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Abstract

Existing ad hoc network localisation solutions rely either on external location references

or network-wide exchange of information and centralised processing and computation of

location estimates. Without these, nodes are not able to estimate the relative locations of other

nodes within their communication range. This thesis defines a new distributed localisation

algorithm for ad hoc networks of moving nodes. The Relative Neighbour Localisation (RNL)

algorithm works without any external localisation signal or systems and does not assume

centralised information processing. The idea behind the location estimates produced by the

RNL algorithm is the relationship between the relative locations of two nodes, their mobility

parameters and the signal strengths measured between them. The proposed algorithm makes

use of the data available to each node to produce a location estimate. The signal strength

each node is capable of measuring is used as one algorithm input. The other input is the

velocity vector of the neighbouring node, composed of its speed and direction of movement,

which each node is assumed to periodically broadcast. The relationship between the signal

strength and the mobility parameters on one, and the relative location on the other side can be

analytically formulated in an ideal case. The limitations of a realistic scenario complicate this

relationship, making it very difficult to formulate analytically. An empirical approach is thus

used. The angle and the distance estimates are individually computed, together forming a

two-dimensional location estimate. The performance of the algorithm was analysed in detail

using simulation, showing a median estimate error of under 10m, and its application was

tested through design and evaluation of a distributed sensing coverage algorithm, showing

RNL location estimates can provide 90% of the coverage achievable with true locations

being known.
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Chapter 1

Introduction

1.1 Overview

The development of wireless communication technologies in recent decades has led to the

present day ubiquity of wireless networks. The technological advances have not only made

Internet access available from almost any place at any time, they are also constantly making

the design of smaller, more powerful and more autonomous devices possible. People are no

longer the only users of telecommunication networks, this role is rapidly being taken by the

devices themselves. The emergence of concepts like device-to-device (D2D) communication

and the Internet of Things (IoT) has led to an increasing number of devices joining local or

global wireless communication networks, enabling them to perform their functions more

efficiently.

Local networks of devices operating on a common task or exchanging information are

used for many different applications. “Smart” appliances in “smart” homes, autonomous ve-

hicles or different types of sensors are being connected among themselves. Infrastructureless,

or ad hoc, networks are being used for the purpose of connecting these devices, as in order to

operate efficiently the devices do not necessarily need Internet connectivity, and the focus

is on the local information exchange. Unlike infrastructure-based networks which are sup-
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ported by a number of base stations (BS) or access points (AP) which provide connectivity

to all users, ad hoc networks are formed and maintained by the nodes themselves.

In addition to the inherent challenges all wireless communication systems face, the

infrastructureless nature of ad hoc networks exposes these networks to further issues. The

connectivity of nodes relies on the topology of the nodes surrounding them, and node

mobility can cause frequent and significant changes in this topology. Without a fixed network

infrastructure, external localisation systems like Global Positioning System (GPS), or specific

ranging hardware in place, estimating locations of moving nodes in ad hoc networks becomes

a challenge.

This research is motivated by the fact that ad hoc networks of moving nodes are often

used for location-related group tasks. If the nodes in such networks are unable to obtain

location information from external sources, their efficiency at performing task at hand is

challenged. Providing nodes with general information about the physical topology of their

neighbours can help increase this efficiency, regardless of the inaccuracy of exact location

estimates produced.

Existing solutions in the field of ad hoc network localisation either assume that some sort

of external localisation is present, in form of beacon, or anchor, nodes which are aware of

their location and are used as references, or that the information from measurements between

nodes across the whole network is exchanged and centrally processed. This thesis, on the

other hand, presents a localisation algorithm which is distributed, i.e. each moving node in an

ad hoc network can run the algorithm itself to produce estimates of its neighbours’ locations.

No presence of external localisation is assumed, and the exchange of information between

nodes is limited to sharing their mobility parameters.

The goal of the proposed Relative Neighbour Localisation (RNL) algorithm is to provide

a location estimate which can be used in location-based cooperative networks, based on

the information available to each node. The basis of the proposed approach is an intuitive
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relation between two nodes’ mobility parameter, relative position and the signal strength

between them. The information used as algorithm input is unreliable as a consequence of

signal propagation effects, and the algorithm aims to provide an insight into the relative

location of the neighbouring node, useful to a location-related application, rather than exact

location of it, as high level of accuracy based on the data available is difficult to achieve.

The designed localisation algorithm can be used in any ad hoc network of moving

nodes. As it does not aim to provide the nodes with exact location of their neighbour, its

contribution is in the fact that it is able to provide a general idea of the physical topology

of the neighbouring nodes, which can be used in situations where other localisation sources

are unavailable and the nodes forming the network are working on a location-related task.

In such scenarios, having information about the general location, or direction, in which the

neighbours are located can be beneficial for efficient task completion (in comparison to a

case in which no location information is present).

The performance of the RNL location estimates has been evaluated using simulation. In

order to ensure the simulation was realistic, a set of tests was performed in an experimental

testbed which was developed. The models used in the simulation were designed and calibrated

using the measurements obtained in the experimental tests. The RNL algorithm was shown

to be able to produce median location estimate error of under 10m. An application scenario

was also designed, in which the RNL location estimates were used in a distributed sensing

algorithm, showing that the coverage obtained based on the RNL location estimates was over

90% of the one achievable if the information about the true locations of neighbouring nodes

were available.
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1.2 Research Contributions

In light of the existing gap in the field of localisation for ad hoc networks of moving nodes,

without the support of external signals or systems, the main contributions of this work may

be defined as:

• Formulation of a principle for distributed localisation in ad hoc networks of moving

nodes. This principle is based on the relationship between the trends in measurements

of the received signal strength from a neighbouring node over time and the neighbour-

ing node’s mobility parameters (speed and direction of movement) on one side, and

the relative location of that neighbouring node on the other.

• Design of a distributed localisation algorithm for ad hoc networks of moving nodes

without the use of any external localisation signals or systems. The proposed algo-

rithm is designed in a way that allows nodes to individually produce estimates of

neighbouring nodes location, without any centralised knowledge.

• Application of the localisation algorithm in a distributed sensing coverage scenario.

1.3 Publications

The following papers have been published throughout this PhD study:

• Cvjetkovic, M., & Rakocevic, V. (2016). Alternative topology construction for coop-

erative data distribution in mobile ad hoc networks. Paper presented at the 2016 8th

International Congress on Ultra Modern Telecommunications and Control Systems

and Workshops (ICUMT), 171-176.

• Cvjetkovic, M., & Rakocevic, V. (2017). Relative localisation algorithm for neighbour

classification in ad hoc networks of moving robots. Paper presented at the Proceedings
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of the First ACM International Workshop on the Engineering of Reliable, Robust, and

Secure Embedded Wireless Sensing Systems, 46-53.

1.4 Thesis Structure

The rest of this thesis is structured as follows: the second chapter provides an overview

of localisation in wireless networks. The need for and the applications of localisation are

presented, followed by the description of the basic principles of different types of localisation

algorithms. Existing solutions for localisation in infrastructure (cellular and WLAN) and

infrastructureless networks are reviewed in the second chapter as well.

The third chapter defines the proposed RNL algorithm for distributed localisation in

ad hoc networks of moving nodes. Theoretical principles of localisation in an ideal case

are presented, followed by a discussion on the limitations existing in a realistic scenario,

and their implications on the application of the proposed localisation approach. Finally, the

design of individual elements and procedures of the RNL algorithm is presented in detail.

Chapter four presents the evaluation of the performance of the RNL algorithm. It starts

with a description of the experimental setup used to gather measurements for designing

realistic models used in simulations. The accuracy results of simulation tests of different

types of location estimates are then presented. Finally, a potential application of the estimates

produced by the RNL is tested in a scenario where distributed sensing coverage is used,

examining the effects of the inaccuracy of RNL location estimates.

The final chapter concludes the thesis, providing a summary of the proposed solution and

its performance, as well as a discussion about possible directions of future work.



Chapter 2

Localisation in Wireless Networks

This chapter presents an overview of different types of wireless networks and the need for

localisation in them. The basics of different localisation approaches are then introduced,

after which an overview of the existing localisation solutions for infrastructure-based and

infrastructureless wireless networks is presented. It concludes with the definition of the

problem this thesis proposes a solution for.

2.1 Wireless Networks and the Need for Localisation

2.1.1 Types of wireless networks

Development of wireless communication using radio waves has made computers and people

(commonly called nodes or users) able to communicate without having a physical connection

to the underlying network. Different systems relying on wireless communication have been

developed, with new applications and services being provided to users constantly, and users

being able to access them from wider areas and almost at all times, even when on the move.

The shift in communication and Internet access paradigms has, on the other hand, introduced

a number of new challenges, the majority of which the traditional, wired, communication
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systems have not had to deal with, with their prominence varying depending on the type of

wireless system in use.

Fig. 2.1 Wireless cellular network

Wireless communication systems can exist as parts of a bigger network with a fixed core,

in which case they are used for extending the range and widening the number of users able to

use its services. This is the case in infrastructure-based networks which are based around an

access point (AP), or a base station (BS). The AP serves as the gateway for wireless users,

providing access to the rest of the network. It usually has a direct wired connection to the

core, but sometimes, in remote areas or for other practical reasons, a point-to-point link

is used to connect it to the rest of the network. Figure 2.1 shows an example of a cellular

network infrastructure. The main sources of issues infrastructure-based wireless networks

face are the user mobility and the effects signal propagation has on signal stability. Specific

routing protocols and handover procedures need to be in place for uninterrupted connectivity

in situations when mobile users switch from the coverage area of one access point to the

coverage area of another one. Power control mechanisms are needed for the user equipment
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(UE) (or mobile station (MS)) to account for the user moving closer or further away from

the AP, and adaptive modulation schemes are used for enabling connectivity in conditions of

varying signal strength. It can be concluded that even with the existence of infrastructure in a

wireless network, there is a number of issues arising from user mobility as well as wireless

signal propagation effects.

Fig. 2.2 Infrastructureless radio network

The other type of wireless communication networks are infrastructureless, or ad hoc

networks. These networks are characterised by self-organisation, as there is no infrastructure

support. The nodes form the network by cooperating among themselves, and all commu-

nication is performed directly between the sending and the receiving nodes. Figure 2.2

represent an example of on infrastructureless network. The absence of any centralised in-

frastructure means that these networks provide greater flexibility and easier deployment, but

it also exposes such networks to additional challenges, on top of the ones inherent to all

wireless communication systems. In the case of mobile nodes, the nodes can move in and

out of communication range of other nodes, sometimes becoming completely unreachable.
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Different routing (mesh), cooperative networking and opportunistic networking protocols are

used for ad hoc networks with interrupted or limited connectivity.

Wireless sensor networks are networks of nodes with sensing capability. The nodes all

measure a certain physical quantity at their location, and the network is then used to distribute

these measurements to designated collection points. Wireless sensor networks are usually

deployed using an ad hoc architecture, as it provides greater flexibility and is simpler to set

up. The nodes in such networks can be either static or mobile, depending on the application

they are designed for.

2.1.2 Localisation fundamentals

As previously stated, wireless technology has enabled network nodes to establish communi-

cation without a physical connection to other network elements, and more importantly, to

remain connected while on the move. Node location thus became a variable and became an

important parameter in many different applications and services. This section represents an

overview of the basic terms and principles used in the field of determining node location in

wireless networks – the process of localisation. It is important to note that all localisation

techniques operate with a certain error, so the term location estimate will be used to refer to

the node location as determined by the localisation technique.

Node location may be needed for different purposes, which may define the parameters of

the localisation technique such as precision, delay, or whether the node or the network are

performing the localisation. Based on the goal towards which a node’s location is estimated,

there are three main categories:

• Node location can be the purpose in itself, i.e. positioning or navigation applications;

emergency services.

• Node location is used for a network application or protocol, i.e. location-based routing,

coverage or sensing.
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• Node location is used for a higher layer application, i.e. location-based services such

as locating nearest businesses of the desired type, asset management, advertising or

gaming.

Positioning and navigation applications have become ubiquitous in the present day, from

end users trying to determine their location or finding their way to a certain location, to

use in autonomous vehicles, logistics and other industries. From the network’s perspective,

in these scenarios, the goal is just providing a location estimate. What this information is

later used for is of no interest to the network. Another very important use of location and a

significant driving force of research in this field is in emergency scenarios. The importance

of locating the users in need of help has led to modern public communication systems having

the capability of estimating user location incorporated in their standards.

Network applications and protocols relying on node location are designed to maintain

connectivity or enable location-related data distribution efficiency in networks of mobile users

with dynamic topology. In cellular radio networks, node location may be used for making

handover decisions for high-speed moving nodes. Ad hoc and relay networks may use node

location for routing purposes, speeding up the process of route discovery or proactively

detecting changes in topology. Wireless Sensor Networks rely on node location for coverage

control – maintaining the whole area of interest covered as well as gathering data from the

sensors in the most efficient way. In all of the scenarios listed above, it is the network itself

which requires the node locations, in order to be able to provide full functionality.

With an increase in usage of wireless communication by mobile users the need for

providing these users with content and services related to their location has arisen. User

localisation made it possible for users in specific locations to be “targeted” by certain content,

to have access to different content based on their location, or to receive recommendations

on different nearby services. Location-based services have also found usage in healthcare,
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transport, logistics and other fields. In such scenarios, the network helps determine nodes’

locations and then passes the information on to the service or application requesting it.

Node locations may be estimated using different reference systems, depending on the

localisation technique used. Here, two possible approaches exist:

• Absolute localisation – a common coordinate system exists which all location estimates

are expressed in.

• Relative localisation – location estimates are made in relation to another device whose

location is known.

The most prominent examples of absolute localisation are satellite positioning sys-

tems like the Global Positioning System (GPS) [1], Global Navigation Satellite System

(GLONASS) [2] and Galileo, collectively referred to as Global Navigation Satellite Systems

(GNSS) [3]. These systems consist of constellations of satellites with well-known locations

in a universal coordinate system. The satellites are equipped with highly stable synchronised

atomic clocks and are constantly transmitting their time and location information. If the

user receives these signals from enough different satellites it is then capable to solve a set of

equations resulting in its position in the universal coordinate system, along with its internal

clock time deviation, which means that these types of systems can also be used for time

synchronisation of the user equipment.

In contrast, relative localisation techniques use either a set of devices with known fixed

locations or mobile devices capable of determining their absolute location, making their

position always known to others. These nodes are called anchors, beacons or landmarks,

and are used to define a “local” coordinate system. Using one of the different techniques

described below, other nodes can determine their location within the established reference

system, and, if necessary and possible, translate this relative location into an absolute one.
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2.2 Localisation Parameters

Localisation techniques may use different types of parameters, which can be split into two

categories:

• Range-based – physical characteristics of the received signal are analysed.

• Range-free – topology formed by links between nodes is analysed.

2.2.1 Range-based localisation

Localisation methods based on signal properties analysis, also called range-based methods,

consider physical properties of the received signals and try to directly translate measurements

of these properties into the distance or angle estimates. The errors in these estimates depend

on the level of precision of the measurements. The signal properties used are signal strength –

in form of received signal strength (RSS) parameter, time of arrival (ToA) or time difference

of arrival (TDoA), or angle of arrival (AoA). In order to perform precise measurements

of these parameters, specific equipment is usually needed, which increases the cost and

complexity of such methods. On the other hand, using such precise measurements increases

the localisation accuracy. Range-based methods approach the localisation problem from a

geometrical perspective, and depending on which of the signal parameters is used in the

problem definition they can be defined as:

• Trilateration – based on RSS or ToA

• Multilateration – based on TDoA

• Triangulation – based on AoA
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2.2.2 Range-free localisation

Localisation methods based on analysing the connectivity and topology of the network,

rather than particular signal properties, are called range-free localisation methods. These

methods are either relying on information from individual nodes’ neighbourhood lists or

routing tables, or they are based on matching patterns of RSS measurements from multiple

sources. It is worth noting that the RSS parameter is not used to estimate distances in pattern

matching algorithms, which is why these methods can still be considered range-free. No

precise measurement of physical signal properties are needed for range-free localisation,

so no additional equipment is needed, as the algorithms can be implemented in any node

capable of wireless communication. This makes the range-free approach cheaper and less

complex to implement, but the accuracy they produce is usually lower than the range-based

ones.

2.3 Localisation Methods

2.3.1 Trilateration

This range-based method determines the unknown user location using distance estimates.

In three-dimensional space, the estimated distance from a transmitter with known location

defines a sphere with the centre in that point and radius equal to the distance estimate, on the

surface of which the user is located. By acquiring multiple (three or more) distance estimates

to transmitters with known locations, the unknown location is calculated as the intersection

of these spheres. The transmitting and receiving roles are interchangeable in this procedure,

so the location is not necessarily calculated by the node with an unknown location, but may

be calculated by the network itself, gathering the measurements from different receivers

positioned in known locations.
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In a simplified model, the process of trilateration assumes solving the following system

of equations:

r1 =

√
(x1 − x)2 +(y1 − y)2 +(z1 − z)2

r2 =

√
(x2 − x)2 +(y2 − y)2 +(z2 − z)2

. . .

rn =

√
(xn − x)2 +(yn − y)2 +(zn − z)2,

(2.1)

where ri is the distance between the transmitter and the receiver , xi,yi,zi are known coor-

dinates of transmitter i, n is the number of available distance estimates, and x,y,z are the

unknown coordinates of the user. Figure 2.3 shows an example of trilateration, using three

reference points and the estimated distances to them.

Fig. 2.3 Trilateration

Distances can be estimated from the received signal strength (RSS) if the transmitting

power is known, which is a less precise option as signal propagation effects cause fading,
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resulting in a random variation of signal strength at the receiver. Another way to estimate

distances is from the time of arrival (ToA) of the signal, which is a more precise method, but

increases complexity unless the transmitter and receiver clocks are synchronised.

When RSS is used, or ToA measurements are used, with system-wide time synchroni-

sation in place, the minimal number of distance estimates from known locations needed is

equal to the dimensionality of the space in which the location is being determined, d, so

n ≥ d needs to hold for successful trilateration.

In systems where there is no time synchronisation and timing parameters are used, as is

the case with GNSS, the number of unknowns in the system is one greater than the number

of dimensions [4]. The additional unknown is the clock offset, τ , of the receiver, which

is computed at the same time as the spatial coordinates. The offset of transmitter i, τi, is

considered to be known. For such systems, n ≥ d +1 needs to hold for trilateration to work.

If that is the case, the concept of pseudorange needs to be introduced [4] and is defined as

the product of the difference in time the signal is transmitted, according to the transmitter

clock, and the time the signal is received, according to the receiver clock and the speed of

light, c. Observed pseudorange from transmitter i can be expressed as:

Pi (t) = ((t + τ)− (ti + τi))c

= (t − ti)c+ cτ − cτi

= ρ
i (t, ti)+ cτ − cτi,

(2.2)

where ρi
(
t, t i) is the distance between the receiver at time t, the time signal is received, and

transmitter i at time ti, the time signal is transmitted, and is calculated as:

ρi (t, ti) =
√

(xi (ti)− x(t))2 +(yi (ti)− y(t))2 +(zi (ts)− z(t))2. (2.3)
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A simplified system of pseudorange equations can now be derived as:

P1 =

√
(x1 − x)2 +(y1 − y)2 +(z1 − z)2 + cτ − cτ1

P2 =

√
(x2 − x)2 +(y2 − y)2 +(z2 − z)2 + cτ − cτ2

. . .

Pn =

√
(xn − x)2 +(yn − y)2 +(zn − z)2 + cτ − cτn.

(2.4)

In many cases, especially in GNSS, more than the minimum needed number of distance

estimates is available. If that is the case, it is possible to use the over-determination of the

system to increase the precision of the location estimate by means of least squares method as

described in [5].

2.3.2 Multilateration

This range-based method is based on the differences between distance estimates. In three-

dimensional space, the difference in estimated distances between two transmitters with known

locations and the user with an unknown location defines a hyperboloid whose focal points

are located in the two transmitters, on the surface of which the user is located. By acquiring

multiple differences in distances between pairs of transmitters with known locations (three

or more) the unknown location is derived as the intersection of the hyperboloids defined by

them. Again, the devices which location is known may also be receivers, and the user with

an unknown location may be a transmitter of the signal used to estimate the difference in

distance, allowing for this procedure to be performed by either the user itself or the network.

A system of equations of the following form is obtained using the multilateration proce-

dure [6]:

ri, j =

√
(xi − x)2 +(yi − y)2 +(zi − z)2 −

√(
x j − x

)2
+
(
y j − y

)2
+
(
z j − z

)2
, (2.5)
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where xi,yi,zi are known coordinates of transmitter i, x j,y j,z j are known coordinates of

transmitter j, x,y,z are unknown coordinates of the user, and ri, j is the difference between

the distances between the user and transmitters i and j. Figure 2.4 shows an example of

multilateration, using distance differences between two pairs of reference points.

Fig. 2.4 Multilateration

The difference in distances between the user and two transmitters with known locations

is calculated using the TDoA parameter. When calculating the difference in the times of

signal arrivals from two different transmitters there is no need for the user clock to be

synchronised to the transmitter clocks, as the user does not need to know the exact time the

signals were sent. This makes the TDoA method much less complex than the ToA method

used in trilateration.

If the transmitters are synchronised among themselves, the minimal number of pairs of

transmitters for which differences in distances are estimated through the TDoA parameter

needs to be greater or equal to the number of dimensions of the space in which the user

location is estimated, resulting in three transmitters for both two-dimensional and three-
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dimensional localisation. In practice, if there is no absolute synchronisation between the

transmitters, one additional transmitter needs to be used as a time reference point, making

four the minimal number of transmitters necessary for three-dimensional localisation.

Similar to trilateration, the availability of more than the minimal number of TDoA esti-

mates needed can help increase the accuracy of the location estimate, discard an ambiguous

solution, or help detect an error in one of the estimates. An extra reference point may

intentionally be used with the purpose of simplifying the process of solving the system of

multilateration equations, given the complexity induced by the square root terms [6].

2.3.3 Triangulation

This range-based localisation method utilises measurements of the angles at which the

signal from the transmitter with unknown location (the user) arrives at receivers with known

locations [7]. A known direction of arrival of the signal defines a half-line with the initial

point in the receiver, and the transmitter is located somewhere along the half-line. Obtaining

two or more angle of arrival (AoA) measurements defines the unknown location of the

transmitter in the intersection of the half-lines. In two dimensions, each AoA measurement

produces the following equation:

θi = arctan
(

y− yi

x− xi

)
, (2.6)

where xi and yi are the known coordinates of the receiver i, θi is the measured angle of arrival

of the signal coming from the transmitter with unknown location coordinates x and y. Figure

2.5 shows an example of triangulation, using AoA measurements of signals received from

three different transmitters.

Precise measurements of the angle from which a signal arrives are possible using antenna

arrays, making this method relatively expensive and impractical to implement on the user side.
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Fig. 2.5 Triangulation

This is why most of the applications of triangulation have the angle of arrival measurement

performed at the fixed receivers at known locations, although some implementations may

work with reversed roles, with the reference points acting as transmitters, and the AoA

measurements performed by the user equipment. More than two reference points are often

used, to reduce the effects of errors made in individual AoA measurements. Additional

complexity is introduced with increasing the number of spatial dimensions in which angula-

tion is performed, as determining an unknown location in three-dimensional space assumes

detecting both the azimuthal angle θ and the polar angle φ , so an additional equation is

produced by each AoA measurement:

φi = arccos
(

z− zi

r

)
, (2.7)

where:

r =
√

(x− xi)
2 +(y− yi)

2 +(z− zi)
2. (2.8)
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2.3.4 Connectivity based methods

These methods rely on the hop-count metric – the number of nodes through which a packet

travels from node A to node B. This metric can be assumed to indicate the distance between

two nodes, although it may be largely influenced by node density, and may be used in two

different ways: to determine the unknown location of the node based on its proximity to

anchor nodes whose location is known; or to combine such knowledge from all nodes in the

network and compute the overall physical topology of the network. Different algorithms,

which are reviewed in the next section, are used to make the final estimate in the anchor

proximity approach, as well as for combining the hop-count information from multiple nodes

in order to minimise errors.

2.3.5 Pattern matching methods

These methods use the RSS measurements from multiple beacons to determine the unknown

node location. The signal strength measurements are not used as indicators of actual distance

but as characteristics of different parts of the area in which the network is deployed. Pattern

matching can be done based on either probabilistic propagation models or empirical mea-

surement databases which is why the solutions taking the latter approach are often called

fingerprinting methods. A fingerprint is represented by a vector containing RSS measure-

ments for a certain point in the area of interest. This is why such methods need an offline

phase first, a phase in which data is gathered, measurements are taken with a predetermined

resolution, and are stored in a database. The idea behind fingerprinting localisation methods

is for the node with an unknown location to form a vector of measured signal strength values

from all beacons in range, which can then be compared with the existing database. The

fingerprint (or multiple fingerprints) which is the best match to the fingerprint reported by the

user is found, and the location associated with it is returned as the location estimate. Possible
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approaches to pattern matching in different types of networks are described in greater detail

in the next section.

2.4 Existing Localisation Solutions in Radio Networks

2.4.1 Infrastructure-based networks

Localisation of users in infrastructure-based networks is done using both the range-based

and range-free methods. The choice of localisation techniques depends on the type of

network and the limitations imposed by the technology used in different networks. Cellular

networks are equipped with the type of infrastructure which supports precise measurements

and synchronisation may be present, so lateration techniques are often used. On the other

hand, Wireless Local Area Networks (WLANs) are based on infrastructure which does

not usually allow for such precise measurement, so pattern matching is the most common

type of localisation algorithm used in these networks. As the networks evolved, so did the

localisation techniques with them, adapting to the changes in communication technology,

which resulted in many different implementations of the principles described in the previous

section.

The main driving force behind localisation in cellular networks is the need for accurate

location estimates in emergency situations, especially when users are located indoor, as GNSS

systems tend to provide lower accuracy in such environments. Accuracy and availability

requirements are usually defined by government bodies, such as the American Federal

Communications Commission (FCC). The latest set of requirements issued by the FCC can be

found in [8], where it is stated that network operators should provide 50 metres x,y accuracy

for a steadily increasing percentage (40-80%) of emergency service calls over the period of 2

to 6 years. In wireless networks, because of their relatively low price and public availability,
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localisation has found its main use in remote healthcare, security and asset management [9],

as well as in the gaming and augmented reality-based industries.

Range-based localisation in cellular networks

The cover term for localisation methods using the known locations of the BSs as the base

for determining user location is Cell-ID (CID) (defined in [10]) in GSM (Global System for

Mobile communications) networks, and Enhanced Cell-ID (E-CID) in UMTS (Universal

Mobile Telecommunications System) and LTE (Long Term Evolution) networks (defined

respectively in [11], [12]). Ranging methods are widely used in public mobile networks,

regardless of the network generation, and most lateration techniques are implemented under

the CID and E-CID names.

Cell-ID represents the identification number of the cell currently serving the MS. It

may be used as a parameter for localisation purposes on its own [13], in combination with

range estimates of lower [14, 15] or higher accuracy [16, 17]. On top of these basic GSM

implementations, additional algorithms and procedures have been applied in UMTS networks

to improve accuracy and availability by managing channel utilisation [18] or forcing handover

procedure [19–21]. Further improvements came with LTE networks, as localisation-specific

signals [22, 23], multiple propagation detection [24], and device collaboration [25] have been

introduced. The locus of the location estimate produced using the information from a single

BS CID and a range estimate is shown in Figure 2.6, with both the omnidirectional and sector

antennas cases. The precision of the range estimate defines the thickness of the circular

ring or ring sector. Regardless of the fact all ranging solutions share the same mathematical

principles, the technology used to obtain location estimates is the most significant factor in

defining their accuracy.

The most basic localisation method using the knowledge of the serving cell is just

assuming the MS is located at the serving BS coordinates. An experimental study of
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(a) Omni-directional antenna (b) Sector antenna

Fig. 2.6 Localisation using cell-ID and ranging

this approach is presented in [13]. Although extremely simple, this method is inherently

imprecise, because it reduces all the points within a cell to the location of the BS serving it.

The error produced by this method is closely related to the size of the cell, which means that

it can range from tens of metres in dense urban conditions, to several kilometres and more in

suburban and highway conditions respectively.

Use of additional parameters, like Timing Advance (TA) and received signal strength

(RXLEV), in GSM networks was experimentally analysed in [14]. TA is a parameter

used for synchronisation of user transmissions with corresponding TDMA (Time-Division

Multiple Access) slots. It is a discrete-valued parameter ranging from 0 to 63, with each step

corresponding to 550 metres of distance between the MS and BS, and as such can be used for

ranging the MS. When omnidirectional antennas are used, the CID+TA parameters result in

a circular ring centred in the BS, with a width of 550 metres, and the location estimate is, as

in the case of localisation with CID only, the location of the BS. If the serving cell is a sector

one, i.e. the antenna has a limited width of radiation, the location estimate is calculated in

the direction of the antenna at the distance obtained by the TA parameter. With the inclusion

of RXLEV parameter from up to 6 neighbouring cells, the precision of the location estimates
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is increased, as this parameter is used to estimate the distance from the neighbouring cells,

reducing the possible error.

Round Trip Time (RTT) measurements are used for the ranging localisation technique

proposed in [15]. With the assumption of equivalent channel characteristics between each

BS in range and the MS, it is possible to derive the ratio of distances between the MS and

two BSs from RXLEV measurements of the signals coming from the two base stations.

Such ratio defines a circle on which the MS is located, and the final location estimate is

produced by finding the intersection of multiple circles, each produced by a pair of RXLEV

measurements from BSs in range of the MS.

Lateration methods for localisation in GSM networks are based on measurements of ToA

and TDoA and further adaptations [16]. When using TDoA measurements, the geometric-

time difference is used to determine the user location. This value is calculated as the

difference between the observed time difference which is measured by the MS, and the

real-time difference which is the relative synchronisation difference between the two BSs

used for TDoA measurement. Similar calculations are performed when ToA parameter is

used in GSM, in this case with the help of additional location measurement units, which are

used to calculate the offset of the MS internal clock.

Timing parameters measurements may also be taken by the network, as analysed in [17].

To avoid the problem of MS synchronisation with the rest of the network, ToA measurements

are taken by different BSs, and then the TDoA is calculated. Simulation evaluation shows

expected results of the suburban environment being more suitable for ranging methods, as

the effects of multipath propagation have a deteriorating effect on the precision of ToA

measurements in urban conditions. This results, for example, in localisation accuracy in

suburban conditions with only 3 BSs being almost equal to the accuracy of localisation using

8 BSs in urban surroundings.
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While in GSM adjacent cells use different frequencies, in UMTS all cells work on the

same frequency. This causes the problem of interference in UMTS networks, which arises

when MSs need to take measurements from BSs other than the one serving them. In order to

mitigate such interference, time aligning of the idle downlink periods of each BS is proposed

[18]. With this technique implemented, the MS is able to measure the signal from BSs further

away, without interference, increasing the number of different measurements available for

the localisation process, and consequently increasing the accuracy of the location estimate

produced.

Different solutions using the combination of CID and RTT parameters have been proposed

and implemented in UMTS networks. The accuracy of such methods depends greatly on

the geometry of the BSs surrounding the MS, as well as the different sector configurations

and widths of cell spacing, as this dictates with how many different BSs the MS is able to

communicate [19]. Whether or not the MS is in the state of handover impacts the number of

different measurements at its disposal, which results in higher localisation precision when the

MS is measuring RTT associated with different CIDs, compared to the case when it is only

communicating with one BS and has access to only one CID and one RTT measurement. A

simple way of improving the accuracy of the CID+RTT method is to force the MS to perform

handover, by changing the threshold value for adding a new BS to the active set. Two similar

implementations are proposed in [20] and [21], where the threshold for adding a new BS to

the active set is decreased incrementally until there are three BSs in the active set. In case the

third BS is not available, the procedure is terminated when the threshold reaches a preset

minimum value.

Uplink TDoA (UTDoA) is a ranging technique based on TDoA measurements performed

on the signal arriving from MS to different Location Measurement Units (LMUs), which are

synchronised and usually placed on BS sites. An implementation of this technique using High

Speed Uplink Packet Access (HSUPA) – the data upload protocol used in UMTS networks –
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is evaluated in a series of indoor field tests in [26]. The accuracy is shown to be 57 and 28

metres 67% of the time in urban and suburban environments respectively.

The development of LTE brought along solutions for the issues arising from low Signal to

Interference plus Noise Ratio (SINR) levels of signals identifying individual cells. Positioning

Reference Signals (PRS) as well as interference management techniques (such as low-

interference subframes) have been introduced to transmissions from the BSs, with the aim of

enabling a greater probability of users being able to hear the BS. PRSs are signals transmitted

for the sole purpose of localisation. During the transmission of PRS, no other data is

transmitted and their transmissions from different BSs are coordinated in order to avoid

interference. This can be seen in Figure 2.7, where one resource block of an LTE resource

grid is shown for normal and positioning subframes. The theoretical limits of localisation

accuracy using these localisation-dedicated signals and interference cancellation techniques

are investigated in [22]. It is shown that without coordination of positioning signals precision

between 20 and 40 metres can only be achieved in cell-border areas, while the errors go up

to 100 metres closer to base stations. Using interference cancellation the range of errors

is limited to between 10 and 40 metres, while network coordination reduces theoretical

errors below 1 metre. Allowing the PRS greater frequency width and not using this part

of the spectrum for other transmission reduces the spectral efficiency of the network, but

theoretically can reduce the positioning errors below 1 centimetre. Experimental performance

analysis of Observed TDoA (OTDoA) technique in an urban scenario is presented in [23]

using channel measurements. A localisation error of under 20 metres in 50% of the time and

63 metres in 95% of the time is achieved. It is shown that the FCC localisation accuracy

requirements can be met using this technique, although special equipment was used for

channel measurements instead of the actual UE, and perfect synchronisation of different base

stations existed in the field trial.
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(a) Normal subframe (b) Positioning subframe

Fig. 2.7 Resource block of an LTE resource grid

Timing measurements are susceptible to multipath propagation effects. These effects can

be reduced in LTE by detecting the first arriving path, i.e. the Line Of Sight (LOS) path, as

this is the direct, shortest path. This way, the precision of ToA and TDoA measurements can

be increased. Signals other than PRS may be used for ranging purposes, but PRS is shown

to have better performance in [24]. Using PRS produces lowest distance estimation errors

from ToA measurements. This accuracy depends on the channel width, and may not always

be enough to fulfil the standardised requirements, in which cases additional control signals

need to be used in order to improve the estimate accuracy to meet the FCC requirements. A

vehicle tracking algorithm using LTE ToA measurements based on Cell-specific Reference

Signal (CRS) (shown in Figure 2.7) is presented in [27]. CRS is a signal whose transmission

is mandatory, and as such is suitable for opportunistic ranging measurements. ToA estimators

both with and without Non-Line Of Sight (NLOS) components in multipath propagation
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conditions have been field tested, and localisation precision of 20 metres in 50% of the time,

with full coverage, has been shown.

A collaborative approach to improving localisation in LTE networks is proposed in [25].

Apart from the standard OTDoA measurements of signals coming from the base stations,

it is proposed that the users perform ranging measurements among themselves as well. As

there is no synchronisation among the users, the RTT measurements are used to estimate

the distance between the users. It is shown that combining the two sets of measurements is

beneficial for the process of localisation, even with low SINR levels of the PRS signal. As

the number of collaborating nodes increases, so does the possibility of producing a unique

location estimate, without ambiguity, and the localisation accuracy.

As the accuracy of cellular system based localisation increased with the advances brought

by LTE technology, so did the number of proposed solutions for indoor positioning based

on LTE. Indoor localisation is a specific problem, as the alternatives in the form of various

global navigation satellite systems do not exist, unlike in the case of outdoor positioning.

The required level of precision also may be higher for indoor localisation, i.e. it is not just

enough to estimate the location in 2D coordinates, it may be necessary to distinguish the

exact room or floor of a tall building the user is located at.

An indoor positioning solution based on LTE TDoA measurements is presented in [28]. A

particle filter composed of a transition model based on an indoor pedestrian movement model

and a TDoA measurement model is used to calculate the likelihood of different possible states

and to select the ones most consistent with the measurements to produce the final location

estimate. Root mean square errors of 5 and 2 metres are shown using an experimental

setup, without and with the knowledge of the initial location and the building floor plans

respectively. Floor detection using LTE TDoA measurements is shown to be feasible in [29],

using femtocells. A simplified model of the TDoA measurement precision in such a scenario

is developed and tested with assumptions of synchronised femtocells. Vertical accuracy of
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below 1 metre is shown to be possible, although these results are likely to be worse in a

realistic scenario.

An indoor localisation algorithm based on a particle filter and femtocells is proposed

in [30]. Uncertainty about the exact locations of the femtocells is assumed and, depending

on this uncertainty the femtocells either aid (if certain) or cooperate (if uncertain) in the

localisation process. Cooperation between different MSs is another part of this solution, and

RTT (two-way ToA) measurements are used for this type of cooperation, while TDoA is

used for measurements from the BSs. It is shown that the use of femtocells and other MSs

increases localisation accuracy in indoor scenarios compared to only using macro BSs.

The errors in location estimates produced by the ranging techniques for mobile networks

described above are caused by multiple factors: BS geometry and density, use of omnidirec-

tional versus sector antennas, resolution and uncertainty of the distance estimates produced

by the time measurements, multipath propagation of signals coming from BSs (particularly

in urban environments) causing uncertainty of the correlation between the signal strength

and the actual distance from MS to BS, as well as affecting RTT measurements. With the

development of the newer generations of public cellular networks, some of the adverse effects

these factors caused, like the resolution of TA measurements, have been mitigated. Some

issues, on the other hand, like multipath propagation, are inherent to all wireless commu-

nication techniques, and the uncertainty caused by them cannot be fully avoided, although

NLOS signal conditions have been shown to be detectable in LTE networks. More precise

measurements becoming available with newer generations of communication technologies

aim to reduce these uncertainties and apply advanced algorithms to detect errors and further

process them.

Apart from estimating user location on their own, cellular networks can also provide

assistance for GPS localisation. Assisted-GPS (A-GPS) is a localisation technique based

on GPS, with assistance from the cellular network [31]. The assistance comes in the form
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of sharing information on which satellites and at which frequencies the user may expect to

receive data from, thus reducing the time needed for the location estimate to be produced.

This also increases the time the MS can spend listening to GPS signals, allowing it to hear

lower strength signals than it would normally be able to.

Use of Cell-ID parameter for conserving energy the amount of energy GPS consumes

is proposed in [32]. This localisation algorithm aims to limit the usage of energy-hungry

GPS, and use the information about the CIDs through which the user moves over time to

determine its location. A database of the CID readings along routes taken by the user, with

occasional GPS readings, is maintained. The database is later used to compare the sequence

of CID readings without GPS, and, if significant matching is discovered, compute the user

location with precision greater than the one offered by the basic CID technique. Such an

approach exploits the patterns user mobility exhibits, both in spatial and temporal domains,

which may limit its applicability in scenarios where new routes are being used, or when the

user is not on the move constantly.

Pattern matching methods in cellular networks

Another big family of solutions for positioning in cellular networks are pattern matching

solutions which can be divided into ones modelling signal propagation using analytical

propagation models [33, 34] and fingerprinting ones, although these two approaches can

complement each other, as in [33].

A one-to-one mapping between the MS location and the vector of received signal strength

measurements is assumed to exist in [33] and the performance of localisation based on this

assumption is evaluated. This work shows the limits of such an approach, depending on

measurement uncertainty, BS geometry and the number of available BSs in range. For a cell

with a 1 kilometre radius, the simulated localisation accuracy in 67% of the time is shown to
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be 250 metres. The standard method of collecting measurements in the field and creating a

database to compare the new measurement to is proposed for practical implementation.

A localisation solution for users with measurement information only available from

the BS they are currently connected to is proposed in [34]. A Bayesian method is used to

calculate the density of user location based on which BS is currently serving the user, the

known locations of this and surrounding BSs, and a signal propagation model. To further

improve the precision of this method, additional information is built into their model, like

RTT measurement value and sector antenna directions. IT is shown that an improvement of

20% for the mean error is achieved compared to just placing the user uniformly in an arc

calculated based on RTT and BS sector information.

Fingerprinting methods, like the ones proposed for outdoor [35] and indoor [36], use

in cellular networks, assume the existence of a database of measurements taken before the

deployment of the localisation system, during the offline phase, which presents the main

drawback of such approach. This workload can be reduced by dividing the area of interest

in a grid, thus reducing the number of needed measurements at the expense of precision

[37, 38], or by applying machine learning techniques [39] to learn about the propagation

parameters in the given environment. Accuracy of pattern matching can also be increased

using cell-ID and RTT measurements [40–44], adding WLAN networks RSS measurements

to the fingerprints [45] or device-to-device cooperation [46]. Accuracy of the propagation

model-based approach depends on how well the analytical or empirical model used is

able to describe the environment, as well as how diverse the environment itself is, while the

accuracy of the solutions using fingerprint databases depends on the number of measurements,

especially when the variance of RSS measurements in a single location (or grid cell) is high.

A database correlation method for GSM networks is proposed in [35]. Storing of signal

or channel properties relative to individual locations in a database is done with the goal

of using this information to compare it to any new measurements performed by the user
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(or the network for the user) needing a location estimate. Apart from acquiring the actual

measurements, which may be a difficult task, a possibility of using mathematical models of

signal propagation for the areas of interest is also proposed. The accuracy of this method is

shown to be 44 and 74 metres in urban and suburban environments respectively.

Use of GSM fingerprinting for indoor localisation is analysed in [36]. Algorithms relying

on single cell measurements, 6 different cells, and 35 different GSM channels are compared.

It is shown that by applying a greedy feature selection algorithm to remove the cells whose

signals are either too stable across different locations or are too noisy, i.e. varying over time,

can significantly increase the localisation precision. K nearest neighbour method is used to

compute the user location as a centroid of the locations of the K closest training points from

the database.

In order to avoid having to perform a large number of measurements from many different

locations in the area of interest to populate the fingerprint database, some solutions apply the

gridding approach (shown in Figure 2.8), as in [37]. The whole area of interest is divided into

grid cells, the size of which represents the trade-off between accuracy and complexity. All the

measurements taken inside one cell are put together, and a histogram of RSS measurements is

created for each BS for each cell. The centroid of all measurement points inside a cell is used

as the location estimate for that cell. The algorithm is able to provide a more precise estimate

by analysing each individual fingerprint from the selected cell, using nearest neighbours

method. Field tests have shown this method to achieve a median error of 42 and 28 metres in

rural and urban scenarios respectively.

Another solution employing gridding approach as units for fingerprint matching is

proposed in [38]. This solution addresses 3D localisation by creating a separate grid for each

floor of a building. On top of the standard pattern matching between user measurement and

the collected database, this algorithm introduces correlation tests for points surrounding the
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Fig. 2.8 Illustration of the gridding approach used in fingerprint localisation

chosen estimate to ensure the validity of the estimate. This addition is reported to achieve a

localisation error of 21 metres in 67% of the time.

Avoiding the initial effort of compiling a database of fingerprints associated with known

locations can be done using machine learning, as in [39]. Both semi-supervised and unsuper-

vised learning methods are proposed. The supervised learning method is making use of a

small amount of labelled training data and spatial interpolation to extend the “knowledge”

about location across unlabelled fingerprints, while the unsupervised one makes use of

propagation models to estimate expected signal measurements at different locations. The

semi-supervised method is shown to be more accurate than methods relying on labelled data

only when using the same amount of training data, while the unsupervised model based on a

well-fit propagation model performs even better.

Fingerprinting based on the cell ID parameter is proposed in [40]. Each CID value is

associated with a polygon region in which the user is located based on the given CID. This

approach is illustrated in Figure 2.9. A polygon contraction algorithm which provides a

balance between accuracy, i.e. keeping the polygon as small as possible, and confidence,

i.e. keeping the polygon big enough for a certain level of confidence that a CID reading
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corresponds to the correct polygon. Additionally, handover regions may be used for defining

additional polygons, thus increasing accuracy. Using simulation, the algorithm is shown to

be able to produce location estimate the size of a quarter to a half of the cell size with high

confidence, which is an improvement to the basic CID technique. An improvement to this

algorithm is presented in [41], using RTT measurements. The RTT measurement provides

a circular strip around the BS, in which the user is located. The intersection of the cell

polygon and the circular strip provides a more precise estimate of the user location, even with

information from only one BS available for positioning. With measurements from multiple

BSs at disposal, this method becomes an adaptation of triangulation, where each BS produces

an arc, rather than a full circle. In experimental field tests, an accuracy of 78 metres in 67%

of the time, availability of 95%, and positioning time of under 0.2 seconds in 65% of the time

have been shown. A further improvement [42], dealing with contraction of narrow polygons

created as the intersection of the original cell polygon and zones assigned to RTT and TA

measurements, was shown to be helpful particularly in LTE scenarios with unfavourable

geometry of BSs. An addition to this algorithm, enabling it to produce three-dimensional

location estimates is presented in [43]. Polygon corners with two-dimensional coordinates

are added an altitude dimension based on additional estimates from any lateration technique

(OTDoA, UTDoA), and shape conversion is performed on the polygon with altitude into a

3D point with ellipsoidal uncertainty.

An energy efficient CID and RSS pattern matching algorithm enhanced with sensor

information for tracking mobile users on a map is proposed in [44]. Fingerprints containing

cell ID and signal strength are first assigned to grid cells and the user movement over time is

then smoothed. The output obtained that way is then analysed together with phone sensor

data (if available) which may indicate the speed of movement, or the user making a turn, to

best match the sequence of location cells to particular road segments on a map.
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Fig. 2.9 Illustration of the cell polygon regions

Fingerprinting methods can combine measurement data from different network tech-

nologies, like the LTE and WLAN combination examined in [45]. Including the additional

WLAN network measurements to the LTE network measurements is experimentally shown

to increase the accuracy compared to using just LTE measurements. The 67% accuracy for

the method with combined data is 16 metres using a 20 metre grid, and 25 metres using 40

metre grid.

Device-to-device communication is emerging as a standard part of the latest releases

of LTE network standards and is being exploited as a tool for improving pattern matching

based localisation. In [46], fingerprint matching is used only to find candidate points for

the user location, but the final estimate is computed based on cooperation between users,

which perform RTT measurements. These measurements are used to choose the most

likely candidate point as the estimate. This cooperative process is shown to improve the

accuracy of location estimates, which grows with every additional user participating in RTT

measurements.

The lower implementation complexity of pattern matching localisation solutions, in

comparison to range-based solutions, comes at the cost of lower accuracy. As can be
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concluded from the works mentioned above, the fingerprinting positioning error is being

reduced with the development of new mobile networks and localisation algorithms, which

are using parameters other than just signal strength, as well as concepts such as user device

cooperation. This leaves efficiency of the offline data collection process as the main issue of

this method, which is a problem that is currently being addressed mostly by using propagation

models, to either fill the gaps in the training data or create the whole training dataset, thus

completely removing the need for an offline phase.

Wireless Local Area Networks

The architecture of WLAN networks is similar to that of cellular networks, in the sense that

there exist fixed access points which provide network access to users in range, and through

which all of the communication flows. On the other hand, the fact that WLANs are mostly

deployed in indoor environments increases the chances of multipath signal propagation, the

range and coverage of the individual APs are significantly lower than those of the BSs, which

means that accurate range-based localisation is difficult to perform in WLANs. This, along

with the fact that the number of available APs in range can easily be much greater than

the number of BSs, increasing the number of reference points for fingerprinting methods

compared to cellular networks, are the main reasons why most of the localisation solutions

for WLANs are based on range-free, pattern matching algorithms.

Range-based localisation in Wireless Local Area Networks

Among the few localisation methods that are not based on pattern matching algorithms,

there are solutions which try to estimate distance between APs and users based on timing

measurements [47], fitting the set of RSS measurements into a system of physical constraints

[48], or more indirectly, through propagation models [49, 50], or by defining different

contours around APs which correspond to different RSS measurement values [51].
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Performing timing measurements in early WLAN networks is proposed in [47], where

Direct Sequence Spread Spectrum (DSSS) and Orthogonal Frequency Division Multiplexing

(OFDM) standards for wireless networks are examined. Synchronisation between AP and

user is instrumental for successful timing measurement, and depending on the type of packets

used for these measurements, different errors in distance estimates can be expected, ranging

from tens to hundreds of metres. Multipath propagation and NLOS conditions additionally

degrade the ranging performance.

An algorithm which analyses the RSS measurements between users and different APs

is proposed in [48]. Assuming all of these measurements are constrained by the physics

of signal propagation, a genetic algorithm is used to estimate the positions of APs, their

transmit power and the path loss exponents, from the set of RSS measurements. This solution

only requires occasional ground truth calibration, which is obtained by means of GPS, as

the algorithm itself solves the relative locations of APs and users, and need a reference to

produce location estimates in global coordinates. The advantage of such an approach is that

the actual AP locations do not need to be known, which distinguishes this solution from other

RSS-based solutions.

Modelling signal propagation in indoor settings is considerably more difficult than doing

so in outdoor conditions, which is why the authors of [49] propose using a dynamic path

loss model for each AP, which learns from the data collected from RSS measurements

performed at known locations. An illustration of RSS values for a propagation model based

on measurements is shown in figure 2.10, where the darkness of the colour signifies the

strength of the signal, and the dots represent experimental measurements. It is shown that

taking the propagation parameters uncertainty into account and using a probabilistic approach

results in higher accuracy than assuming these parameters are known and fixed. Bayesian-

based path loss parameter calibration method for localisation using RSS measurements is

presented in [50] as well. A particle filter is used along a state transition model to estimate
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the user location. The model learns continuously and shows a decrease in location estimate

error over time. Again, it is shown that better localisation accuracy is achieved by allowing

for the path loss parameters to be dynamically estimated, rather than assuming them to have

fixed values.

Fig. 2.10 Illustration of a propagation model

A combination of lateration and fingerprinting is proposed in [51]. Instead of translating

RSS measurements into distance estimates, this system uses reference points. For each

RSS measurement from a single AP, a contour of reference points with the same RSS

value is produced. These contours are used the same way circles are in classic trilateration

technique. Device calibration is done using signal correlation, to accommodate for the

use of heterogeneous devices, without the need for offline calibration. In order to fight

multipath propagation, this algorithm assigns higher weights to contours from APs with

higher measured signal strength.
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Pattern matching localisation in Wireless Local Area Networks

The body of work concerning fingerprinting localisation in WLANs is vast, especially

compared to the one relating to lateration, which, as can be concluded from the works

listed above, is mainly based on propagation models, rather than precise timing or signal

strength measurements for distance estimation. As the fingerprinting solutions used in

cellular networks, the fingerprinting solutions for WLANs are usually assuming an offline

data collection phase. In general, the approach to forming the fingerprint database is similar

to the one described in [52]. To accommodate for the dynamics of the environments, some

solutions propose creating multiple databases [53] or collecting RSS measurements over time

to form histograms corresponding to each reference point instead of exact, unique values

[54, 55]. While these approaches result in an increase of measurements to be obtained in the

offline phase, there exist solutions which propose the use of probabilistic signal propagation

models [56, 57], to reduce the effort for database creation. The accuracy of fingerprinting

methods can be increased, but this increase usually comes at the expense of the increased

system complexity as well. Location tracking and prediction [58–60] assumes additional

system elements for tracking and prediction to be implemented, while reducing the effects

of noise on the RSS measurements can be achieved by either additional distance estimation

being performed [61] which assumes either very precise RSS measurements or additional

ranging hardware, or by using multiple interfaces on a single device [62], which is in itself a

more complex approach.

One of the earliest fingerprinting solutions for WLANs was proposed in [52]. The offline

phase considers performing measurements in reference points throughout the area of interest.

As in any standard fingerprinting procedure, the offline measurements are used to find the

closest (one or more) reference points based on the unknown location measurements. As an

alternative to collecting online data, the use of a radio propagation model is presented. This

method sacrifices localisation accuracy but simplifies the setup procedure significantly. An
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enhancement to this system is presented in [53], where continuous user tracking is used for

disambiguation of potential user locations. In order to account for various environmental

conditions, multiple radiomaps (sets of fingerprints) have been created. In order to calibrate

the system for the correct radiomap to be used, a simple test is performed. As each AP is at a

known location, by estimating its location as if it were a user in an unknown location, using

signal strength from all other APs, the model which gives highest accuracy is determined.

Fingerprinting methods may also function on a probabilistic basis, like the one described

in [54] and [55], where RSS measurements are observed over time at reference point locations,

and histograms of these measurements are stored. These histograms are then used to

characterise the individual AP signal strength throughout the area covered by the reference

point. When a user with an unknown location performs RSS measurements, its location

is estimated in the form of a probability distribution, according to the a priori knowledge

obtained during the reference point measurements. This solution also introduces location

clustering in order to reduce the complexity of calculating the location estimate probability

distribution. Locations which are covered by a certain number of common APs are placed in

the same cluster, thus reducing the number of possible location candidates from the whole

set of reference points to only the subset of points which share the same APs with the

measurement performed at an unknown location.

As previously discussed, one of the main drawbacks of the fingerprinting method is

the amount of effort needed for collecting reference data in the offline phase. One way of

reducing the workload of the offline phase is by using a propagation model, as in [56]. The

algorithm proposed in this paper is using a small number of actual reference measurements

to train a nonparametric model to produce the full fingerprint database. An experimental

setup was used for evaluation, and it was shown that localisation using the proposed method

outperforms the traditional fingerprinting algorithm using actual measurements to create the

radiomap. Furthermore, the proposed method is able to maintain similar levels of accuracy
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with only 5% of the original training data. It was noted that some APs broadcast more

than one Medium Access Control (MAC) addresses, and that aggregating these separate

signal measurements can help in cases when only partial training measurements are available.

A similar approach is proposed in [57]. A clustering method is used to divide the whole

localisation area into sub-regions based on sparse measurements and the proposed regional

propagation model is used to reconstruct the database of the whole area.

A probabilistic location tracking algorithm using a nonparametric information filter is

presented in [58]. This solution aims to improve the accuracy of fingerprint radiomap-based

location estimates by predicting the future user location using the filter. Once an expected

location is computed, the algorithm can decide which APs are relevant to the localisation

process, as well as which reference points are part of the possible region of interest, in

which the user is assumed to be located based on the prediction. Predicted location is also

used to detect possible RSS measurement outliers, which are discarded in order to prevent

the error to be propagated through the prediction mechanism. Applying restrictions on the

output of the localisation process based on previous location estimates in also part of the

algorithm proposed in [59]. A similar method of creating a region of interest in which the

location estimate is allowed to be placed is used. This solution utilises Kalman filter to

reduce localisation errors, assuming linear movement of the user with the unknown location.

In order to accommodate for the errors Kalman filter produces when users make turns, it is

necessary to have map data of the area in which the system operates. In [60], the optimal user

location estimate is computed using particle swarm optimisation technique. This localisation

algorithm also uses Kalman filter to process the estimates and reduce the errors by tracking

the user location over time.

Distance bounds are fused with the standard fingerprinting procedure in [61] to reduce

the effects of noisy RSS measurements. The distance information may be spatial, i.e. as a

result of ranging using direct communication with some anchor nodes in the surroundings, or
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temporal, i.e. the target itself estimates the distance it has traversed over a certain period of

time, by means of internal navigation system available in many modern devices. Using this

additional distance information, the expected signal difference between the unknown user

location and all reference points is computed. Given the set of these differences, optimal

values of weights determining the contribution of each reference point to the final location

estimate are estimated.

Mitigating the effects of noise and fading on RSS measurements by using multiple

wireless interfaces is proposed in [62]. The authors test a different number of multiple

interfaces on the same user device, using different positions and orientations. A low correla-

tion between measurements performed at the same time and location by different interfaces

with the same hardware is observed, which suggests a high impact of noise and fading to

these measurements. Different interface measurements are combined in one in order to

acquire RSS values which exhibit greater stability over time. Several methods for combining

individual measurements are tested. A clear improvement in localisation accuracy is shown

as the number of interfaces increases.

Fingerprinting methods are susceptible to issues induced by device heterogeneity, as

different wireless interfaces on different devices are likely to report varying values of the

RSS measurement under the same conditions. This can easily result in reference points far

from the true location of the user whose location is estimated being recognised as nearest

ones to the measurements obtained by the user device. Furthermore, because of this variance,

reference points from completely different regions of the area in which the localisation

system operates may appear as equally valid candidates. A number of calibration solutions

have been proposed, to adjust radiomaps in a way that location estimate does not depend

on the type of hardware used by the user being localised. In [63] a linear approximation

is used to map RSS measurement performed by any hardware into one obtained by the

hardware used during the offline phase which is the reference measurement contained in
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the radiomap. Supervised calibration, in manual and quasi-automatic variants, as well as

unsupervised automatic calibration, are proposed. Manual calibration assumes assigning

ground truth values of user location to a certain number of measurements, while quasi-

automatic calibration is done by applying different values for linear coefficients, making

use of the fact that wrong values produce RSS measurements which do not match any of

the reference points. In an attempt to completely remove the user input from the calibration

procedure, automatic calibration is running simultaneously with localisation and tracking of

the user but is reported to perform worse than the supervised calibration variants. A solution

for RSS variance based on devices calibrating themselves during the online phase is presented

in [64]. This solution uses histograms of the reference and the RSS measurements made

by the user device. These probability distributions are used to compute the linear mapping

coefficients which allow the measurements performed on the user device to be translated

into the one obtained by the reference device. The localisation results using this calibration

method are much closer to the ones obtained using a device-specific radiomap, showing

significant improvement compared to non-calibrated results.

The variance of RSS measurements is caused not only by the user device differences but

also by the placement of the device, the direction of movement and temporal environmental

changes, as shown in [65]. In order to solve the variance problem, a tracking system based on

RSS peak detection is proposed. This approach avoids the need for calibration, by assuming

that regardless of the differences in RSS measurements performed by different devices, in

different positions or directions and at different times, the peak value of the received signal is

preserved around the same location. As the peaks in RSS measurements appear sporadically,

the availability of this localisation system over time is maintained by including the internal

navigation system (accelerometer and digital compass) information to the algorithm.

The authors of [66] investigated the behaviour of different wireless chipsets and con-

cluded that even devices from the same vendor can report significantly different RSS readings.
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In addition, even measurements from a single device were not consistent over time. This

type of issue can reduce the applicability of fingerprinting localisation methods, by rendering

the radiomap information measured in the offline phase useless in many online use scenarios.

Some devices exhibited temporal patterns, which suggests that applying filters may increase

the suitability of measurements, while others produced measurements which were indepen-

dent of the distance to the APs. Interference is pointed out as one of the possible causes for

inconsistent measurements, as the less occupied 5 GHz band was found to be more suitable

for RSS measurements than the 2.4 GHz one.

Performance of fingerprinting algorithms is influenced by the metric used for comparing

the fingerprints stored in the radiomap to the ones obtained by the users with an unknown

location. In [67], a comprehensive analysis of different ways of measuring the distance

between fingerprints in RSS space is presented. The Euclidean distance, which is most

often used, may not be appropriate, given the possibility of measurements from certain

APs may be missing in some RSS vectors. Authors point out the common practice of

treating the signal level measurements expressed in decibels as if they are linear, rather than

logarithmic values. It is demonstrated that using Sørensen distance and an alternative RSS

value representation achieves better localisation results compared to the standard Euclidean

distance and linear RSS representation combination. Additionally, the practice of removing

weak AP measurements was shown not to benefit the performance of localisation.

Fingerprinting methods for localisation in WLANs listed in the brief overview presented

above aim to improve the accuracy of location estimates. While they achieve that to a

lesser or greater extent, some large location estimate errors cannot be totally avoided, as

noted in [68]. The presence of noise and fading, the density of reference points and APs,

RSS variance, device heterogeneity and dynamic environment are all recognised as possible

sources of localisation errors. Furthermore, the way decibel measurements are treated is

listed as a source of error (as earlier noted in [67]), as well as the uncertainty introduced by
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quantisation of RSS values. It is concluded that existing fingerprint methods mostly operate

well in areas close to APs, in comparison to peripheral regions of the localisation area.

2.4.2 Infrastructureless networks

The main reason localisation of nodes in infrastructureless networks is a challenging task is

the lack of a centralised infrastructure of fixed communication points such as APs or BSs,

which results in a supporting system of localisation references being nonexistent. The nodes

in such networks are usually not assumed to be equipped with the technology capable of

performing accurate ranging measurements, as following the spirit of easy deployment and

low maintenance that ad hoc networks are designed in, the nodes are usually simple and low

cost. Furthermore, if node mobility is assumed, this challenge only becomes more difficult

as the topology of the network is highly dynamic with the nodes coming in and out of each

other ranges making all measurable relations between them very unstable.

Many localisation solutions have been proposed which are based on using dedicated

localisation nodes, called beacons or anchor, the location of which is known. Such approach

to localisation results in some solutions which are in principle very similar to the ones

existing in infrastructure-based networks, particularly ones employing lateration based on

direct distance estimates from timing or RSS measurements or fingerprinting approaches,

as the beacon nodes represent a sort of localisation infrastructure. Having this in mind, the

literature review presented below will focus on distributed range-based and connectivity-

based localisation solutions in ad hoc networks. Infrastructureless wireless networks have

found one of the main uses in sensing applications, which is why most of the localisation

solutions are proposed for Wireless Sensor Networks (WSNs), but are mainly applicable to

any ad hoc network in general.
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Localisation based on single hop connectivity

Nodes in ad hoc networks can determine their location based on the information about

which anchor they can receive signals from, i.e. inside the range of which anchor they are

located. Different implementations of this approach are proposed in [69–72]. The precision

and accuracy of such solutions are highly dependent on the number, distribution and the

transmission range of the anchor nodes, as well as the environment in which they operate.

Localisation based on proximity to anchor nodes is proposed in [69]. Each anchor emits

beacon packets at a known rate and the nodes in the network are listening for these packets.

Knowing the rate of beacons being sent, and the number of beacons received from an anchor

over a period of time, each node can determine the ratio of received beacons. Based on a

preset threshold of received ratio of beacons, the node determines whether it is located within

an anchor’s range or not. The node then estimates its location as the centroid of the locations

of the anchors within whose range it is located in. Resulting accuracy of the location estimate

greatly depends on the ratio of the anchor density and their range. Furthermore, the anchors

are assumed to be located in a deterministic way, on the vertices of a square grid. A more

general solution based on the same idea, allowing non-uniform anchor placement, is proposed

in [70]. An improvement to localisation accuracy is achieved by computing a rectangular

area bounding the intersection region of the anchor ranges within which the node is located,

as shown in Figure 2.11. Instead of finding the centroid of anchor node locations, a centroid

of this bounding box is now used as the final location estimate.

Another geometrical connectivity-based approach is presented in [71]. Instead of using

anchor ranges, the nodes run the point-in-triangle test, trying to determine whether they are

located inside or outside a triangle formed by three anchors. I order to perform this test,

nodes exchange RSS measurements from anchors with their neighbours, to determine if any

of their neighbours are simultaneously closer to all three of the selected anchors. In case

there is no neighbour satisfying the condition above, the node concludes it is located inside
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Fig. 2.11 Illustration of an estimative rectangle of ranges intersection

the triangle. This approach assumes anchors with much greater range than regular nodes, in

order for them to cover as much of the localisation area as possible, so the nodes can have

a greater number of three-anchor combinations forming triangles. A square grid over the

whole localisation area is formed, and each square is given a score, which is initially zero.

The score is increased for every positive constraint covering it, i.e. a triangle the node has

estimated it is within, and a decreased for each negative constraint, i.e. one which the node

has estimated it is outside of. The final location estimate is calculated as the centroid of the

grid squares with the highest score.

The solution presented in [72] introduces virtual force refinement of the location estimate

derived by the positive connectivity constraints. Anchor ranges are used to determine portions

of space in which the node may be located. Again, estimative rectangles are used to represent

these portions of space. Instead of creating a square grid covering the whole area of the

network, this algorithm only considers a square grid within the estimative rectangle and

estimates the location of the node as the centroid of the squares which have the highest score,

similarly to the previously listed solution. The negative constraints are observed as virtual

forces, by analysing the locations of anchors whose range the node is not within, relative
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to the location of the anchors which the node can hear. These virtual forces determine how

much and in which direction the location estimate of the node should be corrected. The

information about the anchors which the node cannot hear is obtained from neighbouring

nodes, through multi-hop communication.

Localisation based on hop-count

While the solutions described above rely on single hop connectivity information, there is a

family of solutions, based on the approach of [73], which consider multi-hop connectivity

information and use hop-count to estimate distances between nodes. The distances individual

communication hops cover can have high variance, leading to inaccurate location estimates,

which is a problem tackled by hop-count analysis [74–76] or by using RSS measurements-

based ranging in addition to the hop-count metric [77–79].

In the algorithm proposed in [73] (DV-hop), the anchor nodes with known location

propagate messages throughout the network, using multi-hop communication. Once an

anchor receives a message from another anchor, it can determine the number of hops the

message has traversed, and by knowing the other anchors and its own location, calculate

the average length of a communication hop. On the other hand, regular nodes maintain

their routing tables, containing hop counts to different anchors. The length of a hop is

propagated from each anchor, enabling nodes to estimate their distance to anchors, and

ultimately, perform triangulation to estimate their location. In addition, the authors propose

neighbouring nodes measuring the distance to their neighbours using RSS. This method has a

higher resolution than simple hop count but is more sensitive to signal strength uncertainties.

Finally, a pure triangulation approach is proposed by nodes estimating their location based

on distance estimates to neighbouring nodes which have already estimated their locations.

A number of improvements to the DV-hop algorithm have been proposed. The one in [74]

deals with hop count to distance mapping by deriving the expected hop progress, the distance



2.4 Existing Localisation Solutions in Radio Networks 49

in the direction of the anchor node that an average hop a packet traverses on the path from a

node towards the anchor. It is shown that the expected hop progress is determined by network

parameters such as node density and transmission range and that it is possible to directly

calculate it from expected node connectivity. As the messages from anchors propagate the

network, the hop count is incremented in a usual way, and the hop progress is updated by

each node based on its own number of neighbours. A simulation-based evaluation shows that

using expected hop progress to estimate the distance to anchors improves the localisation

accuracy compared to the basic setup. Scaling the hop distance based in an optimal way

with respect to all anchors in the network is proposed in [75]. The algorithm works based on

propagating hop count values between all anchors throughout the whole network, so each

node can be aware of all the distances and hop counts between the anchor nodes, and is

able to compute the right scaling factor which will be used to map hop counts into distances

to anchor nodes. Two different adaptations to the mapping of hop counts into distances in

heterogeneous networks, i.e. networks where nodes’ communication range is not uniform, is

proposed in [76].

The idea of using hop count to estimate the distance between nodes is also used in

[77], where a two-step localisation algorithm is presented. In the first step, similarly to

DV-hop the anchors broadcast their location and the messages are propagated to all nodes,

enabling them to convert the hop count into distance using the average hop distance. In

the second, refinement stage, the nodes estimate the distances to their neighbouring nodes

and perform triangulation. The location obtained in that way is assigned a confidence level

based on the number and topology of the immediate neighbours, as well as their location

confidences. Individual node’s location confidence level determines the weight with which

constraints involving this node will be regarded by the neighbouring nodes when performing

triangulation. Hop counts conversion to distance from the anchor by finding the average of

neighbourhood hop count to the anchor is proposed in [78]. The authors also propose the
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use of quantisation of RSS measurements to improve the resolution of the distance estimates

compared to the one produced by hop count conversion. In [79], the authors propose adding

RSS measurements as a method of improving the distance estimates. Distance estimates are

first produced by an adaptation of the original hop count method, referred to as virtual hop

count, which accounts for the fact that the distance corresponding to individual hops should

not be a fixed value. Then, RSS measurement-based distance estimates are generated and

compared to the virtual hop ones. Nodes are marked as good or bad, based on how well the

two sets of distance estimates match, and this assigned quality is used to weight an individual

node’s contribution to localisation calculations.

Localisation based on network-wide information

The approach of fitting estimated distances or hop-counts between all pairs of neighbours into

a topology which would satisfy these proximity constraints is popular for localisation in ad

hoc networks. One of the few solutions which do not assume the existence of anchor nodes

is [80], which relies on nodes individually forming local coordinate systems and patching

them together as the algorithm advances. While this approach is sensitive to the precision of

distance estimates between single hop neighbours, in [81] a number of anchors are introduced

to help reduce the errors arising from inaccurate distance estimates. Multidimensional scaling

[82, 83], semidefinite programming [84, 85] and other optimisation techniques have been

proposed [86–88] to improve the process of solving the system of proximity constraints. The

main drawback of the solutions from this category is that they assume full knowledge of all

single hop distance estimates or connectivity information, which limits them to networks of

static nodes. During the time needed to propagate this information across the whole network,

if node mobility is introduced, this information may become outdated. Solutions from the

DV-hop family can, in general, suffer from the same issue, although hop distance estimates

can be updated much more dynamically than full network topologies.
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An algorithm based on distance measurements between neighbouring nodes is presented

in [80], where each node starts by building its own coordinate system based on choosing two

neighbours and deriving their relative positions using the cosine law to compute the angles of

the triangle it forms with them. The same process of using triangle properties is carried on to

determine the locations of all of the two hop neighbours it has information about. This results

in each node having a local coordinate system which it is a centre of and has an arbitrary

direction. Using the relative coordinates of nodes present in two different nodes’ coordinate

systems, these two nodes can align the directions of their relative coordinate systems by

rotating or reflecting them, after which it is possible to merge these two locally centred

coordinate systems into one. Repeating this procedure among nodes leads to the formation

of a universal coordinate system, in which each node can compute its own and other nodes’

locations using one node as the universal reference. Error mitigation is performed by the

residual weighing algorithm, which reduces the difference between the estimated location

of the node and the one conforming to the constraints of the measured distances by its

neighbours.

A collaborative multilateration localisation algorithm is proposed in [81]. Similarly to the

solution in [80], this algorithm has nodes determining the distance between themselves but

introduces a portion of anchor nodes which have accurate information about their location,

which helps reduce errors and their propagation as the nodes exchange location and distance

estimates. The algorithm starts by forming of collaborative subtrees, i.e. configurations

of nodes or anchors which, given their neighbourhood, have a uniquely possible location

solution. Only these nodes are allowed to participate in the second phase of obtaining

initial location estimates based on estimated distances from ranging measurements between

neighbouring nodes. The final location estimates, both for the nodes participating in the

second phase and all other nodes, are produced by minimising the difference between
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measured distances and the ones computed from initially estimated locations. Kalman filter

is used to update the location estimates using the measured distances.

Multidimensional scaling is a technique often used for node localisation because of its

ability to compute spatial structures in the data it is presented with. Two similar algorithms,

one based on connectivity (hop count) [82], and the other [83] based on distance estimates,

use this technique estimate node locations. The two algorithms follow roughly the same

steps. First, random locations are assigned to all nodes. Then the difference between the

distances of assumed node locations and the estimated ones are reduced. The set of relative

location estimates of all nodes which are produced as a result of this step later needs to be

aligned with absolute locations using certain nodes whose positions are known. Location

estimate alignment may involve shifting, rotating or reflection of coordinates and at least

three nodes with known location are needed for this procedure. The algorithm proposed

in [83] can also work for individual node localisation, rather than working on the set of all

nodes at once. The node requiring localisation estimates relative locations of its one-hop

neighbours, and this one-hop neighbourhood procedure is repeated until three anchor nodes

are reached, after which the starting node is able to align its relative location to an absolute

one. During this procedure, the nodes along the paths to anchors are also able to acquire their

absolute location estimates.

Semidefinite programming is another technique which can be used to compute node

locations based on distance estimates and known anchor locations, as shown in [84]. The

algorithm works by converting the quadratic distance constraints into linear ones. Again, the

function which is minimised is the one representing the sum of errors between the estimated

locations and the constraints imposed by distance estimates between nodes. An improvement

to this method is proposed in [85], where a gradient search method is used to compute the

location estimates more accurately. This is done by moving the location estimate of each

node in the direction opposite to the gradient direction of the sum of error square function
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after the initial estimates have been produced by the original method. It is shown that the

gradient search method cannot work on its own, as in the case of just placing each node’s

estimated location in the origin of the coordinate system, the final outcome of this method

produces much greater errors in location estimates. This is because the gradient search is

only able to converge towards the local minimum. A technique similar to gradient search,

called simulated annealing is proposed in [86]. This technique, unlike the gradient search,

can take the convergence outside of the local minimum, by temporarily increasing the error,

in order to reach the global minimum. Having the ability to do so, makes this technique a

viable standalone solution for location estimate computing. As in other solutions based on

estimating locations based on distance estimates between nodes, the problem of ambiguous

node locations may arise, that is, a node or a group of nodes may be located in two different

locations, both of which satisfy the distance constraints. In [87] a solution to this problem is

proposed. If the node is placed in the wrong neighbourhood, i.e. is close to nodes to which

it has no direct distance measurement to a refinement procedure is initiated. The minimum

error of the ambiguous location estimate is defined and included in the new cost function

which is then minimised to solve the location ambiguity. Minimisation of the variance in

one hop neighbour distance in connectivity based localisation is proposed in [88], where

initial estimates obtained using the standard hop count method are refined so that each node

is pushed towards the location in which it would have uniform distances to its neighbours.

Another topic in ad hoc networks localisation is network deployment in irregular areas.

Such areas cause the issue of holes appearing in topology which distort the relationship

between the hop-count metric and the distance between two nodes. To solve this problem,

partitioning of the network [89], analysing the deviation of the shortest path between nodes

around the hole [90, 91] and reliable anchor detection [92–95] have been proposed.

An improvement to the algorithm from [82], enabling it to deal with irregularly shaped

regions where the physical topology of nodes exhibits “holes” is presented in [89]. In order
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to do so, the improved algorithm is decentralised unlike the original, centralised one, and is

able to put together patches of relative maps which have been created independently based

on the number of common nodes in them. This algorithm is able to solve the problem of

the discrepancy between the Euclidean distance and hop count for certain node, which is

common in the conditions described above, when physically near nodes have a high hop

count in the shortest network path between them. Another method for mitigating the negative

effects the presence of holes in node topology produces is presented in [90]. This algorithm

works with only three anchor nodes, and it does not assume the creation of partial maps and

their stitching together. It works by detecting the holes in topology and creating virtual holes

around the nodes which are located at hole edges. This manipulation allows the algorithm

to calculate the angles at which the shortest path between two nodes is bent in order to go

around the hole and accurately estimate the real difference between two nodes based on this

information and the standard hop count approach. Anisotropic topology detection is also

examined in [91]. Reliable anchors are detected by the degree of hop count deviation to

the expected one, given the known anchor locations, and reliable anchor pairs are used for

location estimates. The same problem is approached in [92], where anchors are classified

based on the hop count patterns packets arriving from them exhibit. Once an anchor is

classified, different distance estimation technique is used. The work presented in [93] deals

with both nonuniform node distribution as well as the irregularity of the region in which the

nodes are located, by determining reliable anchors. In [94] a similar algorithm dealing with

sparse anchor distribution is proposed. A Pascal triangle solution for localisation based on

average neighbour distance, hop progress and angle at which the shortest path between two

nodes bends in anisotropic regions can be found in [95].
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Infrastructureless networks localisation summary

Depending on the type of approach, the accuracy of localisation algorithms designed for ad

hoc networks may be influenced by a number of factors. The solutions relying on anchor

nodes are mostly dependent on the number, density and location of these nodes, especially in

irregularly shaped network topologies. As in many cases in cellular networks positioning,

higher accuracy is much easier to achieve closer to the reference points. Nodes with a high

number of neighbours are usually easier to locate correctly as the potential for cooperation

in localisation and error minimisation is greater, which is why the density of regular nodes

also plays a significant role in overall accuracy. On the other hand, solutions which avoid the

use of anchor nodes rely heavily on the nodes having the ability to estimate distances among

themselves with significant accuracy, or the network topology being uniform enough that the

variance in the relationship between actual distance and the hop count metric is low.

2.5 Summary and Problem Definition

Several conclusions may be drawn from the review of literature in the field of localisation in

wireless networks. Infrastructure-based networks, be it cellular networks or WLANs, are

completely dependent on their infrastructure, and as such, it seems a natural direction for the

localisation algorithms aimed to operate in these networks to make use of this infrastructure.

The benefit of having network infrastructure in place is that it offers, with more or less

adjustment to the basic network architecture, a powerful system for performing, storing

and analysing a number of different measurements on the scale of all nodes in the network,

regardless of the type of localisation approach taken. The network can also then compute or

provide aid in computing the node location estimates.

Ad hoc network, on the other hand, given their infrastructureless nature, rely completely

on direct communications between the nodes. This makes them inherently void of any sort
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of support when it comes to determining node locations. If no localisation infrastructure is

placed in the network, such as anchor nodes, the information nodes can gather themselves

through direct communication needs to be used in a centralised way, as is the case with

anchor-free algorithms, e.g. gathering the set of all distance estimates between neighbouring

nodes pairs, and solving the system of equations for unknown node locations given these

constraints.

It can be concluded that, for the above-mentioned reasons, the existing solutions for node

localisation in ad hoc wireless networks make one, or both, of the following assumptions:

1. There exist some reference points (anchors) in the network whose location is known.

2. There exists a mechanism for nodes to (relatively) precisely measure the distance to

neighbouring nodes.

Furthermore, even the nominally decentralised localisation solutions for ad hoc networks

are never decentralised to the level of an individual node, i.e. they only consider dividing the

network into regions and running the same centralised algorithm on these smaller parts of

the network. This means that nodes are always relying on some global set of information,

obtained by either all other nodes in the network or at least their neighbourhood.

Having the previous in mind, the problem which this thesis is proposing a solution for can

be formulated as determining locations of single hop neighbours in wireless ad hoc networks

of moving nodes, without the use of external reference signals (like GPS) or systems (like

anchor nodes).

The next chapter deals with the theoretical background of the proposed localisation

solution, its application in a localisation algorithm in a realistic scenario, and the detailed

description of the proposed Relative Neighbour Localisation (RNL) algorithm and each of

its elements.



Chapter 3

Decentralised Localisation Algorithm

Design

Drawing on the conclusions made in the previous chapter about the lack of a distributed,

anchor-free localisation algorithm for ad hoc networks of moving nodes, the Relative Neigh-

bour Localisation (RNL) algorithm is proposed. The goal of this algorithm is to enable nodes

to estimate the locations of their neighbouring nodes in a highly dynamic environment using

only signal strength measurements and the neighbouring nodes’ mobility parameters, without

the use of any external localisation signals or systems. It is based on the relationship of the

trends in signal strength and the direction and speed of movement of the neighbouring node

on one side and the relative location of that node on the other. The RNL algorithm estimates

the relative angle and the distance at which the neighbouring node is located independently

and then produces the two-dimensional location estimate from them.

This chapter first presents an introduction about the assumed network model, the theo-

retical principle of localisation using the above-mentioned algorithm inputs (signal strength

and mobility parameters) and how the relationship between these inputs and the relative

neighbour location can be estimated under the influence of the uncertainties present in a
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realistic case. It then presents the RNL algorithm, defining each of its parts and the process

of estimate computing in detail.

3.1 Introduction

3.1.1 Network model

The network model which is adopted for the remainder of this thesis assumes the following:

• mobile nodes which are moving completely independently of each other,

• nodes are assumed to move in paths composed of straight line segments,

• no global information about the location of the nodes exists; only relative locations are

considered,

• the network is fully distributed, there is no hierarchy or clustering,

• each node is aware of its speed and direction of movement (i.e. is equipped with an

accelerometer and compass),

• each node is broadcasting its velocity vector (the speed and the direction of movement)

to its one-hop neighbours.

The constraints imposed by the decentralised approach to localisation are reflected on the

choice of parameters used in order to estimate node locations and imply the use of values

obtainable by each node individually as algorithm inputs. The most obvious choice for a

parameter is signal strength as it is something any node is capable of measuring on its own

and, in theory, depends on the distance between the sender and the receiver. The analysis of

the fluctuations in the signal strength caused by the radio wave propagation effects and the

imprecision and inaccuracy of the measurements are outside the scope of this work and are

something that is taken as given.
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Two assumptions about node mobility are made. The first one is about each node having

knowledge of its velocity vector and broadcasting it periodically. This means that nodes are

aware of neighbouring nodes speed and direction of movement, and can use this velocity

vector as the second algorithm input. The second assumption is that nodes’ velocity vector

can be considered constant for considerably long periods of time, and only changing at

discrete time instances.

In the interest of simplifying the analysis of the localisation principle, it will be assumed

that node A, which is estimating a neighbouring node’s location is stationary, and that only

the neighbouring node B is moving. Figure 3.1, where −→sA and −→sB are vectors describing the

movement of nodes A and B over a unit time period respectively, (i.e.
−→
dA = 1s×−→vA, where

−→vA is the velocity vector of node A), shows the transformations allowing this perspective shift

from a scenario of both nodes moving to one where node A is stationary. This also means

that the conclusions of this analysis can be applied back to the case when both nodes are

moving, using the relation shown in (3.1).

Fig. 3.1 Relation between velocity and position vectors
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−→sA +
−−→
A′B′ =

−→
AB+−→sB

−−→
A′B′ =

−→
AB+−→sB −−→sA︸ ︷︷ ︸ (3.1)

3.1.2 Ideal case localisation

This section presents the process of localisation of a neighbouring node in an idealised

scenario. The following analysis derives expressions for the relative angle at which the

neighbouring node is located (the location angle) and the distance at which it is located using

measured signal strength and the neighbour’s mobility parameters

Considering, for the moment, an ideal case of free space wireless radio communication,

ignoring radio wave propagation effects, making signal strength purely a function of distance

between the sending and receiving node. Using the Friis transmission formula [96], the ratio

between the emitted (Pt) and received (Pr) signal strength can be expressed as:

Pr

Pt
= DtDr

(
λ

4πd

)2

, (3.2)

where Dt and Dr are the directivities of the transmitting and receiving antennae respectively,

λ is the wavelength and d is the distance between the sending and receiving nodes. Assuming

that the transmission power is known, and that the antennae directivities are also known, the

distance d between the two nodes can be expressed as:

d =
λ

4π

√
PtDtDr

Pr
. (3.3)

Figure 3.2 represents the process of node A trying to determine the location of node B.

Stationary node A receives the first broadcast of velocity vector −→vB from moving node B at

time t = 0 (Figure 3.2a) and measures the signal strength as ss0, where ssi is the level of
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signal (ss) at time t = i expressed in decibels-milliwatts, calculated as:

ss = 10log
Pr

1mW
. (3.4)

At this point node A has an estimate of the distance d0 to node B from ss0, using (3.3).

This places the possible locations of node B on a circle of radius d0 with a centre in node A,

denoted C0.

(a) First measurement (b) Second measurement

(c) Possible movements of node B (d) Possible locations of node B

Fig. 3.2 Localisation in the ideal case
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At time t = T , where T is the interval of the velocity vector broadcasts, node A receives

another broadcast from node B and measures the signal strength as ssT , which translates

to distance dT (Figure 3.2b). Based on the new distance the location of node B must be

somewhere on the circle of radius dT with centre in node A, denoted CT . Observing the

possible locations at times t = 0 and t = T and the velocity vector −→vB narrows down the

location of node B at t = T to maximum of two points on CT (Figure 3.2c and Figure 3.2d),

as that is the number of points on C0 from which vector −→vB points to CT .

This can be formalised analytically, with the following set of equations. A common

reference (or zero angle) is assumed, and all other angles are measured with respect to it. The

following notation is used: s is the distance covered by node B over a period of T seconds

(i.e. s = T ×|−→vB|), θi is the direction of the velocity vector of node B at time t = i, and αi is

the angle of the line between node A and node B at time t = i. Figure 3.3 represents these

values and their relation to distances d0 and dT .

Fig. 3.3 Calculating the angle α

From the trigonometrical law of cosines for the triangle shown in Figure 3.3:

d0
2 = dT

2 + s2 −2dT scosδT , (3.5)
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the value of angle δT can be derived as:

δT = arccos
(

dT
2 + s2 −d0

2

2dT
2

)
. (3.6)

This equation has two solutions, denoted δT1,2 . Given this ambiguity, the value of angle αT is

also ambiguous and calculated as:

αT1,2 = θT +δT1,2 (3.7)

which is shown in Figure 3.3 as well. The two values of α correspond to one of the points

from Figure 3.2d each. Only one of them represents the true location of node B at time T ,

while the other one represents what will be referred to as the symmetrical location of node

B at time T . The symmetry between these two point is exhibited with respect to the line

defined by the position of node A and the angle θT . The relation between the ambiguous

relative angle values (shown in Figure 3.4) is the following:

αT1 = θT − (αT2 −θT )

αT1 = 2θT −αT2.

(3.8)

At this point, the ambiguous relative location of node B, i.e. its location in the Cartesian

coordinate system with node A in origin, is computed as:

xT1,2 = dT cosαT1,2

yT1,2 = dT sinαT1,2.

(3.9)

In order to resolve this ambiguity, and reduce it into the true location of the node, more

information is needed. This information is obtained from a change in direction of movement

of node B. Once a broadcast with a different velocity vector, with direction θ2T is received
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Fig. 3.4 Ambiguous angle symmetry

at time 2T from node B, node A can, based on possible locations from the previous step,

determine the two possible distances to node B at time 2T as:

d̂2T1 =

√
dT

2 + s2 + cos(αT1 −θ2T )

d̂2T2 =

√
dT

2 + s2 + cos(αT2 −θ2T ),

(3.10)

and compare the distance at 2T obtained from ss2T . If d2T = d̂2T1 , the angle αT1 was the

real angle and if d2T = d̂2T2 , the angle αT2 was the real one, and the ambiguity is resolved,

allowing node A to continue tracking the unique location of node B. This procedure is shown

in 3.5, where 3.5a shows two possible locations at t = T , and 3.5b and 3.5c show the situation

at t = 2T , after a turn has been detected and the new distance has been estimated, with

possible locations one and two having been recognised as the real location, respectively.

3.1.3 Real case limitations

The analysis presented above is based on the assumptions of ideal free space propagation, no

interference and ideal measurements of the parameters involved available. In order to show
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(a) Ambiguous location at
t = T

(b) Possible location one
selected as the real one

(c) Possible location two
selected as the real one

Fig. 3.5 Resolving the ambiguous location after a turn

the applicability of the described relation between the change in signal strength, mobility

parameters and relative locations of two nodes, it should be investigated in a generalised,

realistic case.

By removing the ideal free space signal propagation assumption the presented localisation

principle is faced with its first obstacle. Real world signal propagation means that the signal

strength will be a function of factors other than just the distance between the sending and the

receiving node. Different obstacles and environment configuration can influence the path of

radio waves, causing them to reach the receiver via multiple paths. Multipath propagation

and signal shadowing are responsible for fluctuations in the strength of received signal,

known as fading. The effects of fading on measures signal strength are shown in Figure 3.6,

which shows the received signal strength fluctuations over time.

The second assumption made in the ideal scenario is having absolutely precise measure-

ments of signal strength and speed and direction of movement. In a realistic scenario the

devices measuring these parameters are either not sensitive enough, not precise enough, or

both.

The imperfections of the real world scenario complicate the relationship between the

distance and received signal strength, and the expression from (3.3) can no longer be assumed
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Fig. 3.6 Effects of fading on signal strength measurements

to hold. While a number of experimental models have been proposed based on averaging

the signal strength measurements from a transmitter at a known distance over time, thus

stabilising this relationship and producing relatively accurate distance estimates [97–99],

a certain error is unavoidable. This makes it impossible to apply the idealised approach

described in the previous section, especially having in mind the mobility of both the receiver

and transmitter, as even small errors in two consecutive distance estimates shown in Figure

3.3 could result in large errors of the calculated location angle.

Having these hindering factors in mind, a conclusion can be drawn that localisation in a

realistic case based on the dependency between the signal strength, the node mobility and

the relative locations described in the previous subsection can be expected to produce less

precise results, or in other words, there would be more uncertainty compared to the ideal

case. The effects of fading along with the lack of absolutely precise measurements all add to

the unreliability of location estimation.

Given the network model, the presented theoretical basis on which the proposed locali-

sation algorithm should work and the limitations on the realistic implementations of it, the

research problem for this PhD work can be more precisely defined as follows: determining
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single-hop neighbour relative location relying only on its mobility parameters (velocity

vector) and the performed signal strength measurements.

3.2 Algorithm Overview

Given the uncertainties present in a realistic scenario, it would be very difficult, if not

impossible, to derive an analytical form of the localisation algorithm, such as the one shown

in section 3.1.2. It is, however, assumed that even with the effects of fading and imprecise

measurements, trends in the signal strength measurement can still be identified by smoothing

them over time using moving averages. This means that the relation between the signal

strength and the velocity vector can still be utilised for location estimation in a non-ideal

scenario.

An empirical approach is taken to characterise this complex relation, by using a regression

algorithm called Random Forest Regression (RFR) as the basis of the angle and distance

estimation procedures. This means that the algorithm needs to go through an offline, learning

phase, in which it is fed measurements based on which it learns about the relations between

the measurements available as inputs and the desired outputs. The reasons for choosing this

learning algorithm over others will be presented in section 4.3.

The training of the estimators can be performed using real measurements with known

true locations of target nodes. The input – output pairs obtained in such way, are provided to

the untrained estimators, which analyse the dataset and form mappings from the input values

to the desired outputs. Another method for obtaining a training dataset can be by simulation

methods, carefully choosing the network and environment parameters in such a way that they

correspond to the scenario in which the application of the algorithm is intended. Both the

experimental and simulation datasets have been obtained, details of which are presented in

sections 4.2.2 and 4.2.4.
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3.2.1 Algorithm structure

The Relative Neighbouring Localisation (RNL) algorithm is composed of three parts, or

modules, which can be put together incrementally, to produce the final location estimate. The

first part of the algorithm is the location angle estimation, which is composed of producing

what is called a raw angle estimate and resolving the symmetrical angle issue. The second

part of the RNL algorithm is the distance estimation. Given the outputs of these two parts, a

two-dimensional location estimate is computed. The third part of the algorithm is estimate

sharing. This part, although violating the strict definition of the distributed nature of the

proposed algorithm, is introduced as a method of increasing localisation accuracy, and is

confined to one step neighbours exchanging their location estimates of nodes in their range.

Given the characteristics of the location estimates created by the first two steps of the RNL

and the estimates received through the third step, a final estimate is produced. Figure 3.7

shows the block diagram representation of the full RNL algorithm with its inputs and outputs.

Throughout the rest of this chapter, all the algorithm inputs and outputs will be regarded

in a discrete time domain, with time instances denoted as indexes in square brackets. The

node whose location is being estimated will be referred to as the target node, the node

performing the RNL algorithm will be referred to as just root, and the nodes sharing their

estimates with root will be referred to as neighbours. Superscripts will be used to denote

the source of a particular estimate or measurement (if it is not the root node), i.e. which

node has produced it, and subscripts will be used to denote the node estimates are relating

to (if it is not the target node). The following notation will be used for certain values and

measurements:

ss Measured received target node signal strength,

ssavg Average measured received target node signal strength,

navg Signal strength averaging window size,

θ Direction of movement of the target node, relative to root,
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Fig. 3.7 RNL block diagram
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s Speed of movement of the target node, relative to root,

α True location angle of the target node,

γR,γS Raw location angle estimate produced by the RFR, and its symmetrical angle,

nprev Number of previous averaged signal strength values used as RFR inputs,

α̂1, α̂2 Ambiguous location angle estimates,

α̂ Unique location angle estimate (after ambiguity is resolved),

d True distance of the target node,

d̂ Estimated distance of the target node,

x,y True target node coordinates, relative to root,

xi,yi True target node coordinates, relative to neighbour i,

x̂, ŷ Estimated target node coordinates relative to root,

x̂i
sh, ŷ

i
sh Estimated target node coordinates received from node i, relative to root,

x̂sh, ŷsh Estimated target node coordinates from all shared estimates.

The relative direction and speed of movement (θ ,s) are calculated according to Figure 3.1

and equation (3.1), from the relative velocity vector of the target and root nodes (−→v t ,
−→v r), as

follows:
−→v =−→vt −−→vr

s =
√

(st cosθt − sr cosθr)
2 +(st sinθt − sr sinθr)

2

θ = arctan
(

st sinθt − sr sinθr

st cosθt − sr cosθr

)
.

(3.11)

3.3 Angle Estimation

The estimation of the location angle of the target node is performed in two steps. The first

step assumes producing what is called a raw estimate, using the RFR algorithm. The second

step refers to the resolving (if possible) the location angle estimate ambiguity.
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3.3.1 Raw RFR estimates

The RFR estimator works by producing an output value for a given set of input values, based

on the relationships between these parameters and their values it has formed during the

training stage. It takes the vector of nprev averaged signal strength values as the first part of

the input, while the second part are the target node mobility parameters:

input[t] = [ssavg[t −nprev +1], . . . ,ssavg[t −1],ssavg[t],θ [t],sinθ [t],cosθ [t],s[t]]. (3.12)

The direction angle is present as both the exact value, as well as its sine and cosine values.

This is done because the estimator is unaware of the periodic nature of the angular values, i.e.

the fact that angles π and −π are the same angle. To overcome this, trigonometric functions

are used, as their values allow for these two angles to be perceived as equal.

The vector input[t] represents one input data point. During the estimator training phase,

the estimator is presented with a dataset composed of input – output pairs of data points. The

output presents the true value of the location angle, in the following form:

out put[t] = [sinα[t],cosα[t]]. (3.13)

Following the same reasoning concerning the periodicity of the angular values as above,

the true location angle is represented by its sine and cosine values. Because of this, there are

two estimators being used, one for the sine value estsin, and the other one for the cosine value

estcos. The mappings that they are trained to estimate can be defined as:

estsin : input → sinα

estcos : input → cosα,

(3.14)

and the two estimators are shown in Figure 3.8.
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(a) Sine estimator (b) Cosine estimator

Fig. 3.8 The sine and cosine RFR estimators

During the online phase, after the estimators have been trained, the raw angle estimate α̂

is produced as:

sinγR = estsin(input)

cosγR = estcos(input)

γR = arctan
(

sinγR

cosγR

)
.

(3.15)

3.3.2 Symmetrical angle problem

As described in section 3.1.2, the presence of ambiguity of location angle estimates is

inevitable even in the ideal case. This means that, given a set of input parameter values, there

exist two location angles which could theoretically correspond to it. The estimators defined

above have no ability to distinguish between these ambiguous values, as they are trained using

the true output (location angle) values. In the process of training, the estimators develop a set

of rules which map the input parameter values into the produced output estimation. These

rules are an interpretation of the relationship between signal strength and mobility parameters

on one hand and the relative location angle on the other. Even for perfectly trained estimators,

the ambiguity of the location angle still exists, as the two possible location angles share the

same relation to the input parameters. The estimator producing a symmetrical instead of
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the true location angle would still not be wrong, as it would have applied these relations

correctly. Figure 3.9 shows an example of RNL raw and symmetrical angle estimates.

Fig. 3.9 RNL symmetrical angle estimates

RNL algorithm deals with the location angle ambiguity by maintaining two variables α̂1

and α̂2 for each of the two possible values of the location angle. Once the localisation is

initiated, and the first RFR raw estimate γR of the target node’s location angle is produced,

this value is assigned to α̂1. Using equation (3.8), the symmetrical value γS is calculated,

and assigned to α̂2. For every consecutive pair of the raw and symmetrical RFR estimates

(γR[t],γS[t]), the following four differences are calculated:

δ1R = |α̂1[t −1]− γR[t]|

δ1S = |α̂1[t −1]− γS[t]|

δ2R = |α̂2[t −1]− γR[t]|

δ2S = |α̂2[t −1]− γS[t]|.

(3.16)

These differences represent the distance between the new estimates and the previous

ones. As the nodes are assumed to be moving in straight lines, the location angle cannot
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change significantly between two estimates, and it is assumed that the difference between the

symmetrical angle and the previous true angle values would be greater than the difference

between two consecutive true angle values. This comparison is referred to as type 1. Con-

sequently, if the smallest of the four differences is δ1R or δ2S, that means that the raw RFR

estimate γR[t] is the one corresponding to the α̂1[t −1] angle estimate, and the symmetrical

RFR estimate γS[t] corresponds to the α̂2[t −1] estimate. The new values of the two angle

estimates are therefore assigned as:

α̂1[t] = γR[t]

α̂2[t] = γS[t].
(3.17)

If the opposite is true, i.e. if the smallest of the four differences is calculated to be either δ2R

or δ1S, the new angle estimates are given the following values:

α̂1[t] = γS[t]

α̂2[t] = γR[t].
(3.18)

According to the analysis presented in section 3.1.2, the location angle ambiguity can

be resolved with additional information obtained after the target node makes a change in

the direction of movement. This procedure, from the perspective of the symmetrical angle

handling part of the angle estimation element of the RNL algorithm, is shown in Figure 3.10,

where Figure 3.10a shows the two locations corresponding to the angle estimates before the

turn, α̂1 and α̂2. Once a change of direction happens, the RFR estimator produces a raw

estimate based on the new input values. At the same time, given the new mobility parameters,

the target node is expected to be located in one of the two locations shown in Figure 3.10b.

This time, the axis of symmetry will be different, resulting in a mismatch between the new

γR and γS values on one side and the previous α̂1 and α̂2 values on the other.
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(a) Ambiguous location before the turn
(b) Expected ambiguous location after the

turn

(c) New estimate leads to discarding the right
estimate, left one adopted as true

(d) New estimate leads to discarding the left
estimate, right one adopted as true

Fig. 3.10 Symmetrical angle ambiguity

Using the calculations shown in equation (3.16), the smallest difference between the

previous and the new estimates can be found. This time, the smallest difference determines

which of the previous location angle estimates was the true one, and which of the newly

produced RFR estimates corresponds to it. This comparison is referred to as type 2. At this

point, the α̂1 and α̂2 are discarded, and a unique angle estimate α̂ is introduced, according to
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the following rule:

∆ = {δ1R,δ1S,δ2R,δ2S}

ifmin(∆) = δ1R =⇒ α̂[t −1] = α̂1[t −1], α̂[t] = γR[t]

ifmin(∆) = δ1S =⇒ α̂[t −1] = α̂1[t −1], α̂[t] = γS[t]

ifmin(∆) = δ2R =⇒ α̂[t −1] = α̂2[t −1], α̂[t] = γR[t]

ifmin(∆) = δ2S =⇒ α̂[t −1] = α̂2[t −1], α̂[t] = γS[t].

(3.19)

Figures 3.10c and 3.10d show the two cases in which one of the two possible locations is

discarded based on the rule defined above.

From this point on, the choice between the raw and symmetrical RFR estimates is made

by comparing them to the last value of the unique angle estimate α̂ as:

α̂[t] =


γR[t], if |γR[t]− α̂[t −1]| ≤ |γS[t]− α̂[t −1]|

γS[t], if |γR[t]− α̂[t −1]|> |γS[t]− α̂[t −1]|
(3.20)

This comparison is referred to as type 3. Block diagram of the whole symmetrical angle

handling procedure is shown in Figure 3.11.

3.4 Distance Estimation

The distance to the target node in the RNL is estimated using the same mechanism used in

the angle estimation. During the training phase, the training dataset, composed of input –

output pairs, is presented to the distance estimator. The input vector used is the same one

used in the angle estimation, while the output is the true distance between the root and the

target nodes. Although only one of the input parameters, ss[t], can be directly linked to the

distance between the two nodes, the use of additional information has been shown to lead to
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Fig. 3.11 Symmetrical angle handling block diagram
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better accuracy in distance estimation. This is further discussed in the next chapter, along

with other evaluation results of the RNL performance. The distance estimator, estdist , is

trained to perform the following mapping:

estdist : input → d, (3.21)

and is shown in Figure 3.12. During the online phase, after the estimator has been trained,

the distance estimate d̂ is produced as:

d̂ = estdist (input) . (3.22)

Fig. 3.12 Distance estimator
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3.5 Estimate Sharing

Using the angle and distance estimators defined so far, the root node is able to compute the

relative x̂, ŷ coordinates of the target node. Given the distributed nature of the RNL algorithm

and the uncertainty of the complex relationship between the available measurements used as

algorithm inputs and the location of the target node, the proposed localisation method cannot

be expected to produce high accuracy.

As an attempt to increase the accuracy of the location estimates, an estimate sharing

procedure is defined. The estimate sharing among single-hop neighbours is designed to

include group knowledge into the localisation process, and to detect and possibly avoid

some large errors, by analysing and comparing target node location estimates of multiple

neighbours to the ones locally produced using the angle and distance estimators.

In general, the estimate sharing procedure assumes each node computing its own local

estimates of the relative locations of all of its neighbouring nodes and sharing them, using

periodic broadcasts, with that same group of single-hop neighbours. In the interest of

simplicity, this process will be described assuming there is only one target node whose

location estimates are being shared by nodes whose range it is within.

3.5.1 Computing shared estimates

Each node, before engaging in the estimate sharing procedure, calculates the target node

location estimates relative to itself. Given the angle and distance estimates, the relative

location of the target node is calculated as:

x̂[t] = d̂[t]cos(α̂[t])

ŷ[t] = d̂[t]sin(α̂[t]) .
(3.23)
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In case the location ambiguity has not yet been resolved, two target node location

estimates are kept:

x̂1,2[t] = d̂[t]cos(α̂1,2[t])

ŷ1,2[t] = d̂[t]sin(α̂1,2[t]) .
(3.24)

Once own relative location estimates have been computed, each node broadcasts its

unique or ambiguous location estimate of the target node. As the root node receives these

broadcasts, it needs to take into consideration its own relative location estimates of the node

which is the source of the broadcast, which may also be unique or ambiguous. Assuming

unique location estimates in both of the above cases, and node a sharing its target node

location estimate with the root, the root node calculates the shared estimate in its own

coordinate system as:

x̂a
sh = x̂a + x̂a

ŷa
sh = ŷa + ŷa,

(3.25)

where (x̂a, ŷa) is the root’s estimate of the location of node a, and (x̂a, ŷa) is the target node

location estimate produced by node a. In cases where one or both of these location estimates

are ambiguous, this process can result in two or four different coordinate pairs respectively.

A set of all target node location estimates, E, consisting of the root node’s own and the

estimates received and calculated through the process of sharing, is created as:

E= {(x̂t , ŷt)}∪
{(

x̂ j
sh, ŷ

j
sh

)
∀ j ∈ S, j ̸= t

}
, (3.26)

where S denotes the set of root node’s neighbours and t is the target node.
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3.5.2 Clustering

Given the inherent uncertainty with which the RNL operates, and which is in the basis of

all the estimates produced, it may be assumed that not all of the estimates in the set E are

close to the true location of the target node. This is especially so in the cases where location

ambiguity is present, and even more so if there are four different estimates being associated

with one source, as described in the previous subsection. If the nodes are producing relatively

accurate estimates, they can be expected to be close to each other, while the estimates with

low accuracy can be expected to be dispersed around different areas, as each node which

is the source of an estimate observes different values of the target node’s relative mobility

parameters. This rationale can be used to draw a conclusion about which of the estimates may

be the accurate ones, and which ones the erroneous ones, by analysing the shared estimates.

The analysis of the estimate set E is performed using a clustering procedure. More

precisely, hierarchical agglomerative clustering is used. This process, described in [100],

assumes the following steps:

1. Create single-element subsets (clusters) of the given set,

2. Unite two closest clusters,

3. Add the unity subset to the list of clusters; remove the two which it was created from,

4. Repeat steps 2 and 3 until there is only one cluster.

The closeness of the clusters is examined using Ward’s minimum variance criterion, which

ensures that the clusters selected for merging are the ones which will result in a new cluster

with the smallest variance within its member elements.

As the goal of clustering in RNL estimate sharing is to determine if there is a close group

of estimates, indicating that they are all high accuracy estimates, there is no need to run the

above clustering procedure until the end. What is more interesting given the goal of this
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procedure, is to find the smallest variance cluster of a particular size. This minimum desired

cluster size, denoted as c, is relative to the cardinality of the set of all estimates E, i.e. for a

larger estimate set, a greater number of similar estimates is required for them to be assumed

high accuracy, while for a smaller estimate set this number needs to be reduced in order for a

low variance cluster with a given size to be possible to exist.

Fig. 3.13 Example of shared estimates and clusters

The first cluster of size c which is produced by the clustering procedure described above,

is guaranteed to be the one with the smallest variance, and is referred to as the chosen cluster,

and denoted as C. This cluster contains what are assumed to be the high accuracy target node

location estimates, and the final target node location estimate can then be computed as the

centroid of all estimates in C:

x̂sh =
∑ j x̂ j

sh
|C|

, j ∈C

ŷsh =
∑ j ŷ j

sh
|C|

, j ∈C.

(3.27)

The clustering procedure is illustrated in Figure 3.13.
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3.6 Special Case – Estimate Propagation

Both the angle and the distance estimation components of the RNL algorithm rely on the

RFR estimators to produce their outputs. As seen above, the estimation process is defined

to use nprev signal strength measurements. This means that the RNL is unable to produce

estimates for the first nprev seconds after a new neighbour has appeared in range. In order

to avoid not having a location estimate during these periods, shared estimates are used if

present.

A similar issue arises when the relative mobility parameters of the target node change, i.e.

either the root or the target node change their direction or speed of movement significantly.

Once a change in relative mobility happens, the nprev signal strength measurements no longer

correspond to the current relative direction of movement of the target node, and should not

be used as estimator inputs. In this case, if previous estimates produced by the root node

exist, estimate propagation is performed. The last x̂, ŷ estimates are transformed using the

relative mobility parameters according to the following expressions:

if t − tlast_turn < nprev :

x̂[t] = x̂[t −1]+ scosθ

ŷ[t] = ŷ[t −1]+ ssinθ .

(3.28)

This way, periods of potential RNL estimate unavailability are avoided.

3.7 Location Tracking

The RNL algorithm produces estimates at each step independently from the previously

generated estimates. This may cause consecutive estimates to be placed in a manner which

does not correspond to the mobility parameters of the target node (i.e. consecutive estimates
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placed at a distance or in a direction which is not possible given the relative speed and the

relative bearing angle of the target node). This can have large location estimate errors as a

result. In order to reduce the impact of this issue, location tracking can be applied.

The information about the target node mobility can be used to correct the location

estimates produced by the RNL. This is done by fitting consecutive RNL location estimates

into an array of estimates which correspond to the laws of movement based on the mobility

information. Each new estimate produced by the RNL during a sequence of constant values

of relative (between the root and the target node) mobility parameters is compared to all the

previous estimates in that sequence, using the following analysis:

x̂expk [t] = x̂[t − k]+ scosθ

ŷexpk [t] = ŷ[t − k]+ ssinθ ,

(3.29)

where x̂[t − k], ŷ[t − k] is the estimate produced k steps ago, and x̂expk [t], ŷexpk [t] is what the

latest estimate is expected to be, based only on the relative mobility parameters and the

estimate produced k steps ago.

For a sequence of l estimates, the set of following differences is calculated:

εi, j = |L̂exp j [i]− L̂[i− j]|, i, j ∈ {0, . . . , l} , i < j, (3.30)

where L̂exp j = (x̂exp j , ŷexp j)andL̂= (x̂, ŷ). The pair of estimates i, j for which the minimum

value of εi, j is obtained, is chosen as an anchor pair. These anchor points are the two

estimates which are placed in such way that they best fit the relative mobility parameters

and laws of motion, making them most likely to be the most accurate ones. A line in the

direction of movement is drawn so that it is the best fit through the anchor points, and all
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other estimates are then realigned along this line. This results in a set of estimates created

over a single sequence corresponding to the relative mobility parameters of the target node.

3.8 Summary

The idea behind the localisation approach of the Relative Neighbouring Localisation al-

gorithm is the relationship between the trends in signal strength and the relative mobility

parameters of the neighbouring node on one side and the neighbour’s relative location on

the other. This relationship is investigated from an analytical perspective in an idealised

scenario in this chapter, after which the realistic scenario limitations are examined, along

with their impact on localisation procedure. Given the assumed network model and the theo-

retical basis of the localisation principle, the research problem is redefined as determining

single-hop neighbour relative location relying on its mobility parameters and signal strength

measurements.

The modular algorithm design, based on the empirical approach employing the Random

Forest Regression model, is presented followed by detailed definitions of each step of

the algorithm. The basics of the RFR algorithm, as well as the process of selection of

that particular regression method, will be presented in the next chapter. In addition, the

methodology of the performance evaluation process is also described in the next chapter,

along with the simulation and experimental testbed setup. Finally, the next chapter also

presents detailed results of the RNL algorithm performance evaluation and proposes a

potential application scenario for the proposed localisation algorithm.



Chapter 4

Evaluation

4.1 Introduction

In order to evaluate the performance of the Relative Neighbour Localisation algorithm

described in the previous chapter, a series of simulation tests have been undertaken. The

simulations need to be calibrated in such a way that they represent reality as close as possible.

This is achieved by setting the parameters of the models used in the simulation environment

according to the values obtained from the analysis of the measurements obtained using an

experimental testbed. This chapter provides the details of the simulation design, the models

used, as well as the experimental testbed setup, the tests performed and the analysis of the

resulting measurements, used for simulation calibration.

A comparison between a number of regression mechanisms and the process of selection

of the estimators used for location angle and distance estimation is also presented in this

chapter, followed by the results of the performance analysis of the RNL algorithm and each

of its parts, using a series of simulations with different node densities. Finally, an application

scenario for distributed sensing coverage control is presented, followed by the performance

evaluation of the proposed solution basing on the RNL algorithm and its estimates.
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4.2 Methodology

The main method of performance evaluation of the RNL algorithm are simulations, which

make large scale testing of the algorithm accuracy in different setups of network and algorithm

parameters more feasible in comparison to using an experimental testbed. A simulation

environment has been designed using Python programming language [101]. In order to

calibrate the simulator, a set of real-world experiments have been performed. The data

collected in these experiments was used in the process of algorithm design and to derive the

parameters of the simulation models. Also, the performance of different regression models

was evaluated using the experimental data, in order to choose the one which will be used

for the estimators of the RNL. The simulation scenarios aim to replicate the real-world

uncertainties introduced by the measurements the RNL algorithm is using as inputs.

4.2.1 Simulation setup

In addition to the notation presented in section 3.2, the notation shown in Table 4.1 will be

used for simulation parameters.

Table 4.1 Simulation parameters

Parameter Description Unit

R Dimension of the square area m
rc Communication range m

(mmin,mmax) Constant mobility parameters range s
N Number of nodes −

dur Simulation duration s

At the beginning of the simulation, N nodes are placed on the R×R square area by

generating each node’s x and y coordinates as uniformly distributed variables, i.e. x,y ∼

U(0,R). Node mobility is simulated under the following constraints:

• Nodes are moving at a constant speed of 1 m
s ,
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• Nodes may not leave the square area,

• Nodes move in a constant direction and constant speed for m∼U(mmin,mmax) seconds;

m is repeatedly generated after each turn,

• At the beginning of the simulation, and when a turn is due, i.e. m seconds after

the previous turn, the direction of movement of each node randomly generated as

θ ∼ U(−π,π),

• A restriction is placed on the selection of θ : if moving in the selected direction for

mmax time would place the node outside the square area, the value is discarded and a

new one is randomly generated.

The simulation is run as an array of discrete events. This means that every second the

locations of all nodes are recalculated, each node updates its neighbourhood list, performs

measurement of the strength of the signal from each neighbour, updates the neighbours’

mobility parameters, and performs the RNL algorithm.

The strong assumptions regarding the mobility of the nodes in the ad hoc network are

made purely for maintaining the simplicity of the simulations. The small variations in speed

and direction of movement of nodes from one measurement period to the other can be

compensated by averaging, as the algorithm relies on the general information about the speed

and direction of movement of the nodes over longer periods of time.

Following are the descriptions of the procedures performed by each node at every

simulation step (every second), from the perspective of node i. Neighbourhood update is
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done according to the following rule:

d(i, j)≤ rc =⇒


if j ∈ Si, do nothing

if j /∈ Si =⇒ Si = Si ∪{ j}

d(i, j)> rc =⇒


if j ∈ Si =⇒ Si = Si \{ j}

if j /∈ Si, do nothing

(4.1)

In the expression above, Si represents the set of neighbours of node i, and d(i, j) the true

distance between nodes i and j. Signal strength from node j ∈ Si is calculated as:

ssi
j = pTx −10n log10 d(i, j)−X f , (4.2)

where n is the path loss exponent, pTx is the transmitting power (in dBm) and X f is a random

variable describing the effects of fading. The derivation of numerical values used in and

the justification of this model is done using the data obtained from a real-world experiment

(described in section 4.2.2) and is presented in section 4.2.4. The transmitting power pTx

is set to 20dBm for all nodes. After calculation, signal strength values are averaged with a

moving window of navg. The mobility parameters of each neighbouring node are calculated

according to equation (3.11), using the relative speed and direction of movement expressions.

The choice, training and use of the estimator component of the RNL localisation algorithm

are described in section 4.3.

The basis of the simulation are two classes: Node and Neighbour. The Node class

defines each individual node and holds the information about its true location and mobility

parameters, as well as the set of Neighbour objects. It contains the methods used to move

the node, check the neighbourhood and collect the shared estimates for each neighbour in

range. The objects of the Neighbour class rely on two objects of the Node class each – the

node whose neighbour set it is part of (e.g. node A), and the node which represents the
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neighbouring node itself (e.g. node B). Drawing from these two objects, the true relative

location and mobility parameters are calculated at each step. The Neighbour class also

maintains the location estimates (produced by node A for the location of node B, following

the example notation), shared location estimates (of B produced by A) and the methods

for measuring signal strength, running the RNL algorithm and calculating the location

estimates based on the shared estimates. The code structure of the simulator is shown in

Figure 4.1. The Simulation class is responsible for running the simulation using methods

for generating, moving and initiating measurements of individual nodes. It maintains the

simulation parameters and node list and calculates and stores the localisation errors.

4.2.2 Experimental setup

As previously discussed, the main reason for conducting experimental tests is to quantify the

characteristics of a realistic scenario. The environment parameters extracted from the analysis

of the experimental data are used to design the simulation models, making the simulation

realistic. The real-world experiments are designed to be executable using a reasonable

amount of time, space and effort while providing a significantly large dataset for meaningful

analysis. This approach means that some changes have to be introduced compared to the

scenario investigated throughout this thesis, for practical reasons. One mobile and five

stationary nodes are used, placed in different locations around a school hockey field. The

nodes communicate among themselves by forming a wireless infrastructureless (ad hoc)

network.

The mobile node is broadcasting its direction of movement, and the stationary nodes are

measuring the strength of the signal of the moving node every second. Thirty-six different

straight line routes are taken by the mobile node, moving at constant speed. The average

duration of the routes is around 35 seconds. At different points during the experiment some

stationary node wireless network adapters stop producing meaningful measurements, i.e.
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Fig. 4.1 Simulation code diagram

signal strength reading did not change at all. After discarding these measurements, a set of

4340 distinct data points was obtained.

The ground truth for the locations of the stationary nodes and the coordinates of the

routes taken by the mobile node is obtained using satellite map data. The satellite image

of the testbed location and the positions of the five stationary nodes, as well as four of the

thirty-six mobile node routes, are shown in Figure 4.2.
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Fig. 4.2 Experimental testbed configuration
Map data: Google, The Geoinformation Group

4.2.3 Hardware

Raspberry Pi model 2 B (RPi) [102] computers are used in the experiment as nodes, both

stationary and mobile. The nodes are running a distribution of the Linux operating system -

Raspbian, and are equipped with a USB WiFi adapter each, capable of supporting wireless

communication according to the IEEE 802.11bgn standards. Nodes are powered by external

batteries which allowed for autonomy and full mobility. The information about the direction

of movement of the mobile node is obtained from a digital compass connected to the RPi

board via General-Purpose Input/Output (GPIO) pins. A RPi board with its (GPIO) pins,

USB slots and other connectors is shown in figure 4.3.

The mobility of the single mobile node is achieved by mounting in on top of a robot car.

The robot car is controlled by connecting its servo controller to the GPIO pins of the mobile

node RPi. The servo controller is running the four servo motors, one for each wheel of the

car. Additionally, a line tracking module is placed on the bottom of the car, allowing it to

autonomously follow a straight line. The full mobile node design is shown in Figure 4.4.
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Fig. 4.3 Raspberry Pi model 2 B, adopted from [103]

Fig. 4.4 Mobile node design: 1. Digital compass, 2. USB WiFI adapter,
3. Servo motors, 4. Line tracking module

4.2.4 Simulation parameter modelling

In order for the developed simulator to be representative of the real world, the measurements

obtained using the experimental testbed are analysed and the simulation parameters are

designed so that they reproduce the effects present in the experiment. Two models are
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validated using the real world measurements – the digital compass bearing readings and

the propagation model, i.e. the effects of fading on signal strength relative to the distance

between the sender and receiver.

Bearing readings

The bearing angle readings which were acquired from the digital compass module used on

the mobile node use the direction of the East as the zero reference. As in standard bearing

angle reading, the angle values are increasing clockwise. For practical purposes, the ground

truth of the stationary nodes’ locations and the mobile node routes’ coordinates are calculated

in a coordinate system which is aligned to the edges of the hockey field, as shown in Figure

4.5. The x and y axes are intentionally placed this way so that the angles calculated using this

coordinate system are also increasing clockwise.

Fig. 4.5 The local and global coordinate systems
Map data: Google, The Geoinformation Group

Even though the mobile node is moving in a straight direction, the compass angle readings

expectedly fluctuate over time, mostly due to the slight turns which the robot car needs to

perform when it detects that it has steered off the line it is supposed to be tracking, as well
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as the terrain not being ideally flat. These variations in the reported bearing angle will be

addressed later. For now, the average values across single routes are calculated and compared

to the ones computed using the local coordinate system and the start and end points of each

route. The offset between the local and global reference system-based angle values are shown

in Figure 4.6, where each point on the graph shows one route of the mobile node. The linear

approximation of this relationship is described as y = x− 0.71, which fits the coordinate

system offset described above.

Fig. 4.6 The offset between the true and measured direction angles

Due to the imperfect calibration and the limited sensitivity and accuracy of the sensor

certain errors in reported bearing angles are present, which can also be noted from Figure 4.6.

The set of differences between all individual bearing readings and true values (compensated

for the coordinate system offset) exhibit a non-analytical distribution, not favourable for

modelling. However, if a more precise and more accurate sensor was used, as well as optimal

calibration and better mobility control, it could be assumed that the mean values of movement

direction angle correspond to the true bearing. In this case, the errors are investigated on

an individual route level, and their distribution is shown in Figure 4.7. Disregarding the

small tail on the left side of the distribution, these errors can be modelled using a Gaussian
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Fig. 4.7 Probability density of bearing errors

distribution with a mean of 0 and variance of 8×10−4 rad2. This model will be used in the

simulation by adding a Gaussian random variable to the true bearing of moving nodes. The

bearing readings can now be simulated as:

θ = θtrue +Xθ , Xθ ∼N
(
0,8×10−4) , (4.3)

where θtrue is the true direction of movement and all values are in radians.

Propagation model

The second, more important model which will arise from the experimental data analysis is

the one regarding radio signal propagation. As previously discussed, multipath propagation

causes signal fading effects, which is the biggest source of uncertainty in the RNL localisation

approach. In order to design the simulation propagation model, a simple path loss model

is first adopted, which allows the baseline expected signal strength to be calculated as a

function of distance. Path loss represents the difference between the transmitted and received
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power. This path loss model (in decibels) is described as:

PL = 10n log10 d +C, (4.4)

where n is the path loss exponent, d is the distance between the transmitting and receiving

nodes, and C is a constant describing the effects of fading and all other losses combined.

From all the measurements obtained from the experimental testbed (4340 of them), pairs

of true distance and measured signal strength are formed. Graphical representation of the

distance to signal strength mapping is shown in Figure 4.8. Along with all the measurements,

the fitted model corresponding to the equation (4.4), and transmit power of 100mW, which

is equivalent to 20dBm, is shown.

Fig. 4.8 Experimental distance – signal strength pairs

The fitted path loss equation produced the following values for the path loss parameters:

n = 2.39 and C = 56.41dB. Looking at the experimental signal strength values, it can be

concluded that instead of using a constant to describe the effects of fading, a better choice
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would be a random variable. This approach transforms equation (4.4) into:

PL = 10n log10 d +X f . (4.5)

The previously obtained fitted model can be used to design the fading random variable,

by analysing the distribution of the errors made by the deterministic model from (4.4). The

measurements are grouped based on distance, using 0.5m wide bins and errors are calculated

with reference to the deterministic model-based signal strength calculated for the centre-point

of each bin. These errors in the deterministic model represent the varying effects of fading,

the distribution of which is shown in Figure 4.9.

Fig. 4.9 Probability density of fading

The effects of fading compared to the deterministic signal strength computation can

be modelled using a Gaussian distribution with mean 0.57dB and variance 27.43dB2.1

The relation between the probabilistic X f from equation (4.5) and the deterministic C from

1The author acknowledges the absurdity of squaring decibels, as well as analysing logarithmic values in a
linear way. However, the presented analysis is aimed at describing the numerical effects fading has on signal
strength values in decibels in order for these effects to be accurately modelled in a simulation environment.
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equation (4.4) can be expressed as:

X f =C+N (0.57,27.43)

X f ∼N (C+0.57,27.43) ,
(4.6)

which allows the final path loss simulation model to be expressed as (in decibels):

PL = 10n log10 d +X f , X f ∼N (56.98,27.43) . (4.7)

Observing the experimental dataset it can be concluded that signal strength measurements

are reported as integers and mostly odd numbers, due to the characteristics of the wireless

adapters used in the experiment. This would not be the case if a wireless adapter capable of

reporting signal strength measurements with greater granularity was used. Therefore, the

simulated signal strength measurements will not be rounded to whole numbers and no bias

towards odd numbers will be included in the model. A conclusion about the communication

range in the experimental scenario can also be drawn. One way of looking at it is that

the maximum communication distance is around 30m. The other one is related to the

detectable levels of signal strength, the minimum of which is 79dB. In line with the previous

assumption about better performance wireless adapters being used, as well as for practical

reasons, in simulation scenarios, the distance between two nodes will be the limiting factor

for communication range.

The results of simulating signal strength measurements using the path loss model from

(4.7) on the set of experimental distances are shown in Figure 4.10. These results are similar

to the experimentally obtained ones, shown in Figure 4.8.
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Fig. 4.10 Simulated distance – signal strength pairs

4.3 Regression Method Selection

This section will cover the process of selection of the regression algorithm used for location

angle and distance estimation, as described in sections 3.3.1 and 3.4. The choice is made

based on the performance of each technique for the task at hand. In the case of RNL algorithm

the dataset, as previously described, is composed of signal strength measurements, bearing

angles and speeds as inputs, and location angles as outputs. Given the complexity of the

relationship between these parameters in a realistic scenario, an empirical approach is chosen

in order to produce the angle and distance estimates from available measurements. Based on

an offline learning phase, the estimator creates a set of rules which map inputs to outputs.

These rules are later applied in the online phase during algorithm use on any new inputs to

produce the output estimates.

4.3.1 Regression methods

Regression analysis is used for building models which estimate the relationship between

the independent variables and the dependent variable. In general, the analysis is started by
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analysing a dataset which contains input points (a vector of independent variable values)

with known values of output points (one of the dependent variables). This is referred to as

the offline phase or training of the model. Depending on the regression method used, a set of

rules is constructed based on the relationships the input – output pairs exhibit, describing

in which way the dependent variable depends on the independent ones. These rules can

then be applied to any new vector of input values to produce an estimate of the output value

corresponding to it. The application of the set of rules as an estimator is referred to as the

online phase.

In the case of the estimators used in the RNL algorithm, the independent variables are

the signal strength measurements and the mobility parameters of the target node, and the

dependent variable is one of the three parameters the values of which are estimated: sine

and cosine of the location angle, and the distance of the target node. The values of the

hyperparameters of each of the estimators have been chosen based on the estimation results

achieved, choosing the set of values which provided the best estimates.

Decision Tree Regression (DTR)

Decision trees methods work by dividing the space of all possible values of the input vector

into regions [104], based on individual parameter’s values. During the training phase, each of

the regions is assigned an output value, which is the mean output of all input points belonging

to the region. The splitting of the set of all training data points into regions, or leaves, is

performed in a greedy, top-down manner. A split is defined by the input vector variable it

concerns and its value, based on which the split is made. Data points with the value of that

variable below the split value are assigned into one region, while the ones with the value of

the variable greater than the splitting value are assigned to the other. The variable and its

value which will be used as the splitting criterion are chosen in a way which will result in

minimising the sum of variances of the two resulting regions of data points, i.e. the splitting
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is done by data point “similarity”. Multiple criteria for stopping the splitting procedure can

be used, some of which are the depth of the tree, the minimum number of data point per leaf,

the minimum number of data points per leaf for it to be split further, or the maximum number

of leaves. An example of data split into regions based on different variable values is shown

in Figure 4.11.

Fig. 4.11 Illustration of a dataset split into regions

The following values have been used for hyperparameters:

• maximum tree depth – No limit

• minimum samples per leaf – 2

• minimum samples for split – 2

• maximum number of features to be considered for a split – No limit

• maximum number of leaf nodes – No limit

Random Forest Regression (RFR)

This regression method represents an example of ensemble learning or a combination of

multiple regressors [105]. It uses multiple DTR estimators, by training each on a randomly
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chosen subset of the original training dataset. Furthermore, at each split, a random subset

of the input vector variables is chosen for consideration. This way, the phenomenon known

as overfitting the model is avoided. Overfitting happens when the model is fit so closely to

the training dataset that it begins to model the noise in the data, rather than just the principal

relationship between the independent and dependent variable. As a result, the model is

incapable of producing good estimates on anything other than the training dataset. The output

of the RFR estimate is calculated as the mean output of each of its DTR estimators.

The following values have been used for hyperparameters:

• number of estimators – 10

• maximum tree depth – No limit

• minimum samples per leaf – 2

• minimum samples for split – 2

• maximum number of features to be considered for a split – No limit

• maximum number of leaf nodes – No limit

K-Nearest Neighbours (KNN)

Given an input with unknown output, which is to be estimated, the nearest neighbour

algorithm [106] searches for the data points from the training set which are closest, according

to the chosen metric (like Euclidean or Manhattan distances). The number k defines how

many closest neighbours are to be considered. Once the k nearest neighbours have been

found in the training data set, the output is estimated based on their known outputs. Weighing

can be applied so that the contribution of individual neighbours depends on their distance to

the new input.

The following values have been used for hyperparameters:

• number of neighbours – 5

• distance metric – Euclidean
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Support Vector Regression (SVR)

This regression method is based on the support vector machine [107]. This algorithm was

originally intended for classification problems, where the outputs can only take discrete

values from a predefined set, rather than any of the infinite real values as in regression

problems. The SVR algorithm works by trying to fit a hyperplane through the data points,

allowing a certain margin around the hyperplane within which the data points can be located.

In order to reduce the complexity of the potential solution, non-linear transformations of

independent variables can be performed before the fitting procedure. The cost function being

minimised is related to the points lying outside the margin, thus producing the best fit to

describe the relationship between the independent and dependent variables.

The following values have been used for hyperparameters:

• kernel type – radial basis function

• stopping criterion tolerance – 0.001

• error penalty parameter – 1

4.3.2 Estimator performance comparison

The estimator performance is first evaluated on the experimental dataset used in section 4.2.2.

All the data points are put together, their order randomised and they are split into ten equal

groups. In each of the ten tests, one of the groups is used for testing, and the other nine

for training of the estimator. The results shown below are cumulative for all of the ten test

runs. As previously described in chapter 3, three separate estimators are used for the sine and

cosine values of the location angle and for distance. Location angle and the relative location

are then calculated from these estimates. Symmetrical angle estimates are calculated using

the raw estimate and the received direction angle. Because symmetrical angle handling is not

implemented in this test, the smaller of the two errors (raw and symmetrical) is always used,



4.3 Regression Method Selection 105

for both the location angle and the location estimates, making these results better than the

ones that can be expected in the real application of the estimators. Tables 4.2, 4.3 and 4.4

show the angle, distance and location estimate accuracy for three different values of nprev:

3,5, and 7, respectively, for all of the tested regression mechanisms.

Table 4.2 Estimator accuracy for nprev = 3 on experimental dataset

method estimate
error

mean
percentile

25 50 75

RFR
angle 44.76° 13.02° 31.23° 63.22°

distance 2.55m 0.95m 1.97m 3.59m
location 8.94m 3.58m 6.83m 12.15m

SVR
angle 50.92° 15.40° 38.46° 75.11°

distance 2.72m 0.98m 2.13m 3.80m
location 10.11m 4.00m 8.15m 13.67m

KNN
angle 44.98° 11.97° 30.68° 64.40°

distance 2.49m 0.82m 1.82m 3.48m
location 8.92m 3.17m 6.57m 12.29m

DTR
angle 52.74° 9.72° 37.65° 83.23°

distance 3.16m 0.79m 2.22m 4.48m
location 10.40m 3.55m 8.02m 14.80m

Observing the values presented in these three tables, it can be concluded that increasing

nprev in general increases accuracy. This is not surprising, but this increase of accuracy comes

at the price of location estimate not being available for a longer time after a new neighbour

appears in range or an existing one makes a turn. This is why the choice of nprev = 5 is

made for further testing and implementation, as a balance between accuracy and estimate

availability. Regarding individual estimators performance, the RFR and KNN estimators

achieve higher accuracy than the other methods, and their results are close to each other.

Three issues exist with the experimental dataset – the first one is that it does not include

varying relative speed as there is only one moving node, the second one is that its limited size

(around 3500 data points, depending on individual routes), and the last one is its low variety,



4.3 Regression Method Selection 106

Table 4.3 Estimator accuracy for nprev = 5 on experimental dataset

method estimate
error

mean
percentile

25 50 75

RFR
angle 41.54° 11.72° 27.68° 57.96°

distance 2.43m 0.90m 1.91m 3.42m
location 8.38m 3.28m 6.15m 11.11m

SVR
angle 48.76° 14.33° 34.78° 72.62°

distance 2.60m 0.90m 1.97m 3.63m
location 9.58m 3.71m 7.42m 12.96m

KNN
angle 39.03° 10.31° 26.47° 54.00°

distance 2.23m 0.72m 1.63m 3.11m
location 7.78m 2.68m 5.69m 10.54m

DTR
angle 48.75° 6.98° 31.66° 76.92°

distance 2.85m 0.68m 1.91m 4.11m
location 9.58m 2.99m 6.94m 13.52m

Table 4.4 Estimator accuracy for nprev = 7 on experimental dataset

method estimate
error

mean
percentile

25 50 75

RFR
angle 35.42° 9.57° 23.16° 46.47°

distance 2.33m 0.84m 1.79m 3.29m
location 7.31m 2.81m 5.30m 9.36m

SVR
angle 45.45° 12.94° 30.69° 67.96°

distance 2.50m 0.83m 1.87m 3.52m
location 8.93m 3.42m 6.64m 12.11m

KNN
angle 33.67° 9.13° 22.35° 44.18°

distance 2.03m 0.62m 1.47m 2.84m
location 6.86m 2.40m 4.81m 8.98m

DTR
angle 42.66° 5.02° 23.66° 66.49°

distance 2.69m 0.63m 1.63m 3.88m
location 8.60m 2.35m 5.83m 12.36m
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as multiple data points belong to the same runs, and the number of different scenarios is low,

which is caused by the nature of the experiment.

In order to test the regressors on a larger scale and include relative node speed as a variable,

the evaluation procedure is performed using datasets obtained through simulation as well.

Two separate datasets are generated, one for training and testing each. The simulation setup

used to generate the datasets is the same as the one described in section 4.2.1. Simulation

parameters for regression techniques performance evaluation datasets are shown in Table 4.5.

Table 4.5 Regression test simulation parameter values

Parameter Value Unit

R 100 m
rc 30 m

(mmin,mmax) (15,20) s
N 50 -

dur 50 s

At this point, it is worth reiterating that the experimental dataset has its shortcomings

and that simulation dataset-based results are more representative, as well as the fact that in

the estimator tests no handling of symmetrical angles has been applied, and the better of

the two estimates (raw and symmetrical) is always used, for both the location angle and the

location estimates. Table 4.6 shows the same set of estimators on a much larger simulation

dataset (approximately 30000 data points). After including relative speed as a relevant input

as well as having a more diverse training set, RFR estimators shows the best location estimate

accuracy.

In addition, the ratio of the training complexity of the two methods with best accuracy

results, SVR and RFR, is x2 : logx. In a hypothetical application scenario in which mea-

surements are taken in order to estimate the signal propagation model parameters, based on

which a simulation dataset can be created and the estimator trained, all at the time of network
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Table 4.6 Estimator accuracy for nprev = 5 on simulation dataset

method estimate
error

mean
percentile

25 50 75

RFR
angle 44.85° 14.71° 34.94° 66.45°

distance 2.82m 1.05m 2.29m 4.07m
location 13.76m 4.85m 10.14m 20.27m

SVR
angle 45.52° 15.09° 35.79° 67.17°

distance 3.07m 1.22m 2.53m 4.43m
location 13.95m 5.31m 10.46m 20.10m

KNN
angle 46.13° 15.91° 36.80° 68.31°

distance 3.04m 1.15m 2.47m 4.37m
location 14.04m 5.27m 10.63m 20.44m

DTR
angle 46.86° 16.03° 37.17° 69.07°

distance 3.82m 1.32m 3.01m 5.52m
location 14.70m 5.73m 11.49m 21.16m

deployment, or immediately before, this difference can result in big training time difference,

severely hurting the efficiency of the SVR estimator.

4.4 Localisation Results

The performance of the RNL algorithm is evaluated using a series of simulations based on

the simulation setup described above. The simulations consist of a number of nodes moving

around a square area for a period of time. All nodes repeatedly perform the RNL algorithm

on all of the neighbours within their communication range, and all of their estimates are

recorded throughout the simulation. The estimates considered can be grouped into location

angle, distance and relative two-dimensional location. Given the flow of the RNL algorithm,

where the two-dimensional location estimates are calculated from the location angle and

the distance estimates, these two basic estimates can be observed as standalone outputs

of the RNL algorithm, or more precisely, the parts dedicated to their estimation. Only
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with estimate sharing does the two-dimensional relative location become necessary for the

algorithm operation.

Having this in mind, the estimates from each of the categories are examined at different

steps of the RNL algorithm, thus providing insight into the performance of the individual

algorithm blocks, as well as the algorithm as a whole. In line with the distributed nature

of the algorithm, where all estimates are produced relative to the node which is performing

localisation using the RNL algorithm, relative positions of each pair of neighbouring nodes

are calculated at each step of the simulation, and are used to evaluate individual estimates

in each of the categories. The estimates are grouped and analysed at the level of the whole

simulation. The simulation parameters are shown in Table 4.7. Detailed results for each of

the location angle, distance and two-dimensional location estimates are presented below.

Table 4.7 Simulation parameters

Parameter Value Unit

R 100 m
rc 30 m

(mmin,mmax) (15,20) s
N {20,50,100} -

dur 50 s

4.4.1 Location angle estimates

The errors in angle estimates are evaluated by calculating the smaller angle between the lines

passing through the root node at the true location angle and the estimated location angle.

This way, it is assured that no error greater than 180° is possible, which is in line with the

periodic nature of the angle quantity. The errors are calculated using the following equation:

δang = arctan
(

sin(α −αest)

cos(α −αest)

)
, (4.8)
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where α is the true location angle and αest represents a location angle estimate. All errors in

this section will be presented converted to degrees.

Considering first the location angle estimation block on its own, there exist four location

angle estimates of interest:

γR the raw RFR angle estimate – this is the value calculated based on the outputs of

the RFR sine and cosine estimation blocks,

α̂1, α̂2 the two ambiguous angle estimates – produced as the result of symmetrical angle

processing, before ambiguity resolution is possible,

α̂ the unique angle estimate – produced as the result of symmetrical angle processing,

after ambiguity has been resolved.

The results of these estimate errors vary only slightly in different simulation runs with a

different number of nodes in the network. This is due to a lower number of nodes resulting in

a lower number of overall estimates, and with an increase in the number of nodes (and total

estimates made), the results start to converge. On the other hand, the fact these differences are

small is expected, as they represent only the standalone performance of the angle estimation

block of the RNL algorithm, without any impact of estimate sharing on them. Table 4.8

shows the estimates errors of the four estimates produced by the angle estimation block (in a

simulation with N = 50).

Table 4.8 Errors of individually produced location angle estimates

estimate
error

mean
percentile

25 50 75

γR 67.71° 25.95° 57.99° 103.03°
α̂1 69.49° 26.14° 60.62° 106.86°
α̂2 69.43° 27.07° 60.11° 105.29°
α̂ 56.79° 18.58° 43.87° 85.07°



4.4 Localisation Results 111

Without any processing, the median raw RFR estimate (γR) error is around 58°. The two

ambiguous angle estimates (α̂1,2) perform slightly worse, at around 60°. This deterioration is

due to the fact that these two ambiguous estimates share among themselves the combined

inaccuracy of the raw and symmetrical RFR estimates, and given the fact that the difference

between these two estimates’ errors and the raw RFR estimate error is small (but greater), it

can be concluded that the raw RFR estimates have a slight bias to the true location angle,

compared to the symmetrical one. On the other hand, once the ambiguity is resolvable, and

the symmetrical angle processing block is able to produce a unique estimate, the accuracy

increases significantly, resulting in a median error of under 45°. Comparing the mean and

the median of the estimates errors shows that across all estimates the mean is considerably

greater than the median, suggesting that very large errors can be considered outliers.

Estimate sharing is based on two-dimensional relative location estimates (x̂sh, ŷsh), so the

shared angle estimates are calculated from the relative location produced as the output of the

estimate sharing block as:

α̂sh = arctan
(

ŷsh

x̂sh

)
, (4.9)

while their errors are calculated using equation (4.8). In the shared estimates analysis, the

following three location angle estimate values are of interest:

α̂sh the location angle estimate calculated from the shared location estimate,

α̂oic the shared location angle estimate when (one of) the locally produced estimate(s)

(own estimates) is part of the cluster chosen in the estimate sharing procedure,

α̂nic the shared location angle estimate when no locally produced estimate is part of

the cluster chosen in the estimate sharing procedure.

The number of nodes in the network directly impacts node density, and the expected number

of neighbouring nodes with which estimates can be shared. Tables 4.9, 4.10 and 4.11 show
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the errors in own and the three types of shared location angle estimates, for different number

of nodes in the network.

Table 4.9 Errors of shared and locally produced location angle estimates (N = 20)

estimate
error

mean
percentile

25 50 75

α̂ 61.95° 21.82° 47.65° 97.65°
α̂sh 61.03° 18.90° 47.31° 96.71°
α̂oic 57.18° 17.70° 42.75° 88.31°
α̂nic 68.14° 22.35° 54.22° 109.67°

Table 4.10 Errors of shared and locally produced location angle estimates (N = 50)

estimate
error

mean
percentile

25 50 75

α̂ 56.79° 18.58° 43.87° 85.07°
α̂sh 56.06° 18.90° 42.62° 82.89°
α̂oic 49.85° 15.90° 36.34° 71.72°
α̂nic 61.50° 22.19° 48.73° 92.17°

Table 4.11 Errors of shared and locally produced location angle estimates (N = 100)

estimate
error

mean
percentile

25 50 75

α̂ 58.84° 18.43° 44.57° 90.86°
α̂sh 55.14° 17.70° 40.72° 82.11°
α̂oic 47.11° 14.26° 32.79° 66.65°
α̂nic 59.26° 19.90° 45.41° 89.51°

In general, angle estimates from shared location estimates show smaller errors that the

processed unique angle estimates. A greater benefit of estimate sharing is achieved if the

shared location estimates are discriminated based on the presence of on own estimate in the
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cluster of chosen estimates in the estimate sharing step of the RNL algorithm. This is also

where the impact of the node density can be noticed. The median estimate error is reduced

by an increasing amount as the number of nodes in the network (and consequentially, the

number of neighbours) increases. The error reduction is around 5° for N = 20, 8° for N = 50

and 12° for N = 100. Comparing the errors of the initial, raw RFR location angle estimate

and the one obtained by the estimate sharing procedure (with an own estimate contributing

to the shared one), shows the overall benefit of the symmetrical angle and estimate sharing

steps of the RNL algorithm. The relative improvement of median errors for different number

of nodes is shown in Table 4.12. Figure 4.12 shows the step-by-step improvement of the

angle estimates, from raw RFR estimates, over estimates processed for ambiguity, and finally

shared estimates.

Table 4.12 Median angle estimate error reduction: raw to shared

estimate
median error

N = 20 N = 50 N = 100

γR 55.38° 57.99° 59.44°
α̂oic 42.75° 36.33° 32.79°

rel. imp. 0.77 0.62 0.55

It can be concluded that both the symmetrical angle handling and the estimate sharing

are beneficial to the angle estimation part of the RNL algorithm, reducing the initial estimate

error by as much as 45%.

4.4.2 Distance estimates

The distance estimate errors are evaluated by calculating the absolute difference between the

true distance and the estimated distance to the target node. This means that distance estimate

errors are expressed as positive numbers and are calculated as:

δd = |d −dest |, (4.10)
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Fig. 4.12 Improvement of angle estimates

where dest represents the distance estimate. Unlike angle estimates, the RNL locally (without

the estimate sharing block) produces only one distance estimate, using the RFR distance

estimation block. After sharing the two-dimensional relative location estimates (x̂sh, ŷsh) with

the nodes in range, and calculating the final shared location estimate, the distance component

of the shared estimate can be calculated as:

d̂sh =
√

x̂2
sh + ŷ2

sh, (4.11)

and the error of the shared distance estimate is calculated using equation (4.10). For the

distance estimate analysis, the following four distance estimates are of interest:

d̂ the RFR distance estimate,

d̂sh the distance estimate calculated from the shared location estimate,

d̂oic the shared distance estimate when (one of) the locally produced estimate(s) (own

estimates) is part of the cluster chosen in the estimate sharing procedure,
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d̂nic the shared distance estimate when no locally produced estimate is part of the

cluster chosen in the estimate sharing procedure.

The number of nodes in the network defines the node density and the expected number

of received estimates from neighbours during the estimate sharing procedure. Tables 4.13,

4.14 and 4.15 show the errors in own and the different types of shared estimates for N = 20,

N = 50, N = 100 nodes in the network respectively.

Table 4.13 Errors of shared and locally produced distance estimates (N = 20)

estimate
error

mean
percentile

25 50 75

d̂ 2.92m 1.00m 2.17m 4.09m
d̂sh 6.59m 2.22m 5.11m 9.57m
d̂oic 5.92m 1.94m 4.48m 8.46m
d̂nic 7.82m 2.97m 6.22m 11.25m

Table 4.14 Errors of shared and locally produced distance estimates (N = 50)

estimate
error

mean
percentile

25 50 75

d̂ 3.02m 1.01m 2.32m 4.24m
d̂sh 5.99m 1.97m 4.37m 8.43m
d̂oic 4.62m 1.55m 3.41m 6.43m
d̂nic 7.19m 2.56m 5.54m 10.23m

The main difference between the distance and the location angle estimations is the fact

that the estimate sharing procedure is actually reducing the accuracy of the distance estimates.

This can be explained in two ways. The first one is the fact that the initial, locally made,

already exhibit a relatively high level of accuracy, with the median error always below 2.5m.

Again, as is the case with the angle estimates, the mean error is greater than the median



4.4 Localisation Results 116

Table 4.15 Errors of shared and locally produced distance estimates (N = 100)

estimate
error

mean
percentile

25 50 75

d̂ 3.05m 1.02m 2.32m 4.27m
d̂sh 5.56m 1.75m 3.99m 7.75m
d̂oic 3.88m 1.26m 2.87m 5.40m
d̂nic 6.42m 2.14m 4.80m 9.15m

error, suggesting there exist large error outliers. The second reason why estimate sharing

has an adverse effect on the accuracy of distance estimates is that the estimates received

from neighbouring nodes in the process of sharing estimates are computed based on their

location angle and distance estimates. And while the neighbours’ distance estimates are also

relatively accurate, the precision of the two-dimensional relative location estimate is diluted

by the error in the location angle, resulting in the distance estimate component of the shared

estimate to be less accurate than the locally produced one.

On the other hand, the shared distance estimate errors behave in a similar way as the

shared location angle ones. With the increase in the number of neighbours which can share

their estimates, the number of received estimates increases, and the accuracy of the shared

distance estimate increases. Again, when the locally produced estimate is part of the cluster

chosen by the estimate sharing block, the shared distance estimate is more accurate in

comparison to when this is not the case. With the increase of the number of nodes in the

network, the locally produced distance estimate exhibits slight increase across all percentiles,

which can be attributed to the estimate error converging as the overall number of estimates

produced in the simulation increases.
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4.4.3 Location estimates

The two-dimensional location estimates are evaluated by calculating the Euclidean distance

between the true relative location (x,y) and the estimated relative location (xest ,yest) of the

target node, according to the following equation:

δloc =

√
(xest − x)2 +(yest − y)2. (4.12)

The local location estimates of the target node are calculated from the location angle and

distance estimates as:

x̂ = d̂ cos(α̂)

ŷ = d̂ sin(α̂) ,

(4.13)

and there may exist one unique or two ambiguous location estimates, depending on the target

node location angle estimate ambiguity. In the process of estimate sharing the unique or

both the ambiguous location estimates are share with the neighbours, and depending on the

ambiguity of the estimate of the neighbour location estimate there may be one, two or four

total locations which participate in the clustering procedure. If the own and shared location

estimates are defined as:

L̂ the locally produced location estimate; from α̂ and d̂,

L̂sh the location estimate calculated from the shared estimates,

L̂oic the shared location estimate when (one of) the locally produced estimate(s) (own

estimates) is part of the cluster chosen in the estimate sharing procedure,

L̂nic the shared location estimate when no locally produced estimate is part of the

cluster chosen in the estimate sharing procedure.
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the general expression for the location estimate error (equation (4.12)) can be rewritten as:

δloc = ||L−Lest ||, (4.14)

where L= (x,y) is the true relative location of the target node. For the purpose of comparing

own and shared location estimates, only the unique locally produced location estimates are

considered, while both unique and ambiguous location estimates participate in the process of

shared location estimate calculation.

Before presenting the location estimate errors, it is worth reiterating the conclusions of

the previous two sections, where the estimate sharing procedure was shown to significantly

increase the accuracy of the location angle estimates, and reduce the accuracy of the distance

estimate. The errors of location estimates for N = 20, N = 50 and N = 100 nodes in the

network are shown in Tables 4.16, 4.17 and 4.18, respectively.

Table 4.16 Errors of shared and locally produced location estimates (N = 20)

estimate
error

mean
percentile

25 50 75

L̂ 17.00m 6.54m 13.58m 25.12m
L̂sh 17.01m 7.27m 14.21m 24.12m
L̂oic 14.95m 6.46m 12.82m 20.87m
L̂nic 21.05m 9.25m 18.61m 40.00m

The shared relative location estimates produce smaller errors than the locally produced

ones. This information, combined with the behaviour of the location angle and distance

estimates with and without estimate sharing leads to the conclusion that the main source

of the two-dimensional location estimate error is the location angle part of it. Through

the process of sharing, regardless of the deterioration of the distance estimate, the location

angle component ends up being improved significantly enough for the shared estimate to be

more accurate than the locally produced one. The effects of shared location estimates are
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Table 4.17 Errors of shared and locally produced location estimates (N = 50)

estimate
error

mean
percentile

25 50 75

L̂ 17.06m 5.63m 12.76m 26.39m
L̂sh 18.19m 7.98m 15.56m 26.24m
L̂oic 14.83m 5.96m 11.72m 21.01m
L̂nic 20.96m 10.73m 19.20m 29.52m

Table 4.18 Errors of shared and locally produced location estimates (N = 100)

estimate
error

mean
percentile

25 50 75

L̂ 15.78m 5.28m 11.82m 23.48m
L̂sh 16.23m 6.77m 13.05m 23.35m
L̂oic 12.93m 4.80m 9.34m 18.01m
L̂nic 17.92m 8.25m 15.19m 25.61m

again more notable with the increase in the number of nodes in the network, but the location

accuracy improvements can be seen even in the smallest network simulation (N = 20).

The median error of the locally produced location estimate reduces slightly as the size of

the network increases, again, due to the error converging towards a more stable value with

the increase of the overall number of performed estimates. The simulation results show that

using only locally produced location angle and distance estimates, a median error of under

12m is achievable. Using estimate sharing, and making sure a locally produced estimate is

part of the selected cluster of shared estimates, the median error of two-dimensional location

estimate can be under 10m, with a high node density, and under 13m with a lower number

of neighbours available for estimate sharing. The relative improvement of median errors for

different number of nodes is shown in Table 4.19.
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Table 4.19 Median location estimate error reduction: own to shared

estimate
median error

N = 20 N = 50 N = 100

L̂ 13.58m 12.76m 11.82m
L̂oic 12.82m 11.72m 9.34m

rel. imp. 0.94 0.92 0.79

With N = 100 nodes in the network, an improvement of over 20% of the location estimate

error is achieved by estimate sharing.

Taking all of the results presented above into consideration, it is clear that the estimate

sharing procedure is beneficial for the accuracy of the RNL algorithm. It is obvious that

shared estimates should not be just taken by default, but that their efficiency is tightly related

to the presence of a locally produced estimate in the cluster of chosen shared estimates.

Bearing in mind the effects estimate sharing has on the estimated distance, a simple change

in the estimate sharing procedure is proposed. This change assumes that once the location

sharing process is complete, and the final shared estimate computed, the distance component

of this estimate is substituted by the local distance estimate d̂ (if available), and the two-

dimensional location estimate is recalculated. This way, the overall accuracy of the final

location estimate could increase.

In order to investigate this alternative approach, simulations including this small adjust-

ment in the algorithm code were performed. The relative improvement of median location

errors using the updated estimate sharing procedure is shown in Table 4.20. Figure 4.13

shows the step-by-step improvement of the location estimates, from own estimates to updated

shared estimates.

The results of the repeated simulation test with the change described above show that

the location estimate accuracy can be improved by further several percents compared to the

original estimate sharing procedure, for the scenarios with low and medium node densities,

while in the high node density scenario, there is no further increase. This result is in line with
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Table 4.20 Median location estimate error reduction: own to shared; updated estimate sharing

estimate
median error

N = 20 N = 50 N = 100

L̂ 15.12m 10.57m 12.28m
L̂oic 13.97m 9.24m 9.77m

rel. imp. 0.92 0.87 0.79

Fig. 4.13 Improvement of location estimates

the fact that the shared distance estimates in the high node density scenario are already very

close to the ones locally produced by the RFR distance estimator.

4.5 Localisation Application

This section presents a potential application of the location estimates produced by the RNL

algorithm in a Wireless Sensor Network (WSN) scenario. A distributed approach to sensing

coverage control is proposed and the effects of the inaccuracy of the location estimates

produced by the RNL algorithm is such a scenario are investigated.

Sensor networks represent one of the most important applications of wireless networks,

especially infrastructureless ones. The principle they operate on is based on the assumption
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of a group of nodes (sensors), connected through a wireless network, joining resources in

order to work together on a common task. This task can, in general, be described as gathering

relevant information about an area of interest and delivering this information to a dedicated

sink. Each node gathers location-related data which can be in the form of measurements of

certain physical phenomena, or images or video files. In the scenario considered throughout

this thesis, involving independently moving nodes with no access to any external localisation

system, efficient group location-based sensing is a challenge, as node distribution is both

unknown and highly dynamic.

The network design parameters are usually dictated by the nature of the particular task

the sensor network is dealing with. As a result, numerous different protocols and algorithms

for group sensing have been developed over the years. One common goal of most of the

existing solutions is the maintenance of a certain level of the geographical coverage of the

area of interest, and their performance is measured by how efficiently it is achieved. Given

such goal, it can be concluded that information about node locations is crucial in coverage

control, which is the reason why it plays a big part in almost all of the existing solutions for

efficient sensing coverage of the area of interest, regardless of the differences in scenarios

and applications these solutions have been proposed for.

4.5.1 WSN coverage control

In static sensor networks solutions have been proposed along the lines of controlling the

distribution of sensing nodes. Zhang et al. [108] show the relationship between coverage and

connectivity in static sensor networks and propose a distributed density control algorithm. In

[109] a non-uniform deterministic node distribution is proposed. The method of different

subsets of sensing nodes being activated in different rounds to provide k-coverage of the

field of interest is proposed in [110]. Multiple other solutions like the one proposed in [111],
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require the nodes to be aware of their locations, either explicitly, or implicitly as is the case

with deterministic node distribution.

Node location information is critical in mobile and hybrid sensing networks, allowing the

node mobility to be utilised for network topology adjustments, thus maintaining coverage

and connectivity, as proposed in [112, 113]. Paper [114] explores the virtual force approach,

assuming that the movement of the sensing nodes is governed by the imaginary force exerted

on them by other nodes or obstacles in the environment. In [115] mobile sensors are moved

based on bids from static sensors, with coverage efficiency as the metric used for making

movement decisions, while in [116] an algorithm for efficient path planning for a mobile sink

node visiting designated static nodes is proposed. Mobile sensing algorithms in general work

with the assumption that there is a terminal, stable, state towards which the nodes move. No

nodes are allowed to move unless the change of location would improve sensing coverage.

This results in node mobility only existing as a consequence of some changes in the network

(after the initial network setup), without the sensing nodes being actively mobile.

While there are some solutions in the field of localisation-free systems, where nodes

are unaware of their locations, the existing algorithms rely either on RSSI (Received Signal

Strength Indicator) and hop-count based proximity estimates as is the case with [117]. In a

network with dynamic topology, these metrics are unreliable, and solutions based on them

cannot be expected to provide accurate results. Other localisation-free solutions propose

random node sleeping patterns, as in [118, 119].

Without any location references, the only way to ensure a certain level of coverage of the

area of interest would be to make all nodes send their data – resulting in a flooding-based

mechanism – which is far from an efficient strategy. Furthermore, the design of WSNs

assumes, in general, predetermined or controllable sensor distribution, often such that it

is always possible to achieve complete coverage. In such scenarios, the coverage control

problem becomes one of finding the most efficient way to achieve complete coverage.
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In contrast, in a scenario characterised by independent node mobility and a lack of

centralised control or communication, the coverage control problem becomes one of finding

the highest achievable (not necessarily complete) coverage, while doing it in an efficient way.

4.5.2 Distributed coverage control

The sensing application used to evaluate the effects of using the location estimates produced

by the RNL algorithm considers the same scenario of independently moving nodes com-

municating wirelessly through an ad hoc network. Each node is aware of its immediate

neighbourhood, i.e. one-hop neighbours. It is worth pointing out that the area of interest is

specific to each individual node, in line with the assumed distributed nature of the network.

The area of interest of each node coincides with the node’s communication range, as this is

the area its neighbours can be located in.

As previously stated, the high dynamics and independent mobility of all nodes result

in a system in which there can be no guarantee that complete coverage can be achieved, so

the goal of each node is to learn the most about its area of interest, while still not resorting

to a flooding approach when the number of available neighbours is high, so a certain level

of efficiency is maintained. This efficiency is ensured by the process of selection of the

neighbouring nodes whose sensing data is requested in one period, which is described in the

following analysis.

In the interest of simplicity, the node trying to get coverage information from its neigh-

bours will be referred to as the root node, and the neighbours selected to share their sensing

data with the root node will be referred to as the active neighbours. In an ideal case, from

the sensing coverage perspective, all nodes, including the root node and all its neighbours,

would be distributed along the vertices of a triangular grid of dimension a = rs
√

3, where rs

is the sensing range of each node, as shown in Figure 4.14. Such spacing of the nodes would
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guarantee the optimal coverage, as there would be minimal overlap between individual node

coverage areas, and there would be no gaps in coverage.

Fig. 4.14 Ideal triangular grid

In a realistic case, with non-deterministic neighbour distribution around the area of

interest, there may be a large number of nodes whose sensing ranges are overlapping. In

order to efficiently gather sensing data from the area of interest, the active neighbours are

chosen using an empirical approach, which ensures that they are closest to the ideal neighbour

locations. A set G of triangular grids across the area of interest is generated. Each grid has

the same dimension a = rs
√

3 with the root node as one of the vertices. The grids differ by

the angle at which they are rotated with respect to the root node location, ranging from 0°

to 60° (due to the symmetry of the grid), in 60°
g increments, where g is the total number of

grids. The number of grids is a design parameter and represents the trade-off between the

precision of the active neighbour selection procedure, and the length it may take to complete

this procedure.
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For each grid in G, the following metric is calculated:

∑
j

min
ni∈S

d
(
v j,ni

)
, (4.15)

where v j are vertices of the grid, and d(v j,ni) represents the Euclidean distance between the

position of the vertex j of the grid and the estimated location of the node ni. The subset of

nodes for which the lowest metric is obtained is the one which achieves the greatest coverage

of the area of interest, and the nodes from this subset are selected active neighbours, i.e. ones

that will share their sensing data with the root node in that period.

An example of the neighbour selection and resulting coverage is shown in Figure 4.15.

Estimated relative locations of all seventeen neighbouring nodes are shown as crosses, next

to the node numbers. The six nodes selected as active neighbours are shown in red circles,

and the vertices of the grid for which the lowest metric from equation (4.15) was obtained

are shown in blue circles. The communication range (area of interest radius) in this example

is set to 30m, while the sensing range is 15m.

Fig. 4.15 Example of active neighbour selection
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4.5.3 Results

The simulation setup used for evaluating coverage control based on RNL node location

estimates is the same as the one used for the RNL performance evaluation, and is shown in

Table 4.21. In addition to running the localisation algorithm at each step, each node now

also applies the coverage control procedure described above on the location estimates. The

following types of coverage are used in the coverage control performance analysis:

estimated coverage of the selected active neighbours based on their estimated locations

real coverage of the selected active neighbours based on their true locations

best optimal coverage achievable given the knowledge of the true locations of all

neighbours

normalised ratio of real and best coverage

Table 4.21 Simulation parameters – coverage control

Parameter Value Unit

R 100 m
rc 30 m
rs {10,15} m

(mmin,mmax) (15,20) s
N {20,50,100} -

dur 50 s

As in the previous simulation, the communication range is set to 30m, which defines the

area of interest of a particular node as a circle of a 30m radius with the centre in the node

itself. Three different node densities (N = 20,N = 50 and N = 100) are considered, and two

different scenarios regarding the sensing range are examined, one smaller (10m) and one

greater (15m). This means that a total of six distinct simulation tests have been performed.

The coverage results, using the values described above, are shown grouped by node

density, in Tables 4.22, 4.23 and 4.24, for both the small and large sensing areas.
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Table 4.22 Sensing coverage results (N = 20)

coverage
rs = 10m rs = 15m

mean
percentile

mean
percentile

25 50 75 25 50 75
estimated 0.341 0.240 0.367 0.450 0.556 0.430 0.591 0.694

real 0.351 0.252 0.367 0.467 0.558 0.440 0.588 0.702
best 0.390 0.295 0.418 0.500 0.613 0.498 0.649 0.747

normalised 0.906 0.863 1.000 1.000 0.919 0.880 1.000 1.000

Table 4.23 Sensing coverage results (N = 50)

coverage
rs = 10m rs = 15m

mean
percentile

mean
percentile

25 50 75 25 50 75
estimated 0.527 0.465 0.569 0.658 0.725 0.676 0.790 0.862

real 0.497 0.419 0.540 0.629 0.636 0.585 0.677 0.751
best 0.518 0.444 0.552 0.649 0.709 0.648 0.750 0.855

normalised 0.964 0.954 1.000 1.000 0.911 0.859 0.933 0.990

Table 4.24 Sensing coverage results (N = 100)

coverage
rs = 10m rs = 15m

mean
percentile

mean
percentile

25 50 75 25 50 75
estimated 0.707 0.675 0.798 0.861 0.842 0.855 0.938 0.970

real 0.597 0.561 0.654 0.726 0.679 0.637 0.725 0.797
best 0.678 0.607 0.751 0.861 0.805 0.755 0.892 0.967

normalised 0.900 0.841 0.903 0.985 0.861 0.798 0.860 0.927

The values in the tables show the portion of the area of interest that is covered, i.e. is

within a sensing area of one of the selected active neighbours in the given period.

The differences between the estimated and the real coverage are caused by the errors in

the location estimates, seeing as the choice of active nodes is made based on the estimated

positions. The real coverage achieved is almost always smaller than the estimated one, as the
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true locations of the chosen nodes result in a greater overlap in sensing areas than the ones

produced by the localisation algorithm.

The best coverage possible is, as expected, always greater than the real one, but the

interesting results are the normalised ones, which show that, even with the inaccuracies in

the location estimation procedure, these errors do not reduce the efficiency of the coverage

control process critically, so the resulting coverage can be close to the best possible one

for the given scenario. The effects of this are best seen when a higher number of nodes is

present in the network, as there are more possibilities of choosing a wrong node. On the

other hand, the best coverage achievable depends highly on the node density and the sensing

range, which is expected.

4.6 Location Tracking

As described in section 3.7, the accuracy of location estimates can be improved by

applying location tracking over time, during periods, or sequences, of constant relative

mobility parameter values. This improvement has been applied on a single simulation run

with the same parameters as shown in Table 4.7. The procedure of location tracking has been

applied to raw location estimates produced by the RNL, for sequences which contained more

than two estimates, and for which the ambiguity has been resolved. Figure 4.16 shows the

overall reduction of location estimate error achieved by applying location tracking, as the

distribution of errors is considerably shifted toward the smaller values.

Location tracking is best described using a step-by-step view of the procedure. Figure 4.17

shows the location tracking procedure at different steps. In each of the figures representing

a single step in a sequence of constant relative mobility of the target node, the blue dots

describe the raw RNL estimates and the true relative location of the target node is shown in
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Fig. 4.16 Location estimate error distribution

red crosses. Following the procedure described in section 3.7 at each step, a pair of anchor

points are chosen, shown in green, based on which the fitted line of corrected estimates is

drawn, shown in purple.

(a) Step 4 (b) Step 5

Fig. 4.17 Location tracking procedure
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(c) Step 9 (d) Step 10

Fig. 4.17 Location tracking procedure (cont.)

These corrections are dynamic, and the improvement in location estimate accuracy

they enable can increase over time. This can be noted comparing the raw and the fitted

location estimates to the true location over time, as the errors with great magnitude have

been significantly corrected. Such results are in line with the ones shown in Figure 4.16,

where the biggest difference in raw and corrected estimates is the considerable increase of

the proportion of errors under 10m.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presented a distributed localisation solutions for ad hoc networks of moving

nodes without access to external localisation signals or systems. The proposed Relative

Neighbour Localisation (RNL) algorithm is based on the relationship between the trends

in signal strength measurements and the mobility parameters on one side, and the relative

neighbour location on the other. The algorithm enables mobile nodes in ad hoc networks to

produce location estimates of their one-hop neighbours, without relying on any additional

localisation infrastructure.

Ranging methods for localisation are used in networks where the capability of performing

precise measurements exists either by the network infrastructure or specific ranging devices.

The use of reference points is possible when infrastructure is in place, or some nodes are

assumed to somehow be aware of their location. Network-wide information exchange can

be used if the network topology is static enough that it does not change in time information

gathering and processing, as well as the dissemination of the results, is performed. None

of these approaches is applicable to an ad hoc network of moving nodes without access to

external localisation systems.
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The basis of the proposed solution is the intuitive relationship between the mobility of

the neighbouring node, the strength of the signal coming from it, and the relative location

of that node. An ideal case localisation principle has been analytically derived, and the

empirical application of this principle to a realistic scenario was described. The localisation

algorithm is formed of blocks for angle and distance estimation, as well as an additional

estimate sharing block. The operation of each of the blocks and the computation of the final

location estimates were presented in detail.

In order to evaluate the performance of the proposed solution, a simulation environment

has been developed. The simulation models are calibrated based on real-life experimental

results gathered from an experimental testbed. The models were shown to be consistent with

the experimental measurements, thus allowing for realistic large-scale tests to be conducted

using the simulation. It was shown how different steps in the process of angle estimation

improve the angle estimate accuracy, as well as how estimate sharing is beneficial to the

accuracy of the final two-dimensional location estimate. A median location estimate error

of under 10m was achieved, while the median location angel estimate error was shown to

be around 35°. The location estimates produced by the RNL were applied to a distributed

sensing scenario which was designed. The coverage of the area of interest obtained based on

the RNL estimates was shown to be over 90% of the one achievable in the case true locations

of all of the neighbouring nodes were known.

5.2 Future Work

Several paths for further improvements or application of the RNL algorithm exist:

• Location estimates are produced by the RNL algorithm in a step-by-step manner, where

each estimate is completely independent of any previous ones. The nodes, on the other

hand, do not move in that way, their locations over time are correlated.
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• Processing of the location estimates, either by angle and distance components or as

two-dimensional points, could help improve the accuracy of these estimates. The time

series of the location estimates could be fitted into the analytical form of the expected

values of these estimates based on the laws of physics.

• Based on the processing mentioned above, individual estimates can be assigned a

certainty value. Detection of clear peaks in signal strength measurements can be used

as an indicator to the relative location of the neighbour, which can be used to reinforce

some estimates.

• All estimates received through the process of location sharing are treated equally.

Should a certainty-based weighing approach be implemented, different estimates could

participate in the shared location procedure proportionally to their certainty.

• Different application may require less precise measurements, but with higher certainty.

The process of estimate sharing could be expended in such way that it introduces

additional constraints for discarding some estimates as impossible, leaving the final

estimate as a general area or an angle sector in which the node is located with high

certainty.
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