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Abstract

The advent of GPS positioning at the turn of the millennium provided consumers
with worldwide access to outdoor location information. For the purposes of in-
door positioning, however, the GPS signal rarely penetrates buildings well enough
to maintain the same level of positioning granularity as outdoors.

Arriving around the same time, wireless local area networks (WLAN) have gained
widespread support both in terms of infrastructure deployments and client pro-
liferation. A promising approach to bridge the location context then has been
positioning based on WLAN signals. In addition to being readily available in
most environments needing support for location information, the adoption of a
WLAN positioning system is financially low-cost compared to dedicated infras-
tructure approaches, partly due to operating on an unlicensed frequency band.
Furthermore, the accuracy provided by this approach is enough for a wide range
of location-based services, such as navigation and location-aware advertisements.

In spite of this attractive proposition and extensive research in both academia
and industry, WLAN positioning has yet to become the de facto choice for indoor
positioning. This is despite over 20 000 publications and the foundation of several
companies. The main reasons for this include: (i) the cost of deployment, and re-
deployment, which is often significant, if not prohibitive, in terms of work hours;
(ii) the complex propagation of the wireless signal, which — through interaction
with the environment — renders it inherently stochastic;
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(iii) the use of an unlicensed frequency band, which means the wireless medium
faces fierce competition by other technologies, and even unintentional radiators,
that can impair traffic in unforeseen ways and impact positioning accuracy.

This thesis addresses these issues by developing novel solutions for reducing the
effort of deployment, including optimizing the indoor location topology for the
use of WLAN positioning, as well as automatically detecting sources of cross-
technology interference. These contributions pave the way for WLAN positioning
to become as ubiquitous as the underlying technology.

Computing Reviews (2012) Categories and Subject

Descriptors:
Networks — Network services — Location based services
Human-centered computing — Ubiquitous and mobile computing
Networks — Network properties — Network reliability
Computing methodologies — Machine learning — Dimensionality
reduction and manifold learning
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General Terms:
Algorithms, Experimentation, Measurement

Additional Key Words and Phrases:
wlan positioning, location based services, semi-supervised learning, neural
networks, interference detection



Acknowledgements

I am endlessly grateful for the unwavering support from and encouragement by
my thesis supervisors Petteri Nurmi and Patrik Floréen. I sincerely believe I
would not have reached this goal without their expert guidance throughout. I
would especially like to thank Petteri Nurmi for his support and contributions
throughout my academic research career, and in particular for his dedicated
encouragement during the year in which I finalized this thesis.

I furthermore would like to thank my opponent, Mikkel Baun Kjeergaard, for
agreeing to participate in the defense of this thesis, and for his promptness in
responding on what was quite a short notice. His contributions in the field are
vast and varied — something which is reflected in the list of references — and it is
the utmost honor for me to have him as an opponent. I would also like to thank
my pre-examiners Yu Xiao and Amy L. Murphy for not only providing valuable
feedback to strengthen the contributions of this thesis, but also for their kind
words in the process of doing so.

The warmest gratitude is also extended to Teemu Roos and Petri Myllymaki,
whose guidance during my master’s thesis helped start my career in research.
Their support helped nurture my growing interest for academic research, but also
provided me with the first steps into the field with which this thesis is concerned.
In that vein, I would furthermore like to thank Petri Myllyméki for introducing
me to the Adaptive Computing research group at the Helsinki Institute for Infor-
mation Technology HIIT. An intellectually stimulating and fun-loving group of
researchers without exception, I particularly fondly remember our brainstorming
sessions at the local cafeteria, including the requisite ”pulla”. In addition to
my academic trailblazers Samuli Hemminki and Sourav Bhattacharya, I would
also like to thank Joel Pyykko, Andreas Forsblom, Haipeng Guo, Yina Ye, Antti
Salovaara, Taneli Vahakangas, Yiyun Shen, Tony Kovanen, Miika Sirén, Marjo-
Anna Hautaviita, and Jara Uitto for making my time at Kumpula something I
will always cherish.



vi

I also fondly remember my time at the Innovative Retail Laboratory at DFKI
in Saarbriicken, Germany, and the research group lead by Antonio Kriiger. I espe-
cially want to thank Gerrit Kahl, Liibomira Spassova, and Denise Kahl for being
such gracious hosts and teaching me about the refreshing qualities of Apfelschorle
during those warm Summer nights on the banks of the Saar.

Very special thanks are also due to Arto Klami and Krista Longi for their
enthusiastic collaboration, and for helping me adopt a new research domain dur-
ing the latter years of my study. I truly feel the contributions of this thesis are
stronger and more varied because of their work and guidance.

I gratefully acknowledge the financial support provided to me by the Future
Internet Graduate School during my time at Helsinki Institute for Information
Technology HIIT, as well as the Department of Computer Science of University
of Helsinki, including the Doctoral programme in Computer Science (DoCS). I
especially want to thank Pirjo Moen for providing invaluable support in finalizing
both my studies and this thesis.

I would also like to extend my gratitude to Ekahau for allowing me to con-
tinue my research into the topics of this thesis and for providing me with the
time and support for genuine research efforts, which I wholeheartedly recognize
is not a given in an industrial setting. I in particular want to highlight the sup-
port and guidance provided to me by Johannes Verwijnen, who helped me keep
one foot in the academic world, and without whom I likely would not be in this
extraordinary position. My colleagues at Ekahau also deserve my unconditional
gratitude for fostering an inspiring working environment. From a research per-
spective, I would also like to thank my colleagues Timo Vanhatupa, Jarno Harno,
and Ville Virkkala for the endless intellectual sparring sessions, some of which
have supported the contributions of this thesis.

Finally, but most importantly, I would like to thank my parents Lasse and
Solveig who have supported me unconditionally throughout my entire life, and
encouraged me to pursue my interests without fail. For this I am endlessly
thankful. My brother Tomas has similarly stood by me through all these years,
and I hope I have made him proud. Last, but most, my undying gratitude
belongs to my littlest raccoon Jessica, who has supported me through thick and
thin, provided me a shoulder to rest my head on when things got rough, and
supported me without question through some of the toughest decisions and tasks
I have ever had to face. Thank you.

Espoo, July 5th, 2020
Teemu Pulkkinen



Contents

1

2

Introduction

1.1 Thesis Motivation . . . . .. ... ... ... ... ... ...,

1.2 Author Contributions . . . . . ... ... .. ... ... ...
1.2.1 Location-based Service in Supermarket Environment . . .
1.2.2 Signal Space Modeling . . . . . ... ... .. ... ....
1.2.3  Detecting Competing Technologies . . . . . . ... .. ..

WLAN for Indoor Positioning

2.1 Indoor Positioning . . . .. ... ... ... ... ... ...,

2.2 WLAN as a Positioning Medium . . . . ... ... ... .....
2.2.1 WLAN Protocol . . ... ... ... ... ...
2.2.2 Measurement Characteristics . . . . . .. .. .. .. ...

2.3 WLAN Positioning . . . . . .. ...
2.3.1 Propagation Modeling . . . . . ... ... ... ......
2.3.2 Location Fingerprinting . . . . . .. ... ... ... ...
2.3.3 Probabilistic Modeling . . . . . .. ... ... . L.
2.3.4 Further Advances . . . . . . .. ... .. .. ... ...,

2.4 Application: Indoor Navigation in a Supermarket . . . . . . . ..
2.4.1 Navigation Instructions and User Attentiveness . . . . . .
2.4.2 Designing LBS for Uncertainty . . . ... .. .. .. ...
2.4.3 Mobile Navigation System for Retail Environments . . . .
2.4.4 Empirical Study . . . . ... ..o
245 Results . ... ..
2.4.6 Discussion . . . . . ...

Signal Space Modeling
3.1 Semi-supervised Learning of the Signal Model . . . . . . . .. ..
3.1.1 Isomap . . . . . ..o

00~~~ WK

o ©

12
12
15
15
16
17
20
23
24
25
27
28
29
30

31
32
33



viii CONTENTS

3.1.2 Fitting to Geographical Coordinates . . . . . .. .. ... 35
3.1.3 Empirical validation . . . .. ... ... ... .. ..... 36
3.1.4 Discussion . . . . . ... 38
3.2 Automatic Environment Partitioning . . . . . . . ... ... ... 38
3.2.1 Self-organizing Maps . . . . . . ... ... ... 40
3.2.2 Dynamic Signal-aware Partitioning . . . . . . . ... ... 42
3.2.3 Region Fitness . . . . .. ... ... L. 44
3.2.4 Empirical Validation . . . . . . . ... ... ... ..... 45
3.25 Discussion . . . . . ... 49
3.3 Related Work . . . . . .. .. 50
Detecting Competing Technologies 53
4.1 Non-WLAN Interference . . . . . . . . ... ... ... ...... 53
4.1.1 Impact on Positioning . . . . . . ... ... .. ... ... 54
4.1.2 Interference Classification . . . . . . ... ... ... ... 57
4.2 Deep Learning for Interference Detection . . . . . . . .. ... .. 58
4.2.1 Data description . . . . . ... ... 58
4.2.2 Convolutional Neural Networks . . . . . .. ... ... .. 59
4.2.3 Structured Pseudo-labels . . ... ... ... ....... 63
4.2.4 Signature-based Baseline . . ... .. ... ... ..... 64
4.2.5 Empirical Validation . . . . . .. ... .. ... ... ... 65
4.3 Deep Learning vs. Signal Modeling . . . . .. ... ... ..... 69
4.3.1 Experimental setup. . . . . . . .. ... oL 69
4.3.2 Metrics . . . ..o 70
4.3.3 Deep Learning Evaluation . . . . . .. ... ... ..... 72
4.3.4 Signal Modeling using Multiple Linear Regression . ... 74
4.3.5 Empirical Validation . . . . . .. ... ... ... ... .. 76
4.4 Discussion . . . . . ... 81
Discussion & Conclusions 85
5.1 On Indoor Positioning . . . . . . ... ... ... .. ... 85
5.2 On Location-based Services . . . . . .. ... ... ... ..... 87
5.3 Conclusions . . . . . . ... L 90
5.4 Summary of Contributions . . . . . . . . .. ... ... ... ... 92
5.4.1 Location-based Service in a Supermarket Environment
(Section 2.4, Article I) . . . . ... ... ... 92

5.4.2 Signal Space Modeling
(Chapter 3, Article IT & Article IIT) . . . . ... ... .. 92



Contents ix

5.4.3 Detecting Competing Technologies
(Chapter 4, Article IV & Article V) . . . ... ... ... 93

References 95

Publications 115



CONTENTS



Original Publications

The thesis is based on the following list of original publications, which are referred
to as Articles I - V. The articles are reprinted at the appendices of this thesis.

Article I

Article 11

Article 11T

Article IV

Petteri Nurmi, Antti Salovaara, Sourav Bhattacharya,
Teemu Pulkkinen, Gerrit Kahl.

Influence of Landmark-Based Navigation Instructions on User
Attention in Indoor Smart Spaces. In Proceedings of the 16th In-
ternational Conference on Intelligent User Interfaces (IUI '11).
ACM, 2011.

Teemu Pulkkinen, Teemu Roos, Petri Myllymaki.

Semi-supervised Learning for WLAN Positioning. In Proceed-
ings of the 21st International Conference on Artificial Neural
Networks (ICANN ’11). Springer-Verlag Berlin Heidelberg, 2011.

Teemu Pulkkinen, Petteri Nurmi.

AWESOM: Automatic Discrete Partitioning of Indoor Spaces for
WiFi Fingerprinting. In Proceedings of the 10th International
Conference on Pervasive Computing (Pervasive '12). Springer-
Verlag Berlin Heidelberg, 2012.

Krista Longi, Teemu Pulkkinen, Arto Klami.

Semi-supervised Convolutional Neural Networks for Identifying
Wi-Fi Interference Sources. In Proceedings of Machine Learning
Research, Volume 77: Asian Conference on Machine Learning,
2017, pages 391-406. JMLR, 2017.

xi



xii

Article V Teemu Pulkkinen, Jukka K. Nurminen, Petteri Nurmi.

Understanding WiFi Cross-Technology Interference Detection in
the Real World. In Proceedings of the 40th International Con-

ference on Distributed Computing Systems (ICDCS ’20). IEEE,
2020.



Chapter 1

Introduction

Location-based services (LBS) for outdoor scenarios such as navigation, fitness
tracking and even augmented reality games have become commonplace ever since
selective availability, an intentional degradation of the signal quality, of GPS was
abandoned at the turn of the millennium [Phi00]. This popularity has been
especially bolstered by the proliferation of the next generation of GPS-enabled
devices such as smartphones and wearables.

Despite this success in the outdoor location context, however, a truly ubiqg-
uitous solution for location information has yet to emerge. The GPS signal
struggles to propagate through buildings, leading to poor quality positioning in-
doors [KBG'10]. This gap in information has led to fierce competition for the
mastery of the indoor location context with technologies ranging from ultrawide-
band (UWB) [BLB05] to Bluetooth beacons [DCSM16] and even infrastructure-
free solutions like pedestrian dead reckoning (PDR) [JSPGO09]. Given that human
beings reportedly spend up to 87% of their time indoors [KNO™01], the market
potential for such a solution is arguably even greater than for the outdoor con-
text. Yet, most systems either require dedicated — additional — infrastructure or
struggle with providing a level of accuracy that indoor LBS require [BLM*17].

An early contender for indoor positioning is WLAN. The proliferation of
WLAN-capable devices has achieved a level of ubiquity matched only by Blue-
tooth. Many potentially location-aware applications therefore already exist in
spaces where this infrastructure is deployed. The added benefit over Bluetooth —
or short-range device-to-device communication technologies in general — is the use
of wireless access points as part of the network infrastructure. This allows for rel-
atively painless maintenance in terms of hardware, but also provides a larger cov-
erage for each station, ensuring the signal can be heard from tens of meters away.

1



2 1 INTRODUCTION

The first IEEE 802.11 specification for wireless networks was released in 1997,
but the main push for consumer-grade WLAN clients came with the release of
802.11b in late 1999. In many ways, then, the advent of WLAN technology
mirrors that of the widespread adoption of GPS. This is also reflected in the
publication of the earliest WLAN positioning systems [BP00].

Despite providing promising levels of accuracy at an early stage [BPO0O],
WLAN positioning has yet to become as ubiquitous as the underlying communi-
cation protocol. In fact, even 20 years later the research into WLAN positioning
has not slowed down to any discernible degree — as can be seen from Figure 1.1.
Since the early 2000s when the idea was first introduced, research into WLAN
positioning has continued more or less unrelentingly.
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Figure 1.1: Interest in WLAN positioning in academia continues unabated since
its inception. Number of search results for the term ”wlan positioning” in Google
Scholar over the years of research.

The lack of progress in providing a ubiquitous solution likely stems from many
of the confounding characteristics of the underlying physical medium. At its core
the propagation of the wireless signal indoors is tremendously complex, and often
requires detailed modeling to properly account for all possible electromagnetic
interactions between obstacles and the propagating signal [UAAL19]. The more
common approach has thus been empirical in nature — to teach a machine learning
algorithm to associate measured signal strength values with geographical loca-
tions (see Section 1.1 for a realization). Though this point of view has achieved
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impressive accuracy in many real-world environments [HFL 04, YA05, AER"19],
it is not devoid of its own set of constraints. This learning process often requires a
significant upfront effort in terms of calibration, and further maintenance when-
ever the underlying infrastructure (or environment obstacles) changes to a sig-
nificant degree. For instance, measuring a single office building could take tens
of hours [HFLT04] in order to provide the required location granularity. Fur-
thermore, the modeling of the environment for WLAN positioning purposes is
not trivial. Whereas the location context for end users often reduces to specific
rooms or hallway intersections, there is no guarantee this human interpretation
of space is reflected in the measured signal [YAO05].

Finally, because WLAN transmitters operate in an unlicensed frequency band,
they are by necessity faced with competing technologies and even unintentional
transmitters occupying the same set of frequencies. This can have the effect of
shortening the range within which signals can be heard or even obscuring cer-
tain access points completely. For WLAN positioning systems, relying on signal
strength measurements for their location information, this can have a significant
impact on the robustness of the system as well as on the accuracy of location
estimates, which in turn reduces the consistency and usefulness of location-based
services relying on it.

1.1 Thesis Motivation

A machine-learning approach to WLAN positioning is attractive because it rarely
requires modeling the physical parameters of the signal, like reflection and multi-
path, yet is still able to provide a competitive accuracy compared to other indoor
positioning systems. In a typical system of this nature, depicted in Figure 1.2, a
calibration survey is performed in the target environment, in order to associate
the signal strength measurements from various access points with geographical
locations, or location labels. These geographical locations in the simplest case
are location coordinates, but more commonly represent a larger location context
such as rooms. The machine learning algorithm is then able to use this signal
strength database to learn a location model by finding the inverse description:
an association between signal strength measurements and location. Using this
positioning model a real-time version of the algorithm can then provide location
estimates based on new measurements.
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Figure 1.2: Lifecycle of a typical machine-learning based WLAN positioning
system. This thesis contributes by supporting the most vulnerable phases.

This lifecycle is vulnerable to the stochasticity of the WLAN signal, especially
in the following three phases. First, during the calibration phase, a tremendous
manual effort is required to measure all applicable spaces in the environment. For
instance, Haeberlen et al. [HFLT04] report a minimum of 14 hours to cover an
office building with three floors. In a similar vein, the Horus system was evaluated
based on 110 sample locations, in which 100 samples were measured for 300 ms
each, for a total of almost an hour per office space [YA05]. In other words, this
largely manual effort scales poorly with the increasing size of the deployment.
Even if the survey process is augmented by interpolating coordinates between
anchor locations, multiple surveys from multiple directions are still required to
ensure a usable positioning accuracy [GH16]. The survey process could also
be coupled with alternate positioning technologies such as PDR, but this can
introduce another source of error due to drift from noisy sensors [BLM*17], in
addition to not addressing the underlying issue of manual data collection.
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Second, the design of the environment topology can introduce uncertainty
into the positioning model. During this phase, the division of the space into
location primitives typically follows the needs of the application instead of the
limits of the signal heterogeneity. For instance, it has been shown that the signal
can vary greatly even within distances shorter than the signal wavelength [YAO05].
In [HFLT04] the environment topology for the most part consists of room-level
location cells, placed manually. The authors recognize the need for covering large
spaces with multiple cells due to the standard deviation of the signal, but provide
no automated way of determining this. Approaches like [RMT102] and [NBK10]
opt for a uniform grid, which eases the topology construction greatly, but does not
consider the spatial variability of the signal. In [YAO05] the need to model so-called
”small scale variations” is recognized and accounted for in the inference phase,
but no attempt is made to adjust the model topology itself. Even more recent
works still use largely heuristic environment partitioning strategies [AER19).
Forgoing analysis such as this results in less robust solutions, which undermines
the usefulness of location-based services.

Third, even the most sophisticated and robust systems can be brought down
by disruptions in the physical layers of the wireless channel. In many cases these
instances are entirely unforeseen and cannot be accounted for during the design
of the positioning model. Depending on which stage of the WLAN positioning
lifecycle this disruption occurs, the impact can range from a specific access point
not being ”visible” during positioning to the positioning model being injected
with gaps of information where none are expected. This disruption of the infor-
mation flow can significantly impact the positioning accuracy, regardless of which
wireless technology is used [PLC*17].

The end result of ignoring these issues is a higher degree of uncertainty in the
positioning model, which directly translates to a decrease in positioning robust-
ness. In practical terms this means a location-based service, such as the indoor
navigation application described in Article I, could end up providing inconsistent
or even misleading information. This would serve to frustrate the end user and
reduce their trust in the application.

Contributions

This thesis investigates the presented issues and develops novel techniques for
mitigating or overcoming them, through the following contributions:

1. An indoor navigation application can be made to work in challenging real-
world environments by supporting the positioning algorithm with a graph-
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based abstraction of the location information. The manual effort required
to initialize the system and design said abstraction provides motivation for
our further contributions. This work is presented in Article I [NSB*11] and
summarized in Section 2.4.

2. The calibration effort can be significantly reduced by exploiting the inherent
interdependency of measurements in the signal space. By modeling this signal
space as a multidimensional manifold, the locations of measurements without
ground truth labels can be determined through a form of non-linear interpo-
lation from neighboring measurements with known locations. This work is
presented in Article IT [PRM11] and summarized in Section 3.1.

3. Starting from a traditional discretization of a space, e.g. a uniform grid,
the positioning environment can be evaluated in terms of the consistency of
measurements in each discrete location. This evaluation is performed au-
tomatically through the use of a self-organizing map, which can be used to
determine the variability within and between location cells. This same process
can be used to provide a more robust, and light-weight, form of discretization
that adheres to the underlying signal variation by merging co-located and
low-performing regions. Finally, by describing a measure for region fitness,
candidate locations for new access point placements can be suggested. This
work is presented in Article III [PN12] and summarized in Section 3.2.

4. The presence of competing technologies in the frequency band can be de-
tected through popular neural network constructions previously used for tasks
such as image recognition. Even simpler, linear, approaches can be shown to
achieve competitive results without the added burden of massive data col-
lection schemes and with arguably more interpretable and applicable results.
This work is presented in Article IV [LPK17] and Article V [PNN20], and
summarized in Chapter 4.

A central theme of the contributions of this thesis are the complications faced
when putting theoretical concepts to practice. Empirical approaches to WLAN
positioning require effort and planning but are still faced with a level of uncer-
tainty. To ensure that the contributions provide real-world benefits, the pre-
sented techniques have been empirically validated in real-world environments
using measurements from off-the-shelf hardware. Many of these contributions
have also been validated in complex open spaces such as supermarkets, which
are known to be adversarial to WLAN-based indoor positioning.
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1.2 Author Contributions

1.2.1 Location-based Service in Supermarket Environment

Article I : Influence of Landmark-Based Navigation Instructions on
User Attention in Indoor Smart Spaces

The author helped finalize the positioning system installation in the supermarket
environment, performed many of the surveys required for the underlying position-
ing system and helped construct the connectivity within the store. Furthermore,
under the guidance of Petteri Nurmi, the author performed the discretization of
the supermarket space, defined the graph structure, the neighborhood abstrac-
tion as well as the shortest path solution for the navigation component. Finally,
in collaboration with Sourav Bhattacharya, the author helped develop the MON-
STRE navigation system and contributed to the writing of the sections of the
article relating to the location-dependent aspects of the contribution.

1.2.2 Signal Space Modeling
Article II : Semi-supervised Learning for WLAN Positioning

The initial draft of the article was based on work by the author under the guidance
of Teemu Roos and Petri Myllyméki. This included all experiments, related work
as well as tuning the Isomap algorithm. The final version of the article was
produced in collaboration with the co-authors.

Article II1 : AWESOM: Automatic Discrete Partitioning of Indoor
Spaces for WiFi Fingerprinting

The author implemented the self-organizing map and contributed the various fit-
ness scores, including the use of the rank-based correlation implementation. The
refinement of the solution, including the score threshold and the specific clus-
tering technique used, and writing of the article was performed in collaboration
with Petteri Nurmi.
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1.2.3 Detecting Competing Technologies

Article IV : Semi-supervised Convolutional Neural Networks for Iden-
tifying Wi-Fi Interference Sources

In terms of writing, the author provided the related work into interference detec-
tion, including the baseline algorithm as well as its implementation and evalua-
tion. The author also performed all measurements for the study, and contributed
to the writing related to interference detection as well as the WLAN domain. The
author also took part in designing the experimental setup and contributed to the
data representation and preprocessing.

Article V : Understanding WiFi Cross-Technology Interference Detec-
tion in the Real World

The initial draft, including all experimentation and the problem description was
performed by the author. A further draft was prepared under the guidance of
Jukka K. Nurminen. The final version was a collaboration between the author
and Petteri Nurmi.



Chapter 2

WLAN for Indoor Positioning

When selective availability of GPS was abandoned in 2000 [Phi00], tasks such as
navigation, time synchronization, and emergency services greatly benefited from
the improved accuracy. These advances were later amplified by (cellular-)assisted
GPS providing a faster lock-on, which modern smartphones could utilize. De-
spite these benefits, GPS positioning carried with it a major caveat that for most
intents and purposes has yet to be resolved: the viability of indoor positioning.
While the signal itself can be heard almost anywhere, the resulting accuracy is
essentially reduced to that of the days of selective availability whenever the posi-
tioning device is brought indoors [ZB11]. The problem of indoor location context
is further exacerbated by the need for fine-grained positioning. Whereas a 5 me-
ter error outdoors could still provide enough context for automotive navigation
to keep track of which road is being traversed — through so-called map matching
— a similar drift in position indoors could mean the difference of adjacent rooms
or even one floor and the next, which is rarely an issue outdoors.

In the following we briefly discuss some of the ways in which indoor position-
ing has been implemented, before turning our attention to WLAN positioning as
a driver for location context.

2.1 Indoor Positioning

Positioning is fundamentally about mapping a measurable, spatially varying but
temporally stable, quantity to useful contexts, such as location-dependent in-
formation or guidance. Indoors, this has been attempted with a wide array
of technologies and modalities; for instance, [BGVGT17] considers techniques

9
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based on RF signals, light, sound and magnetic fields in their survey. Even
measurements of gamma radiation have been successfully used to provide loca-
tion context [BK08]. However, in many cases these approaches carry additional
requirements that hamper their ubiquitous adoption. Though the source of lo-
cation information can take various forms, a common distinction — as described
in [Kjae07] — is whether or not the approach requires external infrastructure to
provide the location information. Whereas infrastructure-based techniques can
provide fine granularity of location, the added infrastructure often carries a pro-
hibitive cost for larger spaces or requires constant maintenance. Infrastructure-
less approaches can usually provide location independently, based on sensing the
environment without synchronization with an external system. The caveat of
these approaches, on the other hand, is the lack of context during initialization
or a steady drift from known locations.

Infrastructure-based approaches often need to strike a balance between accu-
racy and cost. Techniques like ultrawide-band can achieve sub-meter accuracy
[AAHA11] but require an added set of infrastructure with precise configuration
and do not necessarily handle non-line-of-sight cases very well. Bluetooth bea-
cons, on the other hand, are relatively low-cost and have a less involved setup
process. Because these devices are usually battery operated, there is a significant
maintenance cost involved, especially for larger spaces [WB15]. Radio-frequency
identification tags carry a similar burden, but also have to contend with the
added limiting factor of requiring a tag on the receiving device, whereas Blue-
tooth could be found on most modern smart devices — though rarely enabled
continuously in order to conserve energy. Examples of commercial applications
utilizing external infrastructure include Quuppa [Quu20], which uses Bluetooth-
based Angle-of-Arrival for accurate positioning, and Walkbase [Wal20] which
provides a WLAN /Bluetooth hybrid technology for asset tracking.

Technologies such as the inertial sensors (or inertial measurement units, IMU)
in modern smartphones do not require external infrastructure to provide location
updates. Pedestrian dead reckoning (PDR) allows for continuous tracking of a
user based on the estimation of the user’s heading — often through a fusion of
gyroscope, magnetometer, and accelerometer readings [DP17] — and movement
rate (interpreted through step detection or zero-velocity updates [LIJW14]). A
typical issue in such an approach, however, is that inherent noise in sensors
compound over time and will cause drift unless bootstrapped by periodic external
location fixes [BLMT17].

Another promising alternative is to use magnetic fields for location infor-
mation. Due to steel beams in buildings, variations in the magnetic field are
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plentiful, and have been shown to provide good accuracy [HK09]. Resolving the
three-dimensional pose of a smartphone — especially with varying quality of sen-
sors — and magnetic interference complicate matters greatly [DP17]. Magnetic
fingerprinting also requires high granularity, which demands effort [DP17].

The shortcomings of one methodology can sometimes be compensated by an-
other modality, forming hybrid solutions. For instance, the drift of systems like
PDR relying on IMU has been successfully curtailed through visual feature track-
ing with smartphone cameras [LKM13, DNXY19]. A limitation of this particular
approach is the need for a live camera feed, which can be energy intensive and
cumbersome in many location-based service scenarios. Since drift cannot be fully
eliminated even in this methodology, further occasional absolute position infor-
mation is usually required from an external source [LKM13]. Many applications
have also used environmental constraints, such as shapes of hallways [RCPS12],
locations of access points [CPIP10] and even the accelerometer pattern caused
by elevators [WSET12] to provide additional sources of location information.

2.2 WLAN as a Positioning Medium

While any positioning approach relying on WLAN is inherently infrastructure-
based, using WLAN networks for positioning has garnered great interest mainly
due to the ubiquity and low cost of the infrastructure and the clients supporting
the protocol. For many potential location aware contexts, a WLAN network has
already been set up to provide connectivity for mobile devices. Furthermore,
because of the proliferation of WLAN-capable devices, such as smartphones and
laptops, WLAN positioning is an attractive proposition because it can largely
be performed with software alone. This ensures calculation can be offloaded
to the client, which means the location context can be resolved as close to the
target as possible. This client side calculation also provides an avenue for privacy
preserving applications. This latter aspect is provided by other infrastructure-
less approaches like PDR as well, though not without periodic bootstrapping
from external systems, such as those listed above.

In the following, we briefly describe the underlying characteristics of this
medium, after which we present the fundamental concepts of typical WLAN
positioning systems, with a focus on methods that rely on so-called WLAN signal
strength fingerprinting. Finally, we describe a study which — as part of a project
investigating indoor location-based services — used a WLAN positioning system
to provide the location information for a navigation application in a supermarket
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environment. This environment arguably provides one of the more complicated
scenarios within which a WLAN positioning algorithm could be instrumented,
given its combination of open spaces [NGL*13] and high pedestrian traffic, which
is known to cause fluctuation in signals [dIBQAG™'17].

2.2.1 WLAN Protocol

The TEEE 802.11 standard describes a protocol for WLAN communication in,
among others, the 2.4 GHz and 5 GHz frequency bands. Technically, the con-
cept of WLAN is wider than what the IEEE 802.11 standard specifies. For
instance, HiperLAN is an alternative WLAN implementation developed by the
European Telecommunications Standards Institute (ETSI) [BC13]. In practice,
most WLAN communication today is based upon the IEEE 802.11 specification.
Wi-Fi, a registered trademark of the non-profit Wi-Fi Alliance [Wi-20], is often
used interchangeably to refer to WLAN devices certified to operate within this
standard. For the sake of clarity, in this thesis we will use WLAN to refer to
IEEE 802.11 protocol communication, unless otherwise specified.

WLAN access points conforming to the IEEE 802.11 standard broadcast their
capabilities to potential clients through so-called beacon frames. Through these
frames, a client scanning the appropriate wireless channel, knows about the avail-
able wireless endpoints in its vicinity. Though the interval between beacon broad-
casts is not defined in the specification, a common configuration is 100 time units
(1 TU = 1024 ps), or 102.4 ms [SG15]. This interval provides a balance between
crowding the airtime of the channel, network responsiveness and energy efficiency.

The specific measure that provides the location context for most wireless
clients is the signal strength of the received beacons. According to IEEE specifi-
cations, the received signal strength indicator (RSSI) is measured by the receiving
station during the reception of the beacon preamble [IEE16], i.e. the first fields
of the received frame used for synchronizing the transmission. The standard fur-
thermore requires that the measured RSSI “has an accuracy of +- 5 dB (95%
confidence interval) within the specified dynamic range of the receiver”, meaning
the inherent noisiness of the wireless medium is a well understood issue and can
directly contribute to errors even during standard operation.

2.2.2 Measurement Characteristics

The signal strength of a beacon frame, i.e. RSSI, is usually expressed through
decibel milliwatts (ABm). This decibel domain expression has been chosen, among



2.2 WLAN as a Positioning Medium 13

other things, to allow for the computation of different components of the signal by
addition instead of multiplication [Gal08]. This description also has the added
benefit of making the relatively small power values measured in the wireless
communication framework human readable and comparable. For instance, a
measurement of -60 dBm corresponds to a linear power of 1 * 1076 mW. The
decibel milliwatt is defined as

10 * log1g < (2.1)

P
1mW> ’
where P is the power, in milliwatts, to be converted. That is, the decibel milliwatt
is defined relative to 1 milliwatt, so that 0 dBm corresponds to 1 mW. A doubling
of power (in the linear scale) would approximately correspond to adding 3 dB
(10 % log10(2)) on the decibel scale.

The WLAN signal attenuates, i.e. decreases in power, as it travels. This prop-
agation path loss is typically described through the free-space path loss (FSPL)
formula, here specifically in its log-distance form, which calculates the loss in
decibels directly:

d
L, + 10vlogyq & + X (2.2)

Here the term L, corresponds to the transmit power at distance 0, the term
10vlog;q % is the path loss component, where the exponent v depends on the

medium (v = 2.0 in free space) and d% is the distance with respect to the location
where L, was measured, and X, is a collector term corresponding to all sources
of channel fading, usually modelled as Gaussian random noise. An example path
loss scenario is presented in Figure 2.1 where, starting from an estimated trans-
mit power of -20 dBm the signal attenuates 40 dB over 80 meters. In practice,
however, this attenuation is often greater due to interaction with the environ-
ment. This includes attenuation when passing through walls and people moving
around, as well as reflection off surfaces. The signal can also be subject to multi-
path [Gol05], meaning it arrives at the receiver multiple times with varying delays
and power due to the different paths it took to arrive. These sources of signal
attenuation mean the resulting measured power level rarely corresponds to what
the FSPL model would predict. Obstacles and materials in the environment need
to be modelled precisely to provide accurate measures. In practice, due to all the
different sources of (additive) noise in the wireless channel, even measurements
made while stationary will tend to a normal distribution, due to the central limit
theorem [CTO06]. However, research has shown that for WLAN transmissions in
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particular the measurements are rarely strictly Gaussian, but are left-skewed to
some extent [KKO04]. Assuming a Gaussian fit for WLAN measurements in a
probabilistic system — something which we explore in Section 2.3.3 — thus carries
potential caveats in terms of model uncertainty.

Decibel milliwatt
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Figure 2.1: Theoretical free-space path loss of WLAN transmission on 2.4 GHz
band.

Finally, since signal attenuation is known to increase along with the frequency
of the carrier signal [ASVN12], the 2.4 GHz and 5 GHz bands WLAN most com-
monly uses strike a delicate balance for positioning purposes. In the higher end —
e.g. the 60 GHz band — even interaction with oxygen can influence attenuation,
with signal loss of up to 20 dB higher than in the 5 GHz band [Cor09]. Lower
frequencies, e.g. FM radio in the 100 MHz range suffer less attenuation and
better penetration from the environment due to their longer carrier wavelength,
but in turn have less spatial variation in the signal. Although ambient FM radio
signals, among other lower frequency technologies, have been used for positioning
with modest success, in at least one study WLAN signal strength measurements
in the same environment provided better accuracy [MD14]. Improved accuracy —
comparable to WLAN positioning — can be achieved, but requires instrumenting
the environment with further short-range FM transmitters [POM10].
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2.3 WLAN Positioning

In WLAN positioning, the location-dependent quantity used for positioning is
typically the RSSI from WLAN access points, since its propagation character-
istics are known, though in theory any measurement that varies uniquely by
location could be used. The way the location dependency of RSSI is exploited
varies to a great degree. A common dichotomy, e.g. as defined in the taxonomy
described in [Kjae07], is to determine location either through a so-called model-
based approach, where location is determined using the known physical propa-
gation characteristics, or an empirical approach, where the relationship between
signals and the physical space is learned. In this latter approach less information
about the physical properties of the signal is required, only that measurements
exhibit a spatial dependency and vary smoothly over the physical space.

The model-based approach has been used to great success in outdoor condi-
tions — which the ubiquity of GPS trilateration can attest to — but in indoor spaces
the number, type and shape of obstacles quickly becomes intractable to model
precisely [OAAJ18]. In the WLAN positioning field the empirical approach has
then gained favor, in particular through the concept of location fingerprinting.
In the simplest systems only a database of signal strength and location pairs
are required for room-level accuracy, which is a sufficient level of abstraction for
many location-aware applications. For the sake of completeness, however, we first
briefly describe ways in which the model-based approach has been implemented.

2.3.1 Propagation Modeling

Provided that at least three WLAN access points are heard throughout the envi-
ronment and the specific path loss propagation parameters are known, the loca-
tion of a WLAN client could be determined through trilateration. In short, given
a set of fixed locations and distances to them, trilateration can solve position es-
timates using the geometry of circles. A propagation model can estimate these
distances by interpreting measured signal strength using a path loss formula.

A practical requirement for this approach is that the locations of the access
points used for positioning are known, which is not always the case and can
require significant effort to determine through a manual survey. Access point
locations can be estimated as a separate endeavour [KC11], but any uncertainty
in those estimates will transfer into the resulting positioning system as well. In
theory, an access point could determine its own location if it is aware of the
locations of three other access points in the environment, but because of the
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various additive components of the signal arriving at the receiver, trilateration
quickly becomes infeasible. Few locations in the environment correspond to the
”free-space” that the simplest path loss formula provides, and further refinement
requires an intricate understanding of the obstacles and material types in the en-
vironment. These environment parameters can to some extent be tuned based on
incoming signal strengths and known propagation characteristics. For instance,
in [KHLHO3] an extended Kalman filter was used to tune the parameters, includ-
ing the path loss exponent and transmitter and receiver gains. This approach
reached a mean accuracy of 3.6 meters. Because these parameters have to be
solved for every access point, there is again a risk of introducing errors even
before the position estimate itself is resolved.

An alternate scheme is to introduce synchronization into the WLAN network
and perform positioning through time-difference-of-arrival (TDOA), as was per-
formed in [YOTT05]. In this work, an accuracy of 2-3 meters was achieved in
the 67th percentile, but required an added synchronization component that was
not available in the standard specification. In a related work, the multiple an-
tenna arrays supported by the IEEE 802.11n multiple-input and multiple-output
(MIMO) protocol was used to achieve an accuracy of 2 meters through angle-of-
arrival (AOA) techniques [WKMO8]. In addition to being less compatible with
off-the-shelf WLAN clients, these results were achieved through simulations, and
were not verified within an actual WLAN network or similar signal-to-noise-ratio
(SNR) constrained conditions.

2.3.2 Location Fingerprinting

The empirical approach to WLAN positioning entails performing a survey of
the environment and labeling measured signal strength vectors with known real-
world locations [HPAP09]. These signal strength vectors consist of the signal
strengths measured from the access points heard in the environment. Formally,
samples of signal strength S = [s1, 9, ..., $,,] are labeled with locations L, which
traditionally take the form of either coordinates or areas (e.g. rooms). Here n
corresponds to the number of access points heard in the target environment. In
order to increase robustness, the signal strength vectors typically correspond to
the average of multiple measurements.

During the positioning phase, location is then determined by searching the
signal space, consisting of one or more measurements S for each location L,
for the closest match to a newly measured signal, and estimating a real-world
location based on the previously established mapping.
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In the first implementation of this technique, RADAR [BP00], the location
estimate was performed through k-nearest-neighbors (k-NN) where, as the name
implies, the k nearest signal strength neighbors (in terms of Euclidean distance)
were considered and the suggested location was the average of the closest matches
in the location space. In this work the improvement compared to a model-
based technique was first shown; even a simplistic environment with 70 measured
locations and 3 access points reached a median accuracy of 2-3 meters.

2.3.3 Probabilistic Modeling

A further sophistication of location fingerprinting is the probabilistic modeling
of the signal space. Initially this probabilistic model was described through his-
tograms or Gaussian kernels [RMTT02], but later the Gaussian density function
description became a more popular technique [HFLT04, YA05]. In practice this
approach consists of storing not only the average signal strength value, but the
estimated standard deviation as well. This description allows determining the
probability of a newly measured value s, through

exp — (:u — Sm)2
o2mo 202

P(sp|L) = ) (2.3)
where p and o correspond to the average and standard deviation of the signal
in location L, respectively. Though this Gaussian description to some extent
is in conflict with the study in [KKO04] that measurements tend to have non-
Gaussian skew, it was found early on that a Gaussian assumption helps smooth
out temporal variations and missing values from the measurements [HFLT04].
This description also has the benefit of decreasing the complexity of the proba-
bility model [HFL™04], which can have a significant impact on not only storage
capacity, but also processing speeds on CPU and energy constrained mobile de-
vices — a typical end client in WLAN positioning systems.

Given this model of the signal for location L, the position estimate is then
typically modelled using Bayesian inference [RMTT02]:

P(sm|L)P(L)
P(sm) .

Here P(s;,|L) corresponds to the likelihood of the signal given the location — the
fundamental component of a probabilistic positioning system — i.e. Equation 2.3
in the Gaussian approach. Though not a strict requirement in approaches satis-
fied with the location with maximum likelihood, this quantity is usually normal-
ized by the likelihood of the data, in this context the measured signal strength

P(L|sm) = (2.4)
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sample, P(sy,), to provide a probability distribution over locations. A typical
measure of this likelihood is Y 1" | P(8,|L;), or the sum of the likelihood of the
same signal over all other location candidates.

For the sake of simplicity, the probability P(L|s,,) is often treated (in a naive
Bayes sense) as being independent for each access point, meaning it can be solved
for each location through the product of the individual probabilities. Arguably,
this independence assumption is violated when the user moves [RMT102], but
in practice this independence assumption has served the task well.

A maximum likelihood approach could at this stage provide a position esti-
mate as the location with the highest likelihood (or probability, if normalized).
Usually, however, added context can be ascribed by taking into account the prior
probability of the location P(L). A uniform prior would essentially provide no
information, but the distribution could also be initialized based on personal be-
havior [CCKMO1]. In other words, the system could be primed to locate users
based on their specific day-to-day movement patterns. Another alternative is to
use the prior for Bayesian inference by using the previous location probability to
inform the next, in a hidden markov model (HMM) sense. This has the effect of
improving the tracking accuracy, i.e. updating the location as the user moves.

The increase in accuracy through the use of probabilistic modeling was quickly
apparent across contemporary publications. [RMT102] reached a median accu-
racy of approximately 1.5 meters, whereas [YA05] — through additional improve-
ments such as an autoregressive model of sequential signal strength samples and
an access point clustering module — achieved a median accuracy of around 0.5
meters. In this work — as in many others — validation was performed in an office
environment and not in complex everyday environments with less constraints pro-
vided by the environment topology. In environments with more open spaces, such
as supermarkets or malls, the correspondence between the defined environment
topology and the spatial variability of the signal might no longer apply.

To enable a probabilistic model typically involves either using human context
labels like rooms or discretizing the environment in a uniform way in order to
define the location primitive over which to calculate summary statistics. This
is traditionally a manual effort that only scales well for uniform discretization,
which in turn has to contend with each location inevitably having different prop-
agation characteristics. Two potential causes of uncertainty are at risk of devel-
oping at this stage. First, if a location with multiple modes in signal space is
modelled as one cohesive region, the variance of the signal model will increase. In
terms of a Gaussian fit, this will directly translate to greater uncertainty about
the location even if the measured signal matches any one of the modes in the



2.3 WLAN Positioning 19

distribution. This is illustrated in an example scenario in Figure 2.2. Though
the received signal strength measurement (-60 dBm) falls exactly on the mode
of the signal model in Location B, Location A will appear more likely simply be-
cause its model is less uncertain. Using non-parametric probabilistic models like
histograms could alleviate such issues, but to the detriment of model complexity,
storage and computational efficiency.
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Figure 2.2: Impact of uncertainty in the probabilistic model. A greater variance
could make even exact matches appear less likely than competing hypotheses.

Second, if a location with only one mode is partitioned into two or more
regions, these locations will appear equally likely in terms of the signal model.
Though the position estimate might still be constrained by the union of these
regions, the robustness of the estimate will suffer because even a slight change in
the measurement might make one region appear more likely than the other.

To provide a serviceable level of accuracy typically tens of measurements
per location are required to ensure the probability model describes the signal
in a statistically sound way. To maintain such a system further requires that
the model is updated whenever significant changes to the environment occurs.
These measurements tend to require manual effort to obtain, especially during
the labeling process, which can quickly become untenable for large spaces. These
and the previously described limitations of the empirical approach to WLAN
positioning are the focus of our contributions described in Chapter 3.
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2.3.4 Further Advances

Since the previously described initial WLAN positioning approaches, many ad-
vances have been made, focusing mainly on improving accuracy and robustness.
Among these improvements is accounting for the user’s motion during position-
ing as well as the difference between measurement hardware. In the following we
briefly describe notable work in this domain, to the extent that is necessary for
motivating our contributions to this field.

Particle Filtering

Many of the previously described approaches indirectly take the mobility of the
user into account, but the execution has usually remained on the level of a prior
in the Bayesian inference iteration, such as a Hidden Markov Model of the user’s
motion [KHO4]. A more sophisticated and formal description of the same has
been presented in the context of particle filtering [HB04]. This allows for a
probabilistic modeling of the location as well as the motion of the user. This
technique, initially presented as the bootstrap filter [GSS93], models the user
location through a set of particles, each of which essentially contain a hypothesis
of the user’s location. The previously described model of the signal in each
location is augmented with a motion model (i.e. noise model in the original
bootstrap filter) that gives particles close to the previous location more weight
than those that have been sampled further away. Specifically, at each iteration,
each particle’s hypothesis (e.g. the Gaussian probability density function of signal
strength) is tested against the measured signal strength, and reweighted based
on the strength of the match. The set of particles is then resampled based
on this new distribution, essentially duplicating well-performing particles and
eliminating particles with low weight. Before the next measurement phase, the
remaining particles are then propagated according to the motion model, which
in the simplest case could be a Gaussian kernel over nearby locations. The main
benefit of this approach is not in the improvement of local accuracy but rather a
smoothing of the motion trajectory over time; using a particle filter can reduce
the accumulated motion error significantly [HBO04].

Though location smoothing techniques such as this can greatly improve the
tracking error in WLAN positioning, especially over time, they are exclusively a
post-hoc solution to the fundamental issue of WLAN signal spatial variability.
Even a fully instrumented particle filter still has to contend with uncertainties
(such as those caused by multiple modes) in the positioning model. The distance
between two equally likely locations — and thus successive position estimates —
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might be longer than what the motion model is designed for, meaning a fraction
of particles might have to be propagated randomly to avoid getting stuck in local
optima. In other words, the motion model mostly assumes a smooth transition
from one location to the next, which is not always guaranteed especially in noisy
environments. This is an issue we will contend with, and to some extent overcome,
in our navigation application described in Section 2.4.

Device heterogeneity

An issue that could be missed during the construction of a WLAN-based posi-
tioning system is the difference in characteristics of the devices used for training
the model and those used for providing the location context to the end user. In
addition to potential differences in hardware from the same vendor, especially in
the case of low-cost hardware, different implementations of the same hardware
concept can cause a misalignment in the positioning model. These differences
could include the polarization of the antennas, i.e. the way the receiving an-
tenna is aligned w.r.t. to the transmitting antenna. This is characterized by the
so-called polarization mismatch factor (PMF), described by [YH10]:

PMG = cos’a, (2.5)

where « corresponds to the angle of misalignment. In the extreme case, e.g. a
vertically polarized transmitter and a horizontally polarized receiver, no signal
could actually be received. Devices also have to contend with different levels of
sensitivity as well as antenna transmission patterns.

Some works have taken this imbalance into account. In [HFLT04], device
calibration was handled through a linear calibration function

c(i) = c1 %1 — ¢y, (2.6)

where ¢ represents the signal value of the target device and ¢; and co the pa-
rameters that are learned through calibration. This adjustment provided an
improvement from 70% to 88% correct location estimates after calibration. In
another work [KMOS§], this calibration phase was circumvented by redescribing
the fundamental signal strength value as pairwise ratios between access points
and performing the traditional probabilistic location modeling as previously de-
scribed. This description provided nearly identical results to a manual calibration
approach. Similar robustness in the face of device heterogeneity has also been ac-
complished using deep-learning approaches, by forcing a neural network to learn
on noisy samples [AERT19].
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Hybrid Modeling

Given the inherent effort required by the empirical description of the signal
strength variation in the environment, some works have displayed a renewed
interest in incorporating aspects of the known signal propagation characteris-
tics into the probabilistic modeling framework. For instance, we found [PVN15]
that by simulating signal strength fingerprints using the path-loss equation (see
Equation 2.2) given the known locations of access points and simply fixing the
path-loss exponent — a factor that could be thought to represent all obstacles
in the path — one could reach accuracies close to those of a purely empirical
approach. Specifically, we estimated a slightly worse median accuracy but im-
proved worst-case accuracy. The main limitation of this work is the lack of a
formal description of the way the path-loss exponent could be determined; in the
study this exponent was found by minimizing the positioning error, which inher-
ently requires a baseline empirical measurement and does not as-such alleviate
the underlying burden of calibration.

Deep Learning

The success in recent years of deep learning techniques, especially for image recog-
nition [KSH17], has garnered interest in the WLAN positioning community as
well. In DeepFi [WGMP15] the spatial variability of another location-dependent
WLAN quantity, that of channel state information (CSI), was exploited for posi-
tioning purposes. This source of information provides a richer description of the
communication channel between the client and the access point, something which
has been previously been used to enable decimeter-level accuracy in [KJBK15].
However, CSI measurements require specific WLAN hardware and custom drivers
— decreasing the potential for ubiquitous adoption — and the deep-learning as-
pect requires even more measurements than traditional RSSI fingerprinting. In
DeepFi, 500 to 1000 measurements per location — recorded over an interval of 1
to 2 minutes, respectively — was used for training the network.

WiDeep [AERT19] also described a deep-learning approach, but used RSSI
for its location information. The work furthermore provided a way to handle
device heterogeneity by instrumenting the neural network with a denoising com-
ponent as well as artificially injecting noise into training samples. Though it
was able to improve on the accuracy of DeepFi, it also required up to thousands
of measurements for each target location. Even a generous assumption of only
one WLAN channel to measure, at a typical beaconing rate of &~ 100 ms, 1000
measurements would require 100 seconds of measurements per location.
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2.4 Application: Indoor Navigation in a Supermarket

The location context provided by a positioning system is given purpose through
the location-based services that utilize it. One important subcategory of such
services is that of navigation. Navigation is particularly beneficial in complex
indoor spaces such as airports, train stations, and supermarkets — where crowding
conditions have been found to be one of the main causes of stress [AM98]. In the
context of a supermarket, an indoor navigation application could take the form of
a shopping assistant, guiding the customer to the products in their shopping list.
Such a feature has been determined important in a previous study on shopping
assistant feature ratings [BFF*12]. Our first contribution in Article I [NSB*11]
provides a study into such a supermarket navigation aid.

The supermarket environment provides one of the most challenging oppor-
tunities for indoor positioning systems based on wireless signals due to electro-
magnetic interference, metallic shelving, great variations in crowd density and
multiple open spaces. This is reflected in the positioning system accuracy. In
a study [BFF'12] using the same system described in this contribution it was
found that whereas the median accuracy is in line with state-of-the-art systems,
in the range of 1-2 meters depending on the position update interval and crowd-
ing conditions, the 90th percentile accuracy ranges from 3-5 meters — enough, in
the worst case, to jump from one end of an aisle to the other. This variability in
accuracy is a major liability especially in the supermarket context, where product
categories can change multiple times along a shelf, let alone from one aisle to the
next. One crucial contribution of the work presented here then is how the uncer-
tainty of the location context in this study was overcome through the abstraction
of locations and the concept of location neighborhoods. While the following user
study largely focuses on the design of effective navigational aids, it serves as a
motivating example for the other contributions of this thesis. A WLAN posi-
tioning system was chosen specifically to address the constraints posed by the
complex indoor environment, and to take advantage of existing infrastructure
that was already in use. Alternative solutions were not deemed feasible due to
the need for specialized infrastructure, high cost, or other complicating factors
as described previously in Section 2.1. At the same time, implementing a gen-
uine location-based service on top of a WLAN positioning system allowed us to
examine the impact of positioning errors on the end-user experience. WLAN
positioning already satisfies many of the criteria deemed important for indoor
navigation applications, including cost, energy-efficiency, accuracy, and response
time [BLM™17]. Problems with robustness, as expressed through low quality
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position estimates, has been shown to negatively affect the user experience in
outdoor navigation applications [RSK19]. Investigating these issues in the in-
door domain — and devising strategies to overcome them — is then an essential
component of research into location-based services.

2.4.1 Navigation Instructions and User Attentiveness

Supermarkets are prime candidates for location-based services, such as naviga-
tion, as they typically consist of open spaces and have confusing and repetitive
layouts. This fact has not gone unnoticed by academia, and there is indeed a
rich history of providing intelligent retail services for shoppers. An early appli-
cation in this domain is the Personal Shopping Assistant[ACK94], which was an
early proponent of providing the consumer with a personalized context in their
shopping experience instead of relying on static local displays of advertisements,
as these could be considered distracting in terms of the shopping experience.
In a later study, a more decision-theoretic approach was taken to the task of
supermarket navigation [BJJA05]. There a system was implemented under the
dual constraint of maximizing the product finding likelihood and minimizing the
time spent on navigation. The study described in Article I [NSB*11] considers a
further constraint to this system in the trade-off between the customer and the
system provider. Whereas traditional indoor location applications, such as offices
or hospitals, can help alleviate the cognitive load of visitors trying to navigate an
unfamiliar space by leveraging a positioning system, the owners of a commercial
space often have conflicting goals. An indoor navigation tool could on its own be
used for internal purposes, such as inventory management and shelving, without
providing the service to customers. To incentivize the provider to extend the ser-
vice to customers, the application would likely have to provide benefits beyond
an overall sense of customer satisfaction. The aforementioned conflict in goals
arises when the customer wants to perform their shopping task as effectively as
possible, while the provider — usually the owner of the supermarket — wants to
expose the customer to as many products as possible during their visit. That
is, customers should ideally be made aware of the advertising and products in
order to entice them to do further purchases [NSF*14, GA15]. This means a
navigational aid provides an interesting dilemma: decreasing the cognitive load
of navigation means visitors need to pay less attention to landmarks, many of
which have been designed with great effort and resources to be as enticing as pos-
sible. To provide a solution that satisfies both parties, then, requires rethinking
the type of landmarks used for navigation.
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In the following study, the impact of different landmark strategies was ex-
plored by presenting customers with two kinds of navigation instructions, and
measuring the cognitive load and recall of landmarks. A set of traditional sign-
based landmarks focused on salient features of the environment, whereas product-
based landmarks provided a trade-off between bringing advertisements to the
user’s attention while still decreasing the overall effort of navigating the space.
Though an increase in visual demand of landmarks had the expected effect of
increasing the cognitive load of the customers, the navigation aid itself compared
favorably to unaided scenarios, which suggests such a landmark strategy can
make users pay more attention to branding without sacrificing the usefulness of
the location-based service. Though the customers’ recall of the products wasn’t
shown to have increased in a significant way, studies have shown that simply
increasing customers’ attention can influence purchasing behavior [SKI17].

2.4.2 Designing LBS for Uncertainty

The study described in Article I was carried out as part of a larger project on
intelligent services for supermarket environments. In order to provide location-
awareness in this project a commercial WLAN positioning system was used for
location updates. Specifically, the Ekahau RTLS system was set up in a super-
market in Helsinki, Finland, with 29 access points available for use in position-
ing. This system is based on concepts originally presented in the work by Roos
et al. [RMT102, Kup05], but also includes later developments such as a particle
filter [Mis07]. As part of this deployment, a set of so-called rails were drawn
on all traversable paths in the environment. This helped the positioning system
not only constrain its solution space, but also provided it with a topology that
respected environment obstacles as part of its design. This ensured the posi-
tion could never fall on top of a shelf or other inaccessible environments. The
accuracy of this positioning system was evaluated separately to have a baseline
median accuracy of 2 meters and 5 meter 90th percentile accuracy [BFFT12].
This worst-case accuracy meant the solution was not stable enough for some
of our concurrent LBS research purposes, such as location-based recommenda-
tions and product location indexing [BFF*12, NSF*14], which meant a further
abstraction of the space was required. This took the form of a partitioning of the
environment, as depicted in Figure 2.3. This partitioning was performed based
on the granularity of product location information — in the range of 1-1.5 m, i.e.
so-called shelf meters — and the supported accuracy of the positioning system.
This resulted in a discretization where each aisle was divided into three grid cells
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Figure 2.3: Grid-based layout of supermarket positioning model. Modified from
previously published version in Article I [NSB*11].

of equal length. Furthermore, the end of each aisle was capped with an addi-
tional grid cell that connected the aisle with the ends of neighboring aisles. The
produce section (in Figure 2.3 on the right), a largely open space, was divided
into larger cells since the product categories were less granular there.

For the purposes of navigation, an additional neighborhood concept was in-
troduced. This allowed navigation instructions to trigger in time — in advance of
the target location — as well as ensured that the routing plan remained consis-
tent, which is a key usability consideration [Nie94]. This neighborhood abstrac-
tion consisted of the direct neighbors of cells, shelf neighbors (neighbors across
shelves) and extended neighborhoods (the union of these). Figure 2.4 depicts
two example extended neighborhoods, outlined with red dots. Here, the direct
neighbors of cell 23 are 22 and 24, and its shelf neighbors are 18 and 28. The
extended neighborhood abstraction was born from empirical observations, where
the position estimates occasionally jumped from one end of an aisle to another, or
across shelves. This strategy increased the likelihood that the position remained
within, at least, an extended neighborhood whenever estimates were uncertain.

This description of the environment — a grid structure with an extended neigh-
borhood relationship — was constructed in order to allow for the navigation to
focus on the environment instead of positioning accuracy, and to allow the in-
structions to be generated in an automatic way. A systematic approach allowed
for instructions to be played at a fixed distance before the target, instead of
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Figure 2.4: Detail view of grid layout with example navigation instructions.
Extended neighborhoods highlighted with red dots.

changing depending on what part of the supermarket was entered. This naviga-
tion system, Mobile Navigation System for Retail Environments (MONSTRE),
is described next.

2.4.3 Mobile Navigation System for Retail Environments

By defining a neighborhood for each grid cell, as described before, the environ-
ment model could be approximated by a graph structure, where each cell was
represented by a vertex and the edge between neighboring cells was weighted
by the Euclidean distance between their center coordinates. This meant that
the shortest path, along a sequence of non-repeating grid cells, between any
two grid cells in the environment could be solved through Dijkstra’s algorithm.
This environment model and a product retrieval engine described in previous
work [NLBT08] formed the foundation of the navigation engine.

In order to guide the customer throughout the navigation task, a set of in-
structions were generated through a commercial audio synthesizer and presented
at opportune moments. Specifically, navigation instructions were presented

e at the starting cell (Start)
e at turns (over 45°) (Turn)
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e in the middle of path sequences longer than 4 cells (Intermediate)

e at the ending cell (Destination)

An example instruction sequence is depicted in Figure 2.4, containing all pos-
sible instruction types (bolded in the above description). Specifically, instructions
at the start of each segment (an instruction point in the above list) guided the
user to the end point of the segment, i.e. to another instruction point. To ac-
commodate the sometimes uncertain position estimates, instructions were played
when the user entered the extended neighborhood of the target cell.

2.4.4 Empirical Study

As mentioned in Section 2.4.1, two types of navigation instructions were studied.
The sign-based strategy provided the user with instructions of a more generic
nature, such as aisle numbers and distinct product category sections, which could
be identified by large signs adjacent to the relevant locations. Instructions such
as these are likely to cause less cognitive load on the user, since they are designed
to aid navigation and product search and are visible from a distance. Instructions
of this type included ”walk to aisle number five”.

The product-based strategy, on the other hand, focused on specific product
categories in the store. Though the customer might, to some extent, have uncon-
sciously internalized some of the supermarket taxonomy during previous visits —
or knows them from similar layouts of other supermarkets — products are never-
theless less salient and can rarely be seen from as far away as signs. This forced
the customer to scan the environment for the product described in the navigation
instruction. Here, a typical instruction could include ”walk past the ice creams”.

For both instruction types the specific landmarks were chosen to be as salient,
i.e. visually distinctive from their environment, as possible, but the advance
visibility was varied in order to increase the visual demand.

To compare the two types of instructions, a set of 5 navigation tasks were
created, consisting of two tasks per landmark type, as well as an unaided task
to provide a baseline for effectiveness of navigation instructions. The order of
landmark types, i.e. either product-sign or sign-product, was randomized for
each participant. Participants were tasked with memorizing a small list of com-
mon shopping items, and answered questions related to product recall and task
workload between each category of landmark instructions.

To ensure that the findings of the study centered on the type of landmark
in the instruction, the navigation system was further augmented with a Wizard-
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of-Oz interface. In short, during the navigation tasks, a researcher followed the
user at a close distance and was prepared to manually enter the location of
the user whenever there was a risk that a rogue position estimate would cause
confusing navigation instructions. For the purposes of the study 20 participants
were recruited at the entrance of the supermarket.

2.4.5 Results

The main finding of the study was that increasing the visual demand of the
landmark instructions did not improve the participants’ recall of the products
they saw during the navigation tasks. An increase in the mean completion time
of 80.9 to 106.6 seconds (for sign-based and product-based instructions, respec-
tively) suggests the participants walked at a slower pace and paid more attention
to their surroundings, however. Furthermore, in both navigation strategies the
participants were always able to find the target product, in contrast to the un-
aided case, where 4/10 participants failed to find the correct product. In fact,
in order to avoid skewing the results of the product recall questionnaire, the un-
aided navigation task was alleviated for the latter half of the study by directing
participants to the correct aisle.

In terms of product recall, the participants were so focused on the navigation
task that their level of recall was essentially no better than random guessing.
In many cases the participants ended up rationalizing seeing certain products,
though they had no opportunity to do so, mainly because they recognized the
product category. This effect carried over to the unaided task, where participants
had better recall of the products they had seen, suggesting following navigation
instructions of any kind causes the customer to pay only minimal attention to
their surroundings. This was also observed qualitatively: when following naviga-
tion instructions the participants were often observed to follow unconventional
pathing when walking through the store. Participants frequently stopped to lis-
ten to instructions at the predetermined instruction points, causing confusion
among other customers who were unable to anticipate the erratic mode of travel.

Finally, though the Wizard-of-Oz application was close at hand throughout
the study, it was only used once, suggesting the layer of abstraction applied on
top of the position estimates provided a sufficient level of robustness for location-
aware applications. Nevertheless, the positioning errors sometimes meant that
instructions were not played in a timely manner, delaying the participant’s tran-
sition to the next segment of the route. In particular, it was found that these
errors sometimes prevented the final message from triggering at the right mo-
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ment, meaning participants were not aware that they were close to their target
and could proceed with the visual search task.

In conclusion, the navigation aid clearly helped customers traverse the super-
market more efficiently than when they were unaided. Furthermore, though their
specific recall of items was not improved directly, the increased time spent navi-
gating using navigation instructions based on products instead of signs suggests
more attention was paid to surroundings which could translate to an increase in
brand impressions and marketing opportunities.

2.4.6 Discussion

Though the environment modeling applied on top of the positioning system al-
lowed for a study on navigation instructions to focus on psychological metrics
instead of the robustness of the positioning system, this abstraction required
significant manual effort. The worst-case accuracy in particular necessitated an
extended neighborhood concept in order to ensure that instructions arrived in
time and did not confuse the end user. The initial effort of constructing the
positioning system itself was significant. Multiple surveys at different crowd-
ing conditions and along both directions of the aisle were necessary to achieve
the necessary positioning accuracy. Such manual tasks do not generalize easily to
other spaces, even if the same discretization scheme is used for other supermarket
environments. This hierarchy of abstractions highlights the difficulty of enabling
a commercially viable indoor location-based system.

Finally, the electromagnetic interference in this environment was significant.
This increased the noise level of the wireless channel, which likely affected the
robustness of the positioning model. Occasional connectivity issues — critical in
a system depending on an external positioning server — could not be decisively
narrowed down to any specific source of interference but nevertheless highlights
the vulnerability of a real-world system to competing technologies.

For the context of this thesis, this real-world deployment showed that WLAN
positioning is generally a viable technology for supporting LBS tasks even in com-
plex environments, as long as the inherent uncertainty is accounted for. Never-
theless, deploying the system required a significant upfront investment in terms of
time and manual effort, which could prove prohibitive especially in larger spaces.

In the following chapters we describe techniques that can help alleviate these
issues by describing a way to decrease the surveying effort in Section 3.1, con-
structing an environment topology respecting the signal space in Section 3.2, and
detecting potential sources of interference in Chapter 4.



Chapter 3

Signal Space Modeling

A major obstacle to the deployment and maintenance of a WLAN positioning
system is the effort — both in terms of labor and processing — required to ini-
tialize and calibrate the positioning model. Typically, a surveyor walks around
the target environment recording WLAN fingerprints and keeps track of their
location. This process — in particular the manual labeling of locations — is time
consuming and prone to human error, and is required every time the environment
changes enough to warrant recalibration. Examples include a change in network
infrastructure or the introduction (or removal) of physical obstacles. The survey
method used to initialize the positioning system in Section 2.4 closely resembles
the segment-based path survey described in [GH16]. In other words, measure-
ments were collected while walking, and anchor points were labeled at previously
chosen landmarks in the environment. As described in [GH16]|, this can reduce
surveying time tremendously compared to a traditional manual survey. How-
ever, this approach comes with severe caveats; in order to ensure parity with a
completely manual survey, many locations in the environment need to be sur-
veyed multiple times and covering all potential directions. Naturally, it also
requires strict adherence to an accurate labeling process and a constant speed
while surveying, which increases the cognitive load of the surveyor, and presents
opportunities for introducing errors into the positioning model.

Secondly, WLAN positioning systems have often based their location model
on an even partitioning of the environment, or used known environmental con-
texts — such as rooms and corridors — as the basis of the model topology [KHO04,
HFLT04, DYWY19]. While this discretization makes deployment easier, it does
not adhere to the constraints imposed by the variation in signal strength. De-
pending on the obstacles in the environment, two physically adjacent locations

31
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may be more or less correlated in terms of WLAN fingerprints, but no guarantees
of cohesion can be made. If the environment topology is not defined through uni-
form partitioning or existing contexts, constructing it requires significant manual
effort and an understanding of the environment characteristics. An example of
such a specialized topology is the one constructed for the supermarket in Sec-
tion 2.4.2, which needed to consider a combination of open spaces and narrow
aisles. WLAN design is also traditionally concerned with maximizing coverage
and throughput of the wireless communication, which does not necessarily trans-
late to accuracy in a positioning context. Finally, a complex model increases not
only the storage requirements of the model parameters but also the processing
demands of the positioning client. Efficient processing improves both latency and
energy efficiency [Kjael2], two critical constraints for location-based services.

In this thesis we contribute novel methods for alleviating these issues. In
the following two contributions, we first describe a way to construct the WLAN
fingerprint database underpinning most positioning systems in a semi-supervised
way in Section 3.1. Specifically, we can dramatically reduce the number of sam-
ples that need to be labeled with real-world coordinates by associating unlabeled
measurements with real-world locations through their proximity to labeled mea-
surements in a multidimensional signal space manifold. This reduces the manual
effort required for the labeling process, and also helps eliminate some of the user
errors that this process produces. Second, we describe a way to evaluate a specific
environment partitioning, like a uniform grid, in terms of positioning algorithm
fitness in Section 3.2. By learning and analyzing a nonlinear mapping of the
signal space, we can detect and correct for regions in the environment that are
less distinct than their neighbors. Crucially, we can significantly reduce the size
of the model by constraining it to the diversity of the signal space instead of
the physical space. This has a direct impact on the runtime performance of the
application performing positioning.

3.1 Semi-supervised Learning of the Signal Model

A WLAN fingerprint model consisting of signal strength measurements from each
access point in the environment will inherently contain as many dimensions as
there are physical transmitters. During the calibration survey, however, a latent
dimension is indirectly projected onto the measurements because the surveyor —
constrained by the physical environment and wireless equipment — will essentially
move along a plane with fewer dimensions than the signal manifold. In practice,
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we can assume a two- or three-dimensional plane of movement even if the surveyor
is an autonomously moving drone.

This intuition drives the hypothesis of our contribution in Article IT [PRM11]:
the lower dimensional plane will lie on a non-linear multidimensional manifold,
which suggests it can be extracted through a manifold learning technique and
used to inform a traditional WLAN radio map in an (at least partly) unsupervised
way. Specifically, because of the interdependency of measurements in the signal
space we need only label a limited amount of samples with real-world coordinates
in order to propagate labels to the rest. This can dramatically decrease the
surveying effort required to initialize a positioning system.

The non-linear propagation of the WLAN signal (as established in Section
2.2.2) will inherently cause a non-linear dependency between signal strength mea-
surements measured from different locations. To recover a manifold from this
space will then require a technique that can take non-linearity into account.
A popular manifold learning algorithm of this type is Isomap, introduced by
[TSLOO]. Leaning on a previously established multi-dimensional scaling (MDS)
technique, it is able to handle non-linearity through the use of a geodesic neigh-
borhood map. Whereas MDS can only establish a linear projection, Isomap
can learn a non-linear representation by first constructing a neighborhood map
in the multidimensional space and then solving the shortest geodesic (manifold
respecting) path between points in this manifold. From there, these distances
can be provided to the traditional MDS algorithm for further processing. In the
following, we go into more detail about this algorithm.

3.1.1 Isomap

As Isomap could be described as a non-linear extension to classical MDS, the in-
tuition of the latter algorithm needs first be described. MDS is a dimensionality
reduction technique, and is the most common manifold learning approach in the
literature. The basic procedure involves projecting a dataset described by pair-
wise distances between points onto a lower dimension while minimizing the error
in pairwise distances in the new dimension. If the distances used for calculation
are Euclidean, MDS is equivalent to PCA [TSLO00], which means the minimum
incurred loss (also denoted strain) can be found by minimizing the equation:

L =||r(Dy) —7(Dy)II*, (3.1)

where Dy and Dy are the distance matrices for the output and input do-
mains, respectively, and 7 is an operator that converts distances to inner prod-
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ucts [TSLOO0]. The solution minimizing this function is found by calculating the
eigenvalue decomposition of 7(Dj-) and setting the coordinates of the measure-
ment points to the top d eigenvectors, where d is the desired reduced dimension.

Using MDS with Euclidean distances would subject the manifold learning
to the possibility of shortcuts between parts of the manifold because the points
might appear similar in a Euclidean sense!. To resolve this potential drawback, a
non-linear manifold learning technique called Isomap is employed. A comparison
between these manifold learning algorithms is shown in Figure 3.1, where the
so-called Swiss Roll dataset, a common example used for evaluating manifold
learning techniques [LVO07], is projected onto a two-dimensional plane.

Swiss roll MDS Isomap
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Figure 3.1: Isomap, unlike the linear projection of MDS, is able to extract the
intrinsic dimension of the classic Swiss Roll manifold, unfurling it into a two-
dimensional plane.

Isomap solves the issue of shortcuts in the manifold by replacing pairwise dis-
tances of the distance matrix — estimated between measurements in the original
signal domain — by geodesic distances. This entails solving the path between all
measurement points in signal space through a shortest path technique, such as
Dijkstra’s algorithm, whereby the new distance between two measurements is the
shortest path — along the manifold, through a sequence of neighbors — between

1This notion is further explored in Article III, described in Section 3.2, which uses the real-
world Euclidean distance between measurement points to bound the fitting of the signal space.
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the two points. This ensures that the distance between two points always re-
spects the shape of the manifold on which the measurements are expected to lie.
In our contribution, we discover that measurements assumed to lie on a lower-
dimensional manifold embedded in an n-dimensional space, where n corresponds
to the number of distinct transmitters, can be extracted using this algorithm.

Isomap requires a single, yet difficult to set [SMR06, SHWO07], parameter to
function: the size of the neighborhood used for the geodesic mapping. In the
extreme case, too few neighbors considered in the projection will fail to capture
the geodesic nature of the embedded manifold. Too many neighbors, on the other
hand, will subject the algorithm to the same shortcut issues seen with MDS. In
the following, we elaborate how Isomap is used in conjunction with a simple linear
regression formulation to discover the real-world coordinates of fingerprints along
the manifold. We will describe a principled way of discovering a suitable, in the
positioning accuracy sense, neighborhood size for the algorithm.

3.1.2 Fitting to Geographical Coordinates

The solution to a manifold learning technique such as Isomap is a point cloud in a
space centered around the origin. These points need to be mapped to equivalent
geographical locations to serve as the fingerprint model for a positioning algo-
rithm. To provide for this, a small number of key fingerprints with known real-
world coordinates are embedded into the signal strength dataset before manifold
learning is applied. Through this embedding we can both discover the optimal
neighborhood size, and anchor the manifold to geographical coordinates.

After running Isomap on the location-enriched fingerprints, we solve a simple
linear regression equation to solve the optimal, in the least squares sense, non-
linear conversion between coordinates in the origin-centered space and the real
world. More formally, we solve this conversion as follows. A design matriz X
is constructed out of the manifold coordinates whose real-world counterparts are
known, the squares of those coordinates, as well as a vector of ones to account
for the solution intercept. As an example, in the two-dimensional case, the row
i in this matrix would correspond to [1 x; y; #? y?]. The addition of squared
components ensures that any remaining non-linearity in the mapping can be
discovered and accounted for. In other words, X takes the form

1 my m?
1 mg m3
X = , (3.2)

2
1 m, m;
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where m; corresponds to the manifold coordinates of key fingerprint ¢, and n to
the amount of key fingerprints in total. Then, given the real world coordinates
of the same key points, i.e.

Y =1[ri,r2, ..., (3.3)

we can solve the least-squares optimal conversion weights w through the tradi-
tional linear equation solution of a matrix left divide

w = (XTX)N\(XTy). (3.4)

This w can now be used to convert the rest of the manifold coordinates — provided
they are instrumented as described in Equation 3.2 — to real world coordinates
through simple matrix multiplication, i.e.

y =X *w. (3.5)

Solving this mapping between domains also provides us with a principled way
of discovering the optimal Isomap neighborhood size. Running Isomap with
iteratively increasing neighborhood size, we can use the loss incurred from the
manifold conversion, i.e.

S SUEH (3.6)

where r} is the solved real world coordinate and r is the known coordinate, to
find a neighborhood size that minimizes this loss.

3.1.3 Empirical validation

The described technique was implemented and deployed at the Exactum build-
ing in Kumpula, Helsinki. The target environment consisted of hallways and an
adjacent open meeting space next to offices and meeting rooms of researchers
at the department. Covering an area of 24 m x 7 m, 437 WLAN fingerprints
were recorded evenly over the target space. Of these measurements, 38 were la-
beled with real-world coordinates. An additional 66 measurements were recorded
separately as a test set.

Following the procedure described in the previous section, the optimal Isomap
neighborhood size was found to be 15, which left an average error of 1.9 m in the
training set. Figure 3.2 depicts the results of the manifold calibration process.
For illustrative purposes, a rectangular bounding box was converted along with
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the manifold coordinates. The non-linearity of the conversion can clearly be seen
in its transformed shape, justifying the use of squared components in the design
matrix in Equation 3.2. By overlaying the discovered manifold onto the known
floorplan of the environment, in Figure 3.3, it is apparent that the fitting has
successfully extracted the environment shape, especially along hallways. The
open space at the end of the corridor, on the right in Figure 3.3, shows less
conformity with the physical restrictions of the environment, however, indicating
a degree of non-linearity still present in the embedding.
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Figure 3.2: Mapping between manifold coordinates and real world coordinates.
Previously published in Article II [PRM11].
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Figure 3.3: Discovered and calibrated 2D fingerprint manifold overlaid onto ac-
tual floorplan. Previously published in Article IT [PRM11].

Given this reconstructed radio map with newly discovered labels, standard k-
NN positioning was used to position test measurements to an average accuracy of
2.0 m and a median accuracy of 1.5 m. This accuracy is comparable with other k-
NN approaches, such as [BP00], while requiring only 10% of the signal fingerprints
measured to be labeled. This reduction in effort is comparable to more advanced
techniques, including deep-learning [LMH18]|, while using a simpler architecture.
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In conclusion, the crucial benefit of this approach is that the vast majority
of measurements required for training the signal model could be extracted in a
wholly unsupervised way. Though a subset of measurements need to be anchored
to real-world coordinates, the effort required for this task is significantly reduced
from a complete environment survey and could be performed by the network
administrator or enthusiast users in an organic way [PCC*10]. Some of these
anchors could even be provided automatically through opportune GPS fixes, as
in [CPIP10], or by leveraging PDR and the organic landmarks in [WSE*12].

3.1.4 Discussion

The key points in this study were placed in a uniform way, and the number of
points was chosen largely heuristically. As displayed in the open space area, a
more sophisticated approach for selecting key points could improve this approach
further. For instance, key points could be placed in the center points of clusters
determined based on a k-means clustering of the floorplan pixels. This would
be equivalent to sampling according to a hexagonal lattice, common in spatial
sample design [BOBO07]. A similar notion has been explored in [KP03].

This work only considered Isomap for learning the non-linear manifold. T-
distributed stochastic neighborhood embedding (t-SNE) [vdMHO08], another pop-
ular dimensionality reduction technique, could provide interesting future work.
Handling residual non-linearity in the embedding was also only investigated with
respect to squared components in the least squares formulation. Other candi-
dates for future research could include logarithmic components, or a formulation
using aspects of Gaussian kernels.

3.2 Automatic Environment Partitioning

As described in Section 2.3.3, in any practical scenario, most techniques depend-
ing on a probabilistic modeling of WLAN fingerprints require a discretization of
the target environment. This is performed in order to reduce the effort required
for calibration, but also to alleviate the storage and handling of fingerprint in-
formation. In practice, this discretization can only be avoided in relatively small
environments where the number of required measurements is constrained. Using
a single WLAN fingerprint attached to a specific location will quickly become not
only prohibitively cumbersome in any environment larger than a single office, but
is inherently less robust than using summary statistics to capture the variable
nature of the signal. This discretization has taken many forms over the years;
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Krumm and Horvitz reduce the environment into a graph with edges between
location nodes which contain the probabilistic model [KH04], Haeberlen et al.
base their topology on real-world constraints like rooms and obstacles [HFL104],
and Nurmi et al. use a uniform grid in an outdoor scenario [NBK10]. Even in
more modern applications the environment topology is often not strictly defined
and sampling points are largely heuristic [AER*19]. This can cause uncertainty
in the positioning model, as highlighted in Section 2.3.3. This problem of en-
vironment discretization is also alluded to in [YAO05]|, which suggests that the
granularity of the 2.4 GHz signal could be even less than the wavelength of the
carrier frequency, i.e. 12.5 cm. In their study on small scale variations of the
signal they noted a difference of up to 10 dB within a 7.6 cm range.

It is then in the best interest to fit the environment discretization not (only)
to the physical space, but to the variance of the target signal. Inspired by our
previously described work on the spatial dependency of the WLAN signal, Article
III [PN12] presents an approach where the non-linearity of the WLAN fingerprint
space is modeled, but regularized with real-world constraints. Though the semi-
supervised manifold learning approach, described in the previous section and
Article II, showed that there is a dependency that is exploitable, it also suffered
from heterogeneity of the signal space and there was a clear need to model at
least some parts of the environment in a way that more closely represented the
signal characteristics. Here, instead of purely projecting the fingerprint space to
(what is assumed) the underlying two-dimensional manifold, we instead specif-
ically construct a two-dimensional lattice and learn the relationships between
signals through the use of a self-organizing map (SOM).

This work provides two main contributions, with several additional insights
into the usefulness of this description of the wireless domain. First, we show
that using the learned mapping, the compatibility of an existing partitioning
scheme and the signal environment can be evaluated and scored. This score can
then be used to suggest an improved form of discretization. Second, a fitness
measure is described that can evaluate the existing access point deployment in
terms of suitability for positioning. This measure can then be used to inform the
placement of additional access points, or even potentially suggest an initial access
point layout that results in a positioning model with good accuracy. Finally, once
the model is constructed, it could allow for a principled way of associating new
measurements with the corresponding partition, reducing re-calibration efforts
in a semi-automatic way. In the following we briefly introduce the structure and
iterative learning cycle of a SOM, after which we describe how it was used for
our contribution in two real-world locations.
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3.2.1 Self-organizing Maps

A self-organizing map is an early form of neural network, initially described by
Kohonen [Koh82]. In our work, we follow the formulation described in [Hay98],
specifically. In its simplest form, a SOM consists of a two-dimensional lattice of
nodes or "neurons”. These neurons are related to neighboring neurons through
a distance function — often a Gaussian kernel — and are represented by a weight
vector that connects to the input signal. In the following we describe how data
is fed into the network and propagated through neighboring connections.

Let k correspond to the number of features in the weight vector, in our case
the number of measured access points in the network. We can then describe the
input vector (a WLAN fingerprint) in the form

T=<T1,.,Tk> . (3.7)
Correspondingly, the weight vector of neuron j takes the form
Wi =< Wy, .ony Wik > (38)

Importantly, the weight vector is the same size as our input vector. In this way,
each neuron represents a distinct area in the network (environment) through a
weighted average of the input signal (fingerprints).

The network is trained by an update cycle where each new input signal is
matched to a so-called winning neuron and the residual weight from the mis-
match is propagated through the winning neuron’s neighborhood, to more closely
resemble the input signal over time. Specifically, the winning neuron is selected
by the inner product of the input vector and the weight vector of each neuron in
the network, i.e. argmaz;(w;x). The weight vectors of the network are then up-
dated by the difference between the input vector and the winning weight vector,
and the distance of each neuron from the winning neuron, ¢*. Formally:

wj(t+1) = w;(t) + n(t) Hi- ; (1) (z — w; (1), (3.9)

where ¢ is the index of the iteration, n(t) is a decay function that decreases the
impact of measurements over time and H; ; is a function that describes how
weights are propagated in the network. This takes the form of a neighborhood
distance function around the winning neuron, often specifically a Gaussian kernel:

dix
H;« j = exp (—277(52) . (3.10)
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The choice of a Gaussian kernel ensures that the winning neuron receives the
largest weight update and the weight then decreases monotonically towards zero
as the distance goes towards infinity [Hay98]. Here d;« ; corresponds to distance,
within the network, between the winning neuron and neuron j. The decay factor,
n(t), is typically an exponential function, given as

1(t) = n(0)ezp (—;) . (3.11)

This factor ensures that most importance is given to the initial iterations of the
input signal, but also that the width of the kernel shrinks over time. In our
implementation, the number of iterations was set to 100 times the number of
neurons meaning the same input vector was provided for learning multiple times
over the course of training. The constants 1(0) and /3 are learning rate parameters
which in our implementation were given default initialization values of 0.1 and
1000, as suggested in [Hay98], respectively.

This iterative learning process is illustrated through an example weight up-
date in Figure 3.4. Neurons in this example lattice are uniformly spaced, meaning
the distance within the network reduces to the Manhattan distance between neu-
rons. Because we are interested in the real-world dynamics involved, however,
our neurons were placed in a network where the distances correspond to the Eu-
clidean distances between measurement sites in our deployments. This ensured
that weight propagation was based on real-world distances.

The weight vectors were initialized using the eigenvectors corresponding to the
largest eigenvalues to span the two-dimensional space, i.e. PCA, in order to speed
up convergence [Koh97]. Though we have previously shown that PCA (in the
form of MDS) might not be ideal for projecting WLAN fingerprints, we will partly
overcome this issue through the non-linearity of the weight propagation step of
the update cycle. The fact that PCA speeds up convergence is an indicator that
the underlying variance-explaining intuition is sound, but a non-linear component
is needed to make the domain-specific implementation robust. Though we have
shown that Isomap recovers this non-linearity to a great extent as well, it is
also distinctly a batch algorithm that needs the entire dataset as input. A SOM
is used specifically because of its iterative nature, which provides a principled
approach to analyze further fingerprints once the map has been learned. It also
allows for a way to describe the environment constraints as part of the model.

The number of neurons in the network could be any M < N, where N is
the number of measurement locations. We use M = N to evaluate an existing
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Figure 3.4: Example iteration of SOM algorithm. Weights from the activation
are distributed according to distance from the winning neuron to its neighbors.

partitioning of the environment and because we are interested in analyzing the
relationship between the learned signal topology and the real-world space.

3.2.2 Dynamic Signal-aware Partitioning

Our first application of the learned signal map is a measure of similarity between
regions in the signal space. This measure is then supplied to a density-based
clustering technique to provide a new partitioning scheme that adheres more
closely to the inherent topology in signal space.
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Our intuition for this technique is that related WLAN fingerprints tend to
cause a similar set of activations in the learned SOM, in terms of the activation
function wj;x. This same function was used for finding the winning neuron
during the training phase. Here, instead of focusing on just the winning neuron,
we use the ranking of activation values for neurons as a feature for comparison.
Specifically, neurons are sorted in a descending order of activation score and
compared to each other using Kendall’s 7 correlation. This correlation measure
compares the similarity between two rankings. Formally, 7 is defined as

_ S 1P () = Pea(i) — SUZ) 1P (i) # Pya(i))
1P| ’

where P, and P2 correspond to the possible pairs of the ranks of activations for
neurons gl and g9, and i to the index of a specific pair of neurons in the ranked
list. The indicator function 1 returns 1 if the corresponding clause is true and
0 if it is false, and |P| is the cardinality, or size, of the set of pairs, defined as
the binomial function (1\2/1 ), i.e. all possible ways to choose a pair from the set
of M neurons. The clause (Py1(i) = Py2()) is considered true if the pairs agree,
i.e. both sets rank the pair (g4, gp) in the same order; either g, > gy or g, < gp.
Similarly, (Py1(i) # Py2()) is true if there is a disagreement of the ranking order.

As with the manifold learning approach presented in Section 3.1 and Article
11, we have empirically observed multiple modes in WLAN fingerprint similarity,
where two neurons, or fingerprints, resemble each other even though they are not
spatially co-located. Whereas this could cause short-circuit issues in the linear
projection techniques earlier, in the case of creating a signal map this could cause
two distant regions to be merged if we rely exclusively on the correlation measure
during the clustering phase. We have thus chosen a regularization scheme where
an added constraint of physical proximity is added to the similarity measure.
Specifically, we use the Euclidean path distance between the known regions, i.e.
the length of the shortest path between target regions, as a constraint.

Using this physical distance measure for region similarity, we perform a
density-based clustering of the existing partitioning, which was used as the frame-
work for our SOM lattice. Specifically, we use DJCluster [ZFLT04], a technique
closely related to DBSCAN [EKSX96] that attempts to alleviate some of the
performance issues of the latter approach. The clustering algorithm works by
finding, for each region g; all regions g, within distance d. in the physical space.
Once these regions have been found, we further prune the set of points by remov-
ing regions that are not proximate in the signal space; i.e. our correlation measure
described earlier. Our criterion for pruning is decided using a significance test

(3.12)
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of the rank correlation coefficient. T'wo regions are considered co-located in sig-
nal space if the correlation value exceeds 7" = 0.64, which was determined by
a significance level of 0.01 in a one-tailed significance test, assuming a sample
size of 10. We considered this a suitable number of measurements to ensure
significant correlation. Once two regions are concordant in terms of these two
measures, they can be merged and any two partitions with common points can
be progressively merged to form larger partitions. For the final partitioning, the
geographical shape of partitions is determined by the bounding box of the regions
contained within.

3.2.3 Region Fitness

The constructed non-linear signal map can also be used for other forms of anal-
ysis. Next, we provide a way to score individual regions of a partition through a
measure of region fitness. This measure can be used to not only evaluate poorly
performing regions — in terms of suitability for positioning — but also as a criterion
for access point placement.

Whereas previously we compared the activation rankings of two regions, here
we analyze the rankings of individual regions and examine the spatial distribu-
tion of the regions in the ranking. The intuition lies in the observation that
poorly performing regions tend to have measurements that correlate with spa-
tially distant regions. In this case, the signal distribution differs distinctly from
nearby regions, which increases uncertainty for positioning algorithms that use
the region’s measurements in their model of the environment. In practical terms,
this reduces the robustness of location-based services, which is critical for the
consistency of the end-user experience.

Specifically, for each region g; we find all regions g, with significant correla-
tion. The same criterion for similarity is used here as before, i.e. a threshold of
7% = 0.64. Defining a set of regions with significant correlation as G, our fitness
score is determined by the average distance to these regions. Formally, the fitness

score is given by
IG|

F(g;) = Z; d(%’fj), (3.13)

where d(g;, g;) corresponds to the physical (shortest path) distance between re-
gion g; and region g; and |G|, as before, denotes the cardinality of the set of
compatible regions. This measure is illustrated in Figure 3.5. Note that this
formulation means a large score indicates low fitness.
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Figure 3.5: Fitness comparison between two example regions indicates that region
g1 has a worse fit than region g» because the average distance to other regions
with similar activation patterns is greater.

One practical use of this score is to inform the placement of new access points
for improved positioning accuracy. The intuition behind this improvement relates
to the way the WLAN signal propagates, as described in Section 2.2.2. Because
of the logarithmic nature (in the decibel domain) of the path loss propagation,
the most informative — in terms of variance — section of the propagating signal
is close to the access point. Thus, the optimal placement for a new access point
is close to an area that is known to be the least concordant with its neighbors.
Placing an access point in, or close to, a partition with low fitness ensures that
fingerprints in the vicinity will be enriched with location-dependent information,
while lessening their similarity with parts of the environment that are not relevant
for the partition in question. In Figure 3.5 this would be graphically equivalent
to decreasing the size of the circle corresponding to the set of regions G.

3.2.4 Empirical Validation

To validate our partitioning scheme and fitness measure, SOMs were constructed
and analyzed based on measurements from two large-scale supermarket environ-
ments, one in Helsinki, Finland and one in Saarbriicken, Germany. Next, we
briefly summarize the main results; see Article III for more details.
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The initial partitioning and access point placement of the Helsinki environ-
ment is displayed at the top part of Figure 3.6. This construction was previously
used for the grocery store navigation application discussed in Section 2.4.
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Figure 3.6: Initial partitioning, with locations of APs and their channels repre-
sented by colors, in the supermarket in Helsinki (top) and the suggested recon-
figured partitioning (bottom). Previously published in Article IIT [PN12].

For each region in this environment (103 regions in total), 30 WLAN finger-
prints were measured, and a SOM was trained as described in Section 3.2.1. As
a proof-of-concept of our similarity measure, we first evaluated the dependency
of the rank correlation between region measurement activations and the distance
between regions measured in region transitions, which correspond to real-world
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distance at an approximate rate of 3-4 regions to 10 meters. The results of this
evaluation, performed for both test environments, are displayed in Figure 3.7. It
is clear from these graphs that our correlation coefficient shows a distinct decrease
as the distance increases, motivating its use as our clustering metric.
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Figure 3.7: Dependency between activation ranking correlation and spatial dis-
tance is clearly apparent in the two experimental environments. The Y-axis
corresponds to our rank correlation coefficient, and the X-axis is the number of
"hops” between target regions. Previously published in Article IIT [PN12].

Next, we performed a re-partitioning of the Helsinki environment using the
technique described previously, using a distance threshold of d. = 10 m, deter-
mined based on our earlier estimation of the signal’s dependence on distance. The
result of this new partitioning is displayed at the bottom of Figure 3.6. Smaller
adjacent regions have been merged to form larger continuous regions, and the
Fuclidean regularization has prevented any disjoint clusters from forming. To
validate this new partitioning, a dataset measured with a separate device was
used to test two instances of the positioning system initialized with each envi-
ronment model. This experiment resulted in a slight increase in median accuracy,
but a slight decrease in 95th percentile (worst case) accuracy. More importantly,
the runtime of the positioning algorithm was decreased by about 60%, a distinct
improvement in model complexity. This suggests the initial environment parti-
tioning was more complex than what the signal space could support, and regions
could be merged without impacting the positioning accuracy significantly.
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Finally, the use of the region fitness score for access point deployment was
evaluated by instantiating the positioning system with datasets with increasing
density of access points. Specifically, the original training dataset was reduced
to measurements from two access points at opposing ends of the target environ-
ment, and measurements from other access points were added iteratively until the
dataset contained measurements from 10 access points. We compared a random
placement approach to one where the access point was chosen based on proximity
to a region with low fitness (corresponding to a high fitness score, as described
in Equation 3.13). The results are displayed in Figure 3.8.
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Figure 3.8: Evolution of positioning accuracy in meters as more access points are
placed in the environment. Strategy based on region fitness compared to a ran-
dom approach. Modified from previously published version in Article IIT [PN12].

The tendency of both approaches is to increase positioning accuracy, as ex-
pected. The fitness score clearly helps to choose better access point candidates,
consistently outperforming the random approach in terms of median accuracy
and in all but one case in worst case accuracy. This could potentially be used
to deploy a WLAN positioning infrastructure from the ground up, but also to
enhance an existing deployment. The traditional incentive for WLAN position-
ing is the existing WLAN network deployed for communication purposes. In
some environments, however, this initial access point density might not suffice
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to provide a positioning system with high accuracy [WTD'13]. Our approach
could then be used to evaluate the existing signal topology and to suggest the
necessary additions in a cost-effective way.

In conclusion, through this approach we have discovered a way to evaluate
the WLAN fingerprint consistency in specific locations as well as a technique for
remediating a partitioning that is not serving its intended purpose. This has
the effect of decreasing correlation between regions of the environment that are
not spatially co-located as well as reducing the complexity of the environment
model, which can have a significant impact on latency, especially on performance
constrained devices. Furthermore, the region fitness score could be used not
only to inform the addition of access points in low-performing areas, but also to
initialize construction of a positioning system infrastructure.

3.2.5 Discussion

One limitation of this work is the lack of a thorough comparison to previously es-
tablished clustering techniques, like k-means. However, generic approaches such
as k-means are not as easily encoded with the environment structure embedded
in the lattice of the self-organizing map, and do not provide an intuitive way
of assigning cluster membership once the clustering has been performed. The
choice of the activation function was also directly based on literature, and does
not directly correspond to the Euclidean distance, which is the more typical fin-
gerprint distance measure in this domain. However, we found that this activation
function served the purpose well, which is reflected in the presented results.

Through the training of a nonlinear signal mapping the presented approach
has indirectly created a positioning model, where positioning could be performed
by finding the region with the strongest activation to new signal strength mea-
surements. More training data could be automatically associated with the proper
region, which could benefit positioning algorithm robustness. This latter aspect
was touched upon, but not explored in this work and could provide an interesting
avenue for future research.

Later on, we will discuss the complex interplay between the number of access
points in the environment, sources of interference and the impact these factors
have on the resulting positioning accuracy. Placing an access point without
also considering the WLAN channel layout of neighboring access points runs the
risk of increasing the congestion of channels, which has been shown to decrease
positioning accuracy. However, providing suggestions for alternate locations of
access points could also help mitigate the effects of interference that is otherwise
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unavoidable. In this sense, this contribution allows for interesting future work,
but also provides potential novel uses in noisy environments.

3.3 Related Work

The interest in calibration-free or zero-effort WLAN positioning systems extends
beyond this thesis, as other publications have explored similar trends. For in-
stance, rather than reduce the number of labeled fingerprints, [LKEOS] instead
reduce the number of fingerprints needed per label. While this can shorten sur-
veys per location considerably, the manual effort in traversing the environment
and labeling locations is still extensive.

In many cases, the contributors to calibration-free approaches were origina-
tors of positioning systems like RADAR [CPIP10, RCPS12] and Horus [WSE*12].
Techniques like Gaussian processes that have initially been used for position-
ing [FHF06], have later been harnessed to perform SLAM (simultaneous localiza-
tion and mapping) without known ground truth coordinates [FFLO7]. A related
topic has been the so-called ”organic” positioning system, where calibrations for
the positioning system are crowdsourced [PCC*10].

Though these efforts have shown great promise in reducing the calibration
effort, and even eliminating it to some extent, the contributions of this thesis ex-
plore the nature of WLAN positioning measurements in more detail, and could
potentially be used in a complementary way to previous approaches. For in-
stance, the manifold learning of the signal space described in Section 3.1 could
act as the foundation for a more organic approach to crowdsourced calibration.
The main contribution of that work is that most WLAN fingerprints in the en-
vironment could be collected in a purely unsupervised way, leaving the reduced
labeling effort either to dedicated experts or to enthusiast users. In this sense,
the contribution is complementary rather than orthogonal.

In [FFLO7] a Gaussian Process Latent Variable Model is initialized using
the Isomap algorithm, also presented in Section 3.1, to avoid local minima and
improve performance before the gradient descent step is applied. Since the re-
sulting manifold does not have a well-defined mapping to real-world coordinates,
the system is evaluated by how accurately it can detect the user returning to
a previously visited location. One of the main contributions of our work is the
semi-supervised mapping of the signal space to real world coordinates, which
means the technique in [FFLO7] could likely be augmented in a similar way in
order to provide a more generic solution.
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Both EZ [CPIP10] and Zee [RCPS12] are based on solving the location based
on inherent environmental constraints. EZ uses the path-loss model (see Equa-
tion 2.2 in Section 2.2.2) to deduce the distance to a set of access points to narrow
down the potential locations within which the user could reside, and connects the
mapping to real-world coordinates through opportunistic GPS fixes. Zee, on the
other hand, uses inertial sensors in smartphones along with an augmented parti-
cle filter to use the floorplan itself as a constraint. In other words, given a motion
trace, the number of specific locations in the environment that matches its shape
is limited and in the limit the location is uniquely defined. In contrast to the
approaches presented in this thesis, additional sensors are required for a location
fix. Again, the approaches here could act in a complementary way to our work.
The GPS fixes of EZ or floorplan constraints of Zee could provide anchor points
for the learned manifold to resolve real-world coordinates. Environment-specific
landmarks, such as entrance gates in a transit station [EYU'16], have also pre-
viously been extracted with high accuracy, providing yet another opportunity for
manifold anchoring.

UnLoc [WSE'12] provides a more generic scheme for determining so-called
”organic landmarks” in terms of smartphone sensor readings. By discovering and
locating specific anomalous sensor readings in the environment — e.g. accelerom-
eter traces of elevator rides or areas with great flux in magnetometer readings
— PDR can be (re-)bootstrapped to reset the drift of the sensors. Even in this
work, however, at least one real-world fix is required for initialization, and the
underlying positioning technique is based on PDR. The added requirement of
multiple sensors, with unknown differences from one vendor to the other, also
adds a level of uncertainty. Nevertheless, when such landmarks are available, the
manual labeling effort could be reduced even further.

In recent years, many contributions in the field of automated model construc-
tion have employed deep-learning architectures to reduce deployment effort. For
instance, in [LMH18] it is shown that linear learners such as PCA are not able
to learn from unsupervised data as thoroughly as deep neural network architec-
tures. These discoveries align with our previous established sentiment that the
inherent non-linearity of WLAN fingerprints can benefit from techniques that
can take this into account. In [LMHI18], deep-learning is shown to reduce the
need for labeled data to as low as 10%, which is comparable to our results in
Section 3.1.3 despite our work employing a much simpler architecture. In [CA19]
as few as 5% of labels are utilized for competitive levels of accuracy by employ-
ing Variational Autoencoders. In order to provide such robust results, however,
separate encoder-decoder pairs are learned for each geographical dimension (lati-
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tude, longitude, and elevation) and prediction results are projected to the convex
hulls of the closest labeled neighbors. As with any deep-learning approach, these
advances also require a careful tuning of parameters for each use case, might not
necessarily generalize well, and are inherently imbued with a level of stochastic-
ity that could prove difficult to mitigate in real-world use cases. We will explore
these themes further from the perspective of interference detection in Section 4.3.

The closest to our work in Article ITI, described in Section 3.2, are [LSE10]
and [LKHKO09], which present a similar region-merging strategy based on a novel
similarity measure. The proposed similarity measure determines the intersec-
tion between Gaussian distributions constructed from the measurements of each
access point and then normalizes based on the number of total access points
heard within the region. Similar to our approach, clustering is then performed
by merging nearby regions until no two regions are similar enough to reach a
predefined threshold. The work in Section 3.2 differs in key ways, however. Not
only is the signal mapping learned with physical constraints in mind, an addi-
tional environment regularization limits the physical range of regions to merge.
This merging is further based on a statistical, rather than empirical, threshold.
Furthermore, the same signal model is used to determine a measure of fitness for
a region, which could be used for access point placement. The concept of region
fitness is also explored in [LKHKO09], but no access point placement validation
is performed. Finally, our work was evaluated in complex, open environments
which are more prone to violate physical constraints in signal space.

A region similarity measure based on Gaussian distributions has recently
also been described by [HTKM17]|. Here, reference points in the environment
are modeled as vertices in a graph, with edges between them weighted by the
Cauchy-Schwarz pdf divergence between Gaussian mixture models constructed
from signal strength time series in the reference points. Clustering itself is per-
formed using the NCut algorithm, which utilizes an enhanced version of the
k-means algorithm. Finally, the optimal number of clusters is found using the
Akaike Information Criterion. This environment partitioning mainly serves as
a criterion for choosing informative access points subsets for each region. This
filtering of access points results in improved positioning accuracy, though the
fitness of the discovered regions is not evaluated as such.



Chapter 4

Detecting Competing Technologies

The previous sections have described aspects of a WLAN positioning system that
concern the model creation and initialization phases.Yet, another challenge re-
mains, which could affect all phases of the WLAN positioning lifecycle. Many
competing technologies occupy the same frequency band, but may not consider
existing WLAN networks when they operate. In extreme interference cases even
the wireless beacons that most WLAN fingerprinting systems depend on will not
be transmitted, let alone received. In one study on the impact of concurrently
transmitting Bluetooth beacons, the accuracy of a WLAN positioning system
was reduced from 2.5 meters to 5-6 meters in the proximity of strong Bluetooth
transmitters [PLCT17], mainly due to measurements not being received — par-
ticularly in the weaker range of signal strengths. Besides this direct impact on
positioning, the initial channel design of the network might need to be designed
around a persistent source of interference, which in itself has been shown to affect
positioning accuracy.

In the following we will discuss the overall impact of interference, both in
terms of communication and from the point of view of WLAN positioning, as well
as two approaches to detecting some of the potential interfering technologies. In
this, we summarize the contributions of Article IV and Article V.

4.1 Non-WLAN Interference

Though the WLAN protocol is based on a public standard, the underlying fre-
quency bands (e.g. 2.4 GHz and 5 GHz) do not require a license to use. This has
resulted in competition of frequency use between technologies, especially for 2.4

53
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GHz, since its use for ISM (industrial, scientific, and medical) applications dates
back to 1947 [FCC47]. In the internet-of-things (IoT) domain, some candidate
frequency bands exist which do not overlap with WLAN use [WS19]. Tech-
nologies like Bluetooth, which to some extent is designed for co-existence with
WLAN [GWGS07], and ZigBee (specified in IEEE 802.15.4), however operate on
the same ISM band. Especially in the industrial IoT domain, the use of these
technologies could prove difficult to reconcile with existing WLAN networks.

The unlicensed nature of the band has also attracted devices without a stan-
dardized protocol. Though many modern devices use either WLAN or Bluetooth
(in particular Bluetooth Low Energy, BLE), some devices still use proprietary
and non-standardized communication schemes. Such devices include wireless
video cameras, frequency hopping baby monitors as well as headsets and com-
puter peripherals. Further exacerbating the issue are devices that use the band for
purposes other than transmitting, like microwave ovens or sulfur lamps [SNSKO05]
where energy is emitted into the 2.4 GHz spectrum due to poor shielding. In
benign cases, interference could be generated unintentionally as part of standard
operation, as is the case with some USB 3 devices [Int20]. For adversarial pur-
poses a wide range of options exist, including the transmission of random bits
with no defined protocol [GLY14].

For conformant devices, the WLAN protocol specifies a contention scheme
where a client can hold off from transmitting if another WLAN transmission is
sensed on the channel at a specific power level. Since this behavior is part of the
specification it is a less severe issue, but will still reduce the overall capacity of
the channel. For non-WLAN devices, a WLAN client is not able to demodulate
and decode the transmission. An alternate power threshold is then defined in
the specification [IEE16], at which the WLAN client has to cease transmitting
[MBMS17]. In this scheme, the client waits an integer number of time slots
before sampling the channel again [GWGSO07]. A particularly strong source of
interference can thus dominate the channel and block the transmission of any
WLAN frames and even interference at lower power levels can severely impact
the throughput of the wireless channel [RPB11].

4.1.1 Impact on Positioning

Any non-WLAN transmission stronger than the received power from a beacon
frame will effectively obscure the transmitting access point from the client’s view.
This has the effect of shortening the range within which the access point can be
heard, decreasing the amount of information available for positioning. Missing
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beacon frames from specific access points has different effects depending on which
phase of the WLAN positioning lifecycle the source of interference is introduced.

Interference during training

Though most positioning systems are able to handle a single access point miss-
ing from measurements, this masking decreases the available information in the
environment, especially if the access point has been deployed specifically for po-
sitioning purposes (as described in Section 3.2).

Whereas an access point not being heard around the limits of its transmission
range is expected, a sudden gap in connectivity in a signal range that otherwise
would be considered strong will cause a discontinuity in the signal space that is
difficult to model. This could have a direct impact on the techniques described in
Chapter 3, since the spatial dependency or similarity of RSSI fingerprints might
be less distinct, or even no longer apply. On a similar note, any system relying
on propagation modeling will also have to re-evaluate the assumption that an
access point can be heard in a specific location based on physical models.

Finally, since strong interference effectively masks beacon transmissions, a
mismatch between the distribution of signal strengths measured during training
and testing could appear. This would have the effect of further skewing the signal
distribution away from the Gaussian assumption, the implications of which we
discussed in Section 2.3.3.

Interference during use

As time passes since the calibration of the positioning system, opportunities
arise for the introduction of non-WLAN sources of interference. Given that
the positioning model is tightly integrated with the signal strength of access
points in specific geographical locations, a new source of interference could have
a significant impact on the resulting positioning accuracy. In [YA05] an important
component of the light-weight positioning is the ability to cluster access points
based on a sorted list of signal strength measured during the testing phase. A
source of interference could at this point impact large sections of the model that
depend on the measurements from a specific access point.

Intermittent interference

Many wireless devices depend on a frequency hopping or periodic transmission
scheme. This can cause issues both during the training and deployment phases.
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An access point that is intermittently available will cause uncertainty in the
positioning model, especially for ones relying on a specific number of samples.
In many cases [BP00, YA05] whether or not an access point is heard can be a
significant source of information, and positioning models that do not account for
this to happen in an intermittent way will likely suffer from significant uncertainty
where the impacted access point is concerned.

Practical implications

Only a small number of works have considered the impact of interference on
positioning, with most works focusing on the data rate of the wireless channel
instead [RPB11]. Besides the previously described study on co-existence with
Bluetooth [PLCT17], inter-technology interference (also known as co-channel
or adjacent channel interference) has been shown to impact positioning perfor-
mance [CBM10]. In the 2.4 GHz frequency band only 3-4 channels (depending on
the regulatory domain) can be used concurrently without overlapping frequency
ranges. This limitation means that in addition to access point placement, the
channel assignment also needs consideration in a functioning network. For in-
stance, this requirement informed the access point configuration in Article I and
Article I1T; see Figure 3.6 for a description of the channel assignment. For the pur-
poses of positioning, choosing an appropriate scheme (minimizing co-channel in-
terference) has been shown to improve positioning accuracy up to 10% [CBM10].
Though the contributions of this thesis do not address this kind of interference
specifically, the work in [CBM10] indicates that any kind of channel congestion
has a direct impact on positioning performance. External interference could con-
strict the available set of channels even further, impacting a wider range of the
environment than the original source of interference.

In commercial deployments, a typical minimum requirement for a functioning
positioning system is that the client device can hear three access points concur-
rently throughout the environment [SBTT06], especially at a high enough signal
strength, [Cis20] suggests a minimum of -75 dBm. Such a precarious deployment
would obviously be vulnerable to even one missing access point, as it would likely
be impossible to unambiguously determine a position estimate based on two ac-
cess point measurements alone. In academia, reducing the number of available
access points is a staple of the performance evaluation for WLAN positioning
algorithms. For instance, a set of 3 to 6 access points was found in [AERT19] to
suffice for sub-3-meter accuracy, but performance continued to improve until 20
to 40 access points were included in the experimentation. This indicates that al-
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though a minimal deployment can provide sufficient performance, accuracy tends
to increase the more access points that are available.

As discussed previously, any decrease in positioning accuracy or robustness
will directly impact the granularity with which the location-based service can be
designed. In the navigational aid described in Article I, the direct consequence is
an inconsistent navigation experience, which would serve to undermine much of
the progress that our other contributions hope to achieve. In addition, because
the failure modes of positioning under (cross-technology) interference are poorly
understood it is especially important to recognize it.

4.1.2 Interference Classification

Whereas intelligent systems built around WLAN measurements can refer to a
predefined specification and certified devices, many competing technologies con-
stitute interference from the perspective of a WLAN client. If the target de-
vice follows a known standard or other specification, detection and identification
in the simplest case requires demodulating the signal and recognizing standard
syncwords — a known sequence of data at the beginning of the transmission —
of known communication technologies. Even in this case, a separate identifica-
tion scheme is required for each individual technology, which can quickly become
cumbersome. Ideally, then, an interference detection scheme could learn to clas-
sify sources of interference based on received traces of transmissions. This would
have the added benefit of detecting devices without specifications or intended
transmitting capabilities to begin with.

Interference detection has previously been performed through cyclostationary
signal analysis [HK11], packet analysis [KNS14] or technology specific features,
like the 60 Hz (i.e. AC power) periodicity of microwave ovens [WOK14]. In many
such cases, detection typically requires dedicated hardware for analysis and per-
forms classification based on device characteristics, or is based on proprietary
algorithms. A more widely applicable strategy is then to perform this same pro-
cess through machine learning on top of measurements from off-the-shelf WLAN
clients. This greatly increases the number of devices and scenarios that can be
supported, and decreases the amount of time spent on adding new devices. One
of the earliest approaches is AirShark [RPB11], which performs classification
using decision trees for 8 different devices and a set of device-specific features.
Among the features described are the spectral signature, i.e. the frequency do-
main representation of the device, duty cycle, so-called pulse statistics and sweep
detection (specifically in use for microwave ovens).
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Nevertheless, even approaches such as AirShark for the most part require
hand-engineered features and require separate classifiers for each target device
category. Ideally, interference detection should work on measurements made with
off-the-shelf hardware and require minimal investment to add new devices to the
detection model. A promising technique for this is to treat a set of WLAN band
spectrum sweeps, or a spectrogram, as an image and use a convolutional neural
network (CNN) to perform detection similarly to image recognition.

Other works have also considered such networks for interference (or tech-
nology) detection. In many cases, however, these works have either focused on
simulated signals of transmitters [RSIC18, DWWZ18] or a constrained set of tech-
nologies with known protocols [BMR17, MRSN18, KKMD18]. Our contributions
focus specifically on household items, including transmitters with unknown (or
no) protocols, as well as measurements in a real environment.

4.2 Deep Learning for Interference Detection

The work in Article IV [LPK17] develops techniques for detecting sources of inter-
ference from WLAN spectrum sweeps, collectively termed spectrograms. Detec-
tion is performed using convolutional deep learning, which has been successfully
used for spectrogram analysis in the speech recognition domain [AMJ*14]. The
main attraction for this kind of learning architecture is that it can be constructed
without device-specific feature extraction. This feature representation is instead
learned, and we show that parts of the network can even be reused when learn-
ing new devices, significantly decreasing the amount of processing needed per
device. The labeling process, however, still requires manual effort. Since the
specific times when the devices transmit cannot be determined, the spectrogram
needs to be manually inspected to ascertain the specific instances when transmis-
sions occurred. This effort scales poorly with the number of samples and target
devices. The main contribution of Article IV is the introduction of structured
pseudo-labels. Previous work on traditional pseudo-labels has shown that more
training data can be extracted from samples with uncertain labels [Leel3]. The
work in Article IV shows that adding a temporal aspect to this labeling process
further improves accuracy with less data required for each added device.

4.2.1 Data description

To motivate the choice of learning architecture, we first describe the features of
the data used for learning and detection. The data consists of spectrum sweeps
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provided by a spectrum analyzer from the 2.4 GHz frequency band. Each sweep
consists of a set of FF'T bins, each bin containing the measured power within a
specific frequency interval in the 2.4 GHz band. An example set of measurements
from a wireless baby monitor are displayed in Figure 4.1.

Time

Frequency

Figure 4.1: Spectrum samples of a wireless baby monitor. The time axis covers
roughly 30 seconds of measurements, while the frequency axis covers the 2.4 GHz
band. Modified from Article V [PNN20].

As Figure 4.1 shows, individual sweeps of the spectrum — corresponding to
the horizontal lines in the image — are not sufficient for recognizing a source of
interference since its use of the spectrum might vary over time. Because of this,
analysis should be based on multiple sweeps over time.

Given this description, an intuitive way to capture both the frequency depen-
dency and temporal aspects of the signal is to learn a two-dimensional feature
representation of the data. This makes convolutional neural networks a particu-
larly good fit since they can learn features that span more than one input [LB9S].
These networks are a state-of-the-art machine learning approach that have been
shown to yield good results in a wide variety of tasks, particularly in domains
where the two-dimensional representation of information is relevant, such as for
image recognition [KSH17] or speech recognition from spectrograms [AMJ"14].

4.2.2 Convolutional Neural Networks

Convolutional neural networks, initially nicknamed neocognitron [Fuk80], expand
upon the traditional artificial neural network by learning so called kernels or fil-
ters instead of linear weights. In the classic artificial neural network, a multilayer
perceptron (MLP), neurons in the network are connected to each other through
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weights and non-linear activation functions. A typical activation function is tanh:

(2) = exp(z) — exp(—x)
exp(z) + exp(—x)’

(4.1)

or, more commonly in recent work (including ours), the rectified linear unit
(ReLU) which simply forces positive values through f(x) = maz(0,z). At each
layer of the network, the activation of each neuron is calculated as

k
ni = F(3 wj xny). (4.2)
j=1

where k is the number of neurons in the previous layer, n; is neuron j in the
previous layer, w; is the weight of the connection arriving from neuron j, and f
is a non-linear activation function. This activation function is what makes the
neural network a non-linear learner: if the activation function is replaced with
the identity function it reduces to a linear model [HTFO1].

Figure 4.2 depicts a simple MLP network with an input layer, two hidden
layers and an output layer. The network learns through a partly unsupervised
learning process by passing information from the input layer through a set of
hidden layers and reweighting connections based on feedback from the output
layer. Specifically, after an iteration where the output layer has calculated a
score based on the weighted sum of previous activations, the loss of the network
is calculated by comparing the values of the output layer with the corresponding
known labels of the input data. This loss is used to adjust the weights of the
network through back-propagation, which can be implemented using a form of
gradient descent [LeC88|. This adjustment alters weights in correspondence with
their contribution to the loss. When the next set of inputs is passed through the
network, it is likely better equipped to predict the proper class. Feature learning
then happens through the weight adjustment in the hidden layers over time as
more inputs are evaluated and losses are back-propagated.

In the case of CNNs the weights of the network correspond to filters of varying
size. In the image processing domain these filters are also known as kernels,
masks, or convolutions. By passing such a filter over the pixels of an image,
through steps called strides, one can perform operations such as smoothing and
edge detection in a systematic way. For instance, a typical 3x3 edge detection
filter might have the following shape [Smi97]:

—1/8 —1/8 —1/8
—1/8 1 —1/8
-1/8 -1/8 —1/8
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Figure 4.2: Traditional multilayer perceptron neural network. Some connections
and labels have been left out for clarity. The super- and subscripts of weights
denote the neurons from and to which activations arrive, respectively.

Here, each neighbor of the center pixel is multiplied with -1/8; the center pixel
with 1, and the result is summed to provide the new convolved pixel value [NA12].
A CNN for image data might be constructed with multiple filters per layer, which
allows it to learn an internal feature representation of the objects in the image.
Whereas a learned filter for a network trained on images might correspond to
edges of objects, in the domain of WLAN spectrum analysis such a representation
encapsulates the correlation between different parts of the frequency band as well
as the temporal aspects of this dependency.

Typically, CNNs also contain pooling layers which act to downsample the data
between convolution layers and help the network learn more generic features and
avoid overfitting. For instance, a max-pooling layer passes 2-dimensional win-
dows over the convolved layer and returns the maximum value over the provided
window range. Much of the rest of the CNN works in ways similar to the MLP
presented above: activation functions such as ReLU are applied on top of the
filters and the network learns through backpropagation. In most classification
tasks the network employs an MLP, specifically a fully connected layer, for its
final layers in order to reduce the multidimensional input into discrete categories.
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One of the main benefits of CNNs is their shift invariance. In other words, a
CNN can learn to recognize features regardless of where they appear in the input.
In addition, whereas an MLP network would have no sense of a local topology,
i.e. the ordering of the input does not convey information, CNNs can discover
local features because filters usually cover more than one input [LB98]. In the
context of the WLAN spectrum, this provides an elegant approach to learning a
generic feature representation of the frequency use of an interfering device, since
only a subset of devices are continuous and fixed frequency transmitters.

The structure of the CNN used for interference detection in Article IV, and
with some modifications in Article V, is shown in Figure 4.3. This network is
relatively shallow, compared to state-of-the art image classification networks,
consisting of only two convolutional layers. This is mainly due to the limited
number and size of the data sets available for experiments, but the network still
allows capturing non-linear features in the spectrograms. The size of the filters
in this network is 3x3, which meant we could model transmissions wider than a
frequency bin and lasting longer than one spectrum sweep. Filters were moved
three strides between each convolution, and max-pooling was used to induce
temporal invariance within the sample window. A drop-out layer — which ignores
some neurons in a layer during learning — was used to avoid overfitting [HSK12].
Training was performed through stochastic gradient descent (SGD) with a lo
regularizer and a learning rate of 0.1. 50 concurrent samples were provided for
learning. For classification, the size of the final layer corresponded to the number
of devices in the experimental setup. Following best practices, predictions in the
last layer were provided through softmax, meaning the predicted device could be
determined by choosing the maximum value in the final layer.
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Figure 4.3: Network structure for convolutional neural network. Based on previ-
ously published version in Article IV [LPK17].
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4.2.3 Structured Pseudo-labels

An inherent difficulty with labeling spectrum samples for training is that even
though a device is turned on there is no guarantee that it begins transmitting at
the precise moment it receives power, or that it transmits for the full measurement
period. The latter issue can be seen e.g. with microwave ovens which often
modulate their power by cycling power on and off instead of actually lowering
the power itself. This means measurements might contain gaps of information.
These issues make labeling spectrum samples tremendously difficult, and would
likely require extensive manual effort to ensure a thorough description. The main
contribution of the work in Article IV is an extension of the original pseudo-label
technique presented in [Leel3], which utilizes unlabeled data to improve the
learning process in a semi-supervised way.

The original pseudo-label work provides an approach similar to expectation-
maximization (EM) where, between iterations of learning, a set of unlabeled
data is labeled with the device with the maximum predicted probability from
the previous iteration — providing so-called pseudo-labels to uncertain samples.
More formally, the optimization problem can be rephrased as

l Z L(Ym, fm) + alt ); Z Ly, 1), (4.3)
m=1

m=1

3

where n corresponds to the labeled set of data and n’ the unlabeled data. Simi-
larly, y, and f,,, represent the true labels for labeled data and the output of the
network and y/, and f], represent the pseudo-labels for unlabeled data and the
outputs, respectively.

The semi-supervised learning of this formulation stems from the latter term,
which is optimized over the pseudo-labels. The coefficient «(t) provides a way
to balance the extent to which unlabeled data is used for training. A large value
might derail the learning process, while a small value essentially reduces the
description to the classic supervised learning problem [Leel3]. In the original
work an annealing process is used, increasing «(t) over time, but in our work it
was found that a constant value of 1 was sufficient to provide improved accuracy.

Structured pseudo-labels enforce a temporal continuity over the chosen pseudo-
labels by assuming a Markovian property. The solution is penalized if it chooses
pseudo-labels that do not match the labels of the previous instance. Formally,
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the following regularizing term is added to Equation 4.3:

A 1 Ay, (4.4)
m=2

where A determines the extent to which the previous label is enforced and 1 is
the indicator function that returns 1 if the condition is true and 0 if it is false.
The constraint of temporal continuity means the pseudo-label independence as-
sumption is lost. This departure from the original formulation can be overcome
by treating the problem as a Hidden Markov Model and solving it through a dy-
namic programming formulation corresponding to the Viterbi algorithm [Vit67],
which involves finding the most likely sequence of states given a state-transition
probability matrix. It can then be shown (described in Article IV in more detail)
that the prior negative log likelihood of such a sequence reduces to

n

> (™ # ¥ (log(p) — log(q)) + D, (4.5)

m=2

where D is a term that depends only on the self-transition probability p and not
the pseudo-label assignment and ¢ is the probability of transitioning to a different
device label, i.e. (1 —p)/C, where C is the number of devices. This formulation
then means we can evaluate A = (log(p) — log(q)), with p > ¢ to ensure that
retaining the label is preferred over switching it. If p = ¢ this solution reverts to
the original pseudo-label formulation as A = 0. In our experimentation p was set
to 0.2 which corresponds to A = 1.18. The rest of the algorithm then proceeds
as with pseudo-labels, alternating between learning the network and assigning
new pseudo-labels with the Viterbi algorithm. This same temporal continuity
can then also be enforced when performing predictions.

4.2.4 Signature-based Baseline

The state-of-the-art baseline is the AirShark system [RPB11]. AirShark performs
detection by learning individual decision trees for each target device, operating
on a set of handcrafted features. Due to differences in hardware, it is not possible
to implement AirShark exactly, but our measured performance is mostly in line
with the original study despite these differences. The wider range (120 vs 20
MHz), and more granular resolution (40 vs 312.5 kHz) of spectrum sweeps in our
measurements meant that the spectral signature feature in particular served as a
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good fit as our baseline implementation. This signature was calculated through

S =

S
ol 0
where s is a vector representing the average power for each bin in the window of
samples and ||s|| was the vector norm.

For all devices this linear model consisted of measuring this signature over
training samples, including an ” off” signature based on all samples with no known
sources of interference. This signature could be thought to represent the back-
ground noise, i.e. the baseline spectrum information. To perform predictions,
the best candidate for each test sample (also reduced to spectral signatures)
was the device signature with the smallest angular difference to the test signa-
ture [RPB11], i.e. argmingcos™(34 - 3;).

4.2.5 Empirical Validation

The described methodology was used for classification of a set of wireless devices
in a typical office environment. Specifically, for each device in the experiment —
14 in total, which includes one set of "off” data — measurements were performed
over a 3 minute interval. This interval included one minute of background mea-
surements after which the device was turned on for one minute, and turned
off again for another minute. The devices consisted of 4 analog video cameras
(video/spyl/spy2/spy3), narrow- and broadband jammers (nbjam/bbjam), a mi-
crowave oven (mwo), two baby monitors (babyl/baby2), a remote control for RC
cars (rc), an intercom (inter), a headset (head) and a lapel microphone (mic).

In this setup, only one device was turned on at a time. This choice can be
justified by the inverse square law of signal power attenuation. Indeed, most
interference is extremely localized because path loss ensures a large part of the
transmitted power is attenuated before arriving at a receiving device. To cause
simultaneous interference devices would essentially have to be co-located.

In our experiments, measurements were made with an Ekahau Sidekick, which
contains a WLAN spectrum analyzer capable of measuring the 2.4 GHz spectrum
at a rate of about 25 Hz, or once per 40 ms. The measurements consist of 3076
FFT bins for each sweep, covering 120 MHz of bandwidth. To avoid bias caused
by measurements at different power levels, the data was normalized using the
z-score. Specifically, each value s was scaled through

S — Hoff

$Z = ————»
Ooff
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where s — u,rr and o,¢f are summary statistics calculated from samples where
no source of interference was transmitting.

The measured data was split into three separate sets through the following
scheme. For testing, 20 seconds of samples from the middle of the measurement
window were labeled with the device in question. Even though precise onset of
transmissions was uncertain, these intervals could more or less be guaranteed to
contain relevant transmissions. The first and last 20 seconds of the data was
labeled as "off”, i.e. these were assumed to not contain any (known) source of
interference. The rest of the data was used for training, including a set of data
where the label was uncertain. Because labeling was uncertain around device on-
set /offset times, different versions of the training set were constructed. A more
detailed description of the data segmentation can be seen in Figure 4.4. Spec-
trograms were provided to the network through partially overlapping windows.
In our experimental setup, two second windows of data — corresponding to 50
consecutive samples — were used for training, with a new window started every
second of measurements.

Device off Device on Device off
Testing: e freed . .| Testing: —_—— .. | Testing:
Off Trag}lfng. Unlabeled Tlgaelcilgg' Device ngc;gg' Unlabeled Tra(glflfng. Off
(20s) (20s) (20s)

.
3 minutes of measurements

Figure 4.4: Data segmentation for experiments. Modified from previously pub-
lished version in Article IV [LPK17].

In the first experiment the standard CNN network was compared to the
spectrum signature baseline. Here a maximal number of labeled training samples
was used in order to measure performance when data is not critically limited.
The results of this setup are presented in Table 4.1. The overall accuracy for
the CNN approach was 97% compared to 79% for the baseline. The baseline
approach has clear issues with devices that are not constantly transmitting (rc
and mwo) or are known to be so-called ”frequency hoppers” (mic, head). It then
finds the ”off” label a more reasonable explanation for the lack of information.
This is in line with the original work, where frequency hopping devices were
detected with lower accuracy, especially at low signal strengths [RPB11].



4.2 Deep Learning for Interference Detection 67

CNN Classifier Baseline Classifier
- S =% 58 &8 5 &5 g ® @ @ = < = & B S & @ @

off w7 0 1 0 0 0O 0O 2 0 0 0 0 0 ©0 78 1 15 47 0 0 1 43 0 0 0O 0 0 195
video | 5 3% 0 0 0 0 0 0 0O O O O 0 O 0 30 0 0 0 0O OO 0 0 0 0 0 10
mic 0 0o 391 0 0 0 0 0 0 0O 0 0 O 0 0o 49 0 0 O O O O O O O 0 O
head | 0 0O 6 3 0 0 0 0 0 0 0 O 0 O 0 0O 4 3 0 0 0 0 0 0 0O 0 0 O
inter 9 o 0 0 3 0 0 0 0 0 O 0 0 0 8 o 0 3 290 0 0 0 0 0 0 0 0
— | babyl | 0 0O 0 0 0O 400 0 0 O O O 0 O 0 O 0 0 0O 40 0 0 0 O O O 0 O
< | baby2 | 0 o 0 0 0O O 40 0 0 0O O O 0 O 0 o o0 1 0 1 38 0 0 0 0 0 0 0
j mwo | 14 O 0 0 0 0 0 260 0 0 0 0 O mwo |0 o 0 0 0 0 0 2270 O O 0O 0 13
£ | bbjam | 0 0O 0 0 0 0 0O 0O 40 0 O O 0 O bbjam | 0 o 0 0 0 0O 0O 0O 40 0 O O 0 O
& nbjam | 0 o 0 0 0 0 0 0 0 60 0 0 0 O nbjam | 1 o 0 0 0 0 0 0 0 5 0 0 0 0
spyl | 0 o 0 0 0 0O O 0O O O 40 0 0 O spyl 0 o 0 0 0 0 0O 0O O O 40 0 0 0
spy2 0 o 0 0 0 O O O 0 0 O 40 0 O spy2 0 o 0 0 0 O O O 0 0 0 40 0 O
spy3 | 0 o 0 0 0 0 0 0 O O O O 40 O spy3 | 0 o 0 0 0 0 0 0O O O O O 40 0
re 6 o o0 o0 o o 0o 0 0 0 0 0 0 34 re 0 o o o o o 0 2 0 0 0 0 0 38

Predicted Label Predicted Label

Table 4.1: Confusion matrix of classification with vanilla CNN classifier (left)
and spectrum signature baseline (right). Reproduced from Article IV [LPK17].

The CNN clearly outperforms the baseline even with devices using a frequency
hopping scheme. It also has issues with detecting the microwave oven (mwo)
throughout samples where it is not emitting energy into the band. When not
operating on full power, microwave ovens typically achieve an average lower power
by turning the magnetron on and off in a cyclical manner [GLT03]. In effect,
much of this loss of accuracy can actually be attributed to mislabeling: the CNN
is correctly detecting an ”off” state in the middle of microwave oven operation.

To validate the CNN’s capacity for transfer learning, i.e. learning generic
features in the initial layers, a leave-one-out form of training was evaluated. All
layers of the network were allowed to learn based on all devices but one. Training
for the target device, omitted from the initial training set, then consisted of only
training the last layer of the network. For most devices, it was shown that nearly
equal classification accuracy was achieved with this limited form of training. The
results are detailed in Figure 4.5.

100
80
B All layers trained
50) Only last layer trained
40
20

Ovideo mic head inter babyl baby2 mwo bbjam nbjam spyl spy2 spy3 rc
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Figure 4.5: Results from classification experiment where entire network was
trained vs. only the outer layer. Previously published in Article IV [LPK17].
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To measure the improvement gained when using structured over standard
pseudo-labels an experiment was performed with training samples of increasing
number of labeled measurements. This range at the lowest included only 4 sec-
onds of measurements and in the highest 72 seconds. In the latter case(s), due
to the imprecise timing of the measurement onset, we were very likely already
including measurements which had in fact been mislabeled. The results are rep-
resented in Figure 4.6. When the sample size was small, the structured pseudo
label algorithm clearly outperforms both the standard supervised network and
the original pseudo-label approach. Once sample sizes reach 40 seconds — the op-
timal window size with this dataset — more mislabeled samples are encountered
and none of the approaches can improve their performance. A small improvement
in classification accuracy was also found if the constraint of temporal continuity
of sequential samples was extended to testing as well.
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Figure 4.6: Classification errors with different learning strategies. Previously
published in Article IV [LPK17].

In conclusion, we showed that convolutional neural networks are a good fit
for interference detection, clearly capturing both the temporal and frequency
representation of different sources of interference — even when the exact labels
for training data could not be ascertained. We showed that uncertain labels can
be used to improve prediction accuracy, and improved upon the original work by
incorporating a temporal constraint over sequential spectrum samples.
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4.3 Deep Learning vs. Signal Modeling

In the previous section we considered a CNN for interference detection and com-
pared it to a linear baseline. Though the accuracy was clearly better for the
CNN, some aspects of the solution were not explored during the experimental
setup. First, the detection only considered one device at a time and did not take
into account the possibility of multiple transmitters in the same location. In
Section 4.2.5 this potential limitation was motivated by the inverse square power
law, but this scenario could nevertheless warrant further examination.

Second, the work in Article IV only considered the presence of the device,
and not the degree of interference. Resolving the device transmit power level
in addition to the actual class could improve attempts to localize the device in
the environment. This location context of interference could also inform the de-
sign of positioning systems. Knowing where the system is likely to face signal
degradation helps design more resilient end-user applications. Though Article
IV suggested such an extension to the original technique, no further experimen-
tation was performed in that context.

Finally, deep learning approaches for varying tasks, including interference
detection, have in recent years mainly focused on experiments in laboratory con-
ditions and rarely measured metrics other than accuracy and training efficiency.
This myopic view of testing could mean some issues are overlooked when choosing
the algorithm to use, especially in a commercial real-world application.

The following section, summarizing Article V [PNN20], presents a novel signal
model for interference detection that can detect multiple sources of interference si-
multaneously, and determine individual transmit powers for each device. We also
highlight instances, equivalent to two real-world scenarios, where a deep-learning
approach might fail. To evaluate the performance of this approach compared to
the previously established CNN architecture, a set of metrics is used to exam-
ine the change in prediction performance when the initial experimental setup is
perturbed in a way corresponding to real-world differences in environments.

4.3.1 Experimental setup

The majority of experiments performed in this study consist of altering data
in a systematic way and measuring the correlation between this perturbation
and the errors that are caused. To ensure that the variance in results could be
attributed to testing conditions, the training measurements were performed in a
radio-frequency isolated container, a Ramsey Electronics STE3600 RF shielded
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enclosure. This meant any energy detected in the spectrum samples could be
attributed to the target device alone, and not to background noise, including
other common transmitters such as Bluetooth. For testing, measurements were
made in an office environment in order to emulate a real-world use case.

This difference in experimental setup compared to Article IV required that,
while the overall structure of the network was maintained, certain aspects of the
CNN described in Section 4.2.2 were modified. Limited space in the enclosure
meant devices like microwave ovens could not be measured, and to ensure that
variation in experimental results could be uniquely attributed to a change in
testing properties no pseudo-labeling or interleaving of spectrum measurements
(into overlapping windows) was performed. Adjustments to the CNN learning
parameters were also performed to improve accuracy under this new architecture.

Training and testing data contained 25 sweeps of 2500 spectrum bins per
sample. The learning rate of the stochastic gradient descent was set to 0.001, the
batch size (concurrent samples) was set to 1, 2 strides were taken per iteration
and the max pooling window size was 2x2. Training was performed over 100
epochs. No pseudo-labeling was performed as measurements were done strictly
for times when devices were turned on. A fixed seed was used to ensure the effects
of each setup could be isolated from the randomness of the learning process.

For both training and testing, 7 devices were measured for 30 seconds and a
set of data was measured when no device was turned on. This resulted in a total
of 750 spectrum sweeps per device. The selection of devices partly overlapped
with those presented in Section 4.2.5 and Article IV, with a few omissions. The
microwave oven was not included due to limited space in the enclosure, and
some of the other transmitters were no longer available for testing. Nevertheless,
the tested devices covered a representative range of potential everyday wireless
devices, containing frequency hopping devices as well as periodic and constant
transmitters. The set of devices consisted of an analog video camera (hamy), an
intercom (skatco), two baby monitors (motorola/ babymon), a headset (huhd), a
lapel microphone (boya) and a remote controller for RC cars (rc).

4.3.2 Metrics

We next describe the different metrics used to compare the described approaches.
These metrics were inspired by a survey on machine learning testing [ZHML19],
and have been adapted to the interference detection domain. We shortly describe
what the metrics measure and how they relate to the the topic at hand.



4.3 Deep Learning vs. Signal Modeling 71

Correctness

The first measured property is the correctness, or accuracy, which is measured by
the ratio of correct predictions to the number of total predicted cases [ZHML19];

1 m
— Z 1(h(z;) = yi). (4.7)
g

Here m is the total number of classes, x; is the unknown label of the class,
h(zx;) the algorithm’s estimation of said class and y; the true class of the data
in question. 1 is the indicator function. In our experimental setup we evaluated
classification through the use of a confusion matrix, as before in Section 4.2.5,
which helps describe which classes the algorithm is struggling with. The correct-
ness can easily be calculated from this matrix from the proportion of labels that
fall along the diagonal, i.e. the ratio of true positive cases to all other cases.

Overfitting

High training accuracy is desirable for machine learning algorithms. When the
model otherwise performs well during training but fails to generalize to unseen
cases, the most likely cause is overfitting. Zhang et al. [ZHML19] suggest over-
fitting is a result of the model having learned to fit against the noise instead
of the relevant features of the data. A possible way to determine the level of
overfitting is to perturb the training data in a systematic way and to measure
the loss in training accuracy with respect to the level of perturbation [ZBGT19).
Specifically, the authors of [ZBGT19] suggests a form of accuracy decrease rate
that is measured by the absolute value of the gradient of the best fitting line — in
the least squares sense — of the point line formed by (r;, Sy;), i.e. the point pairs
of the injected noise rate and measured training accuracy. In our work, the per-
turbation scheme consisted of randomly permuting training labels for each class,
taking care not to select the original, true, label. This random perturbation
approach is suggested by a work on adversarial attacks [CADT18].

Robustness

The robustness of an algorithm essentially measures its capacity to perform in
the face of noise. For neural networks, robustness can be measured for instance
through pointwise robustness or adversarial frequency [BIL'16]. The former
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determines the minimum level of noise required to fail (change in predicted la-
bel) whereas the latter corresponds to the rate of failure when noise is encoun-
tered [BIL™16]. We adopt these descriptions for our evaluation, but use a domain-
specific source of noise for testing. Specifically, we use additive white gaussian
noise (AWGN), a common noise model for information channels [Gal08].

Efficiency

The efficiency of an algorithm can be measured through its real-world perfor-
mance, or timing, as well as its capacity to use information in an efficient way.
The ability for deep-learning algorithms to learn on limited data has previously
been explored from the perspective of optimal subset selection [SG19]. Loss-
based models might work better for deep-learning, but we opt for random subset
selection to ensure a fair comparison. This is considered best practice [SG19].
The algorithms were also compared in terms of the time spent in training and
prediction relative to the number of classes in the model.

Interpretability

The degree to which an algorithm’s internal logic is traceable, or interpretable,
is increasingly important for deep learning. Interpretability can be gauged by
the transparency of the algorithm model, and how well its predictions can be
explained [ZHML19]. Linear regression could be thought to be inherently more
interpretable [Mol19], but interpreting the weights in a neural network can be
complex, especially in a way that is quantifiable. In our experimental evaluation,
we focus on the interpretability of predictions in two separate experiments. We
first instrumented an experiment with two concurrent transmitters and analyzed
the prediction weights qualitatively. We then measured the algorithms’ capacity
to estimate the distance to a transmitting device.

4.3.3 Deep Learning Evaluation

CNN architectures, and deep-learning in general, can fail when the data provided
for training is not rich or extensive enough. A disconnect between training and
testing environments, for instance through an increase in overall noise levels, will
cause further uncertainty in predictions. To evaluate the extent of these issues,
we performed experiments where these experimental conditions were varied.

To validate the chosen architecture, we first performed a traditional accu-
racy estimation. The confusion matrix resulting from this baseline evaluation is
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shown in Table 4.2. An overall accuracy of 80% was reached, which is in line
with previous work, but also shows the impact of the change in environments.
When trained on the completely noise-free training samples from the RF shielded
enclosure, exposure to the real world is enough to decrease the model’s accuracy.

’ truth/predicted H babymon ‘ boya ‘ hamy ‘ huhd ‘ motorola ‘ skatco ‘ rc ‘ none ‘

babymon 19 0 1 3 4 0 3 0
boya 1 29 0 0 0 0 0 0
hamy 1 0 29 0 0 0 0 0
huhd 0 0 0 29 0 1 0 0
motorola 0 0 0 0 30 0 0 0
skatco 0 2 0 21 0 7 0 0
rc 0 9 0 0 0 0 21 0
none 0 0 0 0 0 0 0 30

Table 4.2: Confusion matrix of CNN classification. Overall accuracy: 0.80.
Reproduced from Article V [PNN20].

This weakness in terms of robustness was further evaluated by injecting
Gaussian noise of increasing standard deviation into the testing set. The rate
of failure was measured as the number of changed labels from the initial set
of predictions. The results of this testing are shown to the left of Figure 4.7.
Here, the CNN suffers greatly. The initial failure occurs at noise levels of 1.5 dB.
Thereafter the CNN’s accuracy drops sharply and is essentially predicting the
same label once noise levels reach 10 dB. When the Z-score (see Equation 4.2.5)
used to normalize CNN is recalculated between iterations (denoted CNN-Z in the
figure) the situation is improved to some extent. In a real-world application this
would require recalibration in every new environment. To put noise values into
perspective, propagation models consider shadowing effects (X, in Equation 2.2
in Section 2.2.2) ranging from 5 dB to 14 dB [Rap01], depending on the envi-
ronment type and topology. In the extreme range, noise values such as this can
have a severe impact even if a renormalization is performed.

Efficiency was evaluated through random subset sampling, i.e. by iteratively
reducing the number of datasets used for training over 30 trials for each subset,
and performance was re-evaluated. As shown to the right in Figure 4.7, a great
degree of stochasticity is still embedded in the learning process. The convergence
to the best known performance happens relatively quickly, but the accuracy
can drop as low as 30% when only one sample is removed from training data.
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Figure 4.7: The deep learning approach fails when the original testing data is
injected with synthetic, but realistic, noise and when data is not rich enough.
Modified from original in Article V [PNN20].

This suggests the CNN architecture is not only more sensitive to which specific
datasets are used for training, but is also volatile even when almost the entire
training dataset is available. A good subset selection strategy, could achieve close
to best-case accuracy with only 25% of the complete data, meaning we are less
concerned about the absolute size of training data than its richness.

4.3.4 Signal Modeling using Multiple Linear Regression

The deep-learning approach generally performed with good accuracy, but faltered
in aspects that are relevant for real-world applications. The performance of the
algorithm was critically dependent on the type and number of data samples it
was provided. It also stumbled when faced with a degree of noise that no longer
matched the training conditions. In Article V [PNN20], an alternate technique
that is simpler in composition but adheres more closely to the underlying domain
of the measurements was designed. This provides better interpretability of the
inner workings, which directly translates to features useful for real-world appli-
cations. This signal model is based on the least-squares fitting of pre-defined
spectrum signatures to spectrum samples averaged over the measurement win-
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dow. Whereas the approach described in Section 4.2.4 also calculated a signature
over the relevant frequency band, it was modeled as a unit vector and matching
was performed through cosine similarity. The key contribution of our approach
is to act directly on top of raw signal values, which allows the fit to correspond
to the transmit power of multiple concurrently transmitting devices. The com-
puted signatures were calculated in the linear domain as opposed to the decibel
domain. This encapsulates the underlying intuition that all sources of interfer-
ence in the wireless domain could be described through a linear combination of
spectrum signatures. Conceptually this is similar to spectral unmixing employed
in hyperspectral imaging analysis [Chal3].

Figure 4.8 displays two example device signatures, the latter calculated from
the spectrum samples in Figure 4.1 (Section 4.2.1). In this case, these signa-
tures correspond to an analog video camera (orange graph, single spike) and a
frequency-hopping baby monitor (blue graph, multiple spikes).
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Figure 4.8: Two example device spectrum signatures used for the linear regression
approach. Previously published in Article V [PNN20].

More formally, each device signature was measured as the average power,
per spectrum bin, over the time domain. Signatures were then scaled by the
strongest bin, providing a vector v = [sy, S92, ..., $,] in the range [0,1] for each
device. Collecting these signatures into a design matrix means we could solve
the detected transmit powers for each device using standard least squares (see
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e.g. Equation 3.4), given a new spectrum sample vector, consisting of the average
(linear) spectrum power over the measurement window. Since measured power
cannot be expected to extend to the negative range in the linear domain, a
specific non-negative variant (non-negative least squares, NNLS) was used which
is based [NNL20] on FORTRAN code published in [LH95].

4.3.5 Empirical Validation

To show the improved performance afforded by the NNLS approach, we first
validated its accuracy. The confusion matrix for NNLS is presented in Table 4.3.
At 73%, the overall accuracy is lower than the best-case performance of CNN,
but in line with previous work. The random initialization of the CNN network
weights, and the stochastic gradient descent used for backpropagation, meant the
absolute difference between the algorithms varied to some degree.

‘ truth/predicted H babymon ‘ boya ‘ hamy ‘ huhd ‘ motorola ‘ skatco ‘ rC ‘ none ‘

babymon 12 3 7 0 0 0 4 4
boya 0 21 0 0 0 0 0 9
hamy 0 0 30 0 0 0 0 0
huhd 0 0 0 29 0 1 0 0

motorola 4 1 1 0 13 0 2 9

skatco 0 3 0 1 1 19 0 6
rc 0 0 0 0 0 0 22 8
none 0 0 0 0 0 1 0 29

Table 4.3: Confusion matrix of NNLS classification. Overall accuracy: 0.73.
Reproduced from Article V [PNN20].

Due to our measurement setup we were unable to include devices that are
known to be problematic for signature-based detection methods, such as mi-
crowave ovens (as described in Section 4.2.5). Nevertheless, it is apparent that
both approaches suffer from the difference between the clean environment used
for training and the real-world office environment measurements used for testing.

An interesting aspect of the classification accuracies is the disagreement over
labels. In about 10% of the cases one algorithm predicted the correct class while
the other did not. In five cases the approaches predicted the same, wrong, label.
In three of those cases the reason is likely that the fixed-frequency controller rc
momentarily transmits in the same frequency range as the frequency-hopping
babymon which makes some measurements look deceptively similar.
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Before delving into metrics that more clearly set the approaches apart, we
first validated their performance in terms of overfitting, justifying the use of
the chosen architectures. As described in Section 4.3.2, 1-15 labels per class
were permuted to a random (wrong) class, after which the training accuracy
was recalculated and the accuracy decrease rate was determined as the absolute
value of the best fitting gradient. The results are depicted in Figure 4.9. In
both cases, the gradient was clearly decreasing, which suggests no significant
overfitting occurred in either case. Though the precise rate for CNN was better
than for NNLS (1.35 vs 0.6), no specific benchmark for overfitting was provided
in the original work [ZBGT19], as the rate was used for relative comparison.
That said, no overfitting was determined for rates above 0.5.
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Figure 4.9: Comparison of the overfitting metric (see Section 4.3.2). Previously
published in Article V [PNN20].

The algorithms display their first clear deviation in performance when ro-
bustness is re-evaluated for both approaches, as displayed in Figure 4.10. The
range of noise values has been extended to fully evaluate the NNLS behavior.
Whereas CNN struggles to perform beyond 10-15 dB, NNLS has more than ran-
dom chance performance at noise levels of 20 dB. A slight increase in local vari-
ance is likely due to the linear scaling of signatures, which can momentarily give
great significance to individual spectrum bins. Nevertheless, overall the simpler
NNLS model’s capacity to handle noise is much greater than that of CNN.
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Figure 4.10: Comparison of robustness. CNN-Z corresponds to a version of CNN
where the dataset is renormalized between noise injections. Previously published
in Article V [PNN20].

In terms of efficiency, the approaches were evaluated as shown in Fig-
ure 4.11. Whereas CNN struggled even when almost all data was available, NNLS
could almost reach its best-case accuracy with only one well selected sample per
device, and 5 samples in the best-case could be enough for maximal performance.

Efficiency in terms of performance was measured relative to a binary classifi-
cation scenario. Starting from two classes, the number of classes used for training
and testing was increased up to 102, and the relative time used was calculated.
This allowed for a comparison that marginalizes the impact of the underlying
experiment hardware. The results of this comparison are shown in Figure 4.12.
In terms of training time, both algorithms have a similar, linear, dependency
with respect to the number of classes, as seen from the best fitting lines. The
major difference between algorithms is shown for prediction speed. Whereas for
CNN increasing the number of classes has at most a linear impact, the com-
plexity of NNLS is on the order of O(n?) and the best fitting curve for NNLS
relative testing times is 0.01n%. On a standard off-the-shelf laptop this complex-
ity would result in a detection model containing 900 devices resolving sources of
interference once per second. This is well within range of the 500 unique devices
suggested in Article IV, but could be considered a minor drawback of the NNLS
approach. For more details on the performance evaluation, see Article V.



4.3 Deep Learning vs. Signal Modeling 79

1o NNLS 1o CNN
0.9 0.9
0.8 0.8
0.7
0.6
0.5
0.4
_ 03/ /"
— Maximum
0.2 —— Minimum 0.2y
01l — Mean . 0.1
ffffff 95% Confidence
0.0 A A Ao 00 A A A
Y2ONOIIDORDPRPRRQ YO DD OQAQP PP PP
Training set size Training set size

Figure 4.11: Comparing information theoretical efficiency. Previously published
in Article V [PNN20].

Interpretability of the chosen approaches was measured qualitatively by
examining two problematic cases with real-world relevance. First, a new dataset
was measured where two of the trained devices were transmitting concurrently,
and performed predictions again without retraining the algorithms. Heatmaps of
the final weights (scaled power in the case of NNLS) are shown in Figure 4.13.

The softmax-trained CNN has difficulty resolving both devices at the same
time, as could be expected. An alternate network trained with sigmoid as the
activation function for the final layer provides a smoother estimate for one of
the devices, but is also not able to handle concurrency in a robust way. NNLS
recovers this setup more distinctly, providing a consistent estimate of the multi-
label classification scenario.

Next, the weights themselves were analyzed with respect to distance to the
hamy device. In this test setup the device was turned on and measurements
were made while walking away, turning around and walking back towards the
device. The predicted weights are shown in Figure 4.14. Both algorithms have
a level of understanding of the proximity to the device, but the CNN approach
loses this context relatively fast. Because the fit provided by the NNLS approach
corresponds to the power of each transmitting device, the values can be directly
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Figure 4.12: Comparing efficiency in terms of time. Previously published in
Article V [PNN20].

interpreted and modeled through the standard log distance path loss formula
(described in Equation 2.2 in Section 2.2.2). This dependency is depicted on
the left graph in Figure 4.14, where the orange line represents the expected
theoretical path loss. The NNLS predictions adhere to this line quite consistently,
indicating that our signal model is consistent with the real world phenomena.
This representation could help determine the location of the device, but also
provides a principled interference detection threshold.

In conclusion, NNLS is able to compensate for many of the weaknesses of
the CNN approach. It handles noise much more robustly, and provides a faster
convergence to optimal performance when training data is limited. Though its
accuracy is slightly lower than that of CNN, it provides better interpretabil-
ity through its built-in capacity for multi-class detection and adherence to a
theoretical path loss model. The latter property provides applications with a
distance-dependent quantity to use for locating the source of interference.

The CNN likely provides a better option for sources of interference with com-
plex or unknown transmitter characteristics, and in scenarios where a sufficient
amount of data is easy to obtain. Its computational complexity is also less depen-
dent on the number devices in the model. It is clear that the training and testing
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Figure 4.13: Comparing interpretability of output vectors. Devices hamy and
huhd were turned on simultaneously. Previously published in Article V [PNN20].

environments should match as closely as possible. This might prove difficult to
ensure particularly in commercial deployments since the environment used for
training the algorithm will rarely match that of the end user.

4.4 Discussion

The dependency of deep-learning algorithms on data — specifically, as we’ve
shown, on informative samples — could to some extent be lessened through trans-
fer learning. Section 4.2.5 explored this concept from the perspective of com-
putation time, showing that after the neural network had been trained on ini-
tial sources of interference, subsequent device classes could be trained to nearly
optimal performance using only the final layer of the network. The inherent
stochasticity in the architecture described in Article V could also be reduced
by pre-training the initial layers and then re-using them in subsequent training
sessions. This approach is common in the image recognition domain [SZ15].
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Figure 4.14: Comparing distance interpretation of predicted value. Note that
the path doubles back around the midpoint of the distance axis. Previously
published in Article V [PNN20].

In this work we have we have exclusively considered spectrum sweeps over the
entire frequency band. This provides a complete view of any potential source of
interference in terms of frequency, but sacrifices some granularity in the time do-
main. Given a more narrow, and faster [RPB11], view of the spectrum a hybrid
deep-learning approach could learn to classify sources of interference at different
time scales. Separate networks could be trained on the different sources and pre-
dictions could be made as a weighted combination in a form of multi-source clas-
sification [SSW15]. Both perspectives could even be incorporated into the same
network, with different dimensions for the convolutional filters. As presented in
work on singing voice separation [GZP19], separate filters could be trained for
high frequency resolution and high time resolution sources of information.

Measuring the frequency distribution of energy with a spectrum analyzer
is an approach that focuses wholly on the physical layer of wireless network
communication. Anomaly detection has previously also been performed using
packet traffic  MMH™'17]. In addition to a multi-resolution spectrum view into
interference classification, such techniques could also be used as an additional
source of information when the source of interference is a device with a known
communication protocol. For instance, the open source libraries tcpdump and
libpcap [Tcp20] could be used to decode Bluetooth and ZigBee traffic.
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As touched upon briefly in Section 3.2.5, the algorithm for suggesting access
point placement could potentially be used to find candidate locations outside of
the range of known sources of interference. Given the localization capability of
the NNLS approach to interference detection, these approaches could potentially
work in tandem when designing the access point layout for positioning. An inter-
ference heatmap could be used as an added layer to inform access point placement
when interference could not otherwise be mitigated. For navigation applications,
like the one described in Section 2.4, knowing the location of potential sources
of interference could also inform navigation instructions. When the underlying
positioning technology is known to conflict with that of the interfering transmit-
ters, such as industrial microwave ovens in the bakery section of a supermarket,
pathing could be designed around potential trouble spots.
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Chapter 5

Discussion & Conclusions

This thesis has provided novel solutions to some key challenges that have pre-
vented the proliferation of WLAN positioning as the de facto indoor positioning
solution. Though the presented work has focused exclusively on WLAN as the
underlying technology, the provided contributions are not specific to WLAN and
could support the deployment of systems based on other technologies as well.
Other promising sources of location information could follow or compliment the
presented contributions, or work in tandem to provide a holistic view of ubiqui-
tous positioning. Some of these are described in Section 5.1.

In addition to these technical aspects of an indoor positioning solution, we also
described a study on navigation instructions in Section 2.4, where we illustrated
the real-world issues faced by a typical location-based service. Naturally, the
domain of location-based services is broader than this, and is an active topic of
research in itself. As such, it provides many unexplored opportunities, but also
a wide range of challenges — some of which are unique to the indoor context. We
discuss some of these aspects in Section 5.2. Finally, we conclude the thesis in
Section 5.3 and summarize our contributions in Section 5.4.

5.1 On Indoor Positioning

In this work we have largely focused on signal modeling aspects relating specifi-
cally to a WLAN positioning system. Other radio frequency solutions operating
in the same band as WLAN could adopt our contributions on signal modeling
as well, because propagation characteristics can be assumed to be similar. One
crucial attraction of WLAN is a set of ubiquitous dedicated base stations without

85
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the need to monitor battery life — increasing the potential transmit power and
by proxy coverage. Through the advent of access points with Bluetooth Low En-
ergy beacons this restriction is quickly eroding, however. ZigBee-enabled lights
[Wan13] could also serve as a source of location information arguably even more
ubiquitous than WLAN. The work in this thesis is not limited to WLAN as a
technology, and can complement such efforts since similar aspects of calibration
effort, signal topology modeling and interference detection are relevant for other
wireless technologies. Operating within the same frequency range as WLAN, the
path loss characteristics — and thus the non-linear nature of measurements — and
challenges with cross-technology interference remain relevant.

The specific impact of interference on WLAN positioning was discussed but
not evaluated directly, largely because the effects on communication — and by
proxy beacon transmissions — are well known. An interesting avenue for research
would nevertheless be to instrument different interference scenarios and mea-
sure their impact specifically on positioning. The disconnect between the data
used for training the positioning algorithm and the real world measurements will
inevitably cause uncertainty in position estimates, but such an endeavor could
measure this change systematically. Because interference is typically localized,
due to propagation losses, the impact could not be assumed to be constant over
the entire positioning environment. This would likely require non-linear mod-
eling of the resulting positioning error. Furthermore, client devices capable of
sensing the energy of the WLAN channel could potentially mine constant but
low-impact sources of interference for location information, potentially providing
yet another organic landmark for techniques such as UnLoc [WSE*12].

The focus of this thesis has largely been on signal strength measurements of
WLAN beacon frames. A recent trend in the domain of WLAN sensing is the
use of channel state information (CSI) for various purposes [HHSW11, MZW19],
which provides a richer view into the phase and amplitude distribution over the
wireless channel. This more detailed view comes at the cost of lower compatibil-
ity, however, due to the need for custom wireless drivers and specific hardware.
We previously discussed its use for positioning in Section 2.3.4, but other inter-
esting tasks have also been described in the literature. CSI has been used to
remotely detect breathing rates of patients [WYM17], sense different types of
materials [FLCT18], as well as recognize gait and gestures of people [ZTL™18].
In terms of positioning, knowing that the degree of multipath in a specific envi-
ronment could be extracted from amplitude data through clustering [WGMP15]
provides an opportunity to recognize and account for potential sources of uncer-
tainty as part of the modeling process.
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We have contributed novel techniques to aid WLAN positioning to become
a low-cost, low-effort and robust indoor positioning solution. This paves the
way for bridging the gap between indoor and outdoor spaces for truly ubiquitous
positioning. In the outdoor space, some attractive options for model-based po-
sitioning include GSM positioning, which could provide better energy efficiency
than GPS [NBK10], and outdoor WLAN positioning [LQDO08]|, which operates
well in so-called urban canyons, where GPS is known to struggle [Groll]. To
provide for a ubiquitous solution, however, requires designing a global location
model that can take the intricacies of indoor environments into account. For the
outdoor case, a global environment topology can be described in a determinis-
tic way, using geographic coordinates or by utilizing a grid [NBK10]. Because
movement outdoors is much less restricted, this generic topology is likely to cause
conflicts with the constraints of indoor movement. Future endeavors would need
to incorporate these restrictions to provide a smooth transition between contexts.

5.2 On Location-based Services

Our work has focused on the improvement of position accuracy and consis-
tency, but other considerations such as privacy and standardization are in many
ways equally important aspects to consider if positioning solutions are to receive
widespread adoption for location-based services. In the following we describe
some important topics in the domain and discuss ways in which the contribu-
tions of this thesis could form avenues for future research.

Privacy

Collecting data for a WLAN positioning system, whether during the training
or the deployment phase, exposes the users to divulging information that could
be used to identify them. This might decrease the uptake of the positioning
solution by privacy-conscious individuals. The issue of privacy, in addition to
ethical and social challenges, is one of the directions into which research on
location-based services has expanded in recent years [HGK118]. In many cases,
aspects that would provide an improved location-based experience conflict with
consumers’ reluctance to share personal information. A typical social networking
application of location-based services is ”checking in” at venues or events. Such
uses for location information need to be moderated with proper privacy controls
to ensure mainstream support of the service [RW13]. In shopping scenarios the
sometimes intrusive nature of promotions might be mitigated by personalizing
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the application. This, however, might also conflict with the consumers desire for
privacy, depending on the level of control they have over the information they
provide [ARG16]. While crowdsourcing WLAN measurements could provide a
way to distribute the effort of initializing the positioning system, consumers might
not be willing to report their location or the access point information they are
receiving. Given that we have shown that a large quantity of measurements can in
fact be gathered without specific location information in Section 3.1 and Article
II, we can in effect provide a way to perform such crowdsourcing in an anonymous
way. Since none of the contributions directly require the location or identifying
information of access points in the environment, our solutions could painlessly
integrate a deterministic obfuscation of identifiers, such as access point MAC
addresses, in the measurements. Finally, reducing the size of the location model
by optimizing the size of the environment topology, as described in Section 3.2
and Article III, also provides means to ensure that positioning can run on client
devices without interfacing with external services.

Context

We previously investigated navigation semantics from the perspective of cognitive
load in Section 2.4 and Article I, with the intention of finding a balance between
the potentially orthogonal goals of the supermarket proprietor and the customer.
That is, efficient navigation might decrease the number of advertising oppor-
tunities within the store. Another potential mediator is that of location-based
advertising (LBA), i.e. presenting product promotions at opportune moments.
Properly accounting for all aspects of an LBA solution might require multidisci-
plinary effort, including insights from marketing and psychology research. Con-
texts like the size of the retail environment [RNG16] and the complex psychology
behind promotion timing [MAPO7, SI13] have been found to affect purchase be-
havior. In order for location to provide a context for other effects, the granularity
of location information needs to match the demands of the application. In super-
market environments a minimum resolution for position updates would be the
width of individual shelf units, as product categories can change multiple times
along a single shelf. In terms of advertising, on the other hand, position esti-
mates need to fall within visible range of the product for the promotion context
to matter. In Chapter 3 we highlighted the difficulty of reconciling such human
location contexts with the limitations of the spatial variability of the measured
signal. In some cases it is simply impossible to distinguish two locations in sig-
nal space that have semantic differences in the real world. This issue could be



5.2 On Location-based Services &9

mitigated by adding enriching information to poorly performing regions of the
location model, which we showed can be performed in a cost-effective way by
placing access points based on region fitness scores in Section 3.2.3. Even in
cases where this is not practicable, if the regions which are likely to violate the
expected contexts are known in advance, recognizing and accounting for them in
the design of the LBS could provide a more consistent experience.

Standardized operation

Finding an automatic way of discretizing the position environment was previ-
ously motivated, in Section 3.2, by the lack of a connection to the underlying
signal space. Another aspect to consider is how a chosen discretization, or envi-
ronment topology in general, influences the generalizability of the algorithms and
the evaluation of position errors across deployments. This consistency of design
is particularly important in the industrial sector, where standardization and in-
teroperability are deemed important characteristics of potential LBS [FJAD18].
This calls for positioning systems to have a common set of standards in order to
provide a consistent LBS experience, something which ISO has recently recog-
nized through its publication of testing and evaluation standards for localization
systems [ISO16]. Our strategy for optimizing the indoor topology for positioning
purposes in Section 3.2 provides for a systematic way of designing the location
model around the measured signal instead of heuristics, which could change from
one location to the next. This perspective into the environment topology could
arguably prove even more fair than a set grid size for systematic testing, because
the impact of the unique signal topology of each location is effectively marginal-
ized as part of the dynamic partitioning scheme.

Real-world deployments

We explored the issue of validating algorithms in real-world environments as part
of our investigation into interference detection techniques in Section 4.3 and Ar-
ticle V. The disconnect between how the system has been developed and the use
cases in which it is deployed is typical for intelligent systems. In some extreme
scenarios the assumptions made during design can completely break down. In
[GFCM17] the authors highlight several complicating scenarios when indoor po-
sitioning solutions are used by emergency responders, especially firefighters. In
such catastrophic circumstances the existing infrastructure for wireless connec-
tivity is at risk of failing completely due to interruptions in electrical systems, and
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fires might change the layout of the environment to the extent that established
positioning models no longer apply. The authors also recognize the disconnect
between a model trained for the average pedestrian and the movement patterns
that are unique to emergency responders — such as crawling or hunched walking.
Such modeling disconnects are relevant to other domains as well. Consumers in
a supermarket might require different pedestrian models based on which type of
cart — if any — they use to carry their shoppings. This behavior might even change
as the cart grows heavier. Similarly, when traveling the transportation of luggage
will likely not match unhindered pedestrian gait. A testament to the need for
real-world validation is our navigation study described in Section 2.4 and Article
I, which instrumented an established positioning system in a complex everyday
environment, and faced issues with consistency of position estimates. This dis-
connect between design and deployment motivated other contributions in this
thesis as well. We advocated for a modeling of the real-world signal space in-
stead of anchoring the positioning model to a predefined topology in Section 3.2
and Article III, and our work in Section 4.3 and Article V further highlighted the
need to test solutions in real-world conditions, or at least simulate the change in
expectations by varying testing properties. A wider examination of positioning
solutions could discover the impact of missing infrastructure, variance in loco-
motion or location model uncertainty before deployment actually proceeds.

5.3 Conclusions

Location-based services such as fitness tracking, navigation and augmented real-
ity gaming thrive outdoors where GPS is readily available. Indoors, GPS strug-
gles to provide accurate location information, which reduces the range of available
location-aware applications. WLAN positioning, often considered the de facto
solution for many indoor LBS [HGK 18], has seen limited uptake despite decades
of research. This can likely be attributed to the many real-world obstacles it has
to face for widespread adoption.

Our experiences from real world deployments, which have motivated the con-
tributions of this thesis, have shown that the WLAN positioning lifecycle contains
several vulnerable phases, all ultimately relating to uncertainty of the location-
dependent signal. Depending on which phase of the lifecycle this uncertainty
manifests, different approaches are required for mitigating them. First, the early
intuition of substituting the complex description of the environment through a
purely physical modeling of the signal with empirical approaches has only bought
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a limited reprieve from effort. To provide high-resolution position estimates, a
significant amount of data covering all traversable regions of the environment is
required. During this so-called calibration survey, measurements are labeled with
real-world locations, often through rigorous manual effort. Before this measure-
ment phase even takes place, however, the environment topology and the location
labels it relates to needs to be defined. This has often been engineered with
the end application in mind, instead of constructing it based on the limitations
of the underlying signal. This has caused great uncertainty for the algorithms
trying to choose the best of two similar but not necessarily co-located options.
This environment description has traditionally involved manual effort in defining
which parts of the environment to model, and at which level of granularity.

Finally, though the ubiquity of the WLAN protocol as a communication
medium can to a large extent be attributed to its unlicensed use of spectrum
[Rit03] — requiring very little upfront cost especially if the network is already es-
tablished — this free use of the frequency band has revealed itself to be a double-
edged sword. Other technologies, many not adhering to as strict or polite a
protocol as IEEE 802.11, vying for the same set of frequencies can hamper the
connectivity of the network. For everyday communication, this has the effect of
decreased throughput in the network or, in the worst case, a complete commu-
nications breakdown [RPB11]. In the positioning domain, this can have varying
impact depending on when the disruption occurs. In practice, interference can
raise the level of noise on the wireless channel, which in turn decreases the signal-
to-noise-ratio available for communication. This decreases the potential range
of access points and by proxy location information coverage. In morbid cases, a
strong source of interference might even jam communication entirely, causing a
loss of information in both the modeling and application phases of positioning.
Any mismatch between the calibration and testing phase will inherently imbue
the system with a level of unwanted uncertainty, but unexpected gaps of infor-
mation can also violate the smoothness assumption of many approaches based on
the signal strength fingerprinting approach. The end result of such uncertainty
is an inconsistent performance in the end-user application.

This thesis has presented ways to alleviate these issues, and bring WLAN po-
sitioning closer to the ubiquitous solution initially envisioned. Machine learning
algorithms need to include the inherent non-linearity of the domain in their mod-
els of the environment. Harnessing this notion can alleviate, or even eliminate,
much of the efforts that are traditionally manual. Additionally, aspects external
to the actual positioning model, such as other technologies, need also be taken
into account to ensure robust location-based services.
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5.4 Summary of Contributions

In the following, we revisit the topics explored in this thesis and summarize the
contributions of each publication.

5.4.1 Location-based Service in a Supermarket Environment
(Section 2.4, Article I)

We provided insights into the inaccuracies of commercial positioning systems in
everyday contexts of practical interest. We furthermore detailed the added effort
required to mitigate these inadequacies in order to enable location-based services
in a supermarket environment. Finally, we investigated means to bridge the gap
caused by the cost of deploying a positioning system and the interests of different
stakeholders. By instrumenting navigation instructions with brands instead of
generic markers — providing an opportunity for marketing for the system owner —
an increased amount of attention was captured without disrupting the navigation
experience. The lessons learned from this real-world deployment in a complex
everyday environment provided motivation for our further contributions.

5.4.2 Signal Space Modeling
(Chapter 3, Article II & Article III)

Though it was shown that a state-of-the-art positioning system could be in-
strumented post-hoc to serve as a provider of location context for commercial
applications, it nevertheless required manual effort that does not easily general-
ize to other environments. The survey effort was to some extent reduced due to a
convenient segmented path survey, but still required multiple passes from differ-
ent directions to achieve the required accuracy. Furthermore, the discretization
of the environment was initially performed to serve the product categories of the
supermarket rather than the constraints of the underlying positioning technol-
ogy. This resulted in the need for further abstraction in order to ensure that
navigation instructions were not only played in the correct location but also with
proper timing in order to provide a smooth navigation experience.

Semi-supervised Learning

We showed that by extracting a two-dimensional embedding from an inherently
multidimensional signal space, a rough approximation of the environment topol-
ogy could be discovered in an unsupervised way. A further semi-supervised so-
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phistication was then able to propagate labels from a select number of anchor
points to measurements that have no real-world mapping. This discovery showed
that a spatial dependency within the signal space exists and can be exploited in
a simple yet principled way to decimate the calibration effort.

Automatic Environment Partitioning

The previously described spatial dependency of the signal space was further ex-
ploited to detect anomalies in the signal data. By exploring the way signal
strength fingerprints interacted with their neighbors in an automatically con-
structed signal space mapping, we could identify areas in the environment with
poor variability. Sequentially merging weak co-located areas ensured that the
size of the positioning model could be reduced by up to 60% without impacting
the accuracy of the positioning system, all in a completely automated way. This
same intuition could even be extended to suggesting locations for further access
point placements, in order to enrich poorly separable areas.

5.4.3 Detecting Competing Technologies
(Chapter 4, Article IV & Article V)

When interference impacts a WLAN network, the subject of this disruption is
often the very thing that most WLAN positioning systems use as a source of
context awareness: the signal strength of received frames. Any source of remedi-
ation for these issues thus needs to analyze a medium that is independent of the
actual WLAN protocol. Measurements from a spectrum analyzer provide a rich
description of the spectrum and can provide enough information for approaches
like CNNs — previously employed to great success for image recognition — to infer
the likely source of non-conformant energy.

Semi-supervised Detection

We showed that even a relatively shallow convolutional network can learn the
features of a wide variety of potential interferers, classifying the correct device in
97% of cases. When this network is extended with a temporal modeling aspect
through a Markovian interpretation of sequential measurements, the approach is
improved even further, especially when learning with a constrained set of data.
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Real-world Interference Detection

Bringing a similar deep learning approach to the real world and comparing it to a
relatively simple, yet effective, linear baseline shows that in many respects a deep
learning approach requires more varied data to provide a solution equivalent to
the linear approach. Though this linear alternative in extreme cases suffers from a
polynomial computational complexity, it also allows for more interpretable results
and real-world practicality by providing a consistent estimate of the interferer
transmit power. This could significantly reduce efforts to locate the device in
question, since known path loss propagation formulas can be used to translate the
solved power to real-world proximity. The added location context of interference
could also help inform the design of a wireless network for positioning, even if
the direct effect could not be mitigated.
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