47 research outputs found

    Cliques, colouring and satisfiability : from structure to algorithms

    Get PDF
    We examine the implications of various structural restrictions on the computational complexity of three central problems of theoretical computer science (colourability, independent set and satisfiability), and their relatives. All problems we study are generally NP-hard and they remain NP-hard under various restrictions. Finding the greatest possible restrictions under which a problem is computationally difficult is important for a number of reasons. Firstly, this can make it easier to establish the NP-hardness of new problems by allowing easier transformations. Secondly, this can help clarify the boundary between tractable and intractable instances of the problem. Typically an NP-hard graph problem admits an infinite sequence of narrowing families of graphs for which the problem remains NP-hard. We obtain a number of such results; each of these implies necessary conditions for polynomial-time solvability of the respective problem in restricted graph classes. We also identify a number of classes for which these conditions are sufficient and describe explicit algorithms that solve the problem in polynomial time in those classes. For the satisfiability problem we use the language of graph theory to discover the very first boundary property, i.e. a property that separates tractable and intractable instances of the problem. Whether this property is unique remains a big open problem

    Fast spatial inference in the homogeneous Ising model

    Get PDF
    The Ising model is important in statistical modeling and inference in many applications, however its normalizing constant, mean number of active vertices and mean spin interaction are intractable. We provide accurate approximations that make it possible to calculate these quantities numerically. Simulation studies indicate good performance when compared to Markov Chain Monte Carlo methods and at a tiny fraction of the time. The methodology is also used to perform Bayesian inference in a functional Magnetic Resonance Imaging activation detection experiment.Comment: 18 pages, 1 figure, 3 table

    Parallel algorithms for the construction of special subgraphs

    Get PDF

    Gallai-Ramsey numbers for graphs and their generalizations

    Get PDF

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Graph Colouring with Input Restrictions

    Get PDF
    In this thesis, we research the computational complexity of the graph colouring problem and its variants including precolouring extension and list colouring for graph classes that can be characterised by forbidding one or more induced subgraphs. We investigate the structural properties of such graph classes and prove a number of new properties. We then consider to what extent these properties can be used for efficiently solving the three types of colouring problems on these graph classes. In some cases we obtain polynomial-time algorithms, whereas other cases turn out to be NP-complete. We determine the computational complexity of k-COLOURING, k-PRECOLOURING EXTENSION and LIST k-COLOURING on PkP_k-free graphs. In particular, we prove that k-COLOURING on P8P_8-free graphs is NP-complete, 4-PRECOLOURING EXTENSION P7P_7-free graphs is NP-complete, and LIST 4-COLOURING on P6P_6-free graphs is NP-complete. In addition, we show the existence of an integer r such that k-COLOURING is NP-complete for PrP_r-free graphs with girth 4. In contrast, we determine for any fixed girth g4g\geq 4 a lower bound r(g)r(g) such that every Pr(g)P_{r(g)}-free graph with girth at least gg is 3-colourable. We also prove that 3-LIST COLOURING is NP-complete for complete graphs minus a matching. We present a polynomial-time algorithm for solving 4-PRECOLOURING EXTENSION on (P2+P3)(P_2+P_3)-free graphs, a polynomial-time algorithm for solving LIST 3-Colouring on (P2+P4)(P_2+P_4)-free graphs, and a polynomial-time algorithm for solving LIST 3-COLOURING on sP3sP_3-free graphs. We prove that LIST k-COLOURING for (Ks,t,Pr)(K_{s,t},P_r)-free graphs is also polynomial-time solvable. We obtain several new dichotomies by combining the above results with some known results
    corecore