996 research outputs found

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    Indoor positioning with deep learning for mobile IoT systems

    Get PDF
    2022 Summer.Includes bibliographical references.The development of human-centric services with mobile devices in the era of the Internet of Things (IoT) has opened the possibility of merging indoor positioning technologies with various mobile applications to deliver stable and responsive indoor navigation and localization functionalities that can enhance user experience within increasingly complex indoor environments. But as GPS signals cannot easily penetrate modern building structures, it is challenging to build reliable indoor positioning systems (IPS). Currently, Wi-Fi sensing based indoor localization techniques are gaining in popularity as a means to build accurate IPS, benefiting from the prevalence of 802.11 family. Wi-Fi fingerprinting based indoor localization has shown remarkable performance over geometric mapping in complex indoor environments by taking advantage of pattern matching techniques. Today, the two main information extracted from Wi-Fi signals to form fingerprints are Received Signal Strength Index (RSSI) and Channel State Information (CSI) with Orthogonal Frequency-Division Multiplexing (OFDM) modulation, where the former can provide the average localization error around or under 10 meters but has low hardware and software requirements, while the latter has a higher chance to estimate locations with ultra-low distance errors but demands more resources from chipsets, firmware/software environments, etc. This thesis makes two novel contributions towards realizing viable IPS on mobile devices using RSSI and CSI information, and deep machine learning based fingerprinting. Due to the larger quantity of data and more sophisticated signal patterns to create fingerprints in complex indoor environments, conventional machine learning algorithms that need carefully engineered features suffer from the challenges of identifying features from very high dimensional data. Hence, the abilities of approximation functions generated from conventional machine learning models to estimate locations are limited. Deep machine learning based approaches can overcome these challenges to realize scalable feature pattern matching approaches such as fingerprinting. However, deep machine learning models generally require considerable memory footprint, and this creates a significant issue on resource-constrained devices such as mobile IoT devices, wearables, smartphones, etc. Developing efficient deep learning models is a critical factor to lower energy consumption for resource intensive mobile IoT devices and accelerate inference time. To address this issue, our first contribution proposes the CHISEL framework, which is a Wi-Fi RSSI- based IPS that incorporates data augmentation and compression-aware two-dimensional convolutional neural networks (2D CAECNNs) with different pruning and quantization options. The proposed model compression techniques help reduce model deployment overheads in the IPS. Unlike RSSI, CSI takes advantages of multipath signals to potentially help indoor localization algorithms achieve a higher level of localization accuracy. The compensations for magnitude attenuation and phase shifting during wireless propagation generate different patterns that can be utilized to define the uniqueness of different locations of signal reception. However, all prior work in this domain constrains the experimental space to relatively small-sized and rectangular rooms where the complexity of building interiors and dynamic noise from human activities, etc., are seldom considered. As part of our second contribution, we propose an end-to-end deep learning based framework called CSILoc for Wi-Fi CSI-based IPS on mobile IoT devices. The framework includes CSI data collection, clustering, denoising, calibration and classification, and is the first study to verify the feasibility to use CSI for floor level indoor localization with minimal knowledge of Wi-Fi access points (APs), thus avoiding security concerns during the offline data collection process

    WLAN-paikannuksen elinkaaren tukeminen

    Get PDF
    The advent of GPS positioning at the turn of the millennium provided consumers with worldwide access to outdoor location information. For the purposes of indoor positioning, however, the GPS signal rarely penetrates buildings well enough to maintain the same level of positioning granularity as outdoors. Arriving around the same time, wireless local area networks (WLAN) have gained widespread support both in terms of infrastructure deployments and client proliferation. A promising approach to bridge the location context then has been positioning based on WLAN signals. In addition to being readily available in most environments needing support for location information, the adoption of a WLAN positioning system is financially low-cost compared to dedicated infrastructure approaches, partly due to operating on an unlicensed frequency band. Furthermore, the accuracy provided by this approach is enough for a wide range of location-based services, such as navigation and location-aware advertisements. In spite of this attractive proposition and extensive research in both academia and industry, WLAN positioning has yet to become the de facto choice for indoor positioning. This is despite over 20 000 publications and the foundation of several companies. The main reasons for this include: (i) the cost of deployment, and re-deployment, which is often significant, if not prohibitive, in terms of work hours; (ii) the complex propagation of the wireless signal, which -- through interaction with the environment -- renders it inherently stochastic; (iii) the use of an unlicensed frequency band, which means the wireless medium faces fierce competition by other technologies, and even unintentional radiators, that can impair traffic in unforeseen ways and impact positioning accuracy. This thesis addresses these issues by developing novel solutions for reducing the effort of deployment, including optimizing the indoor location topology for the use of WLAN positioning, as well as automatically detecting sources of cross-technology interference. These contributions pave the way for WLAN positioning to become as ubiquitous as the underlying technology.GPS-paikannus avattiin julkiseen käyttöön vuosituhannen vaihteessa, jonka jälkeen sitä on voinut käyttää sijainnin paikantamiseen ulkotiloissa kaikkialla maailmassa. Sisätiloissa GPS-signaali kuitenkin harvoin läpäisee rakennuksia kyllin hyvin voidakseen tarjota vastaavaa paikannustarkkuutta. Langattomat lähiverkot (WLAN), mukaan lukien tukiasemat ja käyttölaitteet, yleistyivät nopeasti samoihin aikoihin. Näiden verkkojen signaalien käyttö on siksi alusta asti tarjonnut lupaavia mahdollisuuksia sisätilapaikannukseen. Useimmissa ympäristöissä on jo valmiit WLAN-verkot, joten paikannuksen käyttöönotto on edullista verrattuna järjestelmiin, jotka vaativat erillisen laitteiston. Tämä johtuu osittain lisenssivapaasta taajuusalueesta, joka mahdollistaa kohtuuhintaiset päätelaitteet. WLAN-paikannuksen tarjoama tarkkuus on lisäksi riittävä monille sijaintipohjaisille palveluille, kuten suunnistamiselle ja paikkatietoisille mainoksille. Näistä lupaavista alkuasetelmista ja laajasta tutkimuksesta huolimatta WLAN-paikannus ei ole kuitenkaan pystynyt lunastamaan paikkaansa pääasiallisena sisätilapaikannusmenetelmänä. Vaivannäöstä ei ole puutetta; vuosien saatossa on julkaistu yli 20 000 tieteellistä artikkelia sekä perustettu useita yrityksiä. Syitä tähän kehitykseen on useita. Ensinnäkin, paikannuksen pystyttäminen ja ylläpito vaativat aikaa ja vaivaa. Toiseksi, langattoman signaalin eteneminen ja vuorovaikutus ympäristön kanssa on hyvin monimutkaista, mikä tekee mallintamisesta vaikeaa. Kolmanneksi, eri teknologiat ja laitteet kilpailevat lisenssivapaan taajuusalueen käytöstä, mikä johtaa satunnaisiin paikannustarkkuuteen vaikuttaviin tietoliikennehäiriöihin. Väitöskirja esittelee uusia menetelmiä joilla voidaan merkittävästi pienentää paikannusjärjestelmän asennuskustannuksia, jakaa ympäristö automaattisesti osiin WLAN-paikannusta varten, sekä tunnistaa mahdolliset langattomat häiriölähteet. Nämä kehitysaskeleet edesauttavat WLAN-paikannuksen yleistymistä jokapäiväiseen käyttöön

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements
    corecore