sampling (IS) (e.g. Robert and Casella (2004)). Here, the strong
law of large numbers is employed to construct approximate expectation values

Eg(X ) ≈ (1/K)
K∑
k=1

g(Xk), (2.13)

and to characterize analytically intractable distributions via samples X1 . . .XK (where
the approximation improves with increasing K). For example, a well-considered
sampling scheme and g ≡ p leads to an estimator of the aforementioned integral
constituting the normalization constant.

Although Monte Carlo methods for HMs have encountered a steep ascendance since
their first application to image analysis by Geman and Geman (1984) they are
not without detriments. Simulating from a joint distribution commonly requires
extensive analysis on the usually incorporated sub-sampling steps, an assessment of
the suitability of the drawn samples (e.g. their autocorrelation along the sampling
process) as well as expensive and extensive computation time. However, recent
developments of deterministic approximation methods have paved the way for a
special case of this issue. When the objects of interest are the marginal distributions
of the involved process components and the parameters, INLAs can serve as a mean
for fast and almost exact inference. As this approach is a core component of the
experiments conducted for this thesis it is explained in greater detail in Section 2.7.
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2.5 Generalized Linear Models and the Exponential Family

The notation of GLMs goes back to Nelder and Wedderburn (1972) and their
successful attempt to unify different methods of regression analysis with non-normal
responses (observations). In the classical setting for deterministic covariates and
ungrouped normal responses it is assumed that the relation

yi = zTi β + εi, i = 1, . . . , n, εi ∼ N (0, σ2) (2.14)

holds, where the design vector zi = (1,xi) is an appropriate function of the covariate
vector xi and β is a vector of unknown parameters. Rewriting the model such that
the observations are stated as independent and identically distributed given the
expectation µi = E(yi) = zTi βi with

yi ∼ N (µi, σ
2),

leads to a conditional understanding of the former model. Hence, if covariates are
stochastic, the pairs (xi, yi) are assumed to be iid and Equation (2.5) gives the
conditional density of the conditionally independent yi given the xi . Relaxing these
preceding assumptions w.r.t. the type of expectation and conditional distributions
then naturally extends the covered family of models and we employ the following
definition of GLMs stated by Fahrmeir and Tutz (2001).

Definition 10 (Generalized linear model). A GLM extends the linear model 2.14
by making the following assumptions:

1. Distribution assumption: Given xi, the yi are (conditionally) independent, and
the (conditional) distribution of yi belongs to a simple exponential family with
(conditional) expectation

E(yi|xi) = µi (2.15)

and , possibly, a common scale parameter φ, not depending on i.

2. Structural assumption: The expectation µi is related to the linear predictor
ηi = zTi β by

µi = h(ηi) = h(zTi β) resp., ηi = g(µi), (2.16)

where

h is a known one-to-one, sufficiently smooth response function,

g is the link function, i.e., the inverse of h,

β is a vector of unknown parameters of dimension p, and

zi is a design vector of dimension p, which is determined as an appropriate
function zi = z(xi) of the covariates.
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This definition requires acquaintance with the notion of a simple exponential family
of probability distributions (see also Fahrmeir and Tutz (2001), Appendix A1).

Definition 11 (Simple Exponential Family). The distribution p of a random variable
y belongs to a simple exponential family if its discrete or continuous density with
respect to a σ-finite1 measure

p(y|θ, φ) = exp
[yθ − b(θ)

φ
+ c(y, φ)

]
, (2.17)

with c(y, φ) ≥ 0 and measurable. The functions b and c are specific to the type of
the exponential family for which θ is called natural parameter and φ is a nuisance or
dispersion parameter.

It should be noted that this definition restricts the interaction term yθ to a product
of the observations and the parameters, which is not the case in general exponential
families where a function T (y) substitutes y. In the vector valued case, the mentioned
product translates to an inner product of the observation and parameter space. An
alternative nomenclature is to refer to the restricted class of models as natural
exponential families (see Robert (2007)). Distributions of this type have properties
that make them particularly appealing for statistical analysis.

• When considering a set of iid samples y1, . . . , yk ∼ f(y, θ) there exists a sufficient
statistic S(y1, . . . yk) of constant dimension. Here, S(·) is called a sufficient
statistic if the distribution of y1, . . . yk conditional upon S(y1, . . . yk) does not
depend on θ. This means that the statistic contains the whole information
brought by y1, . . . yk about θ. In case of natural exponential families, a sufficient
statistic is the mean

ȳ = 1/k
k∑
j=1

yj ,

which implies that inference on θ only depends on a small summary of a possibly
large data set.

• Members of the exponential families are guaranteed to have conjugate priors. A
conjugate prior of p(y|θ) is a prior distribution p(θ) from a family F of the pa-
rameters such that under the application of Bayes’ theorem the posterior p(θ|y)
also belongs to F . Hence, if the prior has an analytically or computationally
convenient form this carries forth to the posterior.

• The first and second order moments of the distribution p(y|θ, φ) follow directly
from the choice of the function b(·). This also holds if y is a random vector
y = y and Θ = θ is vector valued as well, i.e. when considering p(y|Θ, φ). To
be precise, if θ̃ is the set of all θ satisfying 0 <

∫
p dy <∞, then θ̃ is convex

1A measure µ is said to be σ-finite if there is a countable set {Ai ∈ F}i∈I of σ-finite Ai’s (µ(Ai) <∞
for all i ∈ I) such that the sample space Ω is a union of these sets (Ω = ∪IAi).
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Table 2.1: Simple exponential families of the form (a) with analytic components (b)

(a) f(y|θ, φ, ω) = exp
[
yθ−β(θ)

φ ω + c(y, φ, ω)
]

(b) Components

Distribution θ(µ) β(θ) φ c

Normal N (µ, σ2) µ θ2/2 σ2 y2/2σ2

Bernoulli B(1, π) log(π/(1− π)) log(1 + exp(θ)) 1 0

Gamma G(µ, ν) −1/µ − log(−θ) ν−1 log(y
µ−1

Γ(µ) )

and in the interior, assumed to be nonvoid, all derivatives of b and all moments
of y exist. In particular

E(y|θ) = µ(θ) =
∂b

∂θ

Cov(y|θ) = Σ(θ) =
∂2b

∂θ∂θ′

The latter equations play an important role with respect to the specification of
GLMs. It has to be taken into account that a particular mean structure given by b(·)
implies a certain covariance structure and that the natural parameter is a uniquely
determined function Θ(µ) of the mean given a particular exponential family. This
influences the choice of the response or link function. For each exponential family
there exists a natural or canonical link function that relates the natural parameter
directly to the linear predictor:

θ(µ) = η = zTβ,

and hence as η = g(µ) (Eq. 2.16):

θ(µ) ≡ g(µ).

From this, models with convenient mathematical and statistical properties evolve.
Prominent examples are the normal, Bernoulli and Gamma distributions, for which
the respective link functions can be determined from Table 2.1.
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2.6 Gaussian Markov Random Fields

This section has introduced a major building block of the models employed throughout
this thesis. Its main constituent is the Gaussian or normal distribution

N (x ∈ R;µ, σ) =
1

σ
√

2π
e

(x−µ)2

2σ2 (2.18)

with mean µ and variance σ2. Among other favorable analytic and computational
properties that set forth to multiple dimension a main motivation to assume normally
distributed variables is the central limit theorem. It states that the arithmetic mean
of a sufficiently large number of independent random variables with well-defined
expected value and variance will be approximately normally distributed. In applied
contexts where the actual distribution of variables are rarely known with sufficient
certainty, this is an appealing property to maintain a probabilistic foundation for
further analysis. The normal distribution is easily set forth to the multivariate case
of n dimensions by the definition

N (x ∈ Rn;µ,Σ−1) = (2π)−n/2|Σ|−1/2 exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)
, (2.19)

where µ is the mean vector and Σ is the so called covariance matrix with determinant
|Σ|. As to define a proper probability distribution the (n× n) matrix Σ is required
to be positive definite. This is the case if and only if

xTΣx > 0 ∀ x 6= 0

and for convenience denoted by Σ > 0. In the following we will consider the case where
Σ is also symmetric, i.e. ΣT = Σ, and hence symmetric positive definite (SPD).

It turns out that the inverse Q = Σ−1, called precision matrix, plays a key role
when considering multivariate normals in context of probabilistic graphical models.
From Equation (2.19) it is easy to see that E(xi) = µi as well as Cov(xi, xj) = Σij .
The covariance matrix thus directly translates into a binary marginal independence
structure of the distribution :

xi ⊥ xj ⇔ Σij = 0.

The precision matrix, on the other hand, can be shown to reveal another kind of
insight into the structure of the distribution:

Theorem 5. Let x be normal distributed with mean µ and precision matrix Q > 0.
Then for i 6= j,

xi ⊥ xj |x−ij ⇔ Qij = 0.

The nonzero pattern of the precision matrix thus determines the conditional inde-
pendence structure of the distribution. Finally, as elaborated in Section 2.3.1 this
structure is exactly what is needed to formulate an undirected PGM, which gives
rise to the following definition:
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Definition 12 (Gaussian Markov Random Field (GMRF)). A random vector
x = (x1, . . . , xn)T ∈ Rn is called GMRF with respect to a labelled graph G = (V, E)
with mean µ and precision matrix Q > 0 if and only if its density has the form

p(x) = (2π)−n/2|Q|1/2 exp
(
− 1

2
(x− µ)TQ(x− µ)

)
(2.20)

and
Qij 6= 0 ⇔ {i, j} ∈ E ∀ i 6= j.

If Q is a completely dense matrix then G is fully connected. Any normal distribution
with SPD covariance matrix is therefore also a GMRF and vice versa. Most impor-
tantly, however, is the consequence this has on the Markov properties (see section 8)
of the distribution:

Theorem 6 (Markov properties of GMRFs). Let x be a GMRF with respect to
G = (V, E) and distribution P . Then the pairwise, the local and the global Markov
property are equivalent.

Proof. Since p(x) ∝ exp(·) > 0 Theorem 3 is applicable.

From this theorem several powerful results emerge in terms of inference in GMRFs,
in particular if sparse precision matrices are considered. These results are best
described in an alternative analytic form of the distribution’s density, the canonical
parameterization.

Definition 13 (Canonical parameterization). A GMRF x with respect to a graph G
with canonical parameters b and Q > 0 has the density

NC(x ∈ Rn; b, Q) ∝ exp
(
− 1

2
xTQx + bTx

)
. (2.21)

Firstly, the mean µ of this distribution is given by µ = Q−1b such that one has
N (µ,Σ−1) = NC(Qµ, Q). Switching between representation thus boils down to
solving a (sparse) linear system or a matrix vector multiplication. Secondly, the
conditional distribution of a subset A = V \ B (A and B being nonempty) of the
considered variables is given by the conditional mean

µA|B = µA −Q−1
AAQAB(xB − µB) (2.22)

and precision
QA|B = QAA,

where without loss of generality a reordering of the variables is considered such that

µ =

(
µA
µB

)
and Q =

(
QAA QAB
QBA QBB

)
.
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One can see that the conditional dependency structure and hence the structure of
a subgraph GA representing xA is inherited directly from Q, i.e. no computation is
needed and GA is constructed by simply removing the variables B as well as respective
edges. From Equation (2.22) another (computational) advantage arises for sparse
graphs. Since Qij is zero for non neighboring nodes in the graph the conditional
mean only depends on values of µ and Q in A and the immediate neighborhood
ne(A). For small sets A with few neighbors this reduces the necessary computations
drastically.

Finally, these favorable properties are even more reflected and complemented by the
canonical representation, as can be deduced from the following lemmata:

Lemma 1. Let x ∼ NC(b, Q), then

xA|xB ∼ NC(bA −QABxB, QAA)

Lemma 2. Let x ∼ NC(b, Q) and y|x ∼ N (x, P−1), then

x|y ∼ NC(b + Py, Q+ P )

Conditioning a subset of variables from a joint distribution (first lemma) and inference
on the posterior with respect to observations y (second lemma) are hereby both
readily available by matrix-vector products. In iterative procedures a successive
update of the canonical parameterization is thus very efficient and the computation
of the actual mean by solving Qµ = b is only performed when actually need, i.e. at
the end of the procedure.

Note that also in both cases the sparsity of the precision matrices imply significant
reductions in the computational efforts of updating the conditional parameters. For
instance, assume that x is to be conditioned on only one xi with few connections
to k other xjs with respect to the underlying graph. QAB = Qi,−i in Lemma 1
then reduces to a vector with only k non-zero elements and xB = xi is a scalar.
Hence, the canonical parameter b−i is only updated in k positions. This is one of
the key components that render integrated nested Laplace approximations (INLAs)
so computationally efficient. More detail on this is provided in the next section.

2.7 Integrated Nested Laplace Approximations

With the upturning popularity of Bayesian models during the last three decades
a need for general-purpose inference methods arose. As discussed in section 2.4,
MCMC methods provide a main requirement for this generality: they are extremely
flexible and are applicable to a wide range of data types and models. Until recently,
a main problem remained. Across many scientific fields increasingly sophisticated
measurement techniques and the general decrease of costs for data collection led to
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complex and computationally highly demanding models. In this case, e.g. spatio-
temporal data with a latent Gaussian model on top, MCMC methods typically need
extensive run times for sufficiently accurate posterior estimation. For details on this
see for instance Rue et al. (2009) and references therein.

2.7.1 Feasible Models

The integrated nested Laplace approximation technique introduced by Rue et al.
(2009) provides an extremely powerful approach to the aforementioned computational
challenge. It is applicable to the class of structured additive regression models with
a latent GMRF and hyper-parameters θ1 and θ2 at the observation and latent layer,
respectively. The corresponding BHM has three stages and is structured as follows.
The hyper-parameter distribution

(θ1,θ2) ∼ p(θ = (θ1,θ2)) (2.23)

is assumed to be low dimensional. First reports stated proper results and reasonable
computation times for K ≤ 6 dimensions. Depending on the structure, even K ≤ 11
and perhaps beyond can still be dealt with (Finn Lindgren, pers. comm.). The latent
variables follow the distribution

X ∼ p(x|θ2) = N (0, Q(θ2)), (2.24)

i.e. a zero mean GMRF with precision matrix Q parameterized by θ2. Now, given the
parameters θ1, the observation variables are assumed to be conditionally independent
given the latent GMRF:

Yi
iid∼ p(yi|xi,θ1), i = 1, . . . , n. (2.25)

This way the GMRF provides a flexible mean of modeling different kinds of dependen-
cies between the latent variables of the model that implicitly steer the dependencies
among observed data. The observation stage is assumed to be a GLM and the
(structured additive) linear predictor is stated as

ηi = γ +
K∑
k=1

βkzki +
L∑
l=1

fl(uli) + ξi, (2.26)

where γ denotes a global scalar intercept, the vector z = (z1, . . . , zK) contains
covariates entering the response variable linearly via the coefficients β = (β1, . . . , βk),
f = {f1(·), . . . , fL(·)} is a set of unknown functions of a second covariate vector
u = (u1, . . . , uL) and the ξi are unstructured terms. It should be noted that since the
functions fl are modeled by Gaussian variables representing the respective function
evaluation this analytic form is equivalent to the general GLM form introduced in
section 2.5.
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2.7.2 Nested Approximations and Integration

With this model at hand, the major achievement of the INLA technique is efficient
inference on the marginal distributions of the unknown variables. In both cases,
hyper-parameters and latent field variables, the marginal posteriors are represented
by integration over the other hyper-parameter space

p(xi|y) =

∫
p(xi|Θ,y)p(Θ|y) dΘ (2.27)

p(Θj |y) =

∫
p(Θ|y) dΘ−j , (2.28)

which explains the respective limitation of INLA to models with low dimensional Θ.
Performing the actual integration requires to evaluation of the full hyper-parameter
conditional p(Θ|y) as well as the latent marginal posteriors p(xi|Θ,y), both of which
are not readily available. Instead, Rue et al. (2009) propose the application of
the Laplace approximation developed by Tierney and Kadane (1986) in both cases
and thus in a with respect to the model nested fashion (hence the name). After
introducing the Laplace approximation in section 2.7.3 and the implicitly required
Gaussian approximation (section 2.7.4) the density exploration strategy necessary to
integrate over the full posterior approximation p̃(Θ|y) is described in section 2.7.5.

2.7.3 The Laplace Approximation

The first step of the Laplace approximation is to apply Bayes’ formula twice. In case
of the hyper-parameters this leads to

p(Θ|y) =
1

p(y)
π(y,Θ) =

1

p(y)

p(x,y,Θ)

p(x|y,Θ)
∝ p(x,y,Θ)

p(x|y,Θ)
, (2.29)

for arbitrary x ∈ Rn. Consecutively, the denominator p(x|y,Θ) of the right hand
side of Equation (2.29) is approximated by a Gaussian p̃G(x|y,Θ). Rue and Martino
(2007) show that this approximation is particularly accurate at the value x∗(Θ) that
maximizes p(x|y,Θ). This gives approximation

p(Θ|y) ≈ p̃(Θ|y) =
p(x,y,Θ)

p̃G(x|y,Θ)

∣∣∣
x=x∗(Θ)

. (2.30)

In case of the

p(xi|x−iΘ,y) ≈ p̃LA(xi|x−iΘ,y) =
p(x,y,Θ)

p̃GG(x−i|xi,y,Θ)

∣∣∣
x−i=x∗−i(Θ)

. (2.31)

of the latent marginal posteriors. The construction of the Gaussian p̃G(x|y,Θ) is
based on a sub-step of a sampling strategy brought up by Knorr-Held and Rue
(2002). The same approach can be applied to the denominator pGG(xi|x−i,y,Θ) of
the latent field marginals. However, this comes with some intricacies and alternative
approximations later discussed in section 2.7.6. In the following section the principle
of the Gaussian approximation is conveyed.
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2.7.4 The Gaussian Approximation

Assume that the observations y and the hyper-parameters Θ are given, e.g. as an
input to the evaluation of the density function p(Θ|y) and the respective Laplace
approximation. The key idea of the incorporated Gaussian approximation is to make
use of the fact that the full conditional for a zero mean Gaussian x,

p(x|Θ,y) ∝ exp
(
− 1

2
xTQx +

∑
i

gi(xi)
)

(2.32)

with likelihoods gi(xi) = log p(yi|xi) is often well approximated by a Gaussian
distribution if the modal configuration and curvature at the mode are matched. Note
that in the following we will for convenience notationally subpress all dependencies
on the hyper-parameters. The approximation itself is achieved by an iterative
optimization scheme alternating between optimizing for the two objectives. Assume
a given mean µ(k) for the approximation, i.e. an initial guess or an estimate from
the previous iteration k. One now expands the functions gi around the respective
component means µki to the second order in order to match the curvature,

gi(xi) ≈ gi(µ(k)
i ) + bixi −

1

2
cix

2
i , (2.33)

where the {bi} and {ci} depend on the mode µ(k). The mean of the next iteration
is now obtained by observing that the non quadratic terms in Equation (2.32) only
depend on single components of x. A Gaussian approximation to this hence has a
precision matrix Q+ diag(c) and its mean µ(k+1) is is required to solve

(Q+ diag(c))µ(k+1) = b. (2.34)

Most importantly, if x is a GMRF, then, due to the construction of the approximative
precision matrix, this property is set forth to the approximation and respective
computational properties can be taken advantage of. This optimization strategy,
also known as the Newton-Raphson method or scoring algorithm and its variant the
Fisher scoring algorithm (Fahrmeir and Tutz, 2001), is applied until convergence to
a Gaussian with mean µ∗ and diagonal precision parameter c∗ such that

p(x|Θ,y) ≈ p̃G(x|Θ,y) ∝ exp
(
− 1

2
(x− µ∗)T (Q+ c∗)(x− µ∗)

)
. (2.35)

2.7.5 Hyper-parameter Exploration and Integration

Once the Laplace approximation of the full hyper-parameter posterior is available a
computationally rational strategy for its exploration and subsequent integration is
required. This is due to the fact that the previously introduced algorithmic steps are
required for each function evaluation with respect to Θ. Rue and Martino (2007)
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(a) (b)

Figure 2.5: Exploration of the hyper-parameter space, adapted from Rue et al. (2009).
Panel (a) shows the coordinate system of z with origin at the mode of
the posterior and contour lines according to the respective Hessian. Each
coordinate in Panel (b) is then explored independently (black markers)
until a certain threshold is reached. These define the limit for the
exploration of the combined coordinate directions (hollow markers).

show that the following procedure (later elucidated in more detail by Rue et al.
(2009)) is accurate and particularly suitable for the exploration of p̃G(Θ|y).

Assume that Θ = (Θ1, . . . ,Θm) ∈ Rm, which can always be obtained by reparame-
terization.

1. Locate the mode Θ∗ of log(p̃G(Θ|y)) by a quasi-Newton method using finite
differences as approximation to the gradient and second derivatives.

2. Again using finite differences compute the negative Hessian matrix H > 0 at the
mode. If the density were Gaussian, H is the respective precision and Σ = H−1

the covariance matrix. The density is now explored via a parameterization z
that standardizes Θ. That is, let V ΛV T be the eigen-decomposition of Σ and
define

Θ(z) = Θ∗ + V Λ1/2z. (2.36)

In case the density is Gaussian then z is N (0, I) and hence a correction for
rotation and scaling is performed.

3. For each component zi evaluate the density at equally distant points in the
positive and negative direction until a certain lower threshold, say δp, is met.

This results in component wise numbers s
(+/−)
i of steps into each direction.

These serve as upper thresholds on the number of steps taken in the subsequent
joint exploration of components of z. A depiction of this strategy is shown in
Figure 2.5.
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With these exploration points at hand, two integration tasks can be fulfilled in this
context.

First, the integration of p̃G(Θ|y) that is required to infer the hyper parameter
marginal approximations p̃(θj |y). In this case Rue et al. (2009) recommend to
compute an interpolant to p̃G(Θ|y) and then deploy a generic numerical integration
scheme. The choice of the step size of the exploration scheme therefore clearly
influences the accuracy of the estimated marginals. Numerical comparisons with
respect to this parameter of the method can be found in Martino (2007).

The second case of integration where the full hyper-parameter posterior is required is
the computation of the latent marginals p(xi|y) as stated in Equation (2.27). Here,
no interpolant is used and the grid points of the exploration technique are used
directly. The numerical integral of the marginals then reads as

p̃(xi|y) =
∑
k

p̃(xi|Θk,y)× p̃(Θk|y)×∆k, (2.37)

where the summation weights ∆k are chosen to be equal and to normalize the
marginals. Yet, Rue et al. (2009) propose three alternatives for the approximation of
the conditional marginals p(xi|y,Θ), which will be discussed in the next section.

2.7.6 Approximations to Conditional Latent GMRF Marginals

Rue et al. (2009) propose three alternatives to the approximation of the latent GMRF
marginals conditional on the data. A straight forward way, already brought up by
Rue and Martino (2007), is to employ the Gaussian full posterior approximation
p̃G(x|y,Θ) determined during the exploration of the hyper-parameter posterior,
compute the marginal distribution

p̃G(xi|Θ,y) = N (xi|µi(Θ), σ2
i (Θ)) (2.38)

for each xi and subsequently perform the integration over the hyper-parameter
distribution (Equation (2.27)). The nested Laplace approximation expressed by
Equation (2.31) is not used in this case. As discussed in section 2.6, this strategy is
computationally very effective since p̃G is a GMRF and the marginals only depend
on the respective (sparse) variable neighborhood implied by the precision matrix.
Unfortunately a major drawback of this approach was shown by Rue and Martino
(2007). Some of the marginals showed slight errors in location and/or a lack of
skewness. Furthermore, it was shown that it is difficult to detect the xi’s for which
the approximation is less accurate.

The second mean for inference on the marginals is to actually perform the nested
Laplace approximation stated in Equation (2.31). This raises the problem that the
Gaussian approximation p̃GG and the respective optimization steps (see section 2.7.4)
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have to be performed for each of the latent variables. Two main ideas allow to
circumvent this issue while maintaining the accuracy lost with the aforementioned
marginalization approach.

• The first modification avoids the optimization step of fitting the mode of
p̃GG(x−i|xi,y,Θ) to p(x−i|xi,y,Θ) for each xi. Instead, the respective modal
configurations are approximated by conditioning the joint posterior p̃G on the
respective xi and taking the expectation, i.e.,

x∗−i(xi,Θ) ≈ Ep̃G(x−i|xi). (2.39)

Again the properties of GMRFs play a significant role in this case as the condi-
tional mean can be computed from a rank one update from the unconditional
mean.

• Due to the latent GMRF structure Rue et al. (2009) argue that only those xj
should have a significant influence on the marginal of xi that are inside a ’region
of interest’ Ri(Θ) closely surrounding xi. The region itself is constructed by
observing that Equation (2.39) implies

Ep̃G(xj |xi)
σ(j)(Θ)

= aij
xi − µi(Θ)

σi(Θ)
(2.40)

for some aij(Θ) when i 6= j. Membership of the region of is then determined
by the threshold

Ri(Θ) = {j : |aij(Θ)| > 0.001}

and hence only a factorization of a sparse |R(Θ)|×|R(Θ)| is needed to compute
p̃GG for a given xi.

• As a last way to reduce the costs of the latent marginals an interpolation
scheme for the density p̃LA is proposed. The idea is to avoid having to compute
p̃LA in Equation (2.31) for as many different values of xi as possible. For this
purpose, the standardized marginal Gaussian approximations

x
(s)
i =

xi − µi(Θ)

σi(Θ)

are employed to determine the interpolation points according to the Gauss-
Hermite quadrature rule. The density p̃LA is then represented as

p̃LA(xi|Θ,y) ∝ N (xi|µi(Θ), σ2
i (Θ))× exp(qspl(xi)), (2.41)

where qspl(xi) is a cubic spline fitted to the difference to the log-density of
p̃LA(xi|Θ,y) and˜̃pG(xi|Θ,y) at these points. The density is then normalized
by quadrature integration.
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Lastly, Rue et al. (2009) develop a third algorithm to approximate the latent marginal
distributions. The so called Simplified Laplace Approximation p̃SLA(xi|Θ,y) is based
on a series expansion of p̃LA(xi|Θ,y) around xi = µi(Θ) in order to correct the
Gaussian approximation p̃G(xi|Θ,y) for the aforementioned errors in location and
skewness. Details on this approximation are given in the monographs of (Rue et al.,
2009, sec. 3.2.3).
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3 Dust Detection

The very basis of the work this thesis presents is the detection of dust aerosols from
SEVIRI imagery. In environmental sciences a common mode of visually detecting
dust from this data is to inspect linear mixtures of different SEVIRI infrared channels,
the so called SFI. These mixtures project the infrared signal to red, green and blue
components such that dust plumes are most prominent to the expert inspecting
the image. For mathematical and computationally automated assessment of dust
aerosols, however, a precise quantification of this ”prominence” is required. The
main goal is thus to equip each region represented by a pixel in the imagery with a
scalar quantity characterizing evidence for dust presence.

This chapter describes the development of a probabilistic framework expressing
evidence for dust presence via a flexible Bayesian hierarchical model (BHM) (see
Section 2.4 for details on BHMs). Inference in this framework is straight forward
using the integrated nested Laplace approximations approach described in Section
2.7. Section 3.1 gives an overview about the specifications of SEVIRI data, the
mathematical definition of the SFI and finally describes a thresholding scheme
for dust detection developed by Ashpole and Washington (2012). Together with
a baseline GLM (see Section 2.5) called linear discriminant analysis (LDA) this
scheme serves to evaluate the proposed probabilistic framework in terms of detection
accuracy.

Section 3.2 presents first steps towards probabilistic dust detection, which are taken
from Bachl and Garbe (2012). Here, LDA is embedded into BHM and subsequently
extended to projection coefficients modeled as functions over background estimates.
The latter represent SEVIRI imagery under pristine sky conditions. As these functions
are unknown and have to be inferred from data, the method is named latent projection
functions (LPFs) from here on.

One drawback of linearly projecting even mildly noisy data like SEVIRI imagery is
that no non-linearity can be employed to dampen signal disturbances. The noise
carried over to the projected quantity indicating dust can then hamper further
processing like estimation of the transport process. Section 3.3, adapted from Bachl
et al. (2012), displays our work to overcome this shortcoming of LPFs. A BHM is
examined that integrates the SEVIRI data as a part of the domain of the (non-linear)
latent functions. This method, named latent signal mappings (LSMs), yields less
noisy spatio-temporal dust indication and, as will be shown in Chapter 4), aids
inference on the underlying atmospheric transport process.
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The last section of this chapter (3.4) is dedicated to improvements in terms of LSM’s
stability over day time and dependency on background estimates. By replacing
the latter with surface emissivity estimates a major drawback of this approach is
circumvented (Bachl et al., 2013a). The formerly proposed method of background
radiation retrieval is not capable to yield stable results for times with low solar
altitude, e.g. at early mornings where dust storms are known to emerge frequently.
The section is concluded by an examination of a cross validation study taken from
Bachl et al. (2013b). The study shows that LSM with emissivity estimates yields
a detection accuracy that is, in particular with respect to day time, significantly
favorable over approaches like thresholding and LDA.

3.1 Preliminaries

3.1.1 SEVIRI Data and Falsecolor Representation

The SEVIRI instrument resides aboard the Meteosat-9 satellite launched on December
21, 2005 in a joint effort of the European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT) and the European Space Agency (ESA).
Being an integral part of the payload of the Meteosat Second Generation (MSG)
series of platforms dedicated to environmental data collection, SEVIRI measures
electromagnetic radiation at 12 different spectral windows spanning from visible to
infrared frequencies (Schmetz et al., 2002). With Meteosat-9 residing at 0 degrees
of latitude, 0 degrees of longitude and a height of approximately 36 km it provides
measurements for up to 80 degrees of deviation from nadir where it has a resolution
of about 3× 3 km. In combination with the per-image scan time of 12 minutes and
three minutes of calibration this results in a 3712 × 3712 pixel imagery every 15
minutes.

With respect to radiative remote sensing, the most dominant effect of dust aerosols is
to filter the infrared radiation leaving the terrestrial surface in a frequency dependent
fashion. This phenomenon is reflected by the 12.0 µm, 10.8 µm and 8.7 µm brightness
temperature (BT) measurements of the SEVIRI instrument, which we will abbreviate
by BT12.0, BT10.8 and BT8.7, respectively. For example, it is well known that in
the presence of dust aerosols the difference ∆TBR = BT12.0 −BT10.8 increases while
∆TBG = BT10.8 − BT8.7 decreases (Schepanski et al., 2007). This connection, also
known as split window technique, results in popular operative products such as the
SFI (see Figure 3.1(a)) which defines the red (R), green (G) and blue (B) channels
of the visualization as

R = (∆TBR + dR)/sr,

G = ((∆TBG + dG)/sG)γ ,

B = (BT10.8 − dB)/sB,
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(a)

(b)

Figure 3.1: SEVIRI falsecolor schemes for dust detection. Panel (a) shows dust event
on January 17, 2010 at 12h GMT over northern Africa via the non-linear
SFI scheme. Panel (b) shows the same event via the linear version SFIγ=1

described in section 3.1.1. The variants show dust as (a) purple and (b)
red regions. Water clouds are (a) black to dark red and (b) black. In
(a) the surface of the earth is represented by blue to cyan and in north
western Africa with slightly purple colors. Differences in the vegetation
are easier to derive from (b), where blue areas are more vegetated than
green area.
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where the linear rescaling parameters

dR = 4K, sR = 2K + 4K,

dG = 0K, sG = 6K,

dB = 261K, sB = 289K − 261K,

map the data to the interval [0, 1] such that changes due to dust activity are most
noticeable during on-screen inspection by experts. The parameter γ is set to 0.4 and
K denotes the unit of brightness temperature in Kelvin. A detailed discussion on
this and related falsecolor products was published by Lensky and Rosenfeld (2008).
Purely linear schemes with γ = 1 are common as well (see, e.g., Schepanski (2009))
and can be visually advantageous depending on the medium the data is displayed on.
For instance, using the parameters

dR = −0.08K, sR = 0.35K,

dG = −0.3K, sG = 0.08K,

dB = −5K, sB = 0.02K,

more contrast is given to surface features like vegetation. Figure 3.1(b) depicts the
resulting imagery as opposed to the default SFI shown in Figure 3.1(a). Throughout
this thesis, whenever this falescolor parameterization is employed, it will be denoted
by SFIγ=1. If data {Di∈{1,2,3}} other than the brightness temperature channels is
processed according to a SFI scheme this will be denoted by SFI(D1, D2, D3) and
SFIγ=1(D1, D2, D3), respectively.

3.1.2 Split Window and Tresholding Techniques

Recently, Ashpole and Washington (2012) proposed an extended thresholding scheme
for dust detection based on the split window technique. They combine four different
thresholds given by

∆TBR > 0K, (3.1)

∆TBG < 10K, (3.2)

BT10.8 < 285K, (3.3)

∆TBR −M < −2K, (3.4)

where M is a two-week cloud masked rolling mean of ∆TBR. Alongside requiring the
fixed conditions given in Equations (3.1) and (3.2) in order to flag a pixel to contain
dust they introduce two additional requirements. Since the blue channel is generally
saturated in the presence of dust while the occurrence of clouds lowers its brightness,
the threshold BT10.8 < 285K in Equation (3.3) removes artifacts coming from the
latter. The last threshold is data dependent and serves two purposes. By requiring
Equation (3.4) to hold it rules out false positive dust detections where clouds are
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present and over regions where the red channel is close to saturation even under
pristine conditions.

Ashpole and Washington (2012) perform an extensive study comparing their SEVIRI
based approach to ground measurements of AOD at different photometer sites of
the Aerosol Robotic Network (AERONET) and the absorbing aerosol index (AAI)
derived from the ozone monitoring instrument on board the Aura satellite1. They
conclude a general accordance with these means of dust detection but also point out
that their method suffers from a decreased detection accuracy in the early mornings
and late evening due to a ”decrease in the spectral contrast between cooler surfaces
and the dust layer”.

Day time is not the only critical factor for dust detection from SEVIRI data. Related
work (Brindley et al., 2012) employs an extensive simulation of SFI data given
different atmospheric conditions, seasons of the year, day time, vegetation cover as
well as other influencing factors like satellite viewing angle. Figure 3.2 summarizes
two of their main results, which play a mayor role in the context of this thesis.

• The vegetation cover of the earth determines which of the SFI channels is
most expressive in terms of dust detection. Under pristine conditions the green
channel is comparably saturated for barren surfaces while the red channel is
desaturated. Covered by dust the green channel is desaturated significantly and
only a minor saturation of the red channel occurs. With increasing vegetation
cover this effect is reversed. Vegetated surfaces show a low and high saturation
of the green and red channel, respectively. Dust then leads to a strong reduction
of the red channel intensity while the green channel is less affected.

• The behavior with respect to day time is slightly more complex and also depends
on the season of the year. With increasing day time a general shift of the
appearance under pristine conditions occurs towards less red and more green
saturation. This shift is even stronger in case of dust presence such that the two
conditions are less visually discriminable. According to the simulations study
this behavior is more pronounced at summer time. During winter time slight
ambiguities are visible, especially for regions with a medium green saturation
of around 5 K.

It should also be noted that the study analyzes the SFI appearance in dependence of
the dust optical depth τ10 at 10µm in steps of 0.1 from 0.0 to 1.0. The corresponding
transition in the SFI color space is very smooth in the red an green components (see
the moderate curvature of the arrows in Figure 3.2). A sufficiently smooth function
that depends on the vegetation level and/or day time and maps the SFI to a scalar,
e.g. a probability of dust occurrence, can thus be interpreted as an approximation to

1AERONET and Aura are maintained by the National Aeronautics and Space Administration
(NASA)
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Figure 3.2: Simulated dust appearance in SEVIRI falsecolor imagery (December
atmospheric conditions), adapted from Brindley et al. (2012). Assuming
a fully saturated blue channel the coloration of the axis system shows
the SFI appearance depending on the red (abscissa) and green (ordinate)
channel saturation. The general tendency of pristine pixels to change
appearance with varying vegetation cover and day time is depicted by the
grey arrows. Black and white arrows depict the SFI appearance transition
from an assumed dust optical depth τ10 of 0 to 1 at a wavelength of 10µm
and in dependence of the surface vegetation and day time. The dashed
white line shows the first two dust detection thresholds (Equations 3.1
and 3.1) proposed by Ashpole and Washington (2012).

the optical depth τ10. For a preview of how actual (hand labeled) data is distributed
in the SFI space see also Figure 1.3 in the introduction of this thesis.

3.1.3 Linear Discriminant Analysis

Linear discriminant analysis is a simple but nonetheless powerful classification
technique. As the name implies, LDA imposes a linear decision surface on the space
of covariates (see figure 3.3). The general idea of LDA is to find projection coefficients
w of the covariates that maximizes the generalized Rayleigh quotient

R(w) =
wTSBw

wTSWw
. (3.5)

In this equation, SB is outer product of the difference of the two class means m1 and
m2 and SW is the sum of the scatter matrices
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Figure 3.3: Geometry of a linear decision boundary defined by LDA, adapted from
Bishop (2006). The depicted LDA decision boundary (red) separates
the two-dimensional space spanned by x1 and x2 into two regions R1

and R2. The vector x (blue) is classified according to the sign of its
distance y(x)/||w|| from the decision boundary being perpendicular to
the projection vector w.

Si =
∑
x∈Di

(x−mi)
T (x−mi), (3.6)

where i ∈ {1, 2} is the class index and x ∈ Di are the samples of the two classes. If
w fulfills this condition, the one-dimensional projection wTx has the property that it
maximizes the difference of the projected means while minimizing the corresponding
within-class variances. It can be determined by w = (S1 +S2)−1(m1−m2). Finally, if
the constant w0 is set to −wT (m1 +m2)/2, the hyperplane defined via the equation

y(x) = wTx + w0 = 0 (3.7)

can be shown to be the optimal decision boundary if the two sample sets are
distributed according to normal distributions with equal but unknown covariance
matrices. Nonetheless, LDA also has its disadvantages. While the linear discrimina-
tion of low dimensional covariate spaces is robust against overfitting, the underlying
statistics of LDA can be severely distorted by outliers. Furthermore, in particular the
within-class scatter matrices suffer from the curse of dimensionality. If the number of
samples is low compared to the dimensionality of the covariate space, these matrices
often overestimate the distortion caused by the actual covariance matrices.
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3.2 Latent Projection Functions

When visually examining SFI imagery two main features allow to recognize dust
activity: motion and coloration. This section, which was published by Bachl and
Garbe (2012), presents first steps towards the application of a BHM (see Section 2.4
for details on BHMs) to the problem of dust detection from features in the SFI space.
The approach focuses on solving one of the most apparent difficulties that comes with
detection solely based on the color space. Although it is known that dust presence
increases the red and decreases the green channel intensity, the extent of this effect
depends strongly on the radiative properties of the respective earth surface being
covered by a pixel of the imagery. A projection of the data to a one-dimensional
space that represents an indicator for dust activity should therefore depend on such
surface properties. The following sections illustrate how this requirement is realized
via two main building blocks. In section 3.2.2 a technique is explained that allows
for an approximation to the SFI under clear sky conditions. Thereby the radiative
properties of the surface represented by each pixel under the assumption that neither
dust nor water clouds contaminate the signal are estimated. These features are then
utilized to define a model for the detection itself.

As explained in Section 3.2.3, the core idea is to set LDA forth to a Bayesian model
wherein the projection coefficients are functions over the space of terrestrial surface
properties. Section 3.2.4 then goes into experimental details about two qualitative
case studies that serve to evaluate the method. Finally, respective conclusions are
drawn in Section 3.2.5.

3.2.1 Notation

Let Ω ⊂ R2 denote the image domain and assume the presence of a series of images
obtained over the time interval [0, T ]. The goal is to determine a probabilistic dust
indicator dxyt with location (x, y) ∈ Ω at time t ∈ [0, T ] such that dxyt = 1 if there
is evidence of a dust plume covering the location and dxyt = 0 otherwise. This
assessment is made on the basis of the observation vector Ixyt = (I1xyt, I2xyt, I3xyt)
where the three components of Ixyt correspond to the red, blue and green channels
of SFIγ=1.

3.2.2 Estimation of Background Appearance

A crucial aspect of dust detection via LPF is that an estimate of the background
radiation is taken into account, i.e. an approximation to the earth’s brightness
temperature under clear sky conditions. The basic idea to obtain this estimate works
as follows. Dust plumes as well as water vapor (clouds) decrease the brightness
temperature measured by SEVIRI at that particular location. On the other hand,
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the most significant contributor to changes in the measured infrared radiation is
the thermal energy provided by the sun and varying with its angle and hence day
time. This influence can approximately be excluded by considering a sequence of
measurements over multiple days but at a particular time during the day only. Of
these measurements the most intense one is then very likely to come from a day
where that location was not covered by dust or a cloud. Given a SEVIRI brightness
temperature sequence BTλ,x,y,t for time t ∈ [0, T ], spatial location (x, s) ∈ Ω and
frequencies λ ∈ {12, 10.8, 8} this leads to the maximum-intensity criterion

Aλ,x,y,t = max
t̂

∑
λ

BT 2
λ,x,y,t̂

where t̂ ∈ {t+ 96k|k ∈ N}. (3.8)

A background estimate Axyt = (A12,x,y,t, A10.8,x,y,t, A8.7,x,y,t) for fixed t is thus a
a combination of data from different days. An example for the outcome of this
procedure is given in Figure 3.4, which shows a large scale dust event over northern
Africa together with the estimated background for the same area. Both are depicted
using the SFIγ=1 scheme. The same figure also gives an example for a region in
Africa for which the background estimate is essential in terms of dust detection as
the radiative properties are similar to that of dust events. Note that the background
estimation procedure is, however, independent of the detection techniques explained
in the following paragraphs. It is therefore possible to employ other techniques to
determine this estimate, e.g. applying the method introduced by Liu et al. (2012) to
an extended data set.

3.2.3 Latent Projection Functions

The LPF method models the probability P(dxyt = 1) of a pixel containing dust
activity via a binomial distribution as the topmost level of a BHM. Its mean is
defined via the logisitic sigmoid inverse link function (see Section 2.5 for details on
links functions and GLMs) of a linear predictor η(x, y, t):

P(dxyt = 1) = 1/(1 + exp[−η(x, y, t)]). (3.9)

This predictor is an extension of what is usually employed in simple logistic regression
schemes like LDA, where projection coefficients ri and an offset q are determined
such that the sign of

η̂(x, y, t) = q +
3∑
i=1

Iixyt ri (3.10)

serves as a label for the dust content of a particular location. In LPFs, however,
the projection coefficients and intercepts are functions of the background estimate
Axyt:

η(x, y, t) =

3∑
i=1

Iixyt f
1
i (Aixyt) + f2

i (Aixyt). (3.11)
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(a)

(b)

Figure 3.4: Background estimation via the maximum-intensity criterion. Panel (a)
shows a dust event over central northern Africa on January 17, 2010 at
12h GMT. In Panel (b) the background appearance according to the
maximum intensity criterion is shown. Note that there is a region in
north west Africa (approximately Morocco) that has an appearance that
is very similar to that of dust but is not contaminated.
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The second and third levels of the BHM are prior distributions on the latent functions
f1
i and f2

i and their parameters, respectively. The functions f1
i and f2

i are modeled
semi-parametrically by binning each component of Axyt into 100 distinct bins taken
over the range of each component over the image domain Ω. These functionals are
then modeled as second-order random walks (RW2s). That is

f1
i ∼ N100(0, QRW2(Θi)),

f2
i ∼ N100(0, QRW2(Ξi)),

where QRW2 is set up such that the second-order forward differences are independent
normals

∆2f1
i,j ∼ N (0, 1/κi)

∆2f2
i,j ∼ N (0, 1/ιi)

and the parameters Θi and Ξi are given independent log Gamma priors for the
increment precisions κi and ιi, respectively (see Section 2.5 for details on the Gamma
distribution). A detailed discussion of this model is given in Section 3.4 of the
monographs by Rue and Held (2005). Note that in Bachl and Garbe (2012) these
models where stated as continuous random walks with 250 bins. Due to an error
in the implementation, however, a fallback RW2 model with 100 bins was used
instead.

3.2.4 Experiments & Results

This section presents two out of three experiments described by Bachl and Garbe
(2012). These two concern the potential of the LPF to detect dust from SEVIRI
data and the correlation of the spatial dust indicator with AOD measurements. The
third experiment represents a first step to employ the dust indicator to infer the
underlying transport process (Chapter 4). Details can be found in Section 4.2.

In order to induce posterior dust indication probabilities for a given SEVIRI im-
agery inference on the posteriors of the the latent functions f1

i and f2
i as well as

their parameters is required. For that purpose the likelihood is steered by binary
observation labels set in the course of a visual inspection of the data shown in
Figure 3.5. Motivated by the exploratory character of this study all of the imagery is
interpolated to one third of the original resolution to reduce the computational effort.
Posterior inference as well as hyper parameter integration are performed using the
INLA technique (see Section 2.7 for details on INLA) ).

The first experiment yields a qualitative judgment of the expressive power of the
linear predictor η in terms of indicating presence of dust. Given the above-mentioned
labeled data and respective model posteriors, Figures 3.6(a) and 3.6(b) show a
comparison between a dust event in SFIγ=1 representation and the positive part of η.
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Figure 3.5: Data labels used for dust detection by LPFs. Dust and pristine regions
are marked by green and red overlays, respectively.

Note that this positiveness implies that according to the model the probability of
the given pixel being dusty is above 0.5. A respective decision rule would thus judge
that in this case dxyt = 1. The most important message these figures convey is that
the linear predictor clearly summarizes what a visual inspection of the SFI scenery
suggest. At the border of the imagery no dust is visible. Accordingly, the spatial
plot of η suggests the same by taking low values. In the center of the SFI a dust
plume with a faint middle line is clearly visible. The same behavior can be seen from
the linear predictor. Both also show shows faint dust at the boundary of the plume,
which suggests that also the optical depth of the plume is at least approximately
represented by the linear predictor.

Another objective of our work is to determine areas to which the dust is transported
to. This requires that the approach is capable to deal with dust passing from
continental areas to those above sea. As the background variation in the latter
case is rather small we reduce the latent functions to single point estimates, which
results in a Bayesian logistic regression. Figure 3.6(d) shows the positive part of the
corresponding linear predictors above sea and land for a dust event with a plume
that passes the Canaries. For means of comparison Figure 3.6(c) displays the average
AOD on that day derived from measurements of the MODIS instrument aboard the
Terra platform2. Although the AOD data is only available for particular regions and
above water a clear correspondence with the values of the linear predictor can be
seen. Unfortunately direct access to the AOD data was not available at the time
these experiments were conducted, preventing a quantitative comparison. It should

2Public access to this data is available via the NASA earth observations website http://neo.sci.

gsfc.nasa.gov/
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also be noted that, as opposed to AOD, the SFI only cumulates 12 minutes of dust
presence, which explains the slight differences in the AOD and linear predictor.

(a) (b)

(c) (d)

Figure 3.6: Comparison of LPF linear predictors to SFI data and MODIS AOD
measurements. In (a) and (b) a dust plume and the corresponding linear
predictor are shown. The dust event occurred on January 18, 2010 close
to the Bodélé depression in Chad. Panel (c) displays the daily average
AOD of a dust plume around the Canaries. The linear predictor for
this event as well as the coast line of western Africa and the Canaries is
depicted in (d).

3.2.5 Conclusion

Our results show that the proposed classification method and in particular the
incorporated linear predictor is a promising approach to monitor dust activity. It
appears to be powerful in terms of recovering the structure of a dust plume from
the multispectral signal of SEVIRI and suggests qualitative similarity to AOD
measurements.
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It should be mentioned that at the current stage the linear predictor of our method
does not necessarily reflect a physical quantity like the mass of dust or AOD in a
vertical column. Corresponding relations are still to be evaluated. However, this
purely probabilistic approach seems to be a fruitful counterpart to existing physical
or empirical models for which it might provide parametric input or could be validated
against.

3.3 Latent Signal Mapping

In the previous sections it has been shown how a BHM (Section 2.4) can be employed
to generate a linear predictor from SEVIRI data that serves as a spatio-temporal
indicator for the presence of dust. The associated publication of Bachl and Garbe
(2012) also describes a first approach to determine the trajectory of a dust plume by
means of computing the optical flow from the thresholded dust predictor. Transport-
ing back the predictor according to this flow field can then serve to point out spatial
regions that are likely to be the source of the plume (see Section 4.2 for details on
this topic). The thresholding serves the purpose of reducing the contribution of the
predictor to the estimated flow in regions where no dust is present. This is necessary
since the predictor is a background dependent linear mixture of infrared channels
and thus carries over the noise incorporated by the signal.

This results in two interwoven problems. On the one hand, as shown in Figure 3.7(a)
and 3.7(b), faint dust is easily underestimated by the predictor. In order to capture
the motion of the dust, e.g. to provide further evidence via the presence of motion
(see Figure 3.7(c) for an example) or to carry out the source estimation procedure, a
lower threshold is then needed. On the other hand, lowering the detection threshold
is likely to induce false positives which then interfere with the source estimation
procedure.

In this contribution we extend our previous approach in the sense that the dust
predictor is not a linear projection but a general mapping of the signal. The method
is introduced in Section 3.3.1 and referred to as latent signal mapping (LSM).

In Section 3.3.2 we show that, in comparison with linear approaches, LSM increases
the temporal signal-to-noise ratio of the predictor. That is, it decreases the variance
of the respective forward differences in durst free regions while dust contaminated
regions still exhibit distinguishable activity. Additionally, our method also yields
a higher expressiveness of the corresponding optical flow compared to estimation
based on multiple channels or linear projections thereof. This result is postponed
to be presented in Section 4.3. A brief conclusion regarding LSM is then given in
Section 3.3.3.
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(a) (b) (c)

Figure 3.7: Detection of a faint dust plume. Panel (a) shows a dust event on May 4,
2007 which leads to low (black) or even negative values (red) of the dust
predictor shown in (b). The corresponding normalized magnitude of the
optical flow is depicted in Panel (c) and can serve as additional evidence
for dust presence.

3.3.1 Methods

The first BHM stage of latent signal mapping (LSM) models dust presence (dxyt = 1)
and absence (dxyt = 1) using a Binomial distribution parameterized by the linear
predictor η(x, y, t):

P(dxyt = 1) = 1/(1 + exp[−η(x, y, t)]).

For details on the Binomial distribution and the respective GLMs see Section 2.5.
Using LPFs the predictor is given by

η(x, y, t) =

3∑
i=1

Iixyt f
1
i (Aixyt) + f2

i (Aixyt), (3.12)

where I is the SEVIRI SFI imagery, A is the respective estimate of the background
radiation and the f1

i and f2
i are semi-parametrically modeled functions. This

projection carries over noise in the SFI signal in a linear fashion, which can hamper
consecutive processing techniques like optical flow estimation. As a remedy we
propose to shift the SFI to be a part of the domain of the latent functions such
that

η(x, y, t) =

3∑
i=1

hi(Aixyt, Aixyt − Iixyt). (3.13)

As with LPFs the functions hi are modeled semi-parametrically by binning each
component of Axyt and Axyt − Ixyt into 100 distinct bins taken over the range of
each component and given the same training set used in Section 3.2.4. Each hi is
modeled as a two dimensional conditional auto-regression (CAR) GMRF (see Rue
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and Held (2005) for details) with

p(hi(j, k)) ∝ exp
(
− ρi

∑
(l,m)∼(j,k)

(
hi(l,m)− hi(j, k)

)2)
, (3.14)

where “∼” denotes the four nearest neighbors on the two dimensional discretization
grid of Aixyt×(Aixyt−Iixyt). We assign independent log Gamma priors to the unknown
precisions 1/ρi that steer the local squared deviations and thus the smoothness of the
modeled function (see Section 2.5 for details on the Gamma distribution). Posterior
inference was performed using the INLA technique described in Section 2.7.

3.3.2 Experiments & Results

As we focus on faint dust with a weak and/or noisy signal we inspect temporal
sequences of two events that are characteristic in that sense. Event A, shown in
Figure 3.8(a), is a five hour sequence of multiple faint plumes with a very smooth
trajectory. Event B, shown in Figure 3.8(b), is composed of two hours of multiple
small plumes coming from comparably close but distinguishable source areas. Figure
3.8 displays the normalized standard deviations of the temporal forward differences
for the SFIγ=1 representation and the linear predictors of LDA and LSM. We omit
results for the LPF method since they are very similar to those of LDA. For both
events it is obvious that the activity of the predictor of LSM is considerably more
expressive than for SFIγ=1 and LDA when comparing dusty and dust free regions.
Also, in case of event B, for which even visual discrimination between dusty and
non-dusty regions is challenging, the forward differences seem to be an appealing
feature for the detection of the relatively small dust sources.

3.3.3 Conclusion

The results show that the proposed method of LSM is clearly to be preferred over
the LPF approach to detecting dust aerosols in multispectral data. In particular the
propagation of the signal intrinsic noise to the scalar indicating the presence of dust
is strongly reduced. We are also able to point out that the LSM temporal forward
differences are comparably expressive in terms of indicating early dust activity. This
is a potentially supporting mode in terms of tracing dust back to its source area, which
is a particularly desirable goal from the perspective of environmental sciences.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.8: A comparison of spatially normalized standard deviations calculated from
the temporal forward differences of dust events on May 4, 2007 (Panel
(a)) and January 17, 2010 (Panel (b)). Panels (c) and (d) refer to the
mean deviation of the falsecolor representation SFIγ=1, (e) and (f) to the
predictor of LDA and (g) and (h) to the LSM method.
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3.4 Latent Signal Mapping with Surface Emissivity

The Earth’s brightness temperature under clear sky conditions varies significantly
depending on the surface characteristics of sea versus land, among different vegetation
zones as well as along time during a day. As Figure 3.9(a) shows, this leads to
difficulties in the differentiation between some pristine areas and those contaminated
with dust. Especially during the well known peak time of dust emission (8-10 a.m.)
the intense change of infrared radiation induced by the rising sun complicates the
detection of dust aerosols.

In order to facilitate this differentiation, our previous approaches used a maximum-
intensity criterion (see Section 3.2.2) to estimate the appearance of the background,
i.e., the earth’s radiation as measured by SEVIRI under clear sky condition. While
this technique provides impressive results in filtering out dust and cloud contaminated
areas it has two undesirable side-effects. It spatially combines SEVIRI signals from
different days. Inter-daily changes other than clouds and dust, e.g. air temperature
and cumulative thermal energy effects, thus lead to even visually perceivable differ-
ences in the radiation received from the different combined regions. Due to a second
shortcoming of the method these edge effects are particularly strong during the early
morning and late afternoon (approximately before 8:30 a.m. and after 4:30 p.m.).
An example of such an edge artifact is shown in in Figure 3.9(b). Here, the intrinsic
assumption of radiation decrease induced by aerosols is not necessarily met due to
low surface temperatures. Dust contaminated pixels can then enter the background
estimate and lead to an underestimation of dust presence.

In the following sections a remedy to these issues is elucidated, based on the respective
publications of Bachl et al. (2013a) and Bachl et al. (2013b). By replacing the anomaly
detection term A − I of differences between the background estimate A and the
SFI imagery I (see Equation (3.13)) with monthly average emissivity estimates
the LSM method evolves into an extremely powerful tool for dust detection. The
respective methodology as well as the employed emissivity estimates are presented in
Section 3.4.1. Thereafter, an extensive cross validation study comparing the method
with LDA and thresholding techniques is presented in Section 3.4.2 and concluded
upon in Section 3.4.3.

3.4.1 Methods

Each physical object with a temperature above absolute zero emits thermal radiation.
The emissivity of this object is a relative quantity comparing the object with the
hypothetical construct of a black body. A black body defines the maximum of thermal
energy an object is able to emit at a particular temperature and frequency. Due to
Kirchhoff’s law, which states that emissivity and absorptivity are proportional, the
emissivity of an object is also directly connected to the visual and infrared appearance
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(a) (b)

Figure 3.9: Ambiguous SFIγ=1 data and artifacts of background estimation. Panel
(a) shows early dust plumes at 7.30 a.m. GMT (blue arrows) and optically
similar appearing dust free areas (white arrows). In Panel (b) the black
arrows point out artefacts of the background estimation procedure.

of the object. For instance, the infrared radiation emitted by the earth’s surface
varies with the respective surface temperature which itself depends on factors like
incidence of the sun’s radiation (and hence day time) and vegetation. While barren
soil heats up and cools down relatively fast with insolation increase and decrease,
vegetated areas remain comparably stable in their heat (and thus infrared) emission
due to respective regulatory mechanisms of plants.

A satellite product that is particularly expressive in terms of surface vegetation
and hence general infrared radiation levels as well as day time variability surface
emissivities at 8.3µm. In the approach to dust detection at hand we employ respective
data generated according to the algorithm of Seemann et al. (2008). The algorithm
derives monthly averages of surface emissivity at SEVIRI’s spatial resolution from the
MODIS instrument aboard the non-stationary NASA platform Terra. An additional
advantage of choosing this particular wavelength is that, from our experience, it
seems comparably less disturbed by satellite swath artifacts. Figure 3.10 provides
a visual comparison of the employed emissivity estimate, the corresponding SFIγ=1

as well as visual spectra data as shown by the Google Earth software. Clearly, the
former picks up the vegetative range perceivable from the blue to green color range
of the latter. From here on, these emissivity estimates are denoted by E(x, y, t) for
coordinates (x, y) within the image domain Ω and time t.

Given the described emissivity estimates we let E supersede the anomaly indicating
term A− I in the same LSM BHM described in Section 3.3.1. The linear predictor
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(a) (b) (c)

Figure 3.10: MODIS emissivity estimates at 8.3 µm. Panel 3.10(a) shows the average
emissivity of the earth’s surface at the west coast of northern Africa
during January 2010. To allow for a visual comparison with SFIγ=1

data (Panel 3.10(b), January 14) the emissivity values are colored such
as to range from 0.6 (green) to 1 (blue). Panel 3.10(c) shows the same
region using a visual spectra visualization by the Google Earth software
and indicates vegetative properties.

is then of the form

η(x, y, t) =

3∑
i=1

gi(Iixyt, Exyt), (3.15)

where each of the new functionals gi is again modeled using a CAR with log Gamma
distributed hyper parameter priors. As opposed to our previous studies we employ
the SFI representation of the SEVIRI data instead of SFIγ=1, that is

I = (I1xyt, I2xyt, I3xyt) = SFI(∆TBR,∆TBG, BT10.8).

This is due to two reasons. Firstly, in the following we will compare our approach
with the thresholding technique by Ashpole and Washington (2012) introduced
in Section 3.1.2, which is based on the SFI representation as well. Secondly, the
aforementioned simulation study presented by Brindley et al. (2012) (see Section 3.1.2)
yields a connection between SFI and the AOD at τ10 = 10µm. It is therefore sensible
to evaluate our method in the SFI space to facilitate future work on comparing or
fitting the dust predictor to AOD products or simulated data.
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3.4.2 Experiments & Results

The basis of the following analysis is a SEVIRI data set spanning January 10–26,
2010, a period with several smaller and large scale dust events. By visual inspection
we performed an extensive labeling of dusty and pristine regions. The data set
contains extensive samples of pristine and dust contaminated areas across northern
Africa and the Arabic peninsula at local times between 8 a.m. and noon.

With these samples at hand we conducted a two-fold cross validation study. This
procedure splits the samples into two randomly chosen disjoint sets, one of which
serves to perform inference on the model via the given labels. The samples of
the other (test) set are employed to infer their dust probability and compare it
to the manually declared labels. These samples were flagged as dusty whenever
the respective probability was above 0.5. In a second run the roles of the sets are
exchanged and subsequently the performance results of the runs are averaged. The
SEVIRI signal changes strongly with the relative position of the sun and dust plume
genesis often predominantly occurs during the forenoon. Thus, in order to assess the
prediction performance as a function of the local time of the pixel, samples of the
respective test set were grouped according to their time stamp. As a last step, within
group sensitivity and specificity was computed. We compared the performance of
four methods for estimating the probability of dust, the LSM approach, a simple
linear discriminant analysis (LDA), and two thresholding approaches introduced by
Ashpole and Washington (2012). In case of LDA and LSM a pixel is classified as
dusty if the probability of dust is greater than 0.5, and as pristine otherwise. The
first approach of Ashpole and Washington (ASH-no10.8) determines a pixel to be
dusty if Equations 3.1 and 3.2 presented in Section 3.1.2 hold. For the second method
(ASH), also Equation (3.3) is required to hold. Figure 3.11 shows the percentage of
correctly classified clear pixels (left panel) and those containing dust (right panel),
stratified by the time of day of the image.

From Figure 3.11 we draw several interesting conclusions. First, we see that the
two thresholding approaches perform poorly in correctly classifying clear, or pristine,
regions. Even the more involved ASH leads only to slight improvements. By contrast,
the simpler ASH-no10.8 thresholding approach performs essentially perfectly at
classifying clear regions while the additional threshold of ASH significantly decreases
the fraction of correctly recognized dusty samples. By contrast, the LDA perfectly
classifies pristine areas, but performs poorly during the early hours (between 8 am and
10 am) at classifying dusty pixels. Finally, the LSM method considerably improves
on LDA for dusty pixels and achieves nearly perfect classification in both situations
throughout the entire time frame. These results extend those found in Bachl et al.
(2013a) and justify our use of the LSM emissivity modeling approach in (3.15) on
these data.

Figure 3.12 provides some indication of why LSM improves over LDA and thresholding.
In this figure, the left column shows pixels labeled as clear, or pristine, while the
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(b) Pristine pixels

Figure 3.11: Cross validation results for pixel-wise dust detection under the LSM
emissivity approach (blue), linear discriminant analysis (red) and the
two thresholding methods of Ashpole and Washington (2012) (black).
The plots show the percentage of correctly classified (a) dusty pixels
and (b) pristine pixels, stratified by the hour of the day.

right hand column pertains to dust-filled pixels. In each figure, points are placed
relative to their green channel intensity (x-axis) and red channel intensity (y-axis).
Dotted lines show the thresholding cut-offs of Ashpole and Washington (2012). From
the dotted lines, we immediately see why the thresholding approach performs poorly
at classifying clear pixels, a large portion are inside the threshold.

Figure 3.12 also demonstrates why LDA alone performs poorly in the early hours. In
the first row points are colored according to the local time at which the data was
collected with earlier time points shown in blue. As we can see, the red and green
channel intensities for both dusty and clear points are initially very similar, while
subsequently the intensities begin to diverge. Since the LDA method classifies the
data based on these intensities only, it struggles in the early hours while it improves
significantly as the day progresses. The emissivity information in the data is displayed
in the bottom row of Figure 3.12. For clear pixels there is a strong relationship
between green and red channel intensity and emissivity levels. By contrast, for
dusty pixels, the emissivity has no relation to channel intensity since strong dust
events completely block 8.3µm radiation. In combining this information with channel
intensity in the LSM approach, we thus achieve an improved classification in the
early-morning data.
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(f) Emissivity (dusty)

Figure 3.12: Green channel intensity (x-axis) versus red channel intensity (y-axis) of
the labeled training data. Left column: pixels labeled as pristine; right
column: pixels labeled as dusty; top row: points are colored by local
time of the day, from blue (early) to red (later); bottom row: points are
colored by emissivity, from blue (low) to red (high). The white dashed
lines indicate the “no10.8” thresholding of Ashpole and Washington
(2012). As the entire data set is very large, each plot shows a random
subsample of the full data set.
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3.4.3 Conclusion

LSM with surface emissivities cumulates several steps of developing a Bayesian
framework for dust detection. With the presented cross validation study it becomes
clear that this approach is significantly better in extracting dust evidence from
SEVIRI data than simple thresholding schemed and LDA. In particular, the method
is capable to indicate dust presence even during the early hours of the day where the
radiative conditions hamper even visual assessment of the data. Although this was
not tested within the study at hand, it is likely that due to the symmetry of the daily
sun cycle a similar statement holds for late afternoon observations. In summary, the
model for η appears to work quite well in our current data but considerable work
remains from application and methodological perspectives. It could be extended in
several manners. The most useful of these extensions would be to make the estimates
of η depend not just on emissivity and image intensity, but to also include spatial
and temporal dependence on neighboring estimates. In practice this appeared to
be unnecessary in our current approach and the computational challenges to such
estimation proved challenging. However, as the performance of the INLA software
continually improves, such developments may become helpful. Another worthwhile
extension would be to take the local time or other covariates such as satellite viewing
angle of a particular pixel location into account. In particular if the dust analysis is
extended from the forenoon to a whole day (e.g. night time) the former might be a
critical feature to prevent a degradation of detection performance.
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4 Dust Transport

The previous chapter elucidated the development of a framework for estimation of
dust aerosol presence from remote sensing data. Once the respective linear predictor
η(x, y, t) of dust probability is determined a multitude of applications motivate to
model their dynamics in both space and time. For instance, one would be interested
in forecasting the movement of a dust plume or determine a connection between wind
field measurements and the behavior of a dust storm. Statistically capturing the
transport process of dust, i.e. its flow field, through the atmosphere and facilitating
these applications is the central objective of this chapter.

The physical laws of dust motion are examined within the discipline of fluid dynamics.
These form the first part of the preliminaries Section 4.1 and provide the reader
with a physical interpretation of the methods developed throughout this Chapter.
Within the scientific field of image analysis variational inference is one of the most
prominent approaches to model and solve problems like motion estimation and will
receive attention in Section 4.1.2. An example for such an approach is the optical flow
method of Horn and Schunck (1981) introduced in Section 4.1.3 and from here on
abbreviated by HS. It was one of the first to yield motion estimation from image data
and constitutes a fundamental building block of the methodology developed within
this thesis. The preliminaries section of this chapter is concluded by Section 4.1.4,
a brief overview on a very recent development in computational statistics in terms
of connections between GMRFs (see Section 2.6) and stochastic partial differential
equations (SPDEs).

Subsequently, three thematic blocks are covered. In Section 4.2 a link between the
HS method and BHMs (see Section 2.4) is established. This way, the transport
process of the dust is interpreted as a latent GMRF and posterior inference as well
as hyper parameter integration via integrated nested Laplace approximation (INLA)
(see Section 2.7) is straight forward. First encouraging results on dust transport and
source detection are shown, which are taken from Bachl and Garbe (2012).

A main motivation to develop the LSM method for dust detection was the suppression
of noise entering the predictor in pristine regions. Section 4.3 offers a respective case
study that is taken from Bachl et al. (2012). It is shown that dust flow derived from
a LSM predictor is less affected by noise than flow based on predictors estimated by
linearly projecting methods.
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The Horn and Schunck method implies that the flow of the moving substance is
incompressible and thus divergence free, an assumption that is violated in case of re-
motely sensed aerosols. Section 4.2 elucidates how to specify the previously developed
Bayesian motion estimation framework such as to satisfy the continuity equation.
Thereby physical effects like satellite column projection and compressible flow become
intrinsic parts of the model. The importance of this step by is demonstrated by a
multitude of experiments taken from Bachl et al. (2013a) and Bachl et al. (2013b).

The flow estimation technique developed within this thesis is dedicated to combine
methodology from physics, mathematical image processing and Bayesian statistics.
Section 4.5 elaborates on a fruitful combination of these disciplines with respect
to theoretical properties of flow estimation. Using variational techniques from
image processing we present a proof that guarantees existence and uniqueness of
compressible flow over a continuous domain under mild restrictions in terms of
an underlying Sobolev space. As a consequence, we are able to show that the
corresponding discretized version leads to a posterior with a proper precision matrix.
The section is concluded with very recent work leaning towards estimation of dust
presence given the respective flow and thus, in the long run, a joint probabilistic
estimation technique. Here, we point out first variational steps to express the dust
predictor as a solution to a class of SPDEs for which recent results of Lindgren
et al. (2011) provide analytical results in terms of GMRF approximations and the
applicability of the INLA technique.

4.1 Preliminaries

4.1.1 Fluid Dynamics

Consider a fluid moving with velocity v and carrying a material density ρ inside a
spatial volume S. The mass of the material is then a volume integral of the density:
m =

∫∫∫
S ρ dS. By the law of conservation, the change of mass in this volume over

time equals the mass flux J = ρv across the boundaries S̄ of the volume. Moreover,
the divergence theorem allows to express this boundary flux as an integral of the
mass flux divergence over the volume S:

∂m

∂t
= −

∮
S̄

J · dS̄ = −
∫∫∫

(∇ · J) dS. (4.1)

If we now focus on an infinitesimal volume this gives a connection of the density’s
temporal differential to the mass flux,

∂m

∂t
=

∂

∂t

∫∫∫
V
ρ dV =

∫∫∫
V

∂ρ

∂t
dV = −

∫∫∫
V

(∇ · J) dV, (4.2)
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from which we can see that

∂ρ

∂t
= −∇ · J = −∇ · (ρv) = −(∇ρ · v + ρ(∇ · v)) (4.3)

and hence
∂ρ

∂t
+∇ · (ρv) =

∂ρ

∂t
+ v · ∇ρ+ ρ(∇ · v) = 0, (4.4)

which is called the continuity equation. So far we considered a control volume with a
fixed position in space and time, i.e. the Eulerian perspective. Here, the temporal
derivative of the mass/density must not vanish as material is allowed to flow through
the control volume. An important consequence of Equation (4.3) arises when taking
the Lagrangian perspective on the motion of the material. If we assume that the
control volume follows a trajectory [x, y, z](t) we can characterize the change of the
density along this path via its total derivative

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂x

∂x

∂t
+
∂ρ

∂y

∂y

∂t
+
∂ρ

∂z

∂z

∂t
. (4.5)

Substitution of the trajectory by the given velocity field and using the continuity
equation then gives

dρ

dt
=
∂ρ

∂t
+∇ρ · v = −ρ(∇ · v). (4.6)

This means that if the control volume moves according to the velocity inherent to the
flux and the density is non-zero, the change of the latter inside the volume depends
on the divergence ∇ · v of the flux.

The middle term of Equation (4.6), i.e. the material derivative, describes how
the density of the material changes if the control volume follows the flow of the
transporting medium. Physically, flows are characterized by their compressibility.
Isochoric (incompressible) flows require that the material derivative of the density
vanishes, i.e. that for non-zero ρ the term divergence of the flow equates to zero. In
this case the continuity equation reduces to

∂ρ

∂t
+∇ρ · v = 0. (4.7)

4.1.2 Variational Inference

In image processing mathematical objects of interest are often characterized in terms
of energy functionals. The object of interest can for instance be a real function
v : Ω→ R over the image domain Ω that represents a continuous extension of the
discrete image given by values at pixel locations. As we will see later on, v can as
well yield a mapping of the image data to multiple local properties (i.e. Rn) like the
motion field that underlies changes in a sequence of images.
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Similar to an unnormalized probability distribution the functional describes several
requirements imposed on v together with a penalization in terms of deviations. In
case of continuous problems a convenient notation is to instantiate a functional J
as an integral over the image domain Ω with respect to a local requirement L that
depends on the sought solution v and corresponding differentials like the Jacobian
Jv:

J (v) =

∫
Ω
L(x,v, Jv) dx.

The function v̂ that, so to say, optimally meets the requirements on average (or,
equivalently, minimizes the average local penalization) is then characterized as to
minimize the functional. That is,

v̂ = argmaxv J (v).

These problems are then solved using the fact that the functional derivative with
respect to to v̂ equates to zero. Hence, the Euler-Lagrange equations can be employed
such that v̂ has to solve

∂L

∂v̂k
−
∑
i

d

dxi

∂L

∂v̂k,xi
= 0 ∀k, (4.8)

where the total differential reduces to partial derivatives if the spatio-temporal
coordinates xi are assumed to be independent. Typically, these equations are solved
on a gridded discretization, i.e. at the pixel locations of an image.

Example: Image Smoothing

Consider a noisy image ḡ as a function ḡ : Ω ⊂ R2 → R over the domain Ω. We can
think of the original image as to obey two criteria. Firstly, its point-wise squared
distance to the noisy image is supposed to be small. Secondly, one might assume
that the original image is relatively smooth and thus its gradients are relatively small.
Combining these criteria and integrating them over the image domain one obtains
the functional

J (g) =

∫
Ω

(g − ḡ)2 + ||∇g||2. (4.9)

Following the approach of variational inference the partial derivatives are then readily
obtained and result in the Euler-Lagrange equation

ḡ = (1−∆)g. (4.10)

From this one can get an idea of how the constituents of the functional J enter a
partial differential equation expressing the problem:
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1. The smoothness assumption with respect to the gradient generates a Laplace
operator ∆ applied to the image g and hence represents the corresponding
diffusion. In the further reading of Section 4.1.4 one should note that this exactly
gives the Laplacian part of Equation (4.25) (if α = 2) and Equation (4.26)
since ∆g = ∇T I∇g = ∇T∇g.

2. The quadratic image fit constitutes the inhomogeneous part of the partial
differential equation (PDE) (via g̃) as well as the direct occurrence of g in the
latter (see the corresponding factor 1 inside the parentheses of the SPDEs 4.25
(for κ = 1, α = 2) and Equation (4.26).

3. Another way of looking at the latter connection is that for g̃ ≡ 0 a white
(uniform) Gaussian prior is generated.

We are concerned with a particular class of functionals for which existence and
uniqueness of the minimizing argument v can be guaranteed under certain conditions.
For this purpose let from here on (V, | · |V ) denote a Hilbert space for which we wish
to determine v ∈ V such as to minimize a functional J . Assume furthermore that
J attains the form

J (v) =
1

2
a(v,v)− f(v) + c, (4.11)

where a(·, ·) : V × V → R is a continuous bilinear form, f(·) : V → R is a continuous
linear form and c ∈ R is a constant. Given these conditions the lemma of Lax-Milgram
(see for example Hackbusch (2005)) provides a convenient set of conditions for the
uniqueness and existence of the minimizer solving Equation (4.1.2).

Lemma 3 (Lax-Milgram). Let (V, | · |V ) denote a complete Hilbert space and let
J : V → R of the form given in Equation (4.11). Let a(·, ·) symmetric as well as
V -elliptic, that is,

a(v,v) ≥ C|v|2V ∀v ∈ V,C > 0. (4.12)

Then J attains its unique minimum at the solution u ∈ V to the following problem:

a(u,v) = f(v) ∀v ∈ V. (4.13)

Lemma 3 and in particular Equation (4.13) play an important role in the discretization
of the problem in applied contexts. For suitably chosen basis functions of V it can be
shown that the Ritz method of discretizing Equation (4.13) becomes a finite-element
method. We now briefly sketch its main idea, for details the reader is referred to
Hackbusch (2005) and Schnörr (1991).

The Ritz method uses a finite-dimensional subspace VN = span{φ1, . . . , φN} ⊂ V
to approximate the solution to Eq. 4.13. A valid basis {φ1, . . . , φN} in case of a
square image domain would, for instance, be a set of square indicator functions
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corresponding to area covered by a pixel in the image. Now let v̂ = (v̂1, . . . , v̂N )
denote the coefficient vector that generates an element v of VN via the mapping

P : Rn → VN , v = P v̂ :=

N∑
j=1

v̂jφj (4.14)

and let Lij = a(φi, φj) as well as bj = f(φj). Then the left and right hand side of
Equation (4.13) read as

a(u,v) = a(P û, v̂) = ûTLv̂

and

f(v) = f(P v̂) = bT v̂.

Now, note that since a is symmetric and V -elliptic it is easy to see that L is SPD.
With that, the Ritz-solution û to our problem is at the same time the unique solution
to the system

Lû = b. (4.15)

Hence, once a suitable basis is selected, a linear system is readily set up and solved
for, yielding a discretized solution of the functional one attempts to minimize.

4.1.3 The Horn & Schunck Method for Optical Flow

Most motion estimation techniques are based on the assumption that there is a
photometric or geometric quantity of the image sequence that is preserved spatially
or temporally. One of the first approaches to this subject was was brought up by
Horn and Schunck (1981). The main idea is that along the trajectory of a moving
object the intensity that this object contributes to the image intensity stays constant,
which is expressed by the co called brightness constancy equation (BCE). For a given
triplet (x, y, t), suppose that η(x, y, t) = k. The BCE then stipulates that there is a
path (x(r), y(r)) in Ω× [0, T ], such that for all r ∈ [0, T ] ⊂ R

η(x(r), y(r), r) = k. (4.16)

From this, two analytical derivations lead to the method applied by Horn and
Schunck. First, it is easy to see that the BCE can be understood as a constraint on
two consecutive images or spatial predictions η(x, y, t) and η(x, y, t+ ∆t), i.e.

η(x, y, t) = η(x+ ∆x, y + ∆y, t+ ∆t). (4.17)

A Taylor series expansion then leads to

η(x+ ∆x, y + ∆y, t+ ∆t) = η(x, y, t) +
∂η

∂x
∆x+

∂η

∂y
∆y

∂η

∂t
∆t+ h, (4.18)
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where h are the higher order terms. Now let ∆x/∆t = u(x, y) and ∆y/∆t = v(x, y)
denote spatially dependent change in coordinates, i.e., the motion field. Then,
dropping the higher order terms, Equation (4.18) reduces to

η(x+ ∆x, y + ∆y, t+ ∆t) = η(x, y, t) +
∂η

∂x
u+

∂η

∂y
v +

∂η

∂t
, (4.19)

which together with the BCE gives

0 =
∂η

∂x
u+

∂η

∂y
v +

∂η

∂t
. (4.20)

Equivalently to this approach one can employ the total derivative along the trajectory
(x(r), y(r)). Assuming no change in image intensity and no higher order dependencies
of x and y (i.e. dx/dt = ∂x/∂t and dy/dt = ∂y/∂t) it then holds that

0 =
d

dt
η =

∂

∂t
η +

dx

dt

∂

∂x
η +

dy

dt

∂

∂y
η

= ηt +
dx

dt
ηx +

dy

dt
ηy

≈ ηt + u ηx + v ηy,

where the dependence on (x, y, t) has been dropped. Most importantly, this is
expression is equivalent to the continuity equation for incompressible fluid flow
(Equation (4.7)).

With two unknowns this equation is under-determined, an issue known as the aperture
problem (see Figure 4.1). As with many other approaches, the HS optical flow
therefore imposes an additional constraint. In order to maintain physical plausibility
and to propagate information into image regions with ambiguous gradient properties,
non-smoothness of the flow is penalized via the Euclidean norm of the gradient. The
final optical flow is then defined as the minimizer of the squared deviations of the
BCE fit plus the smoothness term L integrated over the image domain Ω. That is,

(u, v)(α) = argminu,vJHS(α),

where α is a regularization parameter and

JHS(v) =

∫
Ω
LHS(v) + α2LS(v) (4.21)

with a data term

LHS(v) = (ηt + u ηx + v ηy)
2, (4.22)

and smoothness term

LS(v) = (|∇v1|2 + |∇v2|2). (4.23)
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Figure 4.1: The aperture problem. Consider a scenery (outer box) and a moving
object (grey line). Having only local knowledge can be seen as to perceive
the scenery through an aperture (dashed box). The object’s motion
component a perpendicular to its gradient b is not visible through the
aperture.

The variational approach to finding the minimizer of the HS functional employs the
respective Euler-Lagrange equations,

ηx(v · ∇η + ηt)− α2∆v1 = 0,

ηy(v · ∇η + ηt)− α2∆v2 = 0.

This system of equations can readily be solved by an application of Gauss-Seidel
iterations

un+1 = ūn − ηx
ηxū

n + ηyv̄
n + ηt

α2 + η2
x + η2

y

,

vn+1 = v̄n − ηy
ηxū

n + ηyv̄
n + ηt

α2 + η2
x + η2

y

,

with local averages ū and v̄ of u and v, respectively. Most importantly, however,
Schnörr (1991) shows that the existence and uniqueness of the solution with respect
to the flow can be guaranteed in case of the assumption that the flow field comes
from a mildly restricted Sobolev space.

Theorem 7 (Schnörr, 1991). Let H1(Ω) = {u ∈ L2(Ω) : Dψu ∈ L2(Ω) for |ψ| ≤ 1}
denote a Sobolev space and let V = {u = (u1, u2)T ∈ H1(Ω) × H1(Ω)}. If α > 0,
ηx, ηy ∈ L∞(Ω), ηx and ηy are linearly independent as elements of L2(Ω) then the
functional JHS : V → R attains a unique minimum that depends continuously on the
image data η.

4.1.4 Stochastic Partial Differential Equations and GMRFs

In a number of scientific fields (see, e.g. Guttorp and Gneiting (2006)) the phenomenon
under observation naturally follows a probabilistic description involving the Matérn
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covariance function

r(x,y) =
σ2

Γ(ν)2v−1
(κ||x− y||)νKν(||x− y||), (4.24)

where ||x − y|| denotes the Euclidian distance for locations x,y ∈ Rd . As shown
by Whittle (1954, 1963), this is not the only way to characterize these phenomena
and there exist close connections to stochastic partial differential equations (SPDEs).
Most importantly, if W is a Gaussian field with (spatial) Gaussian white noise and
unit variance, the solution g(x) of

(κ2 −∆)α/2g(x) =W(x), x ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (4.25)

follows the Matérn covariance function. Recently, further connections between
Matérn fields and SPDEs have been discovered. While it is been known (Besag,
1981) for a while that the solution to Equation (4.25) can be approximated by an
autoregressive GMRF on a unit distance regular grid for κ2 = a − 4, ν = 0 and
σ2 = q/(4π), Lindgren et al. (2011) were able to extend this result significantly. As a
comprehensive discussion of these findings is beyond the scope of this paper we will
restrict ourselves to the following summarizing statements. Firstly, stochastic weak
solutions of the SPDE in Equation (4.25) can be approximated by a particular GMRF
representation on a triangulated lattice and the computational cost of constructing
this GMRF is O(n), where n is the number of triangulation points. Secondly, the
very same approach can be employed to compute approximative solutions to SPDEs
defined on regular manifolds like spheres and by introducing space-varying parameters
non-stationary and non-isotropic fields are modeled in a coherent fashion. The latter
finding is particularly important for environmental sciences and remote sensing. Even
on a simple S2 sphere it is not possible to define a valid a Matérn field that acts on
great circle distance correlations (see again Lindgren et al. (2011) for details). A
model like the SPDE that naturally extends the Matérn family to such manifolds is
therefore highly appreciated to set forth interpretability and analytical consistency.

The very same publications also point out an SPDE interpretation of the image
warping method of Sampson and Guttorp (1992), which itself is closely related to the
method of optical flow we will elaborate on later. Here, a mapping f : x̃ ∈ Ω̃→ x ∈ Ω
from an deformed space Ω̃ onto a undeformed space Ω acts as a transformation of a
stationary SPDE

(1− ∇̃Tm− ∇̃T ∇̃)g̃(x̃) = σ̃W(x̃) (4.26)

into a non-stationary and non-isotropic formulation

1

det(F )

(
1−∇TFm− det(F )∇T FF T

det(F )
∇
)
g(x) =

σ̃

det(F )1/2
W(x) (4.27)

via a change of variables (F is the Jacobian of the deformation function). This
generalizes the method of Sampson and Guttorp insofar as their approach employs a
Matérn field and allows to ignore first order derivatives by letting m = 0.
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4.2 A BHM for Incompressible Optical Flow

Rheology, the study of the flow of liquid matter, and the motion estimation of quasi-
rigid bodies has been an active research field of image processing and computer vision
during the last two decades. With respect to image analysis in experimental fluid
dynamics these efforts led to an increasing expertise in correlation-based particle image
velocimetry methods and variational approaches to the problem (see Heitz et al. (2010)
for a review on this topic). Similar frameworks have been developed in computational
statistics due to the increasing interest in modeling spatio-temporal processes for
environmental science applications, e.g. ozone and precipitation interpolation and
forecasting (Glasbey and Mardia, 1998). In particular, methods based on the
perspective of image deformation (warping), e.g. by Aberg et al. (2005), are related
to our work.

However, to the best of our knowledge, the connection between probabilistic and
variational approaches is reflected only by a few publications. Simoncelli et al. (1991)
point out the distributional aspects of the Horn & Schunck method for optical
flow (HS). A maximum-a-posteriori approach to the free parameters of this method
was illustrated by Krajsek and Mester (2006b). Krajsek and Mester (2006a) further
show the limit-equivalence of the variational solution of the HS functional to the
mode of a normal distribution defined via the maximum entropy principle with
respect to observations at discretized locations.

In what follows we first describe how the HS method can be expressed as inference in
a BHM (Section 4.2.1). The underlying idea was first published by Bachl and Garbe
(2012) together with an encouraging experiment in terms of dust flow estimation and
spatial indication of source regions. The experiment is presented in Section 4.2.2
and respective conclusions are drawn in Section 4.2.3. Note that, for convenience,
we will refer to the flow determined via the HS method (and our BHM as well) as
incompressible. This is intended to reflect the respective intrinsic assumption of
the HS method. As deviations from this assumptions are allowed within the HS
formulation, the resulting flow might, however, not be incompressible.

4.2.1 Methods

As before, fix (x, y) for coordinates within the image domain Ω. We then aim
to determine the vector field w(x, y, t) = (u(x, y, t), v(x, y, t)), where u(x, y, t) and
v(x, y, t) are the instantaneous change in η(x, y, t) in the vertical and horizontal
directions. Now recall that the general idea of the Horn and Schunck approach
is expressed by the brightness constancy equation, which ultimately leads to the
equation

ηxu+ ηyv + ηt = 0. (4.28)
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The method then imposes a squared penalization upon deviations of the left hand side
from zero integrated over the image domain (see the data term LHS in Equation (4.22)).
In the discrete sense the BCE error term is then equivalent to an interpretation of
the image gradients as an observational system of the latent flow variables u and v
with additive Gaussian noise. That is,

u ηx + v ηy = −ηt + ε, ε ∼ N (0, σ2).

It follows that the partial derivatives of η(x, y, t) define a Gaussian likelihood
p(∇η|u,v) for the discretized optical flow (see Section 2.5 for details on the re-
spective GLMs with Gaussian observations). The regularization term is discretized
by approximating the integral over the image domain Ω with the Riemann sum over
a regular grid G ⊂ Ω, i.e.

∫
Ω
α2|∇u|2 = α2

∫
Ω
u2
x + u2

y ≈ α2
∑

(i,j)∈G

u2
x(i, j) + u2

y(i, j)

in case of the horizontal flow gradient ∇u and equivalently for ∇v. The partial
derivatives are approximated by horizontal and vertical differences, i.e. ux(i, j) =
uij − ui−1,j and uy(i, j) = uij − ui,j−1. By summing up both over all grid points it
then follows that the regularization part of LHS related to ∇u reduces to∫

Ω
α2|∇u|2 ≈ α2

∑
s1∼s2

(us1 − us2)2,

where s1 ∼ s2 denotes the set of all unordered grid neighbors s1 and s2 (for details
see Rue and Held (2005), Section 3.2.2). This formulation is analytically identical to
the log-density of a CAR GMRF, illustrating the equivalence of the estimation of
HS optical flow and Bayesian modeling of spatially dependent systems (Besag, 1974).
Thus, the smoothness part of the HS functional defines GMRF priors p(u) = N (0, Qu)
and p(v) = N (0, Qv) for the latent flow fields if the precision matrices are defined
via

Qij(α) = α2


ni, i = j

−1, i ∼ j
0, otherwise

where ni is the number of neighbors on the grid. This formulation also clarifies the
role of the smoothness parameter α as a hyper parameter of the precision matrix Q.
Assuming independence from other variables of the model, the optical flow is thus
given as the posterior

p(u,v|∇η) ∝
∫
p(∇η|u,v)p(u,v|α)p(α) dα

for which inference including hyper parameter integration is straight forward using
the INLA technique described in Section 2.7.
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4.2.2 Experiments & Results

This experiment is dedicated to a first attempt of flow estimation and a subsequent
detection of dust sources. It is based on the dust event and respective LPF predictor
presented in Section 3.2.4. The last frame of the sequence we are computing the
Bayesian optical flow for is shown in Figure 3.6(a). In Figure 4.2(a) the maximum a
posteriori optical flow for this frame and its predecessor are shown. In prospect of
determining the source of this dust plume we determine the optical flow solely on
the positive part η̂ of the predictor. That is,

η̂(x, y, t) = η(x, y, t) · Iη>0,

where I is the indicator function. This reduces the influence of dust-free regions
on the optical flow and puts an emphasis on likely dusty areas. On the resulting
spatio-temporal sequence of linear predictors starting at t = 1 and ending at t = T
we perform the following procedure. Let η̂t = η̂(x, y, t) with (x, y) ∈ Ω denote a
frame of the predictor sequence at time t and let βT = η̂T as well as t = T .

1. Compute the maximum a posteriori estimate wt = (u, v)t of the optical flow
for (η̂t, η̂t−1).

2. Set β(x, y, t−1) := β(x+u, y+v, t) in accordance with the brightness constancy
equation 4.17 and using bilinear interpolation for non-integer coordinates.

3. If t = 2 end the procedure, go back to step 1. otherwise.

The result β(x, y, 1) of this approach is shown in Figure 4.2(b). The procedure of
using the BCE (or similar constraints) to transform a given image is commonly
referred to as warping. Now, if the predictor is interpreted similar to a tracer injected
into the atmosphere1, β(x, y, 1) can be interpreted as a relative assertion about the
strength of the local dust sources.

One of the benefits of using the INLA technique for inference is the immediate
availability of posterior flow field marginals. These are shown in Figure 4.3 for an
early stage of the dust plume considered. Clearly, areas close to the boundary and
those with a predictor values close to zero exhibit increased uncertainty in both flow
field components (depicted by yellow, a homogeneous mixture of green and red).
Regions with inhomogeneous gradient information, e.g. in the center of the image
showing the emerging plume, can be identified by red or green coloring. Here, the
aperture problem has to be kept in mind. Also, not the spatial proximity of the
emerging plume to our estimated source region. On the right hand side of the plotted
marginals a green area is visible. This can be contributed to a big but extremely
faint plume only slightly noticeable when visually examining the dynamics of the
image sequence.

1This is a common approach in field experiments to determine areas of dust deposition
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(a) (b)

Figure 4.2: First results on incompressible flow estimation and source detection. Panel
(a) shows the linear predictor of a dust plume analyzed in Section 3.2.4
together with its (incompressible) flow field (blue arrows). Warping back
the predictor according to the corresponding sequence of flow fields results
in the source map shown in Panel (b).

(a) (b)

Figure 4.3: Marginal posterioirs of an incompressible flow field. Panel (a) shows the
LPF predictor of the dust plume analyzed in Section 3.2.4 at an early
stage. The predictor is depicted as red and green where it is smaller
where it is lower and greater than zero, respectively. In Panel (b) the
brightness of the red and green channel are proportional to the variances
of the horizontal and vertical flow field marginals, respectively.
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4.2.3 Conclusion

We describe a Bayesian hierarchical model that embeds the well known method of
Horn & Schunck into a probabilistic context. Thereby, the tuning parameter of the
method receives a natural interpretation as a hyper parameter of a precision matrix
parameterizing a latent GMRF that represents the optical flow. Inference withing
this framework is straight forward using the INLA technique and we showcase its
benefits. We are able to determine the optical flow induced by a larger dust plume
and rewind its motion such as to point out the region it was emitted from.

However, considerable work remains. The linear predictor of the LPF method does
not necessarily reflect a physical quantity like the mass of dust or optical thickness in
a vertical column. Corresponding relations are still to be evaluated. Moreover, the
assumed constancy of brightness is clearly violated in case of dust storm. The extend
of the resulting error in the flow remains to be clarified and alternative approaches
to be sought. Lastly, in prospect of a generally sound model and a possible physical
interpretation, the process of thresholding the predictor at some arbitrary value is
rather dissatisfying. For instance, minimizing the effect of background noise from
regions not affected by dust could supersede this necessity.

4.3 Linear Versus LSM Predictors for Optical Flow

In Section 3.3, which presents results published by Bachl et al. (2013a), the LSM
method for dust detection was introduced. A main motivation to develop this
method was that approaches based on linearly projecting SEVIRI data inevitably
propagate the signal intrinsic noise to the predictor. In particular, dust predictors of
pristine regions exhibits a level of variance that hamper the estimation of optical
flow. Thresholding the predictor, as proposed by Bachl and Garbe (2012) in line of
tracking back dust plumes to their source, however, restricts flow estimation to dense
dust plumes. Thin or early dust activity for which the variance itself is an indicator
might thereby be completely excluded from the analysis.

In this contribution the effect of employing the LSM method and consecutively
estimating the optical flow of a dust plume is compared to motion estimation on
top of linear approaches. The presented results were published together with the
variance analysis presented in aforementioned Section 3.3. In Section 4.3.1 we provide
a concise summary of the methods in focus. The experiment and respective results
are elaborated on in Section 4.3.2 and concluded upon in Section 4.3.3.
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4.3.1 Methods

Three dust predictors are employed for the upcoming study: LDA, LPF and LSM
based on background estimates. For details see Section 3.1.3, 3.2 and 3.3, respectively.
Based upon these we estimate the optical flow employing exactly the BHM constructed
in Section 4.2. In addition, for reasons of comparison, we determine the optical flow
directly from the SFI. This is done by leveraging the optical flow BHM to combine
three likelihoods per spatial location. (x, y). That is,

u
∂R

∂x
+ v

∂R

∂y
= −∂R

∂t
+ ε,

u
∂G

∂x
+ v

∂G

∂y
= −∂G

∂t
+ ε,

u
∂B

∂x
+ v

∂B

∂y
= −∂B

∂t
+ ε,

with identical error distributions ε ∼ N (0, σ2) and I = (R,G,B) being the three
channels of the SFI data representation. The posterior of the optical flow is then
given by

p(u,v|I) ∝
∫
p(∇R|u,v)p(∇G|u,v)p(∇B|u,v)p(u,v|α)p(α) dα,

for which again inference using INLA is straight forward.

4.3.2 Experiments & Results

We inspect the same two dust events described in Section 3.3.2, which are rather
faint and, in the second case, appear as noisy outside the dust covered regions. Event
A, shown in Figure 4.4(a), is a five hour sequence of multiple faint plumes with a
very smooth trajectory. Event B, shown in Figure 4.4(b), is composed of two hours
of multiple small plumes coming from comparably close but distinguishable source
areas.

In order to get an idea of how the described noise enters the optical flow we compare
the standard deviation of the flow magnitude along the event sequences for flow
based on LDA, LPF and LSM predictors as well as the three channels of the SFI
representation. As can be seen from Figure 4.4, a projection according to LDA
(Panels (e) and (f)) is not necessarily improving the optical flow with respect to dust
activity monitoring compared to flow directly computed from SFI data (Panels (c)
and (d)). Though LDA improves the signal of the faint plume in the upper region of
event A, seemingly dust free regions at the outer regions of both inspected regions
reveal flow induced by the background. Results for the LPF method are omitted since
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they suffer from similar problems, even though the aforementioned plume induces a
slightly better signal than in the case of LDA. Contrarily, the magnitude variance of
the flow determined from the LSM predictor (Panels (g) and (h)) does not seem to
suffer from this imbalance. Dusty regions clearly show flow activity while dust free
regions exhibit only slight variations.

4.3.3 Conclusion

Our results show that the proposed LSM provides a predictor that yields improved
estimates of optical flow. In particular, the propagation of the signal intrinsic noise is
greatly reduced in regions without dust activity and thereby mitigates the influence
these regions have on the optical flow. Dusty regions, on the other hand, are amplified
by the LSM method. Here, dust motion is captured that would otherwise have been
missed.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Influence of detection methods on optical flow estimates. Spatially nor-
malized temporal standard deviation of the flow magnitude of two dust
events are shown in the left and right column, respectively. Panels (c)
and (d) refer to the optical flow determined jointly from the channels of
the SFI. Panels (e) and (f) as well as (g) and (h) refer to the flow based
on LDA and LSM, respectively.
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4.4 A BHM for Compressible Optical Flow

While Horn and Schunck optical flow is sufficient to model motion of rigid bodies
in many areas of image processing, it is insufficient in capturing the dynamics of
aerosols. The assumed constancy of image brightness implies that the flux of the
quantity under consideration is divergence-free. This can be seen when comparing the
data term requirement ηt + uηx + vηy = 0 with the continuity Equation (4.4) and its
simplified counterpart for incompressible fluids in Equation (4.7) (see Section 4.1.1).
The atmosphere and thus dust aerosol, however, is a gaseous mixture that is known
to exhibit compressible flow dynamics. Moreover, imaging techniques like SEVIRI
deliver a two-dimensional representation of a three-dimensional physical process,
which leads to two problems. Firstly, this is not represented in the derivation of
the HS approach and the physical interpretation is unclear. Secondly, even if the
quantity for which we yield to determine the motion obeys exclusively incompressible
flows in the three dimensional space, the reduction to two dimensions may lead to
effects that resemble compressible behavior.

In the following it is elucidated how to set the previously developed BHM (Section 2.4)
for incompressible optical flow (Section 4.2) forth to perform successful inference on
compressible flows. Figure 4.5, published by Bachl et al. (2013a), shows an early
result for this Bayesian integrated continuity equation (ICE) method. In 4.5(c) it
depicts the posterior mean of the ICE method applied to the outcome of our LSM
detection method with respect to the scenery shown in Figure 4.5(a). A comparison
to the results of the HS method in Figure 4.5(b) suggests that the former is, at least
visually, more appropriate as it is considerably more consistent and suffers from less
outliers close to the sources of the dust plumes. This does not come as a surprise
since in particular the effect of material entering the imagery is in clear dissent to
the BCE formulation.

The ICE method itself is derived in Section 4.4.1. Estimation of the posterior
distributions for the flow vector fields under the ICE paradigm is again easily
performed using the INLA methodology elaborated on in Section 2.7.

We then proceed with a series of studies that were partly published by Bachl et al.
(2013b) and in whole by Bachl et al. (2013a). Section 4.4.2 conducts a simulation study
(since ground truth of vector fields is unavailable) that assesses the performance of
the ICE formulation of optical flow over the original HS formulation. In Section 4.4.3
an in-depth investigation of two dust storms is presented and we show how our
method is able to correctly identify the storm, model its flow and infer aspects of
its source. We then demonstrate the forecasting capabilities of the ICE formulation
on the basis of a large scale dust event featured in Section 4.4.4. As Section 4.4.5
shows, these forecasts can be improved upon by means of the Bayesian approach we
take, i.e. by postprocessing using marginal flow densities. Finally, we conclude in
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(a) (b) (c)

Figure 4.5: A first comparison of compressible and incompressible flow. Panel (a)
shows an emerging dust plume close to the Bodélé depression and moving
to the West as well as slightly to the South (SFIγ=1 visualization). In
Panel (b) the corresponding flow field based on the Bayesian HS method is
shown. Bayesian inference using the continuity equation for compressible
flows results in the field depicted in Panel (c).

Section 4.4.6 with a procedure capable of tracing a dust storm back to its source and
indicating the respective emission strength.

4.4.1 Methods

Our approach follows a line of physically motivated arguments brought up by Corpetti
et al. (2002) (for details see also references therein) in the context of non-probabilistic
water vapor motion estimation. First off, these authors note that in their context
the appropriate model for the vapor density ρ is given by the continuity equation

0 =
∂ρ

∂t
+ div(ρV), (4.29)

where V is the three-dimensional velocity of ρ. At the same time simple models
of atmospheric mechanism and thermodynamics can be employed to connect ρ to
brightness temperatures and the underlying radiance measurements provided by
instruments like SEVIRI. Under the simplifying assumption of a homogeneous
temperature profile of the troposphere the brightness can now be linearly converted
to the pressure P . The troposphere is the lowest layer of the atmosphere and carries
most of the water vapor and aerosols. If additionally a atmospheric static equilibrium
is assumed the vertical component of pressure forces and the gaseous weight cancel
out. The vertical pressure change is then proportional to the material density ρ,
i.e.

∂P

∂z
= −ḡρ, (4.30)

where z denotes the altitude, ḡ the gravity (assumed constant). Reconsidering the
measured brightness temperature BT one obtains proportionality to the column
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integral of the mass density:

BT (x, y, t) ∝
∫ z1

z0

ρ(x, y, z, t) dz. (4.31)

Now, as noted by Corpetti et al. (2002), Fitzpatrick (1988) show that the integration
of Equation (4.29) over the column coordinate z while plugging in Equation (4.31)
leads to

∂BT

∂t
+ div(BTw) + [BTnz ·V]z1z0 = 0. (4.32)

Here, w is the apparent bidimensional velocity field

w =

∫ z1
z0
ρV̄∫ z1

z0
ρ
, (4.33)

V̄ denotes the first two components of V and nTz = [0, 0, 1]. Lastly, if the vertical
component nz ·V of the velocity field is neglected (a common assumption in me-
teorology2), Equation (4.32) reduces to a continuity equation with respect to the
brightness temperature and the apparent flow velocity.

Throughout the following we will assume that the predictor η(x, y, t) provided by the
LSM method behaves similar to the brightness temperature and hence the integral
of the dust density over the measurement column. Substituting BT with η and
performing the aforementioned reduction then gives

0 =
d

dt
η = ηt + w · ∇η + η div(w).

To summarize, the core component of our approach is a continuity equation for dust
predictor that implicitly assumes a vertical integration, hence the name integrated
continuity equation (ICE) method. Equation 4.34 also shows the connection to
the HS method as it reduces to the former for incompressible materials when the
divergence of w fulfills div(w) = 0.

The effect on the image intensity can also be understood by considering that the
ICE implies

η(x+ u, y + v, t+ ∆t) = η(x, y, t) exp(−div(w)) (4.34)

in a discrete setting where ∆t is the time between two images and the flow field
v is assumed to be constant. Hence if the divergence is zero the image intensity
is conserved along the motion trajectory while it is increased or decreased with
progressing time for negative and positive values of the divergence, respectively. For
details a derivation of this results see Corpetti et al. (2002)3.

2This assumption is obviously not met for dust plumes gaining elevation and will be discussed in
Chapter 5

3Note also that (as opposed to us) these authors employ Equation (4.34) for inference and refer to
it as the integrated continuity equation
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Given a flow field w Equation (4.34) is also easily employed to infer the temporal
predecessor or successor of a given spatial predictor. In practice this is achieved
by bilinear interpolation of the intensity values at non-integer coordinates and a
successive scaling according to an approximation of the divergence (see below).

Finally, we define the optical flow w according to the ICE in two ways. In prospect
of further analytical considerations in Section 4.5 we say that, for given smoothness
parameter α, w is the minimizer of the functional

JICE(w) =

∫
Ω

(ηt + w · ∇η + η div(w))2 + α2(|∇u|2 + |∇v|2). (4.35)

In practice, e.g. the following experiments, we define and determine the flow v as
the maximum a posteriori estimate of the following BHM. As with the BHM for HS
(incompressible) optical flow we assume CAR priors for the vector components of
w(x, y, t) = [u(x, y, t), v(x, y, t] and a log Gamma prior for the shared smoothness
parameter α (see Section 2.5 for details on the Gamma distribution). Using the
discrete divergence approximation

div([u, v]ij) ≈
1

2

(
(ui,j+1 − ui,j−1) + (vi+1,j − vi−1,j)

)
then leads to the following likelihood equation of the flow field given the image

uijηx + vijηy +
η

2

(
(ui,j+1 − ui,j−1) + (vi+1,j − vi−1,j)

)
= −ηt + εij ,

where again εij ∼ N (0, σ2). It should be noted that under both the HS and the ICE
method, the scale of motion that can be recovered is limited by the range over which
the partial derivatives are computed. A well known remedy is to determine the flow
on a pyramid of different scales. For the sake of simplicity we refrain to follow this
strategy for the study at hand and determine image derivatives on a resolution of
5 pixels as we found that this suffices to capture large scale flow fields of fast dust
storms.

In what follows we show that the Bayesian ICE approach to determining optical flow
of dust storms considerably improves estimated flow fields obtained using HS methods,
largely for the obvious reasons that dust storms grow and then diminish through time.
As should be clear from the development, estimation of the posterior distribution
p(u,v|∇η) for the flow vector fields under either the HS or ICE paradigms is easily
performed using the INLA methodology (Rue et al., 2009).

4.4.2 A Simulation Study

We now compare the HS method to the ICE method in reconstructing a flow field,
both under classical and the proposed Bayesian perspective. Since ground truth
is unavailable for the Saharan dust storms, we use a synthetic image sequence to
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Figure 4.6: Synthetic image sequence of a dust plume and aerosol flow.

illustrate the difference between the two approaches. Figure 4.6 shows the progression
we consider, a constant flow field with a growing dust plume.

We assume the location of the dust plume is known and estimate the flow field under
HS and ICE based on this sequence. Figure 4.7 shows the mean absolute error in
angular (left panel) and magnitude (right panel) estimates for four approaches: ICE
and HS where the precision parameter α is set by hand (equivalent to the current best
practices) and the corresponding Bayesian approaches where the INLA methodology
is used to estimate this parameter. Figure 4.7 shows several interesting features. The
first is that for any level of α and any error metric, the ICE approach outperforms
the HS approach. This indicates the benefit of using ICE over the BCE when the
preservation of brightness assumption is clearly violated.

The second conclusion speaks to the benefit of estimating α via Bayesian methods.
In this context we see that, depending on the metric, different choices of α are
optimal in case of ICE. However, by intrinsic parameter integration, the ICE method
under Bayesian estimation outperforms the regular ICE approach for almost all
levels of α, and even at its best the standard ICE method is barely better than
the Bayesian approach. Finally, there is an interesting warning regarding model
misspecification. We see that the HS method, when estimated by Bayesian methods,
performs considerably worse than all other approaches, due to the violation of BCE
in our example.

A clear motivation to apply Bayesian hierarchical modeling and inference with INLA
is the straight-forward assessment of the marginal distributions of the latent fields.
Figure 4.8 shows why this is of great importance, in particular in applied contexts.
It visually compares the marginal flow component variances of the Bayesian ICE and
HS approach. From Figures 4.8(a) to (c) it becomes obvious that the uncertainty in
the ICE flow estimates exactly corresponds to those that are inherent to the model.
The outer boundary of the simulated dust source region is colored in either red or
green, displaying a high variance in either one of the field components. This is as
expected for two reasons. Information about the direction of the motion is obtained
from the gradient of the image sequence, which is most prominent in this region
and hence leads to low variance in one component. However, due to the aperture
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(a) Angular error (b) Magnitude error

Figure 4.7: Angular (a) and magnitudial (b) error of aerosol flow estimation for the
synthetic image sequence in Figure 4.6. The plots compare the errors of
the ICE and the HS methods under both standard and Bayesian inference
as a function of the smoothness parameter α.

problem, motion perpendicular to the gradient can not be detected by the model. As
the simulated dust moves, from a local perspective, mostly downwards on the upper
and lower boundary of the source and to the right at the right and left boundaries,
this leads to the high variance in the horizontal and vertical components, respectively.
The outer region as well as inside the dust source behave as expected as well. Inside
both no gradient is present, leading to uncertainty in both components and thus in a
yellow coloring, which results from mixing red and green. This phenomenon is most
present at the borders of the image region. Here, the least information is propagated
through the latent GMRF coupling from the central region.

As one can see from Figures 4.8(d) to (f), the marginal variances can be very
informative in terms of misspecifications of the model. In 4.8(d) and (e) the Bayesian
HS approach contributes the uncertainty either fully to the horizontal or vertical
flow field component, a highly undesirable behavior and presumably an effect of the
violated brightness preservation assumption. In Figure 4.8(f) the situation is more
balanced but still predominance of the uncertainty in the horizontal (red) component
can be observed. Lastly, the central area of the dust source region in this figure
seems slightly more pronounced than in Figure 4.8(c). This is an additional indicator
for the fact that in particular the HS approach struggles to reflect dust source effect,
e.g. the influx of dust mass into the atmosphere.

4.4.3 Case Studies

After establishing the good performance of our dust detection routine and the
Bayesian ICE method of reconstructing the flow field, we highlight the use of our
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Exemplary marginal variances of the flow field vectors derived via the
Bayesian ICE ((a) to (c)) and HS ((d) to (f)) approaches. The brightness
of the red and green channel are proportional to the variances of the
horizontal and vertical field components, respectively.

framework during the evolution of two separate dust storms. Figures 4.9 and 4.10
show dust storms that occurred during January 8, 2010 and January 16, 2010,
respectively. The figures show the pixel-wise probability of dust estimates under the
emissivity LSM approach and, furthermore, compare the estimated flow fields under
the Bayesian HS and the Bayesian ICE approaches.

We see several features from Figures 4.9 and 4.10. The first is that the detection
appears to be working well. Points which are clearly dusty are correctly given high
probabilities, while the model captures uncertainty in the estimates around the edges
of the dust plumes. Secondly, we see why the ICE method is preferred over standard
HS. There is considerably more regularity to the estimated flow field in the third row
than the second row, especially in the first two time points. This enables a coherent
reconstruction of the dust plume flow. Furthermore, the Bayesian HS method seems
unable to detect the flow of smaller dust storms, such as the one featured in the
lower right hand corner of the plots in Figure 4.9.

86



Figure 4.9: Dust plume on January 8, 2010 at 7.15 am, 8.30 am and 11 am GMT. Top
row: observed satellite data in false color; middle row: pixel-wise LSM
probability of dust estimates (with high probabilities in red) overlaid
with the Bayesian HS flow field; bottom row: same pixel-wise probability
of dust estimates as above now overlaid with the Bayesian ICE flow field.
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Figure 4.10: Dust plume on January 16, 2010 at 10.15 am, 11.45 am and 1 pm GMT.
Top row: observed satellite data in false color; middle row: pixel-wise
LSM probability of dust estimates overlaid with the Bayesian HS flow
field; bottom row: same pixel-wise probability of dust estimates as above
now overlaid with the Bayesian ICE flow field.
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4.4.4 Forecasting Dust Events

We now discuss an application of our method that is relevant for areas in proximity
of regions that emit dust. In a study reflected by Figure 4.11 we focus on the area
surrounding a massive dust storm occurring on January 17, 2010 and a respective
assessment of the risk to be affected by it. Equation (4.34) implies a straight-forward
method of extrapolating the future development of a spatial dust density estimate
given a flow field one time step ahead. This can be employed in an iterative scheme.

Firstly, we compute the dust predictor and flow with respect to the imagery of 11:45h
and 12:00h GMT. Figure 4.11 (a) shows the outcome of this procedure as an overlay
to the earth surface imagery as shown by Google Earth. Three dust plumes of large
size are clearly visible: (A) One over north eastern Niger predominantly moving to
the south, (B) one over southern Niger moving in southern and western direction
and lastly (C) a plume emerging at the borders between Algeria, Niger and Mali
moving westwards in direction of central Mali. Then we extrapolate the field through
iterative application of Equation (4.34) for 96 steps, under the assumption that the
given flow field remains approximately constant throughout this time period. As
one time step in the SEVIRI imagery corresponds to 15 minutes of time difference,
this results in an estimate of the dust density development 24 hours ahead. One can
now make use of this forecast to predict the future location of the main body of dust
mass. Figure 4.11 (b) shows the 30% dust density contour lines of the initial imagery
as well as for forecasts of 6, 12, 18 and 24 hours ahead. It is easy to see that these
forecasted contours develop according to the estimated flow field. While plume (A)
predominantly moves towards the south, (B) and (C) mostly move to the west. Our
method thus results in an informative large scale directional assessment of the dust
plume development.

Figure 4.12 shows how our forecast gains accuracy with a decreasing prediction
interval. The actual dust density at January 18, 2010 12.00h GMT is shown in Figure
4.12 (a). During the morning of this day, three new dust events emerge that mix
with the large plume from the day before. These are not yet reflected in the 24h
forecast depicted in Figure 4.12 (b), from which another observation can be made.
The forecast of Plumes (B) and (C) does not appear as wide spread as the actual
outcome. The reason for this is underestimation of the flow magnitude in the western
part of the imagery. This causes the forward projection of the dust density to slow
down and accumulate mass in this region. Plume (A) shows a similar effect as can be
seen from visual inspection of the falsecolor data (not shown here), where it actually
leaves the region depicted for this study at the southern border while undergoing
a large scale spreading effect that indicates a corresponding wind field during the
night. However, the 3h and 1h forecasts shown in Figures 4.12 (c) and 4.12 (d) gain
accuracy. Both indicate the new dust event in the south east and the 1h forecast
also picks up the two weaker events.
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(a)

(b)

Figure 4.11: Forecast of a dust event. Panel (a) shows the linear predictor of a
dust event over northern Africa on January 17, 2010, 12h GMT as a
transparent overlay on Google Earth imagery including country borders
and the flow field computed with the ICE method. Panel (b) depicts
the contour lines of 30% dust density according to the forecast derived
from the data in (a) for 0 (dark blue, the data itself), 6 (light blue), 12
(green), 18 (orange) and 24 (red) hours after the event. Note that the
detection in the top right corner is a false positive due to influence of a
water cloud.
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4.4.5 Marginal Posteriors for Forecast Postprocessing

As shown in the previous section, missing or noisy predictor gradient information can
lead to poor forecasts. However, the acquired marginal posteriors of the flow field
offer valuable information on where this is the case. We will now show a simple but
effective way to make use of this information to alleviate the effects of non-informative
regions. Consider again the dust event of January 17, 2010 and Figure 4.13 (a) that
shows the per-pixel sum of the estimated flow component posterior precisions derived
with the INLA method. Clearly, most precision is obtained at the borders of the
dust plumes where the gradient has a sufficient magnitude. This fact can be used to
re-estimate the flow field via a spatially weighted variant of the ICE method:

LICEW(α) =

∫
Ω

(q(γ1 + γ2))2(ηt + w · ∇η + η div(w))2 + α2(|∇u|2 + |∇v|2),

where γ1 and γ2 are the respective precisions and q is a fixed factor that scales the
set of local precision to the range [0, 1]. Figure 4.13(b) shows that this procedure
has the intended effect. While the main direction and curvature of the flow field
in regions with dust activity is approximately the same as for the unweighted ICE
estimates, significant regularity of the field outside these regions is obtained. This
effect is most dominant in the western and south eastern part of the area under
investigation but also in between dust plumes. Figures 4.13 (c) and 4.13 (d) show
visibly that this aides the forecast process and mitigates aforementioned problematic
effects. In particular, plumes (B) and (C) move faster towards the west and the
mass accumulation effect of plume (B) that occurred with the unweighted method
is decreased. The increase of the magnitude of the flow field in the south eastern
region leads to a similar observation with respect to plume (A). However, when
comparing the forecasted densities of the weighted and unweighted method with
the true observation, a general underestimation of the dust motion speed is still
apparent. This does not come as a complete surprise as with increasing age dust
plumes dissipate into higher altitudes. In these heights the wind speed is most often
larger than at ground level. It is therefore highly likely that the underestimation
of the motion speed is due to the early stage of the plumes compared to forecast
horizon.

4.4.6 Source Detection

In the previous sections a flow field served to predict the future development of a
given dust plume. Given a sequence of flow fields, the same idea of transporting
the dust plume can be applied in the reverse direction. This way, the mass of the
plume is moved to the regions it emerged from and can be used as an estimator of
the respective local emission strength.
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(a) (b)

(c) (d)

Figure 4.13: Postprocessing of flow estimates. Panel (a) shows the sum of the marginal
flow component precisions derived for the dust forecast procedure elabo-
rated in Section 4.4.4. These are be employed to weight the local linear
fit term of the ICE method, which leads to the flow field shown in Panel
(b) and the 24 hour forecast depicted in (c). For comparison (d) shows
the actual dust density and 30 % density contour line (black) after 24
hours together with the contour lines of the unweighted (red) and the
weighted (blue) forecast method.

Such an estimate is of great interest in environmental sciences. For instance, Jickells
et al. (2005) note that the mineralogical composition of a dust plume is inherited from
its source region and determines properties such as nutrition effects on terrestrial
and marine ecosystems on a global scale. Yet, in-situ measurement sites in Africa are
sparsely distributed and data such as horizontal visibility from synoptic stations is
hardly sufficient for the identification of source areas (Mahowald et al., 2005). There
are, however, studies that employ dust indicators like aerosol depth measured by
satellites and perform a long term temporal averaging of this quantity to identify
sources. Intrinsically, this leads to overestimating the source strength of regions
that are only traversed by dust plumes. This is demonstrated by an experiment
of Schepanski et al. (2012) where dust plume trajectories and source regions were
determined by human experts visually inspecting SEVIRI imagery. Our method not
only yields an automation of this procedure but also compliments other data driven
approaches, e.g. studies that rely on wind field averages and Lagrangian trajectories
to trace back dust to its origin (Alonso-Pérez et al., 2012).

Figure 4.14 shows the result of the proposed method applied to a massive dust plume
occurring on January 18, 2010 over the Bodélé depression in northern Africa. First
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(a) (b) (c)

Figure 4.14: Spatial estimation of dust emission strength. Panel (a) shows the linear
predictor of a dust even on January 18, 2010 at 15.00h GMT over the
Bodélé depression in northern Africa. This dust plume originates from
a cluster of source regions identified by visual inspection of the image
sequence and marked with black circles in Panel (b). The flow field
estimated from this sequence is used to transport back the dust density
in (a) to the presumed origin shown in Panel (c) and serves as a spatial
estimator for the dust emission strength.

signs of the event are visible in the data at 6.15h GMT and the plume reaches its
maximal extent at around 15.00h GMT. We compute the flow of the plume for
the whole period and then use Equation (4.34) to transport the predictor of the
imagery at 15.00h GMT (see Figure 4.14 (a)) back according to these estimates.
In order to judge the accuracy of the estimated source regions an extensive visual
inspection of the linear predictor sequence over time was performed. The black circles
in Figure 4.14 (b) mark regions that can be recognized as actually emitting dust
rather than just being covered by the plume over the course of time. The linear
predictor shown in this Figure represents dust activity at 8.15h GMT where the most
active source regions are still identifiable as distinct areas. Note that for instance the
source at the very south of the active region appears rather faint but can be clearly
identified to emit a large amount of dust when inspecting the dynamics of the image
sequence.

Transporting the dust backwards according to the determined flow field leads to the
emission strength estimate depicted in Figure 4.14 (c), which is again superimposed
with the source region markers. Most interestingly, almost all markers lie within the
bulk of the area estimated to have a high emission strength. Vice versa, the emission
strength is low outside the cluster of these markers. The only sources that are not
captured well are those in the north western corner of the imagery. However, as can
be seen from the data, these sources are rather weak and have another property that
makes their flow estimation challenging. The spatial extent of all three sources is
narrow orthogonal to their motion direction. The imagery gradient necessary for our
flow estimation technique thus has a small spatial extent as well and is likely to be
too weak to pick up the correct genesis of the plume.
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4.4.7 Conclusion

We outline a Bayesian framework leveraging the recently developed INLA methodology
for detecting and tracking dust storms. The approach makes several developments,
including a superior dust detection methodology, a link between the classical literature
of optical flow and Gaussian Markov random fields (GMRFs) and the use of the ICE
to model flow fields where an assumption of brightness constancy is inconsistent with
the physical process.

In a simulation study we show the improved performance of our Bayesian ICE
model over existing procedures. The study emphasizes that Bayesian estimation
can alleviate issues related to the setting of tuning parameters and how marginal
posteriors are an informative factor in terms of coherence between intrinsic model
assumptions and the determined flow field.

Real world examples show the implications of the improvement and a multitude of
applications are pointed out. A technique for dust storm forecasts is demonstrated
and it is shown how to improve these forecasts by including previously estimated
marginal posteriors into the model for flow estimation. Lastly, by rewinding a given
dust plume in time we are now are now able to successfully pinpoint its source and
an indicator for the respective emission strength.

4.5 Variational Properties of Optical Flow

In the previous sections we determined the flow field of a given material density by
minimizing functionals that incorporate variants of the continuity equation. This was
done by discretizing the functional such that its minimizing argument approximately
equals a maximum a posteriori estimate of a BHM. Accordingly, the variational
perspective on solving these problems (see Section 4.1.2) allows for assertions that
are of use in the probabilistic context as well.

As shown by Schnörr (1991) and explained in Section 4.1.3, existence and uniqueness
of the minimizing function can be guaranteed under mild assumptions on given
image data. Moreover, as a consequence of the Lemma of Lax-Milgram (Lemma 3 in
Section 4.1.2), a suitably chosen discretization basis spanning a finite-dimensional
subspace of functions results in a positive definite linear equation system. As a
consequence, the corresponding discretized quadratic functional defines a proper
GMRF with the unique minimizer as mode, and with the linear system matrix as
precision matrix.

In the following, we present three contributions to a more detailed analysis of
functionals involving the continuity equation. In Section 4.5.2 a proof is provided
that generalizes the result of Schnörr (1991), (Theorem 7, 4.1.3) to compressible
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flows4. Hence, one obtains the same guarantees in terms of existence and uniqueness
of the flow minimizing the respective functional (see Section 4.4.1) as well as well-
posedness of its discrete representation. For future research and completeness of
the analysis in general, Section 4.5.3 is concerned with the derivation of the Euler-
Lagrange equations that arise from the functional defining compressible flow. Lastly,
in Section 4.5.4, we derive the Euler-Lagrange equations of the material density when
either a compressible or an incompressible flow field are given. This enables us to
point out similarities to the class of SPDEs elaborated on in Section 4.1.4.

4.5.1 Notation

Let us reiterate the functional defining the compressible flow field for given material
density η:

JICE(α) =

∫
Ω

(ηt + w · ∇η + η div(w))2 + α2(|∇u|2 + |∇v|2).

In the following, u = [u1, u2] and v = [v1, v2] will denote two flow fields and we use
integers to index the horizontal and vertical components, respectively. We define a
linearform fICE and a bilinearform aICE that constitute the functional JICE in a way
that allows us to apply the lemma of Lax-Milgram. For convenience we will use the
following notation:

d = [d1, d2]T = [∂u1/∂x, ∂u2/∂y]T ,

e = [e1, e2]T = [∂v1/∂x, ∂v2/∂y]T ,

η = [η, η]T ,

ηt = [ηt, ηt]
T ,

The bilinear form corresponding to the Horn and Schunck approach is composed of
the components

aHS(u,v) =

∫
Ω

(∇η · u)(∇η · v),

aS(u,v) =

∫
Ω
α2(∇u1 · ∇v1 +∇u2 · ∇v2) dx,

which correspond to the quadratic parts of the data and smoothness term, respectively.
Likewise, the bilinear form for compressible flow can be written as

aICE(u,v) =

∫
Ω

(η · d)(∇η · v) + (∇η · u)(η · e) + (η · d)(η · e) dx

+aHS(u,v) + aS(u,v).

4Recall that the notion of (in-)compressible flow is supposed to reflect whether a method assumes
divergence freeness or not. This property is, however, not enforced by any of the approaches.
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and the linear form is given by the expression

fICE(v) = 2

∫
Ω
ηt∇η · v + ηηt · e dx.

In case of u = v we also note that

aICE(v,v) =

∫
Ω

(∇η · v + η · e)2 dx + aS(v,v)

=

∫
Ω

(∇η · v)2︸ ︷︷ ︸
aHS(v,v)

+

∫
Ω

2(η · e)(∇η · v)︸ ︷︷ ︸
aM(v,v)

+

∫
Ω

(η · e)2︸ ︷︷ ︸
aQ(v,v)

dx + aS(v,v)

where the integral components are

aHS(v,v) =

∫
Ω
η2
xv

2
1 + 2ηxηyv1v2 + η2

yv
2
2 dx,

aM(v,v) = 2

∫
Ω
η
[
ηxv1,xv1 + ηyv1xv2 + ηxv2,yv1 + ηyv2v2y

]
dx,

aQ(v,v) =

∫
Ω
η2
[
v2

1x + 2v1xv2y + v2
2y

]
dx,

aS(v,v) =

∫
Ω
α2(|∇v1|2 + |∇v2|2) dx =

∫
Ω
α2(v2

1x + v2
1y + v2

2x + v2
2y) dx.

We will also employ the following scalar products and norms encompassing the
Sobolev space H and the space of motion fields V . By (u1, u2)1 we denote the scalar
product

(u1, u2)1 =
∑
|ψ|≤1

(Dψu1, D
ψu2)0 =

∑
|ψ|≤1

∫
Ω
Dψu1D

ψu2 dx

and the norm |u|1 = [(u, u)1]1/2. Here, (·, ·)0 denotes the scalar product and norm
| · |0 in L2(Ω) = H0(Ω). The scalar product in V is defined as

(u,v)V = (u,v)1 = (u1, v1)1 + (u2, v2)1

and induces the norm

|u|V = [(u,u)V ]1/2 =
[ ∫

Ω
|u|2 + |∇u1|2 + |∇u2|2

]1/2
dx.

Lastly, |u| denotes the Euclidian length of u,

|u|∞ = |u|L∞(Ω)

and |u|0 means [(u,u)0]1/2, where

(u,v)0 = (u1, v1)0 + (u2, v2)0.
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4.5.2 Existence and Uniqueness of Compressible Flow

We will generalize the existence and uniqueness results reported in connection with
the approach of Horn and Schunck to the more general problem of minimizing LICE.
The major difference concerns the presence of the term η div(u) so as to take better
into account compressibility of flows.

Theorem 8 (Existence and Uniqueness). Let H1(Ω) = {u ∈ L2(Ω) : Dψu ∈
L2(Ω) for |ψ| ≤ 1} denote a Sobolev space and let V = {u = (u1, u2)T ∈ H1(Ω) ×
H1(Ω)}. If α > 0, η, ηx, ηy ∈ L∞(Ω), ηx and ηy are linearly independent as elements
of L2(Ω) then the functional JICE : V → R,

JICE(u) =

∫
Ω

(ηt + u · ∇η + η div(u))2 + α2(|∇u1|2 + |∇u2|2),

attains a unique minimum that depends continuously on the image data η.

The proof below is based on a series of preparatory Lemmata presented next.

Lemma 4. The inequality

|aM(u,v) + aQ(u,v)| ≤ CICE(|d|0|v|0 + |e|0|u|0 + |d|0|e|0)

holds for some fixed CICE = CICE(η) > 0.

Proof. Firstly, one has that

|aM(u,v) + aQ(u,v)| =
∣∣∣ ∫

Ω
(η · d)(∇η · v) + (η · e)(∇η · u) + (η · d)(η · e) dx

∣∣∣
≤ |(η · d,∇η · v)0|+ |(η · e,∇η · u)0|+ |(η · d,η · e)0|
≤ |η · d|0|∇η · v|0 + |η · e|0|∇η · u|0 + |η · d|0|η · e|0.

Now, by the inequality (p+ q)2 ≤ 2(p2 + q2), it follows that

|η · d|0 = |ηd1 + ηd2|0

=
(∫

Ω
(ηd1 + ηd2)2 dx

)1/2

≤
(

2

∫
Ω

(ηd1)2 + (ηd2)2 dx
)1/2

≤
(

2|η2|∞
∫

Ω
d2

1 + d2
2 dx

)1/2

= (2|η2|∞)1/2|d|0.
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Similar reasoning for the other terms yields

|aM(u,v) + aQ(u,v)| ≤ |η · d|0|∇η · v|0 + |η · e|0|∇η · u|0 + |η · d|0|η · e|0
≤ CICE(|d|0|v|0 + |e|0|u|0 + |d|0|e|0),

where CICE = CICE(|η2|∞, |η2
x|∞, |η2

y |∞).

Lemma 5. It holds that
|d|20 ≤ |∇u1|20 + |∇u2|20

and
|e|20 ≤ |∇v1|20 + |∇v2|20

for all u,v ∈ V .

Proof. Let d̄ = [∂u1/∂y, ∂u2/∂x]. Then

|d|20 = (d,d)0

≤ (d,d)0 + (d̄, d̄)0

= (d1, d1)0 + (d2, d2)0 + (d̄1, d̄1)0 + (d̄2, d̄2)0

= (∇u1,∇u1)0 + (∇u2,∇u2)0

= |∇u1|20 + |∇u2|20

holds. Similar reasoning yields the second assertion.

Lemma 6 (Linearform Continuity). The linearform fICE(v) is continuous.

Proof. By definition of the two norms it is obvious that |v|0 ≤ |v|1 for all v ∈ V .
Similarly, using Lemma 5, it is easy to see that |e|0 ≤ |v|1 holds. Via the Cauchy-
Schwarz inequality we get:

|fICE(v)| = | − 2

∫
Ω
ηt∇η · v + ηηt · e dx|

≤ 2|
∫

Ω
ηt∇η · v dx|+ |

∫
Ω
ηηt · e dx|

≤ 2(|ηt∇η|0|v|0 + |ηηt|0|e|0)

≤ 2 ·max{|ηt∇η|0, |ηηt|0}(|v|0 + |e|0)

≤ 2 ·max{|ηt∇η|0, |ηηt|0}|v|1
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Lemma 7 (Bilinearform Continuity). The bilinearform aICE(·, ·) is continuous.

Proof. Following Schnörr (1991) we have

|aHS(u,v) + aS(u,v)| ≤ CHS(|u|0|v|0 + |∇u1|0|∇v1|0 + |∇u2|0|∇v2|0)

for some CHS = CHS(η) > 0. Lemma 4 then leads to

|aICE(u,v)| ≤ |aHS(u,v) + aS(u,v)|+ |aM(u,v) + aQ(u,v)|
≤ CHS(|u|0|v|0 + |∇u1|0|∇v1|0 + |∇u2|0|∇v2|0)

+CICE(|d|0|v|0 + |e|0|u|0 + |d|0|e|0)

= C(|u|0|v|0 + |∇u1|0|∇v1|0 + |∇u2|0|∇v2|0
+|d|0|v|0 + |e|0|u|0 + |d|0|e|0)

and thus, by the Cauchy-Schwarz inequality,

|aICE(u,v)| ≤ C · (|u|20 + |∇u1|20 + |∇u2|20 + |d|20 + |u|20 + |d|20)1/2

·(|v|20 + |∇v1|20 + |∇v2|20 + |e|20 + |v|20 + |e|20)1/2

for C = max{CHS, CICE}. Applying Lemma 5 then results in

|aICE(u,v)| ≤ C · (2|u|20 + 3|∇u1|20 + 3|∇u2|20)1/2(2|v|20 + 3|∇v1|20 + 3|∇v2|20)1/2

≤ C̃|u|1|v|1

with C̃ = 3C = 31/2 · 31/2C

Lemma 8 (Convergence of Partial Derivative Norms). Consider a sequence vn =
(v1n, v2n), n ∈ N, in V such that aICE(vn,vn) → 0 as n → ∞. Then the (squared)
L2 norms of the flow field partial derivatives converge to zero, i.e.:

lim
n→∞

∫
Ω

(∂vin
∂z

)2
dx = 0 ∀i ∈ {1, 2}, z ∈ {x, y} (4.36)

Proof. Recall that aICE is an integral over a sum of two squared and therefore
nonnegative terms:

aICE(v,v) =

∫
Ω

(∇η · v + η · e)2 dx + aS(v,v).

Hence, if aICE(vn,vn)→ 0 it follows that aS(vn,vn)→ 0. Furthermore, since

aS(v,v) =

∫
Ω
α2(v2

1x + v2
1y + v2

2x + v2
2y) dx,

the same argument allows to conclude that Equation (4.36) holds.
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Lemma 9 (Boundedness of Flow Field Component Norms). Consider a sequence
vn = (v1n, v2n), n ∈ N, in V with |vn|V = 1. Then the (squared) L2 norms of the
flow field components are bounded, i.e.:

0 ≤
∫

Ω
v2
in dx ≤ 1 ∀i ∈ {1, 2}.

Proof. The first inequality follows directly from the nonnegativity of the integrand.
Now recall that

|vn|V = 1 =

∫
Ω
v2

1n + v2
2n dx +

∫
Ω
|∇v10n|2 dx +

∫
Ω
|∇v20n|2 dx

Hence, since all summands are equal or greater than zero, it follows that∫
Ω
v2

1n dx = 1− (

∫
Ω
v2

2n dx +

∫
Ω
|∇v10n|2 dx +

∫
Ω
|∇v20n|2 dx) ≤ 1,

as well as∫
Ω
v2

2n dx = 1− (

∫
Ω
v2

1n dx +

∫
Ω
|∇v10n|2 dx +

∫
Ω
|∇v20n|2 dx) ≤ 1.

Lemma 10. Let ri and si with i ∈ IC two finite sets of | · |∞-bounded functions on
the image domain Ω and consider two sequences of corresponding sets of sequences
of functions pin and qin with n ∈ N. If for some constants C1 and C2

C1 ≤
∫

Ω
p2
in dx ≤ C2 ∀n

for fixed i ∈ IC and limn→∞
∫

Ω q
2
n dx = 0 then it holds that

limn→∞

∣∣∣ ∫
Ω

∑
i

(ripin)(siqin) dx
∣∣∣ = 0

Proof. We apply the triangle inequality for sums and integrals as well as the Cauchy-
Schwarz inequality for integrals as follows:∣∣∣ ∫

Ω

∑
i

(ripin)(siqin) dx
∣∣∣ ≤ ∑

i

∫
Ω

∣∣∣(ripin)(siqin)
∣∣∣ dx

≤
∑
i

√(∫
Ω
r2
i p

2
in dx

)(∫
Ω
s2
i q

2
in dx

)
≤

∑
i

√√√√√|r2
i |∞|s2

i |∞
(∫

Ω
p2
in dx︸ ︷︷ ︸
t1

)(∫
Ω
q2
in dx︸ ︷︷ ︸
t2

)
.

Now, since for every i ∈ IC the term t1 is bounded and t2 converges to zero the
assertion follows.
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Lemma 11 (V -ellipticity). The bilinearform aICE is V -elliptic.

Proof. As shown by Schnörr (1991), aHS + aS is V -elliptic under the assumptions
of Theorem 8. Now assume that aICE is not V -elliptic. We will show that this
contradicts the V -ellipticity of aHS + aS .

If aICE is not V -elliptic then there exists a sequence vn in V with |vn|1 = 1 for all n
and aICE(vn,vn)→ 0 for n→∞. Recall that

aICE(v,v) = aHS(v,v) + aM(v,v) + aQ(v,v) + aS(v,v)

and

aM(v,v) = 2

∫
Ω
η
[
ηxv1,xv1 + ηyv1xv2 + ηxv2,yv1 + ηyv2v2y

]
dx,

aQ(v,v) =

∫
Ω
η2
[
v2

1x + 2v1xv2y + v2
2y

]
dx.

Consider the structure of the summands, say ti, of aM(vn,vn) and aQ(vn,vn) for a
given n:

ti = ci · ripin · siqin, i ∈ IC ,

where ci ∈ {1, 2}, ri, si ∈ {η, ηx, ηy} and the flow field components and their partial
derivatives are represented by pin and qin. We now yield to apply Lemma 10 to these
terms and thus to derive convergence properties for aM(vn,vn) and aQ(vn,vn).

Firstly, we note that, as a prerequisite, the coefficient functions ri and si are bounded
with respect to | · |∞, i.e.

ri, si ∈ L∞. (4.37)

Second, each of the terms ti involves at least one occurrence of a partial derivative of
a flow field component, say qin. Now, due to the assumption that aICE(vn,vn)→ 0
for n→∞, Lemma 8 is applicable. Hence,∫

Ω
q2
indx→ 0. (4.38)

The last factor, say pin, is either a partial derivative or a flow field component. In
case of a partial derivative, the same argument as for the qin applies and pin is
L2-bounded due to the convergence with respect to the L2 norm. If pin is a flow
fields component, Lemma 9 is applicable. Hence,

Ci1 ≤ pin ≤ Ci2, (4.39)

for some Cij > 0 ∈ R. Equation (4.37) to (4.39) now allow the application of
Lemma 10 to the the sequences aM(vn,vn) and aQ(vn,vn). Hence,

lim
n→∞

aM(vn,vn) = 0
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and

lim
n→∞

aQ(vn,vn) = 0.

Finally, recall the definition of aHS and aS and observe that

|aHS + aS| = |aHS + aS − aICE + aICE|
≤ |aM|+ |aQ|+ |aICE|,

where we omitted the arguments (vn,vn). Hence, one has that aHS(vn, vn)→ 0 for
n→ 0. This leads to a contradiction to the fact that aHS + aS is V -elliptic in view of
the assumption |v|1 = 1.

Proof of Theorem 8. The previous lemmata lead to the following assertions:

• The linearform fICE is continuous (Lemma 6)

• The bilinearform aICE is continuous (Lemma 7)

• The bilinearform aICE is V -elliptic (Lemma 11).

Hence, the Lemma of Lax-Milgram (Lemma 3 in Section 4.1.2) is applicable to the
rewritten functional

JICE(v) = aICE(v,v) + fICE(v,v) + const.

and a unique minimizer of JICE(v) with a well-posed discretization exists.

4.5.3 The Euler-Lagrange Equations of Compressible Flow

We will now derive the Euler-Lagrange equations (see Section 4.1.2, Equation (4.8))
of the compressible flow functional given in Equation (4.34) with respect to the flow
variables. Let, as before,

JICE(w) =

∫
Ω

(w · ∇η + ηt + η div(w))2 + α2(|∇w1|2 + |∇w2|2) dx.

We compute

JICE(u + τv) =

∫
Ω

((u + τv) · ∇η + ηt + η div(u + τv))2 dx

+

∫
Ω
α2(|∇(u1 + τv1)|2 + |∇(u2 + τv2)|2) dx,
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hence

d

dτ
JICE(u + τv) =

d

dτ

∫
Ω

((u + τv) · ∇η + ηt + η div(u + τv))2 dx

+
d

dτ

∫
Ω
α2(|∇(u1 + τv1)|2 + |∇(u2 + τv2)|2) dx

= 2

∫
Ω

((u + τv) · ∇η + ηt + η div(u + τv))(v · ∇η + η div(v)) dx

+2

∫
Ω
α2(∇u1 · ∇v1 + τ |∇v1|2 +∇u2 · ∇v2 + τ |∇v2|2) dx.

The first variation is given by:

1

2

d

dτ
JICE(u + τv)|τ=0 =

∫
Ω

[(u · ∇η + ηt + η div(u))∇η] · v dx

+

∫
Ω

[(u · ∇η + ηt + η div(u))η] div(v) dx

+

∫
Ω
α2(∇u1 · ∇v1 +∇u2 · ∇v2) dx

Applying Green’s formula (n is the outer normal vector at the boundary ∂Ω),

∫
Ω
∇u1 · ∇v1 = −

∫
Ω
v1∆u1 dx +

∫
∂Ω

∂u1

∂n
v1 dx

and ∫
Ω
∇u2 · ∇v2 = −

∫
Ω
v2∆u2 dx +

∫
∂Ω

∂u2

∂n
v2 dx,

we obtain

1

2

d

dτ
JICE(u + τv)|τ=0 =

∫
Ω

[(u · ∇η + ηt + η div(u))∇η] · v dx

+

∫
Ω

[(u · ∇η + ηt + η div(u))η] div(v) dx

−
∫

Ω
α2(v1∆u1 + v2∆u2) dx

+

∫
∂Ω

∂u1

∂n
v1 +

∂u2

∂n
v2 dx.
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Partial integration of the second term in this equation yields

1

2

d

dτ
JICE(u + τv)|τ=0 =

∫
Ω

[(u · ∇η + ηt + η div(u))∇η] · v dx

−
∫

Ω
v · ∇[(u · ∇η + ηt + η div(u))η] dx

+

∫
∂Ω

[(u · ∇η + ηt + η div(u))η]v · n dS

−
∫

Ω
α2(v1∆u1 + v2∆u2) dx

+

∫
∂Ω

∂u1

∂n
v1 +

∂u2

∂n
v2 dx.

Here, the result of applying the product rule to the second term cancels out the first
term. Hence

1

2

d

dτ
JICE(u + τv)|τ=0 = −

∫
Ω

v ·
[
η∇[(u · ∇η + ηt + η div(u))]

]
dx

+

∫
∂Ω

[(u · ∇η + ηt + η div(u))η]v · n dS

−
∫

Ω
α2(v1∆u1 + v2∆u2) dx

+

∫
∂Ω

∂u1

∂n
v1 +

∂u2

∂n
v2 dx.

If u is a minimizer of this functional, this expression has to vanish for all functions
v ∈ V . Thus, we obtain

0 = η
∂

∂x
(u∇η + ηt + η div(u)) + α2∆u1,

0 = η
∂

∂y
(u∇η + ηt + η div(u)) + α2∆u2,

0 =
∂u1

∂n
+ n1η[u∇η + ηt + η div(u)] on ∂Ω,

0 =
∂u2

∂n
+ n2η[u∇η + ηt + η div(u)] on ∂Ω.

Hence, under the assumption of vanishing material density on the boundary, one has
the Euler-Lagrange equations

0 = η
∂

∂x
(u∇η + ηt + η div(u)) + α2∆u1, 0 =

∂u1

∂n
on ∂Ω

0 = η
∂

∂y
(u∇η + ηt + η div(u)) + α2∆u2, 0 =

∂u2

∂n
on ∂Ω.
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4.5.4 The Euler-Lagrange Equations of Material Densities

In the following we will derive the Euler-Lagrange equation for both, the the Horn
& Schunck flow model (see Section 4.1.3) and the compressible flow model ((see
Section 4.2.1) with respect to the material density. Furthermore, we will point out
connections to the class of SPDEs elaborated on in Section 4.1.4.

Incompressible Flow

The smoothness term of the flow field is ignored here as it does not depend on the
material density and thus does not enter the Euler-Lagrange equations. Hence, we
are left with the Horn & Schunck data term

L = LHS(η) = (∇η ·w + ηt)
2.

From this it follows that

Lη = 0
1
2Lηx = v1(∇η ·w + ηt) = v1(wT∇η) + v1ηt,
1
2Lηy = v2(∇η ·w + ηt) = v2(wT∇η) + v2ηt,
1
2Lηt = 1(∇η ·w + ηt) = 1(wT∇η) + 1ηt.

The Euler-Lagrange equation is thus

0 = (∇η ·w + ηt)(∇ ·w) + wT (∇ηt +Hηw + JTw∇η). (4.40)

where Hη is the Hessian of η and Jw is the Jacobi matrix of w. Alternatively, one
can write the vector [Lηx , Lηy , Lηt ]

T using w̃ = [v1, v2, 1]T as

1
2 [Lηx , Lηy , Lηt ]

T = w̃w̃T ∇̃η,

where ∇̃ = [ ∂∂x ,
∂
∂y ,

∂
∂t ] denotes the gradient including the partial derivative along

time. The Laplacian of this expression, i.e. the right hand side of the Euler-Lagrange
equation then simplifies and results in

0 = ∇ · [Lηx , Lηy , Lηt ]T = ∇̃ · (w̃w̃T ∇̃η) = (∇̃T w̃w̃T ∇̃)η. (4.41)

Now consider the common situation of applying the Horn and Schunck algorithm
to a pair of consecutive images η and η̄ where the partial differential w.r.t. time is
estimated by the forward difference η̄ − η. Equation (4.41) then reads as

0 = ∇T (w(η − η̄)) + (∇TwwT∇)η,

106



which holds if and only if

∇(wη̄) = (∇Tw +∇TwwT∇)η. (4.42)

This equation, in particular the homogeneous part, seems remarkably similar to the
SPDE described by Equation (4.27) in Section 4.1.4. However, an in-depth analysis
of this connection has to be left to future research. Lastly, we would like to note
that when assuming incompressibility (and thus zero divergence) as well as temporal
constancy of the flow field (in between the two image frames), Equation (4.42) reduces
to

wT∇η̄ = wT∇η + (∇TwwT∇)η. (4.43)

Compressible Flow

We will now turn to the case of compressible flow described in Section 4.4.1. The
respective data term

L = LICE(η) = (w̃T∇η + η∇T w̃)2

= (w̃T∇η)2 + 2(w̃T∇η)(η div(w̃)) + η2 div(w̃)2

results in the partial derivatives

1
2Lη = (w̃T∇η) div(w̃) + η div(w̃)2 = div(w̃)(div(ηw̃)),

1
2Lηx = v1(w̃T∇η) + v1(η div(w̃)),
1
2Lηy = v2(w̃T∇η) + v2(η div(w̃)),
1
2Lηt = 1(w̃T∇η) + 1(η div(w̃)),

and thus

1
2 [Lηx , Lηy , Lηt ] = w̃[(w̃T∇η) + (η div(w̃))] = w̃(div(ηw̃)).

This leads to

0 = div(w̃)(div(ηw̃))−∇T (w̃(div(ηw̃)))

= div(w̃)q̃ −∇T (w̃q̃)

= div(w̃)q̃ − [div(w̃) + w̃T∇q̃]
= −w̃T∇q̃
= −w̃T∇(∇T (w̃η))

= −w̃T∇∇T w̃η
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where we introduced the abbreviation q̃ = div(w̃η). This expression can easily be
transformed to

0 = (∇T w̃w̃T∇)η + η(w̃T∇∇T w̃) (4.44)

Note due to the notation we chose differentials act on every multiplier to their right.
The second term does therefore not contain a differential expression in g.

If we now focus on to consecutive image frames, we obtain

∇(wη̄) = (∇TwwT∇+∇Tw)η + η(wT∇∇Tw).

By using the notation z = −wT∇∇Tw this can be written as

z−1∇(wη̄) = (1− z−1∇Tw − z−1∇TwwT∇)η. (4.45)

Comparing this result to the SPDE in Equation (4.27) it is clear that further
investigation regarding this topic might be fruitful. In particular, establishing a clear
connection between the deformation determinant det(F ) in Equation (4.27) and z−1

appears to be an important first step.
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5 Conclusion

The thesis at hand presents statistical methodology and theoretical work related to
the remote assessment of atmospheric aerosol occurrence and dynamics. Naturally,
this subject lives at the intersection of physical models, statistical analysis and
mathematical image processing. We develop a Bayesian framework that consistently
reflects these perspectives and leverages the cutting-edge INLA inference technique
to detect dust storms and consecutively capture the respective atmospheric transport
process. In doing so, the latent processes we investigate are inherently endowed with
uncertainty quantification in terms of the respective marginal posterior distributions.
Moreover, hyper parameters are integrated over and by evading computationally
expensive MCMC procedures we develop algorithms that lend themselves towards
real time analysis of atmospheric processes.

The components of both, the detection and the motion estimation models, are
structured as Bayesian hierarchical models with generalized linear models as top
stages and Gaussian Markov random fields representing the latent variables. We
elucidate the principles of these graphical models as well as the INLA inference
approach in Chapter 2. Their intrinsic modularity, favorable scaling properties in
prospect of big data and recently increasing scientific attention suggest the potential
of adapting our methods to a wide range of applications.

At the very heart the presented framework evolves around the continuity equation for
compressible fluid flow. This equation physically ties together the dust density and
its flow field. In Chapter 3 a data driven approximation of this density is developed
via a latent predictor steering a binomial likelihood that expresses the dichotomy of
dusty versus pristine spatio-temporal locations. The resulting method of latent signal
mapping successfully suppresses measurement artifacts not related to dust activity
and, at the same time, reliably detects dust throughout the forenoon by adapting to
radiative surface properties of the Earth. However, considerable work remains. With
respect to the physical interpretation of the dust predictor multiple extensions of our
methodology are conceivable. Aerosol optical depth measurements could enter the
likelihood of the LSM method as a replacement or as an addition to binomial labels
over data labeled by experts. For example, as a direct exponential function of the
latent field (when omitting the sign), a Laplacian likelihood could be employed to
relate the transmissivity of SEVIRI measurements to the optical depth. This way,
additional assumptions on the grain size distribution of the dust allow to estimate the
dust density. Providing the latent part of LSM with scientific attention is promising
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as well. At the current stage, time as a covariate is not part of the model even though
the framework’s flexibility clearly allows otherwise. Separating the effect of time on
the SFI appearance from radiative surface properties and other constituents (e.g.
satellite viewing angle) might leverage the method to robust dust detection even at
night times. As a mode of validation and further gain of physical interpretability this
separation also suggests a comparison to or an integration of results from atmospheric
simulation studies like that of Brindley et al. (2012). Lastly, our current approach
does not impose any spatial or temporal smoothness assumptions with respect to the
dust predictor. A straight forward and frequently applied way to do so is to couple
the local predictor with its spatial or temporal grid neighbors, e.g. via a CAR model
as an intermediate layer between likelihood and latent functions over the covariates.
In the long run, however, directly integrating an estimate of the flow as consistency
criterion appears to be more promising.

Chapter 4 is concerned with the second kind of unknowns of the continuity equation,
the estimation of a flow field given an approximation to the material density. By
employing a latent Gaussian Markov random field for the transition between the
continuous formulation and a discretized representation an important link between
variational methods and classical literature on generalized linear models is established.
Traditionally, inferring the Horn and Schunck optical flow was subject to solving
a variational formulation of the problem via the corresponding Euler-Lagrange
equations. The equivalence to a formulation as a GMRF and the extension to
compressible fluid dynamics provides considerable applied advances that can now
be pursued. This relates to projecting the dust storm into the future, as well as
“rewinding” the storm to pinpoint its source. The advantage of our statistical approach
is that it inherently enables the uncertainty of such assessments to be expressed.
This, in turn, will allow us to issue probabilistic forecasts and leverage the recent
work in forecasting methodology (Gneiting and Raftery, 2005; Schefzik et al., 2013).
Such probabilistic forecasts would be of considerable interest to the Earth observation
community and could also be fed into larger models of global transport phenomena.

The modularity of our framework and the flexibility of the INLA method suggest
the investigation of several extensions to the flow estimation technique. Due to the
demand for source estimators adding a respective variable to the continuity equation
appears to be useful. Unless specified otherwise this variable would implicitly capture
the vertical components of the three-dimensional counterpart of the equation and
could hence capture the injection of soil from the ground into the atmosphere. Yet, this
approach would require further characterization of the injection process as the system
still remains under-determined and prevents a separation of the respective random
effects. With respect to current developments in the image processing community our
probabilistic inference paradigm is of two-fold interest. Firstly, likelihood functions
that are more robust against outliers than the Gaussian distribution are a common
mode to tackle the problem of signal intrinsic noise. Respective changes to the INLA
algorithm are readily implemented and would provide a powerful tool for in-depth
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stochasticity analyses. Secondly, motion estimation for imagery of rigid bodies is a
vividly discussed subject and requires to allow for discontinuities in the flow field.
In this context (see, e.g. Roth and Black (2005)), heavy-tailed distributions like
the Laplacian have been shown to be more suitable to model flow derivatives than
Gaussians. At the same time, the Laplace distribution can be interpreted as a normal
variance mixture model or a scale mixture of Gaussians (Fahrmeir and Tutz, 2001).
As shown by Eltoft et al. (2006), this can be generalized to multivariate Laplacians
being generated by a multivariate Gaussian integrated over a univariate exponential
scale prior. Related Bayesian approaches have recently been proposed by Bolin
(2013) and Bolin et al. (2014) in context of different environmental and medical
applications. Both, robust likelihood functions and discontinuity preserving latent
fields are promising methodological candidates to alleviate the underestimation of
flow velocity we observed in our forecast experiments. In particular the latter would
reduce the effect of flow field smoothing at the often very prominent front of dust
plumes.

An investigation of the variational perspective on the continuity equation for com-
pressible flow that concludes Chapter 4 leads to further insight with respect to the
current nature of the model as well as future research. We extend results of Schnörr
(1991) for incompressible flow by providing a proof for existence and uniqueness
of (continuous) compressible flow under mild restrictions to an underlying Sobolev
space. As a corollary, the emerging discrete quadratic minimization problem is well
posed and its GMRF counterpart is shown to have a symmetric and positive definite
precision matrix. Lastly, we provide first steps towards an inversion of the inference
process, i.e. estimating the development of a dust density from a given flow field.
The Euler-Lagrange equations arising from this minimization problem suggest to be
solved for readily although respective analytical guarantees remain to be investigated.
It is, however, appealing that work like that of Lindgren et al. (2011) as well as
Simpson et al. (2012) reveals links between Gaussian fields and GMRFs via SPDEs.
In particular, further in-depth mathematical analysis of the connection between these
SPDEs and the aforementioned Euler-Lagrange equations would provide an extensive
probabilistic basis for the inference inversion. In doing so, a major cornerstone would
be laid with respect to a long term perspective of space-born dust assessment since
the SPDE approach can be seen as a natural extension of Matérn fields to smooth
manifolds like the sphere. Having both conditional models formulated properly, i.e.
the dust density given its flow and vice versa, alternating estimation schemes like
expectation maximization can be applied. Such an estimation of the joint distribution
and respective convergence analysis would then profit from assertions about the
solution characteristics of the conditional distributions.
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