
[thm]

1

Parallel algorithms for the construction of special

subgraphs

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultaet fuer Informatik

der Universitaet Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Mahmoud Ibrahim Moussa

aus Dakhlia, Aegypten

Tag der muendlichen Pruefung: 13. Juli 2005

Erster Gutachter: Prof.Dr. Roland Vollmar

Zweiter Gutachter:Prof.Dr. Dorothea Wagner

2

Zusammenfassung meiner Dissertation

In dieser Arbeit werden wir zwei Probleme aus der Graphentheorie studieren und

zwei parallele Algorithmen fuer das Loesen dieser Probleme beschreiben. Das

Problem einen, minimalen spannenden Baum in einem zusammenhaengenden

Graphen G0 = (V,E) mit ganzzahlig gewichteten Kanten zu finden, ist das erste

Problem, das wir studieren werden. Wir geben einen neuen deterministischen

parallelen Algorithmus fuer das Berechnen des minimalen spannenden Baums

eines gegebenen Graphen. Dieser Algorithmus benoetigt fuer einen Graphen mit

n Knoten und m Kanten eine Zeit von O(log n) bei der Benutzung von O(n+m)

Prozessoren.

Das zweite Problem ist das abgeleitete Teilgraphproblem. Wir geben einen

parallelen Algorithmus an, welcher die Zahl der abgeleiteten Teilgraphen nd(G0)

berechnet, und die Menge aller abgeleiteten Teilgraphen durch Partitionierung

der Menge V (G0) findet. Wir erklaeren die wissenschaftlichen und kommerziellen

Anwendungen sowohl fuer das abgeleitete Teilgraphenproblem als auch fuer das

Residuum-Kanten Problem in einem gegebenen Graphen.

Sei G0(n,m) ein Graph mit n Knoten und m Kanten. Wir benutzen ein

verteiltes Speichermodell, in dem die Prozessoren ein pyramidale Verbindungsnetz

bilden. In diesem Fall ist die parallele Laufzeit O(n log2 n) unter Benutzung von

p = (4n2/ log2 n − 1)/3 Prozessoren. Wir werden diese erste parallele Version

des abgeleiteten Algorithmus mit anderen in Beziehung stehenden Resultaten

praesentieren.

1

Abstract of my thesis

In this work we are going to study two problems in graph theory and describe

two parallel algorithms for solving them. The problem of finding a minimum

spanning tree (MST) in a connected graph G = (V,E) with integer-valued edge

weights, is the first problem we are going to study. We give a new deterministic

parallel algorithm for computing the minimum spanning tree of a given graph.

This algorithm runs on graph with n vertices and m edges in O(log n) time using

O(n + m) processors on an EREW PRAM.

The second problem examined is the derived subgraph problem. We give a

parallel algorithm which calculates the number of derived subgraphs denoted

nd(G) and finds the set of all derived subgraphs by making a partition of the

vertex set V (G). We explain scientific, commercial applications for the derived

subgraphs problem and the residual and the non-residual edges in a given graph.

If the parallel algorithm runs on graph G0(n,m) with n vertices and m edges.

We use a distributed memory model, in which processors form a pyramid-

connected computer network. The parallel running time is O(n log2 n) using

p = (4n2/ log2 n − 1)/3 processors.

2

Acknowledgements

My deepest gratitude goes to my supervisor, Professor Roland Vollmar, for his

guidance, support, motivation and encouragement throughout the period this

work was carried out. His readiness for consultation at all times, his educative

comments, his concern and assistance even with my life things.

Special thanks are due to Prof.Dr. Dorothea Wagner for an excellent and

thorough review of this work.

I am grateful to my parents, and my wife Dr. Hanaa for their moral support,

encouragement and for their pray for me.

I direct special thanks to my friend Dr.eng. M. Helal, thank you for your

support during writing this work.

I am also indebted to all staff members of Institut fuer Algorithmen und Kog-

nitive Systeme, Faculty of Computer Science, Karlsruhe University, Germany,

for their support during the preparation of this thesis.

3

The List of Figures

2.1 The PRAM model. 20

2.2 Distributed Memory Architecture 22

2.3 A tree interconnection network 23

2.4 A pyramid interconnection network 24

5.1 Prefix sum of eight elements. Element xij determines the sum

xi ⊕ . . . ⊕ xj. 52

5.2 The execution of the proposed algorithm on a given graph G0.(a)

The situation just before the first pass of the algorithm. (b) The

five trees {T1, T2, T3, T4, T5} are constructed after the first pass.(c)

The five trees {T1, T2, T3, T4, T5} are constructed after the prune

step.(d) The new growing trees are T1 and T2. (e) The situation

after 3 successive passes. 59

4

5.3 Merging a pair of linked lists L(T4) and L(T5) with respect to a

common edge that has weight 14. This is the execution of the

merging process on the two trees T4 and T5 from figure 5.2c. (a)

The linked lists L(T4) and L(T5) before merging. (b) The final

result of the join of L(T4) and L(T5) in a single bigger linked list

named L(T4). 65

6.1 The set of all derived subgraphs of G0 77

6.2 The subgraph of size 5 is generated by joining two frequent 4−subgraph. 95

6.3 (a) A graph G0 that contains v2 and v4 as the global vertices. (b)

The two subgraphs G1, G2. (c) The derived subgraphs induced by

<1(v2) and <2(v4), (d) The derived subgraphs induced by <2(v4)

and D1(v2). (e) The derived subgraphs induced by <1(v2) and

D2(v4). 106

6.4 An example demonstrating the use of recursive bisection which is

used in our proposed algorithm. 111

6.5 A graph G0 has two subgraphs G1 and G2, and V1 = {x, y, z, s, v},

V2 = {l,m, n, w, u}. The shared edges are dotted 113

6.6 (a) Pyramid-connected computer (top-down traversal) to find and

count the set of all derived subgraphs of G0, we assign proces-

sor P (l, i, j) to the subgraph G(l, i, j), (b) Pyramid-connected

computer(bottom-up traversal). 120

5

6.7 (a) The triangle necklace graph G0, (b) the first phase of the

algorithm in which the input graph G0 has the partitions G1 and

G2, the global vertices are marked black, the shared edges are

dotted. The two assistant subgraphs G3 and G4 of this phase

are shown, (c) the second phase in which the subgraph G2 hasthe

partitions G5 and G6, and the shared is dotted. 130

6

Contents

1 Why Parallel Computation ? 10

1.1 Introduction . 10

1.1.1 The Need for Parallel Computation 11

1.1.2 Organization of the Thesis 12

2 Models of Parallel Computation 14

2.1 Introduction . 14

2.2 Classification of Parallel Computers 19

2.2.1 Shared Memory Architectures 19

2.2.2 Distributed Memory Parallel Computers 21

2.2.3 The Binary Tree Networks 23

2.2.4 The Pyramid Networks . 23

2.2.5 Distributed Shared Memory Architectures 25

2.3 NC Class and the Parallel Complexity Theory 25

3 Graphs and Their Subgraphs 27

3.1 Introduction . 27

7

3.2 Basic Definitions for Graphs . 27

I The Minimum Spanning Tree Problem 32

4 Review of the Minimum Spanning Tree Algorithms 33

4.1 Introduction . 33

4.2 Why Minimum Spanning Tree ? 33

4.2.1 History . 34

4.2.2 Three Classical Serial Algorithms 34

4.2.3 Other Algorithms . 45

5 A New Parallel Minimum Spanning Tree Algorithm 49

5.1 Introduction . 49

5.2 Some Basic Techniques . 50

5.2.1 Prefix Sum . 50

5.2.2 Lexicographic Order . 53

5.2.3 Parallel Radix Sort . 53

5.2.4 The Heap Data Structure 54

5.2.5 The Model . 55

5.3 The Proposed Parallel Algorithm 55

5.3.1 Assumptions and Definitions 56

5.3.2 Description of the Algorithm 58

5.3.3 The Parallel MST Algorithm 61

5.3.4 Conclusions . 72

8

II The Derived Subgraph Problem 73

6 Derived Subgraphs 74

6.1 Derived Subgraph and Derived Subgraph Conjecture 74

6.1.1 Definitions and Examples 75

6.1.2 Derived Subgraph Conjecture 76

6.2 The Graphs Satisfying the Derived Subgraph Conjecture 78

6.3 The Number of Derived Subgraphs 84

6.4 The Serial Derived Subgraph Algorithm 89

6.4.1 Related Works . 93

6.4.2 The Modification of Serial Derived Subgraph Algorithm . . 97

6.5 Parallel Derived Subgraph Algorithm 103

6.5.1 Assumptions and Definitions 103

6.5.2 Desired Divide Step . 109

6.5.3 Description of the Parallel Derived Subgraphs Algorithm . 111

6.5.4 The Model of Computations 118

6.5.5 The Algorithm PDS(G0, n,m) 119

6.5.6 The Work and The Running Time 132

6.6 Conclusions . 134

9

Chapter 1

Why Parallel Computation ?

1.1 Introduction

Parallel computation is defined as the practice of using a large number of co-

operating processors, communicating among themselves to solve large problems

fast and it is quickly becoming an important area in computer science. It is

possible that in the next years this area will have grown so wide and strong that

most of the research conducted in the fields of design and analysis of algorithms,

computer languages, computer applications and computer architectures will be

within the context of parallel computation.

In this chapter we would like to talk about the reasons for the need of ever

greater computing power. Parallel computers are used primarily to speed up

computations.

10

1.1.1 The Need for Parallel Computation

We give the following example to illustrate the need for more computational

power.

Suppose we wish to predict the weather over Europe for the next two days.

Also suppose that we want to model the atmosphere from sea level to an altitude

of 20 kilometers, and we need to make a prediction of the weather at each hour

for the next days.

A standard approach to this type of problem is to cover the region of interest

with a grid and then predict the weather at each vertex of the grid. So suppose

we use a cubical grid, with each cube measuring 0.1 kilometer on each side.

Since the area of Europe is about 11 million square kilometers, we need at least

11 × 106 × 20 × 103 = 22 × 1010 grid points. (1.1)

If it takes 100 calculations to determine the weather at a typical grid point,

then in order to predict the weather one hour from now, we’ll need to make

about 22 × 1012 calculations. Since we want to predict the weather at each

hour for 48 hours, we need to make a total of about

22 × 1012 calculations × 48 hours ≈ 1015 calculations (1.2)

If our computer can execute 109 calculations per second, it will take about

1015 calculations/ 109 calculations per second = 106 second ≈ 11 days ! (1.3)

11

In other words, the calculation is hopeless if we can only carry out 109 op-

erations per second. If, on the other hand, we can carry out 1012 calculations

per second, it will take us about 16 minutes to carry out the computations. So

we shall actually be able to make a complete prediction of the weather over

each of the next 48 hours. It is not difficult to imagine simple modifications

to this problem so that 109 operations per second will not be sufficient. For

example, we might replace Europe with the entire earth. Then the area would

go from 11× 106 to about 5× 108 square kilometers. So the required compu-

tation time would increase from 16 minutes to about 12 hours, and our first 11

predictions would be useless. Furthermore, it is not difficult to find completely

different problems requiring vastly greater computational power than we cur-

rently possess. For example, detailed atomic-level simulations of biomolecules

and numerous types of simulations that would expedite the design and manufac-

ture of integrated circuits all require vastly greater computational power than

we currently possess.

It is obvious that the one way around this problem is to use parallelism. The

idea here is that if several operations are performed simultaneously, then the

time taken by a computation can be significantly reduced.

1.1.2 Organization of the Thesis

The thesis consists of six chapters and is organized as follows. Each chapter be-

gins with an introduction, in which some informations and ideas on the contents

of this chapter are given. In the next chapter we review the existing models of

12

parallel computation. In chapter three, we summarize definitions of graphs and

their subgraphs.

In chapter four we review some of the previous work concerning some famous

sequential algorithms for the Minimum Spanning Tree problem. In chapter five,

we introduce a new deterministic parallel algorithm for computing the Minimum

Spanning Tree of a given Graph. In chapter six, we summarize the results

concerning derived subgraph and residual edges. We present a parallel version

for the derived subgraph algorithms, to find and calculate the number of derived

subgraphs for a given graph.

13

Chapter 2

Models of Parallel Computation

2.1 Introduction

The main goal of writing a parallel program is to get a shorter computation

time compared with the serial version. With this in mind, there are several

issues that we need to consider when designing our parallel code to obtain the

best performance possible within the constraints of the problem being solved.

These issues are:

i) Load balancing

Load balancing is the task of equally dividing work among the available pro-

cesses. This can be easily done when the same operations are performed by

all the processes (on different pieces of data). It is not trivial when the pro-

cessing time depends upon the data values being worked on. When there are

large variations in processing time, we may be required to adopt a different

14

method for solving the problem.

ii) Minimizing Communication

The total execution time is a major concern in parallel programming be-

cause it is an essential component for comparing and improving all programs.

Three components make up execution time:

1- Computation Time is the time spent performing computations on the

data. Ideally, we should expect that if we had n processors working on

a problem, we should be able to finish the job in 1/n-th the time of the

serial job. This would be the case if all the processor’s time was spent in

computation.

2- Idle Time is the time a process spends waiting for data from other pro-

cessors. During this time, the processors do no useful work.

3- Communication Time is the time it takes for processes to send and

receive messages. The cost of communication in the execution time can

be measured in terms of latency and bandwidth. Latency is the time it

takes to set up the envelope for communication, where bandwidth is the

actual speed of transmission, or bits per unit time. Serial programs do

not use interprocess communication. Therefore, we have to minimize this

use of time to get the best performance improvements.

15

iii) Overlapping Communication and Computation

There are several ways to minimize idle time within processes, and one exam-

ple is overlapping communication and computation. This involves occupying

a process with one or more new tasks while it waits for communication to

finish so it can proceed on another task. Careful use of nonblocking com-

munication and data unspecific computation make this possible. It is very

difficult in practice to interleave communication with computation.

iv) Running Time

Since speeding up computations appears to be the main reason behind our

interest in building parallel computers, the most important measure in eval-

uating a parallel algorithm is therefore its running time. This is defined as

the time taken by the moment the algorithm starts to the moment it termi-

nates. If the various processors do not all begin and end their computation

simultaneously, then the running time is equal to the time elapsed between

the moment the first processor on the parallel computer to begin operating

on the input starts and the moment the last processor to end producing the

output terminates.

The running time of a parallel algorithm is usually obtained by counting

two kinds of steps; computational steps and routing steps; each of these

steps requires a constant number of time units: A computational step is an

arithmetic or logic operation performed on a datum within a processor. In a

16

routing step, a datum travels from one processor to another via the shared

memory or through the communication network.

For a problem of size n the parallel worst-case running time of an algorithm,

a function of n, will be denoted tp(n).

v) Speedup Sp.

In evaluating a parallel algorithm for a given problem, it is quite natural to do

it in terms of the best available sequential algorithm for that problem.Thus

a good indication of the quality of a parallel algorithm is the speedup it

produces. This is defined as

Sp = tseq(n) / tp(n)

where tseq(n) denotes the worst-case running time of the fastest known se-

quential algorithm for the given problem. Clearly, the larger the speedup,

the better the parallel algorithm.

vi) Number of Processors

One of the most important criteria in evaluating a parallel algorithm is the

number of processors it requires to solve a problem. It costs money to pur-

chase, maintain, and run computers. Therefore, the larger the number of

processors an algorithm uses to solve a problem, the more expensive the so-

lution becomes to obtain. We denote the number of processors required by

17

an algorithm to solve a problem of size n by p(n). Sometimes the number

of processors is a constant independent of n.

vii) The Cost C(n).

The cost C(n) of a parallel algorithm is defined as the product of the parallel

running time and the number of processors, hence

C(n) = tp(n) × p(n)

The cost of a parallel algorithm for a given problem is said to be cost optimal,

if the cost of the parallel algorithm matches a lower bound on the number

of sequential operations required in the worst case to solve the problem. A

parallel algorithm is not cost optimal if a sequential algorithm exists whose

running time is smaller than the parallel algorithm’s cost.

viii) The Efficiency E(n).

The efficiency of a parallel algorithm running on p processors is the speedup

divided by p. Let us give the following example to illustrates the meaning of

efficient parallel algorithm. If the best known sequential algorithm executes

in 12 seconds (on one processor), while a parallel algorithm solving the same

problem executes in 3 seconds when 5 processors are used, then we say

that the parallel algorithm exhibits a speedup S5 = 4 with five processors.

A parallel algorithm that exhibits a speedup of 4 with five processors has

an efficiency of 0.8 with five processors. The efficiency E(n) of a parallel

18

algorithm for solving a problem is defined as follows:

E(n) = tseq(n)/C(n).

2.2 Classification of Parallel Computers

Any computer, whether sequential or parallel, operates by executing instructions

on data. A stream of instructions (the algorithm) tells the computer what to do

at each step. A stream of data (the input to the algorithm) is affected by these

instructions. In 1972 Michael Flynn [12] classified computers by the number of

instruction- and data-streams, respectively.

In terms of memory-processor organization parallel computers have three

basic architectures. These are:

2.2.1 Shared Memory Architectures

The main property of shared memory architectures is, multiple processor units

share access to a global memory via a high-speed memory bus. This class is

known in the literature as the Parallel Random-Access Machine (PRAM). This

global memory allows the processors to efficiently exchange or share access to

data. At the same time each processor is able to perform the usual computation

of a sequential RAM using a finite amount of local memory (see Fig. 2.1). Typ-

ically, the number of processors used in shared memory architectures is limited

to only a handful (2−16) of processors. This is because the amount of data that

19

SHARED MEMORY

. . .

. . .M1
M2 M3 M4 Mk

P1
P2 P3 P4

Pk

Figure 2.1: The PRAM model.

can be processed is limited by the bandwidth of the memory bus connecting the

processors. Because the Shared Memory Parallel Computer models is the one

that we will use, we give a detailed description of it.

If processor Pi wants to communicate with processor Pj, it can do so by writ-

ing to some memory location from which Pj will read. So, the model makes the

assumption that communication between processors takes unit time. The basic

model allows all processors to gain access to the shared memory simultaneously

if the memory locations they are trying to read from or write into are different.

However, the class of shared-memory computers can be further divided into four

subclasses, according to whether two or more processors can gain access to the

same memory location simultaneously:

20

I- Exclusive-Read, Exclusive-Write (EREW).

In the less powerful but perhaps most realistic EREW-PRAM model, no

conflicts are permitted for either reading or writing, because no two proces-

sors are allowed simultaneously to read from or write into the same memory

location.

II- Concurrent-Read, Exclusive-Write (CREW).

In CREW-PRAM model multiple processors are allowed to read from the

same memory location but the right to write is still exclusive: No two pro-

cessors are allowed to write into the same location simultaneously.

III- Exclusive-Read, Concurrent-Write (ERCW).

In ERCW-PRAM model multiple processors are allowed to write into the

same memory location but the right to read is still exclusive: No two pro-

cessors are allowed to read from the same location simultaneously.

IV- Concurrent-Read, Concurrent-Write (CRCW).

Finally, the CRCW-PARM, the strongest of these models, permits simulta-

neous accesses for both reading and writing.

2.2.2 Distributed Memory Parallel Computers

In case of a distributed memory computer a collection of serial computers (nodes)

works together to solve a problem. Each node has rapid access to its own local

21

 Interconnection Network

...

... Pk

MkM4

P4P1

M1 M2

P2 P3

M3

Figure 2.2: Distributed Memory Architecture

memory and access to the memory of other nodes via some sort of communica-

tions network, usually a proprietary high-speed communications network. Data

are exchanged between nodes as messages over the network (see Fig. 2.2). Two

processors directly connected by a link are said to be neighbors. Two processors

connected by a link can exchange data simultaneously. In other words, the link

between the processor Pi and the processor Pj represents two links, one from

Pi to Pj and one from Pj to Pi. Examples of these models are IBM SP-

2 and clusters built up of independent workstations. Such models are usually

programmed using an explicit message passing library, e.g. Message Passing

Interface (MPI) or Parallel Virtual Machine (PVM).

We now turn to a description of two various type of processor organization

used in this thesis.

22

P1

P2
P3

P4
P5 P6 P7

P8 P9 P10
P11 P12 P14

P15

0

1

2

3

 13P

Figure 2.3: A tree interconnection network

2.2.3 The Binary Tree Networks

In a complete binary tree network of depth k − 1, the number of nodes is

2k − 1 (Fig. 2.3). Every node has at most three links. Every node other than

the root is connected to one parent, and every interior node is connected to its

two children. The binary tree has a low diameter, 2(k − 1), but it has only

bisection width of one.

2.2.4 The Pyramid Networks

A two-dimensional pyramid computer consists of (4d+1 − 1)/3 processors dis-

tributed among d + 1 levels (Fig. 2.4). All processors at the same level are

connected to form a two-dimensional mesh (and the nodes are arranged into a

two-dimensional lattice). At level 0 (also called base), there are 4d processors

arranged in a 2d × 2d mesh. There is only one processor at level d (called the

apex). In general, a processor at level i, in addition to being connected to its

23

APEX

BASE

Level 0

Level 1

Level 2

Figure 2.4: A pyramid interconnection network

24

four neighbors at the same level, has connections to four children at level (i−1),

provided that i ≥ 1 and is connected to one parent at level (i + 1) provided

that i ≤ d − 1. The maximum number of links per node is not greater than

nine, regardless of the size of the network.

2.2.5 Distributed Shared Memory Architectures

The latest technology of parallel computers is based on a mixed shared-distributed

memory architecture. On one hand, it eases programming, and on the other hand

it has a high scalability, contrary to the distributed memory architecture. Each

processor has its own local memory, all memory modules form one common ad-

dress space, i.e. each memory cell has a system-wide unique address. Each node

consists of a group of 2 to 16 processors connected via a local shared memory,

and the multiprocessor nodes are connected via a high-speed communication.

2.3 NC Class and the Parallel Complexity Theory

A problem is said to belong to the class NC (Nick’s Class) if it can be solved

in time polylogarithmic in the size of the problem using at most a polynomial

number of processors. Examples of problems in NC include sorting, finding

minimum-cost spanning trees, and find convex hulls. To be more precise we

present some definitions.

Definition 2.1.

The expression T (n)O(1) denotes polynomial functions of T (n).

25

For example, the functions (log n)2 and (log n)3 are in the set (log n)O(1),

such the set (log n)O(1) is called the set of polylogarithmic functions. The

functions n2 and n3 are in the set nO(1), this set nO(1) is called the

set of polynomial functions. A problem is in class NC if and only if it

has an algorithm whose time tp(n) and processor numbers p(n) complexity,

respectively are:

tp(n) ∈ (log n)O(1) and p(n) ∈ nO(1)

Many NC algorithms are cost optimal. For example, they have tp(n) =

O(log n) with p(n) = n/ log n if tseq(n) = O(n) (for example parallel prefix com-

putation). Some cost optimal NC algorithms are super fast, they achieve even

sub-logarithmic time. For example, there are string matching algorithms with

O(log log n) parallel time if p(n) = n/(log log n) processors, where n is the length

of the string. It is an open problem whether NC = P , but it seems unlikely

that every problem in P is in NC [25].

One of the major goals in designing parallel algorithms is to minimize tp(n) as

well as the cost C(n). It has been demonstrated that it is easier to design algo-

rithms for the more powerful CRCW PRAM model than for the other models.

However, due to the existing simulations between the PRAM models, the notion

of efficient parallel algorithms is robust, in the sense that any efficient algorithm

for some model is still efficient in any weaker model. On the other hand, the

notion of optimal algorithms is not robust in this sense.

26

Chapter 3

Graphs and Their Subgraphs

3.1 Introduction

In this chapter we begin by working through the basic definitions of graphs (their

subgraphs) and the properties of graphs (their subgraphs). We give some basic

concepts and definitions about graphs. These concepts are needed in the next

chapters.

3.2 Basic Definitions for Graphs

Definition 3.1.

An undirected graph (simply a graph) G=(V,E) is a finite non-empty set V

of elements, called vertices, together with a -possibly empty- set E of unordered

pairs of distinct vertices of G called edges. The vertex set V of G is denoted

V (G), while the set of edges E is denoted E(G).

If u and v are two vertices of a graph G, then an edge e = (u, v), simply

27

denoted e = uv, is said to join u and v. If e = uv is an edge of a graph G,

then the two vertices u and v are said to be adjacent. The edge e is said to

be incident with both u and v. Furthermore, two distinct edges e1 and e2 are

adjacent if e1 and e2 are incident with a common vertex. The order of a graph G

is the cardinality of its vertex set V (G) and is denoted n(G) or simply n, while

the cardinality of its edge set is denoted m.

There are two standard ways to represent a graph G=(V,E): as a collection of

adjacency lists or as an adjacency matrix. An adjacency-matrix representation

of a graph is a |V | × |V | matrix A = (aij) of boolean values such that aij = 1

if (vi, vj) ∈ E, and aij = 0 otherwise. The adjacent-list representation of a

G = (V,E) consists of an array Adj of |V | lists, one for each vertex in V . For

each u ∈ V , the adjacency list Adj[u] contains (pointers to) all the vertices v

such that there is an edge (u, v) ∈ E. That is, Adj[u] consists of all the vertices

adjacent to u in G. The vertices in each adjacency list are typically stored in an

arbitrary order. Let v be a vertex of a graph G. The number of edges incident

with v is called the degree order of v and is denoted deg(v). If all the vertices

of G have degree r then G is called an r-regular graph.

Let U ⊆ V (G) be a non-empty subset of the vertex set of a graph G. The

subgraph < U > induced by U is the graph having vertex set U and whose edge

set consists of those edges of G incident with two elements of U .

28

Definition 3.2.

A path in a graph is a sequence of vertices in which each successive vertex

(after the first) is adjacent to its predecessor in the path. In a simple path, the

vertices and edges are distinct. A path graph with n vertices is a graph consisting

of a single path and is denoted Pn.

Definition 3.3.

A cycle is a path that is simple except that the initial vertex and the final

vertex are the same. A cycle graph is a graph consisting of a single cycle, and

denoted Cn.

Definition 3.4.

A graph is a connected graph if there is a path from every vertex to every

other vertex in the graph. A graph that is not connected consists of a set of con-

nected components, which are maximal connected subgraphs.

Definition 3.5.

A tree is a graph in which any two vertices are connected by a single path.

A spanning tree of a graph, G, is a set of |V | − 1 edges that connect all vertices

of the graph.

There are certain classes of graphs that occur so often that they deserve

special mention and in some cases special notation. We describe here the most

prominent of these.

1. A graph G is complete -denoted Kn - if every two of its vertices are adjacent.

29

2. A graph is regular of degree r if for each vertex v of G, deg(v) = r, such

graphs are called r−regular. Therefore a complete (n,m) graph is a regular

graph of degree n − 1 having m = n(n − 1)/2 edges.

3. A graph G is n−partite, n ≥ 1, if it is possible to partition V (G) into

n disjoint subsets V1, V2, ..., Vn (called partite sets) such that every ele-

ment of E(G) joins a vertex of Vi to a vertex of Vj, i 6= j. For n = 2,

such graphs are called bipartite graphs. A star graph is a bipartite graph

with two partite sets V1 and V2 having the additional property that |V1| = 1.

4. A complete n−partite graph G is an n−partite graph with partite sets

V1, V2, ..., Vn having the additional property that if u ∈ Vi and v ∈ Vj,

i 6= j, then uv ∈ E. If n = 2, such graphs are called complete bipartite

graphs.

5. The line graph L(G) of G is a graph whose vertices can be put one-to-one

correspondence with the edges of G in such a way that two vertices of L(G)

are adjacent if and only if the corresponding edges of G are adjacent.

Graph models where we associate weights or costs with each edge are called

for in many applications. In an electric circuit where edges represent wires, the

weights might represent the length of the wire, its cost, or the time that it takes

a signal to propagate through it. In an airline map where edges represent flight

routes, these weights might represent distances or fares. In a job-scheduling

30

problem, weights might represent time or the cost of performing tasks or of

waiting for tasks to be performed. In the following we will give a definition for

an important kind of graph.

The problem of finding the minimum spanning tree of an arbitrary weighted

undirected graph has numerous important applications, and algorithms to solve

it have been known since at least 1920s. However the problem has been solved

only in 1926 by Otakar Boruvka [22].

Definition 3.6 (Minimum Spanning Tree).

A minimum spanning tree (MST) of a weighted graph is a spanning tree whose

weight (the sum of the weights of its edges) is not larger than the weight of any

other spanning tree.

The following two properties are very closed to the minimum spanning tree

problem:

* Cycle property: For any cycle C in a graph G, the heaviest edge in C does

not appear in the minimum spanning tree.

* Cut property: For any proper nonempty subset X of the vertices, the light-

est edge with exactly one endpoint in X belongs to the minimum spanning tree.

31

Part I

The Minimum Spanning Tree

Problem

32

Chapter 4

Review of the Minimum

Spanning Tree Algorithms

4.1 Introduction

Computing the minimum spanning tree of an undirected graph is one of the

fundamental computational problems. In this chapter, we will present some of

the sequential minimum spanning tree algorithms that help us to describe our

parallel minimum spanning tree algorithm.

4.2 Why Minimum Spanning Tree ?

The minimum spanning tree problem is perhaps the simplest, and certainly one

of the most central points in the field of combinatorial problems. It is useful in

constructing networks, by describing the way to connect a set of sites using the

smallest amount of communication lines. The minimum spanning tree problem

33

arises in a number of other applications, such as, computer networks, television

cables, etc. It is the mother of all network design problems.

The minimum spanning trees prove important for several reasons:

i) They can be computed quickly and easily, and they create a sparse subgraph

that reflects a lot about the original graph.

ii) They provide a way to identify clusters in sets of points. Deleting the long

edges from a minimum spanning tree leaves connected components that de-

fine natural clusters in the data set.

iii) They can be used to give approximate solutions to hard problems such as

Steiner tree and traveling salesman.

4.2.1 History

The algorithmic issues of the minimum spanning tree MST (or Tmin) have a rich

history. It has engaged researchers at least from the 1920 motivated by interest

in the MST problem’s theoretical structure as well as its practical relevance. We

begin our short history of the MST problem by presenting below three classical

serial algorithms that have played a central role in the history of the problem.

4.2.2 Three Classical Serial Algorithms

I- Boruvka’s algorithm

34

Boruvka [22] is the first one who described the first fully realized minimum

spanning tree algorithm. The same algorithm was rediscovered by a num-

ber of other authors, for example Gustave Choquet [14], G. Sollin[27]. We

simply quote below one of the other formulations of the Boruvka’s algo-

rithm which was translated by Graham and Hell, and reported in 1950 by

a research group based in Wroclaw (Poland).

”Here is our method of constructing a spanning tree with the points of a

given set Z. Let us join, by a segment, each point to the point nearest to

it; these segments will be called Connections of the First Order. They form

one or more connected polygonal lines (subtrees) which are the connections

of the points of the certain disjoint subsets of Z. These subsets will be

called Groups of the First Order. Let us join each such group with the

group nearest to it (by distance between groups one understands, of course,

the smallest pairwise distance between their points), by a segment realizing

their distance, which we shall call a Connection of the Second Order. We

proceed this way, using connections of higher and higher order, until we

obtain a connected polygonal line joining all the points of the set Z.”

Given a weighted, undirected graph G, the algorithm builds the Tmin by

adding edges to a spreading forest of subtrees TBoruvka, but it does so in

stages, adding several Tmin edges at each stage. At each stage the algorithm

finds the shortest edge that connects each TBoruvka subtree with a different

one, then add all such edges to the Tmin. It constructs a spanning tree in

iterations composed of the following steps.

35

Boruvka’s algorithm

1: TBoruvka ←− φ
2: L ←− φ
3: for each v ∈ V (G) do
4: Tv ←− Make − Tree(v) produces n trees of a single vertex
5: Tv ←− unmark
6: L ←− Tv make a list L of n unmarked trees
7: end for
8: while L has unmarked tree do
9: for each unmarked tree Tv ∈ L do

10: if the number of edges with one endpoint in Tv is zero then
11: Tv ←− mark
12: else
13: Select the lightest edge e = (v, v′)
14: TBoruvka ←− e = (v, v′)
15: Tvv′ ←− Union(Tv, Tv′)
16: Tvv′ shrinks into a single vertex.
17: Eliminate loops, and all parallel edges except the lightest-edges in Tvv′ .
18: end if
19: end for
20: end while

Algorithm 1: Boruvka’s algorithm

This implementation of Boruvka’s MST algorithm initializes as shown in

lines 1 − 5 the empty set TBoruvka and creates n unmarked trees Tv, where

each one contains exactly one vertex, and makes a list L of n unmarked trees

in line 6. Each iteration of the while loop (line 8) checks all remaining edges,

and chooses the lightest edge which connects current disjoint subtrees. At

the end of each iteration, each component is united with its nearest neigh-

bor (they form together a single vertex) and the nearest-neighbor edges

added to the set TBoruvka. Lines 10 − 11: If the input graph has more than

one component, then a minimum spanning forest consists of MSTs of each

connected components of the original graph, where each marked tree in line

36

11 constructs a minimum spanning tree of the component that contains it.

It is a generalization of the idea of MST. Line 15: The number of trees in

the list L decreases by one in each iteration. Line 17: If there are edges

connecting two vertices in the same tree they are discarded. Multiple edges

are removed such that only the lightest edge remains between a pair of ver-

tices. Boruvka’s algorithm is guaranteed to work correctly only if all the

edge costs are distinct. If edge weights are not distinct, we can make them

distinct by numbering the edges and breaking weight-ties according to the

numbers, so, assume for simplicity that all edge weights are distinct.

The algorithm seems to be the most efficient implementation. It can be

implemented so that an iteration in which the graph has n vertices and

m edges takes O(n + m) sequential time. Furthermore, the number of

vertices of the graph at the (i + 1)st iteration is at most half of the number

of vertices at the ith iteration. Hence, the number of iterations is at most

log n, yielding a total running time of O(m log n). Finally, if the input graph

has n isolated vertices, then the while loop would do only one iteration and

in this while loop only lines 9 − 11 are executed. With this kind of graphs

the running time per an iteration is O(n) and the total running time of the

algorithm is O(n).

Two classical algorithms efficiently find minimum spanning trees, namely

Prim’s and Kruskal’s. Brief overviews of both algorithms are given below.

II- Prim’s algorithm:

Prim’s algorithm manages a set Tprim that is always a subset of some mini-

37

mum spanning tree. The subtree Tprim starts with an arbitrary root vertex

r and grows it until a minimum spanning tree is obtained. At each step a

vertex v not in the tree, connected by the smallest possible cost edge e to

the subtree already built, is added; such an edge e is called a safe edge for

Tprim.

The key to implement Prim’s algorithm efficiently is to make it easy to

select a new edge to be added to the tree formed by the edges in Tprim.

The connected graph G and the root vertex r of Tprim are inputs to the

algorithm. During execution of the algorithm, all vertices that are not in

the tree reside in a priority queue Q based on a key field. For each vertex

v, key [v] is the minimum weight of any edge connecting v to a vertex in the

tree; by convention key[v] = ∞ if there is no such edge. The field π[v] gives

the parent of v in the tree. During the algorithm, the subtree Tprim is kept

implicitly as

Tprim = {(v, π[v]) : v ∈ V − {r} − Q}.

When the algorithm terminates, the priority queue Q is empty; the mini-

mum spanning tree Tmin for G is thus

Tmin = {(v, π[v]) : v ∈ V − {r}}

.

Lines 1 − 4 in the above implementation of Prim’s algorithm initialize the

priority queue Q to contain all the vertices and set the key of each vertex

to ∞, except for the root r, which is set to zero. Line 5 initializes π[r] to

38

Prim’s algorithm

1: Q ←− V (G)
2: for each u ∈ Q do
3: key[u] ←− ∞
4: key[r] ←− 0;
5: π[r] ←− NIL
6: end for
7: while Q 6= φ do
8: u ←− Extract − Min(Q)
9: for v ∈ Adj[u] do

10: if v ∈ Q and w(u, v) < key[v] then
11: π[v] ←− u
12: key [v] ←− w(u, v)
13: end if
14: end for
15: end while

Algorithm 2: Prim’s Algorithm

NIL, since the root r has no parent. The while loop in lines 6 − 11 grows

the subtree Tprim by identifying the vertex u ∈ Q (with minimum key) in-

cident on a light edge crossing the cut between the vertices on Tprim and

vertices not on Tprim. Removing u from the set Q adds it to the set V −Q

of the vertices in the subtree Tprim. At the end of the loop the algorithm

updates the key and π fields of every vertex v adjacent to u but not in the

tree. The updating maintains the invariants that key[v] = w(v, π[v]) and

that (v, π[v]) is a light edge connecting v to some vertex in the subtree Tprim.

Prim’s algorithm clearly creates a spanning tree, because no cycle can be

introduced by adding edges between tree and non-tree vertices. However,

why should it be of minimum weight over all spanning trees.?

Suppose that there existed a graph G for which the algorithm did not return

a minimum spanning tree. Since we have built the tree incrementally, this

39

means that there must have been some particular instant where we went

wrong. Before we inserted edge (x, y), Tprim consisted of a set of edges that

was a subtree of a minimum spanning tree Tmin, but choosing edge (x, y)

took us away from a minimum spanning tree. But how could it happen.?

There must be a path P from x to y in Tmin, using an edge (v1, v2), where

v1 is in Tprim but v2 is not. This edge (v1, v2) must have weight at least

that of (x, y), or else the algorithm would have selected it instead of (x, y)

when it had the chance. Inserting (x, y) and deleting (v1, v2) from Tmin

leaves a spanning tree not larger than before, meaning that the algorithm

could not have made a fatal mistake in selecting edge (x, y). Therefore,

by contradiction, Prim’s algorithm has to construct a minimum spanning

tree. The performance of the algorithm depends on how we implement the

priority queue Q.

If Q is implemented as a Fibonacci-Heap (simply Fib-Heap) [28] the n ele-

ments can be organized into Fib-Heap in O(1), and an Extract-Min opera-

tion in O(logn) time and a Decrease-Key operation in O(1) time. Therefore,

if we use a Fib-Heap to implement the priority queue Q, the running time

of Prim’s algorithm will be O(m + n log n)

III- Kruskal’s algorithm

Kruskal’s algorithm is an alternative approach to find minimum spanning

trees that is more efficient on sparse graphs. Like Prim’s, Kruskal’s algo-

rithm is greedy; unlike Prim’s, it does not start with a particular vertex.

This means it finds a subset of the edges that forms a tree that includes

40

every vertex, where the total weight of all the edges in the tree is minimized.

If the graph is not connected, then it finds a minimum spanning forest (a

minimum spanning tree for each connected component). The algorithm

starts with a forest which consists of n trees. Each one tree, consists only

of one node and nothing else. In every step of the algorithm, two different

trees of this forest are connected to a bigger tree. Therefore, the algorithm

keeps having smaller and bigger trees in the forest until it ends up in a tree

which is the minimum spanning tree . In every step the algorithm chooses

the edge with the minimal cost, which means that we are still under greedy

policy. If the chosen edge connects nodes which belong to the same tree the

edge is rejected, and not examined again because it could produce a circle

which will destroy the tree. Either this edge or the next one in order of

least cost will connect nodes of different trees, the algorithm inserts it to

connect two small trees into a bigger one.

Kruskal’s Algorithm

1: TKruskal ←− φ
2: for each vertex v ∈ V [G] do
3: Make-Set(v)
4: end for
5: Q ←− E(G)
6: for i = 0; i < n − 1; i++ do
7: e = (u, v) ←− Extract − Min(Q)
8: if Find − Set(u) 6= Find − Set(v) then
9: TKruskal ←− TKruskal ∪ (u, v)

10: Union (u, v)
11: end if
12: end for
13: return TKruskal

Algorithm 3: Kruskal’s Algorithm

41

The algorithm initially creates (in lines 1 − 4) an empty set TKruskal and

a forest of n trees, where each vertex in the graph is a separate tree. Line

5 creates a priority queue Q containing all the edges in the graph. At the

end of the algorithm, while Q is nonempty, remove an edge with minimum

weight from Q. If that edge connects two different trees, then add it to

the forest, combining two trees into a single tree, otherwise discard that

edge. At the termination of the algorithm, the forest TKruskal has only one

component and forms a minimum spanning tree Tmin of the graph. But

why must this be a minimum spanning tree? Suppose it was not. As with

the correctness of Prim’s algorithm, there must be some graph for which it

fails, and in particular there must be a single edge (x, y) whose insertion

first prevented the tree TKruskal from being a minimum spanning tree Tmin.

Inserting edge (x, y) in Tmin will create a cycle with the path from x to y.

Since x and y were in different components at the time of inserting (x, y), at

least one edge on this path (v1, v2) would have been considered by Kruskal’s

algorithm after (x, y) was. But this means that w(v1, v2) > w(x, y), so

exchanging the two edges yields a tree of weight at most Tmin . Therefore,

we could not have made a mistake in selecting (x, y), and the correctness

follows.

The above algorithm can be shown to run in O(m log m) time, where m is

the number of edges in the graph.

It should be noted that all three algorithms initialize the spanning forest (a

spanning forest of a graph G consists of subtrees of G each of which called frag-

42

ment) to contain each vertex in V (G) as a one-vertex tree. Selectively, they add

edges to the forest until it becomes a spanning tree of G. All three algorithms

differ in the criterion used to select the next edge or edges to be added in each

iteration. All three algorithms compute the minimum spanning tree of any con-

nected graph. If the original graph is not connected, Prim’s algorithm will find

a minimum spanning tree in the first component, then it will fail to add any

more edges. Boruvka’s and Kruskal’s algorithm will find a minimum spanning

tree for each component.

It should be noted also that Prim’s algorithm is faster on dense graphs, while

Boruvka’s and Kruskal’s are faster on sparse graphs.

Kruskal’s algorithm is a greedy algorithm because it considers each edge

e ∈ E(G) in a non-decreasing order according to its weight and immediately

adds an appropriate edge to TKruskal.

In greedy algorithms, we make the decision of what to do next by selecting

the best local option from all available choices regardless of the global structure.

Since, Prim’s minimum spanning tree algorithm is greedy. It starts from one

vertex and grows the rest of the tree one edge at a time.

Minimum spanning tree algorithms have an interpretation in terms of ma-

troids. The matroid M = (S, (ג consists of a ground set S and a nonempty

family set ג of subsets of S (called ”independent sets”) such that:

43

* The empty set is in ג

* Every proper subset of every set in ג is also in ג

* For every subset in ג we can replace one element with another selection from

S and get a new subset which is also in .ג

A matroid M = (S, (ג is weighted if there is an associated weight function

w that assigns strictly positive weight w(x) to each element x ∈ S. The weight

function w extends to subsets of S. The weight of a subset A is the sum of the

weights of the elements in A. The natural question arises on a weighted matroid

is: What is the maximum weight independent set?

The graphic matroid defined in terms of a given undirected graph G = (V,E)

denoted MG = (SG, ,(Gג for which the set SG is defined to be E(G). If A is a

subset of E(G), then A ∈ Gג if and only if A is acyclic. The elements of the

graphic matroid are the edges of the graph. The independent sets SG are the

forests. Consider an undirected weighted graph G = (V,E) such that w(e) is a

positive weight of e. In order to view the minimum spanning tree as a problem

of finding an optimal subset of a matroid, we consider the weighted graphic ma-

troid MG = (SG, (Gג with weight function w ′, where w ′(e) = w0 −w(e) and w0

is larger than the maximum weight of any edge. In this weighted matroid, all

weights are positive and a subset that is independent and has maximum possible

weight is an optimal minimum spanning tree in G.

44

Let us say that the greedy algorithm optimizes all linear cost function over a

hereditary systems (S, (ג if and only if (S, (ג is a matroid [10]

4.2.3 Other Algorithms

We give now the full description of the sequential algorithm introduced by

Michael L.Fredman and Robert E. Tarjan (FT-algorithm) because it may be

useful as a presentation of my parallel minimum spanning tree algorithm. In the

beginning the FT-algorithm initializes the forest to contain each of the n vertices

of G as one-vertex unmarked tree. The idea is to grow a single tree only until its

heap of neighboring vertices exceeds a certain critical size k. Then the algorithm

starts from a new vertex and grows another tree, again stopping when the heap

gets too large. It continues in this way until every vertex is in a tree. Then

the algorithm condenses every tree into a single super-vertex and begins a new

pass of the same kind over the condensed graph. After a sufficient number of

passes, only one super-vertex will remain, and by expanding the super-vertices,

a minimum spanning tree was extracted.

The next lines describe the basic mode of the operations in a single pass of

the algorithm (see FT-Algorithm). The pass begins with a forest of previously

grown trees, which are called old trees, defined by the edges so far added to the

forest.

The time for the clean up (step 5) and other initialization is O(m). If t

is the number of old trees, the total time for the construction of new trees is

45

1: TFre ←− φ
2: for each old tree T do
3: Number Ti consecutively from one
4: Assign for each vertex v ∈ Ti the number of Ti.
5: Discard every edge connecting two vertices in the same old tree, and all except the

best-edge connecting each pair of trees.
6: Construct a list for each old tree of edges with one endpoint in T .
7: key(Ti) ←− ∞
8: Ti ←− unmarked
9: end for

10: Create an empty heap Hi.
11: while unmarked old tree do
12: Select unmarked old tree Ti

13: Insert it as an item into the heap Hi with key(Ti) = 0.
14: repeat
15: Delete an old tree Tv with minimum key.
16: key(Tv) ←− −∞.
17: Add e(Tv) (Tv 6= Ti)to the forest TFre

18: if Tv is marked. then
19: empty the heap
20: key(Tv) ←− ∞
21: else
22: Tv ←− mark.
23: for each edge (v, w) s.t. v ∈ Tv do
24: if c(v, w) < key(Tw) then
25: e(Tw) = (v, w).
26: if key(Tw) = ∞ then
27: Insert Tw in the heap Hi

28: else
29: Decrease − Key{Hi, key(Tw), c(v, w)}.
30: end if
31: end if
32: end for
33: end if
34: until | Hi| > k or Hi = φ
35: end while

Algorithm 4: FT- Algorithm

46

O(m+ t log k): the algorithm makes at most t delete minimum operations, each

on a heap of size ≤ k, and O(m) other operations, none of which is a deletion.

Let us choose k = 2(2m/t), where m is the original number of edges in the graph

and t is the number of trees before the pass. The value of k increases from

pass to pass as the number of trees decreases. With this choice of k, the run-

ning time per pass is O(m). As Fredman and Tarjan proved in [28] the number

of passes is at most min{i| log(i) n ≤ 2m/n + 1} = β(m,n) + O(1) where

β(m,n) = min{i| log(i) n ≤ m/n}. The FT- algorithm can be shown to run in

O(mβ(n,m)) time, where n is the number of vertices and m is the number of

edges in the given graph.

A faster algorithm was found by H. N. Gabow, Z. Galil, andT. H. Spencer

[13]. They described an algorithm similar to that one of Boruvka’s algorithm.

Their algorithm has a running time of O(m log β(m,n)) on a graph of n vertices

and m edges. B. Chazelle [3] gave a deterministic algorithm for computing a

minimum spanning tree. Its complexity is O(mα log α), where α = α(m,n)

is a functional inverse of Ackermann’s function. This time has been improved

by B. Chazelle [4] to time complexity O(m α(m,n)). Recently S. Pettie and

V. Ramachandran [23] presented an optimal similar algorithm with the same

running time, which gives an alternate exposition of the O(mα(m,n)) result.

As I knew, this is the smallest time bound for the sequential MST problem to

date. On the other hand D. R. Karger, P. N. Klein and R. E. Tarjan [18] in 1995

presented a randomized linear-time algorithm. Their algorithm is recursive. The

algorithm generates two subproblems, but with high probability the total size of

47

these subproblems is at most a constant fraction (less than one) of the size of

the original problem. The algorithm relies on a random-sampling step to discard

edges which can not be in the minimum spanning tree.

48

Chapter 5

A New Parallel Minimum

Spanning Tree Algorithm

5.1 Introduction

The problem of determining a minimum spanning tree in parallel has been the

focus of much research. Here is a brief summary of related results. In 1979 D. H.

Chandra, and D. V. Sarwate [2] presented a parallel deterministic algorithm for

graphs with n vertices and m edges, that runs in O(log2 n) time using n2/ log n

processors on the CREW model. In 1982, F. Chin, J. Lam, and I. Chen [20] gave

a parallel deterministic algorithm, that runs in O(log2 n) time using n2/ log2 n

processors Thus their algorithm achieves linear speed-up when the input graph

is a complete graph. However, it is not very work-efficient for spare graphs. In

1982 Y. Shiloach and U. Vishkin [26] improved the result to O(log n) time and

O(m + n) processors on the CRCW model R. Cole and U. Vishkin [9] presented

49

the best deterministic CRCW parallel MST and connectivity algorithms that

require O(log n) time and O((m + n) α(m,n)/ log n) processors. Recently in

1999 K. W. Chong, Yijie Han, and Tak W. Lam [5] presented a new approach

for finding the minimum spanning trees that runs in O(log n) time using n+m

processors on EREW PRAM. Thus their algorithm as R. Cole and U. Vishkin

algorithm all use super-linear work. There are somewhat simpler logarithmic-

time linear expected work randomized minimum spanning tree algorithms, which

have been successfully analyzed by R. Cole, P. N. Klein and R. E. Tarjan [8].

They improved the running time O(2log∗ n log n) of their previous work [7]

to O(log n). Their algorithms based on the sequential randomized linear-time

algorithm to find MST which has been discovered by P. N. Klein, D. R. Karger

and R. E. Tarjan [18]

5.2 Some Basic Techniques

We introduce here some techniques that will be used as a general basis for our

parallel algorithm.

5.2.1 Prefix Sum

We discuss an optimal prefix sum algorithm on the EREW PRAM in this part

(see [17] (p.44)). We begin by giving the definition of the prefix sum defined as

follows:

50

Definition 5.1.

Given an array of numbers A[1, ..., n], output a new array S[1, ..., n] in which

S[i] =
∑i

1 A[i].

For example, given the operation + and the array of integers A[1, ..., 5] =

{3, 2, 5, 1, 2}, the prefix sums of the array are S[1, ..., 5] = {3, 5, 10, 11, 13}. Note

that we can define the ”prefix sum” problem over any binary, associative op-

eration, not only addition. For example, if the operation is minimum, every

element in the output array will contain the minimum of all the elements to its

left in the input array. In the numerical example above, the result of prefix sum

with operation minimum would be {3, 2, 2, 1, 1}. There is a parallel algorithm

for solving this problem in O(log n) time using n processors.

* Input: n elements {x1, x2, . . . , xn} placed in memory cells A[1..n], such that

A[i] = xi

* Output: The prefix sum si, for 1 ≤ i ≤ n.

PREFIX(A,n)

1: for i = 1 to dn/2e in parallel do
2: Set S[i] ←− A[2i − 1] ⊕ A[2i]
3: end for
4: Call PREFIX(S, dn/2e), and store them in Z[1], . . . , Z[n/2].
5: for 1 ≤ i ≤ n in parallel do
6: { i even : Set s[i] = Z[i/2]

i = 1 : Set s[1] = x1

i odd > 1 : Set s[i] = Z[(i − 1)/2] ⊕ xi}
7: end for

Algorithm 5: PREFIX-SUM Algorithm

The above algorithm works in O(log n) time using n EREW PRAM proces-

sors.

51

x12 x34 x56 x78

x1 x2 x3 x4 x5 x6 x7
x8

x12 xx14 x16 18

A

S

Z

x x x x x xx11 12 13 14 15 x16 17 18s
Figure 5.1: Prefix sum of eight elements. Element xij determines the sum xi ⊕ . . . ⊕ xj .

52

5.2.2 Lexicographic Order

Let A be a finite alphabet and let ≺ be an ordering of A. Then the correspond-

ing lexicographic ordering < is defined on An, as follows. Let u, v ∈ An, where

u = a1 . . . an, v = b1 . . . bn, with ai, bi ∈ A. Then u < v if and only if either:

1- a1 < b1, or

2- There exists j ∈ {1, . . . , n} such that ai = bi for i < j but aj ≺ bj.

An denotes the n-times Cartesian product of the set A. The elements of the

set An are called words with fixed length n.

5.2.3 Parallel Radix Sort

We discuss how to design a parallel radix sort algorithm by solving problem 4.16

page 189 of ”Parallel Computation: Models and Methods” [1].1 We shall notice

that it is in fact a parallel algorithm for sorting integers by bucketing, which

essentially is a radix sort. To sort the sequence A = { a1, a2, . . . , an } of

b-bit integers, two arrays of n entries are created in the shared memory of an n-

processor PRAM. These two arrays are called bucket 0 and bucket 1, respectively.

The algorithm consists of b iterations. At the beginning of each iteration, all

positions of bucket 0 and bucket 1 are set to 0 (this means bucket 0[n] =bucket

1[n] = {0}); this requires constant time (because b is constant). During iteration

1Its solution is given by S. Akl, Parallel Computation: Models and Methods, Solutions Manual, Prentice
Hall, 1997.

53

i, 1 ≤ i ≤ b, element aj of A, where:

aj = aj(b)aj(b − 1) . . . aj(1),

is examined by processor Pj which places a 1 in position j of either bucket 0

or bucket 1 depending on whether aj(i) = 0 or 1, respectively. This step also

requires constant time. Now the values in bucket 0 followed by those in bucket 1

form a sequence of 0′s and 1′s of length 2n. The prefix sums {s1, s2, . . . , s2n} of

this sequence are now computed. This requires O(log n) time. Finally, element

aj is placed by Pj in position sj or sj+n of A (depending on whether bucket 0 or

bucket 1 contains a 1 in position j) in constant time, concluding this iteration.

The algorithm thus runs in O(b log n) time and has a cost of O(bn log n). The

cost can be reduced to O(bn), which is optimal, by using O(n/ log n) processors.

The time of the prefix computation is O(log n). The time for the other tasks is

O(1). The overall running time of the parallel radix sort algorithm is O(log n)

using O(n/ log n) EREW-PRAM processors.

5.2.4 The Heap Data Structure

To implement our algorithm efficiently, we need a data structure that will store

the vertices of V in a way that allows the vertex joined by the minimum cost

edge incident to the tree to be selected quickly. A heap is a data structure

consisting of a collection of items, each having a key. The basic operations on a

heap are:

* Make heap: Return a new, empty heap H.

54

* Insert(i, k,H): Add item i to heap H using k as the key value.

* Delete-Min(H): Delete and return an item of minimum key from H.

* Change-Key(i, k,H): Change the key of item i in heap H to k.

* Key(i,H): Return the key value for item i.

We use an extension of binomial queues called Fibonacci heaps abbreviated

Fib-heaps. Fib-heaps support Delete-Min in O(log n) time, and all the other

heap operations, in particular Change-Key, in O(1) time. For situations in

which the number of deletions is small compared to the total number of opera-

tions, Fib-heaps are asymptotically faster than binomial queues[28].

5.2.5 The Model

We assume an EREW PRAM model employs (n + m) processors where n is

the number of vertices and m is the number of edges in the given graph G,

each processor able to perform the usual computation of a sequential machine

using some fixed amount of local memory. The processors communicate through

a shared global memory to which all are connected. The essential assumption

used in our analysis is that a processor can access data computed by another

processor and stored in the shared memory in constant time.

5.3 The Proposed Parallel Algorithm

This section presents the proposed parallel algorithm implementation of the

minimum spanning tree technique. The algorithm is similar to the sequential

55

algorithm of M. Fredman and R. Tarjan (FT-Algorithm), which has been dis-

cussed in section (4.2.3). However, at the beginning of the algorithm, we are

using a small value of the parameter k, which is smaller than that one in the

FT-Algorithm. The value of k does not depend on the number of trees in each

pass of the algorithm. We also give another simple procedure to construct the

new tree.

The algorithm is divided into O(log n/ log log n) passes. In each pass, the

algorithm reduces the number of trees t by the fraction 1/k. In other words,

consider the pass that begins with t trees and m′ edges the number of trees t′

remaining after the pass satisfies t′ ≤ 2m′/k, where k = 2dlog me. We shall prove

that, the total running time for each pass is bounded by O(log k) = O(log log m).

This algorithm runs on EREW PRAM on a graph with n vertices and m edges

in O(log m) time using (n + m) processors.

5.3.1 Assumptions and Definitions

Given a graph G with n vertices and m edges. We assume that the input graph

G is given in the form of adjacency lists, where every vertex v has a linked list

L(v) of incident edges (v, w). For instance, if e = (u, v) is an edge in G, then

e appears in the adjacency list of u and v. We call each copy of e as the mate

of the other. In order to differentiate between them we use the notations (u, v)

and (v, u) to indicate that the edge originates from u and v respectively. The

weight of e, which can be any integer value, is denoted w(e) or W (u, v). The

proposed algorithm can be implemented for a graph in which the weights of all

edges are distinct, or there are some different edges that have the same weights.

56

We therefore say that the input graph G may have a unique minimum spanning

tree, or more than one minimum spanning tree. The minimum spanning tree

will be referred to as TG throughout this chapter.

We also assume that G is an undirected connected graph and consists of only

one component. If there is more than one component, then every connected

component can be found by using any fast parallel algorithm for finding the

connected components in the graph G. Then the proposed algorithm can run

for every component in G. Hence we assume for simplicity and without loss of

generality that the input graph has only one connected component.

Let F = {T1, T2, . . . , Tt} be an arbitrary set of subtrees of G. If a tree Ti

contains no edge incidents on a vertex v, then v itself forms a tree. Consider

any edge e = (u, v) ∈ G and tree Ti ∈ F . If both vertex u and vertex v belong

to Ti then e is called an internal edge of Ti; if only one vertex of {u, v} belongs

to Ti, then e is called an external edge. F is said to be a k−forest if each tree

Ti ∈ F has at least k vertices. A tree Tj 6= Ti is adjacent to Ti if there is an edge

e = (u, v), u ∈ Ti, v ∈ Tj. If Tj is adjacent to Ti, then the best edge from Ti to

Tj is the minimum cost edge e = (u, v), u ∈ Ti, v ∈ Tj. For every tree Ti ∈ F

the linked list of Ti is the set of all best edges from Ti to its adjacent trees Tj,

and is written by L(Ti). For each tree Ti, if e is the minimum weight external

edge connecting a vertex in Ti to a vertex in Tj, then, the edge e belongs to

TG. If e = (u,) is an external edge from Ti to Tj that is not a minimal weight

external edge, then e is never an edge in TG.

57

5.3.2 Description of the Algorithm

The algorithm runs for a number of passes. In the beginning each pass assigns

all single trees white. Each pass creates an empty Fib-Heap for each single tree

and inserts its linked list (the set of all best edges from T to its adjacent trees) as

items in the heap with keys equal to the weight w(e) of the edge. It then chooses

the edge with the minimum weight and begins from the other end point of that

edge. The pass grows a single white tree only until its heap of incident edges

exceeds a certain critical size and assigned it white. The algorithm continues in

this way until there is no white tree remaining and then condenses every tree

into a single super-vertex. The algorithm performs the condensing implicitly

and then begins a new pass of the same kind over the condensed graph. After

a sufficient number of passes, only one super-vertex will remain. By expanding

the super-vertex back into trees then a minimum spanning tree is remaining as

shown in Fig.(5.2).

Figure (5.2) depicts the methodology for running of the proposed algorithm.

The figure is not realistic for considering the number of passes, because the value

of the parameter k = 6 is smaller than 2dlog me = 2d4.7e = 10. If k = 10, only

one pass is needed to induce the minimum spanning tree of the graph G0, which

reduces the benefit of the example.

For the graph G0 shown in Fig.(5.2a) three passes are needed in order to

identify the minimum spanning tree. In the first pass the old tree is only one

vertex. Every vertex vi is assigned a processor pi. The processor pi creates

58

v1

v2

v3

v4v5

v6

v7

v8

v9
v11

v12

v14

v15

1 2

22

15

20

13

2623

24

4

3

12

25

16

21

18

17

7 8

14

9

19

v10
11 10

v16
(a)

v
1 2

22

15

20

13

26

24

4

3

12

16

7 8

T1

T2

T

T4

T5v

v

v

21

17

14

11 10

14
 17

9

(b)

v1

v

v

1 2
15

20

13
4

3

12

16

7 8

T1

T2

T3

T4

T5

1

v2

2

v2

v

v3

v3

v3

v4

v4

v4

v5

v5

v5
21

17

14

11 10

14
 17

9

v
1

(c)

v

v

v

v
v

v

v

v

v

v

v

v

v

1 2
15

13
4

3

12

7 8

14

v
11 10

T1 T2

1

1

1

1

1

1

1

1

1

v2

2 2

2

2

2

v2

9

16

(d)

v1

v

v
v

v

v

v

v

v

v

v

v

1 2
15

13
4

3

12

7 8

14

9

v
11 10

v1
v1

1

1

1

1

1

1

1

1

v1

1

1

1

1

(e)

v
9

v1

2

v8

v7

5

6

3

v4

v3

11

v10

v16

v15

v14

v13

v12

v13

23

25
19

18

5

6

5

6

5

6

5

6

5
6

TG0

G2

G3

G0

G1

Figure 5.2: The execution of the proposed algorithm on a given graph G0.(a) The situation
just before the first pass of the algorithm. (b) The five trees {T1, T2, T3, T4, T5} are constructed
after the first pass.(c) The five trees {T1, T2, T3, T4, T5} are constructed after the prune step.(d)
The new growing trees are T1 and T2. (e) The situation after 3 successive passes.

59

the heap Hi and chooses the edge with the minimum weight to include it as

a minimum spanning tree edge. From the other end point of this edge the

processor repeats the same process until the heap size exceeds the parameter k,

then the growth process finishes. The result of the first pass are the following

five trees T1, T2, T3, T4, T5 as shown in Fig.(5.2b), in which the internal edges are

shown as dotted edges and their corresponding external edges are

{v9v8, v2v6, v2v3, v2v11}, {v8v9, v8v6, v5v6, v5v4},

{v4v5, v6v5, v6v8, v6v2, v3v2, v6v10},

{v11v2, v11v10, v13v15, v13v14},

{v10v6, v10v11, v15v13, v14v13}

where the corresponding edge weights are

{12, 15, 20, 22}, {12, 13, 24, 26},

{13, 16, 20, 22, 24, 26},

{14, 15, 17, 21}, {14, 16, 17, 21} respectively.

In the second pass the input trees are the five already computed trees

{T1, T2, T3, T4, T5}. We assign to each vertex in V (G0) the number of the tree

that contains it. In the prune step of the pass removes un-dotted internal edges

connecting two vertices have the same number and we identify the lightest edges

of the weights in the corresponding linked lists, as shown in Fig.(5.2c). After the

cleanup we construct the linked lists L(T1), L(T2), L(T3), L(T4), L(T5) where the

edge weight for the edges in corresponding linked list are {12, 15, 20}, {12, 13},

{13, 16, 20}, {14, 15}, {14, 16} respectively.

As it has happened in the first pass, we get the following new growing trees

T1 and T2 with linked lists L(T1) and L(T2), which are adjacent by the multiple

60

edges having the weights 15 and 16 respectively. In the prune step of the last

pass we identify the lightest edge of weight 15 as minimum spanning tree edge

and delete the other heavy edge of weight 16. Finally, as shown in Fig.(5.2d) we

get the minimum spanning tree TG0
.

5.3.3 The Parallel MST Algorithm

The algorithm maintains a forest defined by the edges so far selected to be in

the minimum spanning tree. It initializes the forest T such that it contains each

of the n vertices of G as a one-vertex tree and maintains a key for measuring

w(e), which represents the tentative cost of incident edge e to T .

1: Form one trivial tree per each vertex v. Let n be the number of trees.
2: for each tree v ∈ V do
3: Set key(v) = ∞.
4: Color each vertex v white.
5: end for

Algorithm 6: Procedure Initialization

The processor assignment for initialization procedure is to provide one pro-

cessor to each vertex. A processor colors the vertex white and sets the key of

the vertex to ∞, then this procedure takes O(1) time and n processors. The

main procedure of the MST algorithm is described as follows:

1: for log(m/ log log m) times do
2: Call Get-New-Tree(T) procedure.
3: end for

Algorithm 7: MST Main procedure

61

In the first pass of the algorithm the input old tree will be considered as a

single vertex. For each vertex vi we assign one processor Pi and create the

Fib-Heap Hi. We then insert the set of all edges incident with vi in the heap

with a key equal the weight of every edge. Since it is not expected that all ver-

tex degrees will equal one, then we repeat the following step for at most k times:

Find a minimum cost edge with exactly one endpoint in the selected set of

vertices (subtrees) and add it to the forest TG; add its other endpoint to the se-

lected set of vertices.

After the above process, we get the first set F of nontrivial subtrees of G with

two non-empty sets of edges. The first of those are the internal edges (contain

at least one edge), the second includes the external edges, which will be at most

equal to ζ, where ζ refers to the number of end vertices in the non-trivial tree;

it will be determined later. The end vertices may be incident to external or

internal edges.

The forest F = {T1, T2, ..., Tt1} of subtrees of G are called the old trees. These

old trees will be the input to the next pass of the algorithm in order to grow

them to get other new trees which will be the old ones for the following pass.

The following is a description of a single pass (pass i) of the algorithm. The

pass begins with a forest of previously grown trees (the old trees) defined by

the edges so far added to the forest. The pass connects these old trees into new

larger trees.

62

We start with the old trees by numbering it consecutively from one and assign

to each vertex the number of the tree containing it. Each processor should keep

its initial vertex. This allows us to refer to the trees by the numbers and directly

access the old tree T (v) that contains the vertex v.

Next we clean up the linked list of each old tree by removing every edge that

connects any two vertices in the same old tree and all but a minimum-cost edge

connecting each pair of old trees. A full description of the cleaning process using

lexicographical sorting is given after the overview of the growing of a new tree

process.

After cleaning up we construct a new edge list for each old tree. However

since every old tree and all vertex incidents with its internal edges have the same

number and are sorted lexicographically according to their end point then we

can in constant time merge the linked list of all vertices which are contained in

the current grown tree. We can merge the linked list of the old trees into a single

list efficiently and the time does not depend on the length of the list. We use

a technique introduced by Tarjan and Vishkin [29] and Chong, Han and Lam

[6]. In our algorithm every pass grows the new tree T by replacing some old

trees {Ti, Ti+1, ..., Tj} by their union, this means that, T = Ti ∪ Ti+1 ∪ ... ∪ Tj.

We shall describe the technique to merge the linked list of these old trees in a

single list. Suppose the two old trees Ti and Tk with two linked lists L(Ti) and

L(Tk) contain an edge (u, v) and its mate (v, u) respectively. The two linked

lists can be combined by having the edge (u, v) and its mate (v, u) exchange

63

their successors. If every edge of Ti or its mate of Tj exchange their successors

in their linked list L(Ti) and L(Tj) respectively, we will get a new combined

list for T in O(1) time (see Fig.(5.3)). The merging process does not terminate

before merging the linked lists of all above old trees in a single one. However,

the algorithm guarantees that the merging process will not fail because all the

edges of Ti (or its mate) are included in the corresponding linked list.

In order to finish the growth process empty the heap and set the keys of all

old trees with key equals to infinity.

1: Number the old trees consecutively starting from one and assign to each vertex the
number of the tree that contains it.

2: Prune the linked list of each old tree.
3: For each old tree construct a list of edges that have one endpoint in T .
4: Every processor Pi calls the Grow-Step(T) procedure.
5: Finish the growth step by emptying the heap and set key(T) = ∞.

Algorithm 8: Get-New-Tree(T)

Prune the linked list

Discard every edge that connects two vertices in the same old tree as follows.

When the subroutine prune (step 2) considers an edge with the same number

for its both two endpoints, it assigns this edge an internal (dead). Afterward

sort the edges (external edges) that connect different old trees lexicographically

according to their endpoints. Sorting can be performed in parallel by using the

Parallel Radix Sort algorithm as described earlier. The algorithm sorts n ele-

ments in O(log n) time using n/(log n) EREW PRAM processors. In the sorted

64

v
4

v
4

v
4

v
4

v4

v4

v4

T4

v
5 v5

5
v

5
v

T5

v4

v4

v4

T4

4L(T)

v
5 v5

5
v

5
v

(a)

(b)

T5T4

L(T)4

7

8

9

10

11

8 15 147

L(T)5
14 9 10 1611

7

8

9

10

11

7 8 15 14

1014 9 11 16

14

Figure 5.3: Merging a pair of linked lists L(T4) and L(T5) with respect to a common edge that
has weight 14. This is the execution of the merging process on the two trees T4 and T5 from
figure 5.2c. (a) The linked lists L(T4) and L(T5) before merging. (b) The final result of the
join of L(T4) and L(T5) in a single bigger linked list named L(T4).

65

list, all multiple edges should end up in a sequence. Then, we save for each

sequence of multiple (x, y) edges the minimum weight while the remaining mul-

tiple ones are deleted.

The running time of this step depends on the number of the external edges,

which is greater than the size of the linked list of the tree. The following two

lemmas help us to estimate the upper bound of this number.

Lemma 5.1.

The number of end vertices ζ in a tree T with VT = {v1, v2, . . . , vn} equals

2 +
∑

deg(v)≥2

(deg(v) − 2)

.

Proof.

Suppose v1, ..., vζ be the vertices which have degree equal one.

While vζ+1, ..., vn have degree more than one,

deg(v1) + ... + deg(vζ) + deg(vζ+1) + ... + deg(vn) = 2n − 2

.

ζ +
∑

deg(v)≥2

deg(v) = 2n − 2

66

ζ +
∑

deg(v)≥2

(deg(v) − 2) = 2n − 2 − 2n + 2ζ

.

ζ = 2 +
∑

deg(v)≥3

deg(v) − 2.

Note, that it is possible to internal edges to have incidents with some end ver-

tices of T . Consequently the number of all external edges is at most equal to ζ

. This can be explained by the next lemma.

Lemma 5.2.

The number of the external edges in a non-trivial tree T is

ζ < 2(r − 2)k/r.

Proof.

Suppose that tree T has the vertex set VT and the edge set ET and that the

cardinality of its vertices is denoted nT while the cardinality of its edge set is

denoted mT .

If T0 is the first old tree among those making up T and it is placed in the

heap then T0 will keep growing until the heap reaches size k. At that time the

67

current tree T ′ that contains T0 will have more than k incident edges. Other

trees may later become connected to T ′ causing some of these incident edges to

have their endpoints in the final tree T .

According to that, after the completion of the pass each tree T will have more

than k edges with at least one endpoint in T . This implies that

∑

v∈V (T)

deg(v) ≥ 2k.

If the degree of each vertex in T has an upper bound r then

rnT > 2k,

and

ζ < (r − 2)(nT − ζ) ≤ (r − 2)nT .

(r − 2)nT ≥ ζ

, and

rnT > 2k,

From these last two inequalities and by divisioning them, we find the relation

between the size of the edge list for T and k as follows:

68

ζ/2k ≤ (r − 2)/r

. The number of external edges for each tree T is less than ζ = O(k).

Grow Step

In the Grow-Step procedure we maintain the set A of the vertices of the

current tree T that contains an old tree Ti to be treated by processor Pi. The

implementation assumes that graph G is represented by adjacency lists while

the set of light edges e(T), which are the edges that appear in the minimum

spanning tree, is added consecutively to the forest F .

1: Create an empty Fib-Heap H.
2: Insert each T ’s edges into H with key(e) = w(e).
3: Let A = T
4: while |H| < k do
5: repeat
6: Find and delete min-weight edge (u, v) from the heap H
7: until T ′ is not an element in A
8: A ←− A ∪ {T ′}
9: Add e = (u, v) to the forest F .

10: if T ′ is white then
11: Empty the heap
12: Set key of the current tree equal to infinity.
13: else
14: Insert each (T ′)’s edges into the heap H with key(e) = w(e).
15: end if
16: end while
17: Mark the current tree in white.

Algorithm 9: Grow-Step(T)

The work and the running time for a pass

So we can sort all external edges in a lexicographic order (the linked list of

69

the tree) in parallel by using the Parallel Radix Sort algorithm as was described

in the beginning of this chapter. The algorithm was used here to sort at most

ζ = O(k) edges in O(log ζ) = O(log k) time using m/ log log m EREW PRAM

processors.

Since the number of the external edges in a non-trivial tree T is ζ = O(k)

according to Lemma(5.2), we can finish the pruning process (Step 2) of the

linked list of each old tree in the condensed graph as the number of external

edges is bounded by O(k) to run in O(log k) time using at most m processors.

To analyze the running time of growing new tree, we need to determine the

upper bound of the size of the edge list for each tree T after the pass. Lemma

(5.2) is the key to the complexity analysis. It gives the upper bound of the adja-

cency list (and the linked list) of each tree T so as to minimize the running time

of pruning the adjacency list of T . At the same time, the lemma guarantees that

every pass creates a new big tree by replacing the old trees {Ti, Ti+1, . . . , Tj} by

their union where i < j is the smallest index such that the size of the associated

heap H is less than or equal to critical size k.

The result of the above lemma implies that every pass grows a single tree T

by absorbing the old trees one by one, so we can determine the running time

required to grow a new tree. We need at most r delete-minimum operations,

each on a heap of size k or smaller. Then the total time for Grow-Step procedure

is O(r log k) time, using at most n EREW PRAM processors.

Consider the parallel running time of the pass. The key observation depends

70

on the size of the edge list for each tree T . The edge list of T is at most 1/r times

the parameter k (as shown in lemma(5.2)), where r is the maximum degree in

T . We wish to choose values of k for successive passes so as to minimize the

total running time. For each pass let us choose the global parameter k equal to

2dlog me. The most time-consuming steps are steps 2 and 4. Step 2 (The Prune

Step) takes O(log k) = O(log log m) running time using m processors while step

4 (Growth of New Tree) takes O(r log k) = O(log log m) running time using n

processors. The remaining steps can be implemented to run in O(1) time period

using linear number of processors. The running time per pass is of O(log log m)

running time using (n + m) processors.

Lemma 5.3.

The algorithm terminates after no more than O(log m/ log log m) passes.

Proof.

Since each of the m edges has only two endpoints in the given graph G then

the number of trees remaining after the first pass is at most 2 m/ k. For a pass

i, which begins with t trees and m ′ < m edges (some edges may have been

discarded), after i passes the number of remaining trees is at most 2im/ki.

Since the expected number of trees that are equal to one only occurs in the last

pass then the number of passes is at most O(log m/ log log m).

From the above analysis it follows that there are at most O(log m/ log log m)

passes and each pass takes O(log log m) run time using n + m processors. Our

71

parallel algorithm runs on graphs with n vertices and m edges in O(log n) time

using n + m EREW PRAM processors.

5.3.4 Conclusions

This chapter presented a new deterministic parallel algorithm on EREW PRAM

based on the sequential algorithm of M. L. Fredman and R. E. Tarjan [28]. The

proposed parallel algorithm is simple and has the same running time as the

previous best deterministic parallel algorithms which were described by K. W.

Chong, Y. Han and T. W. Lam [5], and Cole and Vishkin [9]. Those algorithms

run in logarithmic-time yet they all use super linear work as it is in the proposed

parallel algorithm which runs in logarithmic time as well.

72

Part II

The Derived Subgraph Problem

73

Chapter 6

Derived Subgraphs

In this chapter we summarize the results related to the derived subgraphs and

a derived subgraph conjecture, the graphs which satisfy the derived subgraph

conjecture and the number of derived subgraphs for some famous graphs. At

this time and according to the review of the related literature there is no pub-

lished work that describes scientific or commercial applications for the derived

subgraphs problem or residual and non-residual edges in a given graph. How-

ever, we guess the cheminformatics and bioinformatics provide two domains to

apply derived subgraphs analysis. Finally we present a parallel derived subgraph

algorithm which finds the set of all derived subgraphs of a given graph.

6.1 Derived Subgraph and Derived Subgraph Conjecture

A Union-Closed Family Set F is defined as a non-empty finite collection of

finite distinct sets, closed under union. The following conjecture is due to Peter

74

Frankl (1979) [24].

Conjecture 1. Let A = {A1, A2, ..., An} be a union-closed family of distinct

sets, then there exists an element which belongs to at least n/2 of the sets in A.

A graph theoretic version of the Union-Closed Family was introduced by M.

El-Zahar [11].

6.1.1 Definitions and Examples

Definition 6.1 (The Derived Subgraph).

If S is a nonempty subset (with |S| ≥ 2) of the vertex set V (G0) of a graph G0,

then the derived subgraph induced by S is the graph having vertex set S, whose

edge set consists of those edges of G0 incident with two elements of S and having

no isolated vertices.

The set of all derived subgraphs of G0 is denoted D(G0), while the cardinality

of D(G0) is denoted nd(G0), and the subgraph induced by the empty graph φ

will be considered here and denoted Φ.

Definition 6.2 (The Residual Edge).

Let G0 be an (n,m) graph (with n vertices and m edges). An edge e of G0

is called a residual edge if it belongs to more than half of the derived subgraphs

of G0. Otherwise e is a non-residual edge.

75

Example 6.1.

Consider the graph G0 in Figure (6.1). The derived subgraphs of G0 are Φ,

G0 S1, S2, S3,..., S30. In all nd(G0) = 32 and the edge v2v4 occurs in 16 derived

subgraph, and the edges v1v2, v2v3, v4v5, v4v6 occur in 12 derived subgraphs, and

the remaining edges v1v3, v5v6 occur in 11 derived subgraph, and therefore each

edge of G0 is non-residual.

6.1.2 Derived Subgraph Conjecture

Conjecture 2. Every non-empty graph G0 contains at least one non-residual

edge.

The above Conjecture is weaker than the Union-Closed Set Conjecture. The

derived subgraph conjecture supposes that every non-empty graph has a non-

residual edge. El-Zahar is the first one who presented this idea and he proved

that if a graph G0 has a vertex v with a degree (simply deg(v)) one, then the

edge incident with v is a non-residual edge; moreover, for any graph G0 with

a vertex v with deg(v) equal two, then at least one of the two edges incident

with v is non-residual. If the graph G0 has two adjacent vertices v1, v2 with

deg(v1) = deg(v2) = 3. Then one of v1, v2 is incident with a non-residual edge.

More results are described below.

76

v1

v2

v3

v4

v5

v6

G0

v5

v6

4 v v2 v3

4 v

v2

v5

v1 v3

v6

4 v v2

v1

v3

v1 v2
4 v

v6

v5

v3

v1

v2

4 v
v24 v

v6

v5

v3

v1

4 v

v5

v6

v5

v6

v2

v1

v3 v3

v2

v1

4 v

v5

v6

v2

v1

v5

4 v

v1

v2

v5

v6

v2

v3
v6

v5 v1

v3

v5

v6

v1

v3

4 v

v5

v1

v3

4 v

v6

4 v

v6v2

v3
4 v

v5
v2

v34 v

v6
v2

v1
v6

4 v

v2v2

4 v

v54 v

v2

v3

v1

v2

4 v

v1

v2

v1

v3

v2

v3

v2

4 v

4 v

v5

v5

v6

4 v

v6

Figure 6.1: The set of all derived subgraphs of G0

77

6.2 The Graphs Satisfying the Derived Subgraph Con-

jecture

In this section we shall restrict our attention to introduce a derived subgraphs

formulas for some special graphs.

Lemma 6.1. [11]

Let V = V1 ∪V2 be a partition of the vertex set V (G0) of a graph G0. Let the

subgraphs induced by V1 and V2 be denoted G1 and G2 respectively. Then

nd(G0) ≥ nd(G1)nd(G2) (6.1)

Proof.

Consider two derived subgraphs S1 and S2 in G1 and G2 respectively. Let

S denote the induced subgraph < V (S1) ∪ V (S2) >. This means that, V (S) =

V (S1) ∪ V (S1) and E(S) = E(S1) ∪ E(S1). Since there is no isolated vertex in

S1 or S2, S contains no isolated vertices; therefore S ∈ D(G0).

Lemma 6.2. [11]

Suppose that the graph G0 is the disjoint union of the two graphs G1, G2.

Then nd(G0) = nd(G1)nd(G2). Moreover an edge e of G1 (resp. G2) is residual

in G0 if and only if it is residual in G1 (resp. G2)

Proof.

78

Let S ∈ D(G0) and denote Si its restriction to Gi for i = 1, 2. Then Si has

no isolated vertices so that Si ∈ D(G0), i = 1, 2. Conversely, if Si ∈ D(Gi), for

i = 1, 2, then, as in the proof of Lemma(6.1), S1 ∪ S2 ∈ D(G0). It follows that

D(G0) = {S1 ∪ S2 : S1 ∈ D(Gi), i = 1, 2}. The two assertions of the lemma are

now obvious.

Lemma 6.3.

Let K(m,n) be a complete bipartite graph with partite sets V1 and V2. Then

nd(K(m,n)) = (2m − 1)(2n − 1) + 1. In particular, if m = 1 then nd(K(1, n)) =

(2 − 1)(2n − 1) + 1 = 2n.

Proof.

A non-trivial derived subgraph of K(m,n) is formed by taking a non-empty

subset from V1 together with a non-empty subset of V2. There are (2m−1)(2n−1)

such subgraphs. Adding the empty graph, we have

nd(K(m,n)) = (2m − 1)(2n − 1) + 1.

Now we put m = 1 in nd(K(m,n)) equation then we get the number of derived

subgraphs for the star graph K(1, n) which is 2n.

Let v1, v2, ..., vm be pairwise nonadjacent vertices in a graph G0 and let

S ∈ D(G0). The vertices v1, v2, ..., vm are said to be free for S whenever S

contains none of these vertices and none of their neighbors. Note that, in this

79

case the vertices v1, v2, ..., vm are exactly the isolated vertices of the subgraph

< V (S) ∪ {v1, v2, ..., vm} > .

Lemma 6.4. [11]

Let G0 be a graph . Let v1, v2, ..., vm be pairwise nonadjacent vertices with

degrees d1, d2, ..., dm such that no pair of these vertices has a common neighbor.

For the number n0 of derived subgraphs of G0 for which these vertices are free

holds

n0 ≤ nd(G0)2
(d1+d2+...+dm) (6.2)

Proof.

Let G1 be the subgraph of G0 spanned by v1, v2, ..., vm and their neighbors,

and put G2 =< V (G0) − V (G1) >. From Lemma(6.1), we have nd(G0) ≥

nd(G1)nd(G2). But nd(G2) = n0, and G1 is the union of disjoint stars so that

nd(G1) = 2d1+d2+...+dm

nd(G0) ≥ n02
d1+d2+...+dm .

This proves the required result.

We will show that the graphs which have the minimum degree is more than

or equal to O(log n) have no residual edge. The minimum degree of the vertices

of a graph G0 is denoted δ(G0).

80

Theorem 6.1. [11]

Let G0 be a graph with n vertices. If

n
∑

i=1

2−deg(vi) ≤ 1, (6.3)

then every edge of G0 is non-residual. In particular, if δ(G0) ≥ log n then G0

has no residual edges.

Proof.

The number of induced subgraphs of G0 that contain v ∈ V (G0) as an isolated

vertex is 2n−1−deg(v). So

nd(G0) ≥ 2n −

n
∑

i=1

2n−1−deg(vi).

On the other hand, every edge e of G0 is contained in exactly 2n−2 induced

subgraphs of G0. Then e occurs in at most 2n−2 derived subgraphs of G0. If G0

has a residual edge, then nd(G0) ≤ 2n−1 and then

2n−1 > 2n −
n

∑

i=1

2n−1−deg(vi).

This proves the first part of the theorem. Now if δ(G0) ≥ log2 n then

n
∑

i=1

2−deg(vi) ≤ 1.

As it was proved in [11]; for any G0 which has two adjacent vertices v1, v2

81

with deg(v1) = deg(v2) = 3, one of v1, v2 is incident with a non-residual edge.

The derived subgraph conjecture has proved for any graph on order less than or

equal to 10 vertices.

Theorem 6.2. [11]

Every graph with n ≤ 10 vertices satisfies the derived subgraph conjecture.

Proof.

Let G0 be a graph with n vertices, such that G0 has no non-residual edge.

Then δ(G0) ≥ 3, and by theorem (1) δ(G0) < log2 n, this implies that n ≥ 9.

Suppose first that n = 9, by theorem(1)
∑n

i=1 2−deg(vi) > 1, this implies that G0

has at least 8 vertices of degree 3. This forces G0 to have 3 vertices of degree at

least 7. But
∑n

i 2−deg(vi) > 1 cannot be satisfied. This contradiction completes

the proof.

By using inclusion and exclusion principle, it is easy to get the following in-

equality to proof that derived subgraph conjecture satisfies for graphs on order

n = 11 and 12 vertices. Let the number of vertices of degree 3 in G0 be denoted

P3. By Theorem (3.2.5) in [21] the vertices of degree 3 must be pairwise non-

adjacent vertices.

Theorem 6.3. [21]

The number of derived subgraphs nd(G0) of G0 satisfies

82

2n −
n

∑

i=1

2n−1−deg(vi) +

P3
∑

i=2

(−1)i

(

P3

i

)

2P3−i ≤ nd(G0). (6.4)

Proof.

Use the inclusion and exclusion principle to prove the theorem. Let v ∈ V (G0)

then the number of induced subgraphs which contain v as isolated vertex is

2n−1−deg(v). Then

nd(G0) ≥ 2n −
n

∑

i=1

2n−1−deg(v)

.

Since P3 denotes the number of vertices of degree 3 in G0 which are non-

adjacent then any subset S (|S| ≥ 2) from these vertices has an isolated vertex.

Add the number
(

P3

2

)

2P3−2 of induced subgraphs which contain two vertices

from P3, but the number
(

P3

3

)

2P3−3 of induced subgraphs which contains three

vertices from P3 will be counted twice, so subtract this number, continue the

above procedure until finally arriving at the set of all non-adjacent vertices of

degree 3. This accounts for the number

P3
∑

i=2

(−1)i

(

P3

i

)

2P3−i

of induced subgraphs which contain isolated vertices of degree 3.

By direct use of the above inequality and Theorem(6.2), any graph on n ≤ 12

vertices satisfies the derived subgraph conjecture. More results about the graphs

83

which satisfies the derived subgraph conjecture presented in [21].

6.3 The Number of Derived Subgraphs

For simplicity, denote nd(Pn) and nd(Cn) by an and bn respectively.

Theorem 6.4. [21]

Let Pn be the path v1, v2, ..., vn. Then the number of its derived subgraphs, an,

is given by the relation

an = 2an−1 − an−2 + an−3 (6.5)

where

a0 = a1 = 1, a2 = 2.

Proof.

The number of derived subgraphs of Pn not containing the vertex v1 is an−1,

and let the number of derived subgraphs which contain v1 be denoted cn then

an = an−1 + cn, and cn can be determined as follows. The number of derived

subgraphs which contain v1 and v2 and do not contain v3 is an−3, and the number

of derived subgraphs which contain v1, v2 and v3 is cn−1 = an−1 − an−2. Then

cn = an−3 + an−1 − an−2

and

an = 2an−1 − an−2 + an−3.

84

There are two equivalent formulas to calculate the number bn for a given cy-

cle. The following theorem describes one of them.

Theorem 6.5. [21]

Let Cn be a cycle on n ≥ 4 vertices. Then the number bn of its derived

subgraphs satisfies the relation

bn = an−1 + 2(n − 1) +
n−3
∑

i=2

i an−i−2. (6.6)

Proof.

Let Cn be the cycle v1, v2, ..., vn, v1. Let x1 denote the number of derived

subgraphs of Cn not containing v1; then x1 = an−1. On the other hand, let

x2 denote the number of derived subgraphs which contain v1. Such a derived

subgraph contains a path Pi of length (i − 1) that contains v1, and a derived

subgraph of path of order (n− i− 2), where 2 ≤ i ≤ n− 1. Then for fixed i this

number is ian−i−2. Thus

x2 =
n−3
∑

i=2

i an−i−2 + (n − 2) + (n − 1).

Moreover Cn is a derived subgraph of itself. Therefore

bn = x1 + x2 + 1

and

85

bn = an−1 + 2(n − 1) +
n−3
∑

i=2

i an−i−2.

The number of derived subgraphs for a given path Pn or cycle Cn which con-

tain an arbitrary edge in E(Pn) or E(Cn) respectively are presented here.

Theorem 6.6. [21]

Let Pn : v1, e1, ..., vi, ei, vi+1, ..., en−1, vn be a path. Then the number of derived

subgraphs of Pn which contain the edge ei, i = 1, 2, ..., n − 1 is equal to

an − aian−i−1 + ai−1(an−i−1 − an−i). (6.7)

Proof.

Let xi denote the number of derived subgraphs containing vi and vi+1, x2

denote the number of derived graphs containing vi but not containing vi+1 while

x3 denote the number of derived subgraphs containing vi+1 but do not contain

vi, and x4 denote the number of derived subgraphs containing neither vi nor vi+1

then

x1 + x2 + x3 + x4 = an,

x4 = ai−1an−i−1,

x2 + x4 = aian−i−1,

86

x3 + x4 = ai−1an−i,

x1 = an − (x2 + x4) − (x3 + x4) + x4,

∴ x1 = an − aian−i−1 + ai−1(an−i−1 − an−i).

Theorem 6.7. [21]

Let Cn denote the cycle v1, e1, ..., en−1, vn, en, v1. Then the number of derived

subgraphs of Cn which contain an arbitrary edge e ∈ E(Cn) is equal to

1 + 3(n − 3) +
n−4
∑

i=2

(i − 1)an−2−i. (6.8)

Proof.

Let y1 be the number of derived subgraphs of Cn which contain an arbitrary

edge, say, en = v1vn and take the set B′ = {v2, ..., vn−1}. The number of derived

subgraphs which contain the edge en and result by removing one vertex from

B′ is n− 2. If we remove two consecutive vertices from B′, the resulting number

is (n − 3), while the number is (n − 4) when remove three consecutive vertices.

Moreover, Cn is a derived subgraph of itself.

Now suppose the edge v1vn belongs to a component of the derived subgraph

which is a path of order i where i = 2, 3, ..., n − 4. The number of such derived

subgraphs, for a fixed i, is equal to (i − 1)an−i−2. Then

87

y1 = 1 + (n − 4) + (n − 3) + (n − 2) +
n−4
∑

i=2

(i − 1)an−2−i.

The next consideration is a special case of a bipartite graph G(n, n) on 2n

vertices in which deg(v) = n − 1 for each v ∈ V (G(n, n)).

Theorem 6.8. [21]

Let G(n, n) be a bipartite graph with two partitioning sets V1 and V2, where

|V1| = |V2| = n and deg(v) = n − 1 for each v ∈ V (G(n, n)). Then

nd(G(n, n)) = 22n + n + 2 − n2n − 2n+1.

And each edge uv ∈ E(G(n, n)) is contained in exactly 2n−1(2n−1 − 1) derived

subgraphs.

Proof.

Let V1 = v1, v2, ..., vn and V2 = u1, u2, ..., un where uivi 6∈ E(G(n, n)) for each

i = 1, 2, ..., n.

To form a derived subgraph, we take S1 ∪ S2 where Si ⊂ Vi for i = 1, 2. If

|S1| ≥ 2 and |S2| ≥ 2 then we get a derived subgraph.

If |S1| = 1, say S1 = vi then φ 6= S2 ∪ V2 \ {ui}. This shows that

88

ndG(n, n) = (2n − n − 1)2 + 1 + 2n(2n − 1).

Now we fix an i = 2, 3, ..., n. We count the number of derived subgraphs which

contain the edge v1ui. Such derived subgraph will have the form S1 ∪ S2 where

v1 ∈ S1 ⊂ V2.

Again if |S1| ≥ 2 and |S2| ≥ 2 then we have a derived subgraph.

If, say S1 = {v1} then u1 /∈ S2. This shows that the number of derived

subgraph which contain viui is equal to

(2n−1 − 1)2 + 2(2n−2) − 1 = 22n−2 − 2n−1.

Many results related to the number of derived subgraphs and residual edges

for the paths, cycles, complete graphs, star graphs and bipartite graphs are

presented in [21].

6.4 The Serial Derived Subgraph Algorithm

Here we consider a serial algorithm to calculate the number of derived subgraphs

for a given graph G0. The algorithm also determines residual and non-residual

edges. In addition this algorithm shows every derived subgraph of G0. The

parameters of the algorithm are:

89

i) The number total denotes the number of all derived subgraphs of G0.

ii) The set S ⊂ V (G0) represented by an array S[j], j = 1, . . . , n. The initial

subset is the empty set denoted S0.

iii) The (i, j) entry of the matrix E[i, j] is the number of derived subgraphs

which contain the edge vivj.

The graph G0 has n vertices and m edges represented by the Adjacency-Graph

class, where a[i][j] is the entry element (i, j) in the adjacency matrix A. The

algorithm finds all subsets of V (G0); then it checks if the current subset induces

a derived subgraph or not. The algorithm finds the number of derived subgraphs

that contain any edge e ∈ E(G0).

In the beginning, we assume that the initial subset S0 is represented by an

array S[j] = 0. The subgraph induced by S0 is the empty derived subgraph.

We outline below the initialize procedure which considers the empty subgraph

as the first derived one.

1: Take the empty set to be the initial subset S0.
2: Set the value of total = 1.
3: For every edge e = (i, j) let E[i, j] = 0.
4: Done ←− False.

Algorithm 10: Initialize-subset (G0, S0)

90

After initialization the algorithm finds all subsets of V (G0). The simplest

approach to get a new subset is based on the observation that any subset S ′ of

V (G0) is defined by which of the n = |V | items are in S ′. We can represent S ′

by a binary string of n bits, where bit i is 1 if and only if the ith element of S

is in S ′. This defines a bijection between the 2n binary strings of length n, and

the 2n subsets of n items. For n = 3, binary counting generates subsets in the

following order: {}, {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}.

This alternative is known as a binary counting representation; it is the key to

solving all subset generation problems. To generate all subsets in order, simply

count from 0 to 2n − 1 . For each integer, successively mask off each of the bits

and compose a subset of exactly the items corresponding to 1 bits. To generate

the next or previous subset, increment or decrement the integer by one. We give

now the Next-Subset procedure.

1: j ←− n + 1
2: repeat
3: j ←− j − 1
4: until ((S[j] = 0)or(j = 0))
5: if j 6= 0 then
6: S[j] ←− 1
7: MAX ←− j
8: for i = MAX + 1 −→ n do
9: S[i] = 0

10: end for
11: else
12: Done ←− True
13: end if

Algorithm 11: Next-Subset(G0, S)

91

The procedure Check-Subset(G0, S) verifies the current set S as a derived

subgraph or not. A precise description of this process is the following.

1: DERIVED ←− False
2: count ←− 1
3: for k = 1 −→ MAX do
4: if S[k] = 1 then
5: sum = 0
6: for j = 1 −→ n do
7: sum = sum + a[k][j] ∗ S[j]
8: if sum 6= 0 then
9: sum ←− 1

10: count ←− count * sum
11: end if
12: end for
13: end if
14: end for
15: if count 6= 0 then
16: DERIVED ←− True
17: end if

Algorithm 12: Check-Subset(G0,S)

In the main procedure (denoted SDS) of the algorithm calls all subsets one

by one and checks if the current subset is a derived subgraph or not. If it is,

the algorithm adds one to the parameter total and it checks all edges if they are

residual or not.

The SDS algorithm can be shown to run in n2n time, where n is the number of

vertices in the given graph. There are 2n subsets of V (G0). We check every one

by calling Check-Subset(S). The Check-Subset(S) procedure requires time n.

We need exactly 2n − 1 calls of Next-Subset procedure, each one runs in n time.

Then the total running time of derived subgraph algorithm is n2n sequential

time.

92

1: Initialize-subset(G0,S0)
2: while Not Done do
3: Get-Next-Subset (G0, S) of the vertex set V (G0).
4: Check-Subset(G0, S)
5: if DERIVED then
6: total ←− total + 1 {Once a derived subgraph has been induced, the algorithm counts

the frequency for each edge e = (vi, vj)}
7: for each edge e = (vi, vj) do
8: if S[i] = S[j] = 1 then
9: E[i, j] ←− E[i, j] + 1

10: end if
11: end for
12: end if
13: end while
14: Return total,
15: For each e = (vi, vj) if E[i, j] > total/2 the edge e is residual otherwise it is non-residual

Algorithm 13: SDS(G0, n, m)

6.4.1 Related Works

A derived subgraph is a graphic version of the Union-Closed Family sets. Up

to my knowledge and according to the review of the related literature there is

no published work that describes scientific or commercial applications for the

derived subgraphs problem or residual and non-residual edges in a given graph.

However, I believe the cheminformatics and bioinformatics provide two domains

to apply derived subgraphs analysis. Some researchers have used the frequent

subgraph mining problem, which is a similar problem and most closely related

to the one considered in this study. They used that problem in various appli-

cations in the cheminformatics and bioinformatics fields (For instance, consider

a problem of mining chemical compounds to find recurrent substructures). See

for example [15], [16], [19], [30] and [31].

93

In the following paragraphs we describe the frequent subgraph mining prob-

lem and show how it is similar to the derived subgraph problem.

Definition 6.3 (The Frequent Subgraphs).

Given a set D = {G1, ..., Gn} of labeled graphs Gi, i = 1, ..., n. D is referred to

as a graph database. The support of an arbitrary graph g - denoted support(g)-

is the number of graphs in D in which g is a subgraph. The graph g is

frequent if support(g) ≥ σ, where 0 < σ < 1 is a minimum support threshold;

a frequent subgraph is maximal if none of its super graphs are frequent. The

problem of frequent subgraph mining is to find all connected frequent subgraphs

from a graph database D.

The Frequent Subgraphs Methodology

To find the frequent subgraphs, every graph in D is represented by an adja-

cency matrix M . Then define the code of M , denoted code(M), as the sequence

of lower triangular entries of M . A graph can be represented in many different

codes, depending on the order of its edges or vertices. Given a graph G, its

canonical form is the maximal code among all its possible codes. The adjacency

matrix which produces the canonical form is denoted as G’s canonical adjacency

matrix (CAM). The methodology for solving the frequent problem is outlined

below.

Step I- Enumerating all the frequent subgraphs: This methods might be

classified into two categories. One is the join operation (see Fig 6.2): The sub-

94

v1
v2

v3

e1

e1

e2e3

v

v1

v1
v2

v3

e1

e1

e2e3

v

v1

1
v2

v3

v

v1

e1

e1

e2

e4

+

e4

Figure 6.2: The subgraph of size 5 is generated by joining two frequent 4−subgraph.

graphs of size (k + 1) are generated by joining two frequent k−subgraph. In

order for two frequent k−subgraphs to be eligible for joining they must contain

the same (k − 1)−subgraph. This joining of two subgraphs of size k can lead to

multiple subgraphs of size k + 1. The major challenge for the join operations is

that every distinct subgraph is generated only once.

The other one is the extension operation: Starting from the subgraphs of size

k, generates candidate subgraphs whose size is (k + 1) by adding an additional

edge(while preserving connectivity) to the k−subgraphs.

Step II- Frequency Counting: Once the candidate subgraphs have been gen-

erated, the proposed methodology counts the frequency for each of these candi-

dates, and prunes subgraphs that do not satisfy the σ threshold.

From the above description of the frequent subgraph mining problem and the

work done by others for that problem, we can recognize the theoretic similari-

ties between the frequent subgraph mining problem and the derived subgraph

problem.

95

In the beginning, the derived subgraph methodology can be used to find and

enumerate all connected subgraphs in Step I. This proceeds as follows: Initially

induce the line graph L(G) of G. Then apply the SDS(L(G),m,m ′) algorithm

to enumerate all derived subgraphs of L(G). Once the derived subgraphs of L(G)

have been induced, consider only the connected ones, and prunes other derived

subgraphs. Finally enumerate all the single node subgraphs of the graph L(G)

(corresponding to the single edge subgraphs in G). All the above generated

subgraphs of L(G) are corresponding to all the subgraphs in Step I.

On the one hand and returning to the definition of the frequent subgraph

problem, we find that the graph dataset D and the set of all derived subgraph

D(G0) are similar in having threshold. However we note that the threshold is

not necessarily equal for both of them. The threshold σ (in the frequent problem

) may have several values, but in the derived subgraph problem the threshold

has a fixed value, 1/2. Another way of similarity between the solution of the

two problems is that each finds the subgraphs that belong to more than the

set defined by this threshold. The frequent methodology finds the subgraphs

(for example g) that can belong to more than or equal to σ of the graphs in D,

while the derived subgraphs methodology finds the edges in D(G0) that belong

to more than 1/2 of the graphs in D(G0).

Let G0 be a graph with n vertices and m edges and g ⊂ G0 a subgraph with

α edges. Since g is a subgraph of exactly 2m−α graphs in the power set 2E(G0),

96

then, based on conjecture 2, the subgraph g belongs to at most 1/2α of the

derived subgraphs of G0. Let us call a subgraph g of G0 residual if it belongs

to more than 1/2α of the derived subgraphs of G0, otherwise g is non-residual.

Therefore conjecture 2 is equivalent to the following.

Conjecture 3. Every non-empty graph G0 contains at least one non-residual

subgraph.

We arrive to the following conjecture which is implied by conjecture 3.

Conjecture 4. Let D = {G1, ..., Gn} be a graph database set. Then there

exists an arbitrary graph g with α edges and support(g) ≤ 1/2α.

On the other hand, I guess we could use the frequent subgraph methodology

(see FFSM algorithm [15]) to check for residual edges, and we should feed it

the set D(G0), we set the support at 0.5 and count only the frequency of the

single edge subgraphs in G0.

Hence we believe that our problem is applicable in the same areas as the

frequent subgraph mining problem.

6.4.2 The Modification of Serial Derived Subgraph Algorithm

Before we describe our parallel algorithm, we need to add new functions to the

SDS procedure. For an input graph G0 a proper non-empty subset V g(G0) is

called the set of global vertices. For any subset Ii ⊆ V g(G0) we give below two

97

distinct kinds of graphs that contain Ii.

1- The set D0(Ii) gives all derived subgraphs which contain all the global vertices

of Ii

D0(Ii) = {s| s ∈ D(G0), s.t. for each global vertex v ∈ s =⇒ v ∈ Ii}. (6.9)

2- The set <0(Ii) contains all subgraphs of G0 which contain all vertices in Ii as

the only pairwise nonadjacent vertices.

<0(Ii) = {s| s ⊂ G0, s.t.∀ v ∈ s deg(v) = 0 if and only if v ∈ Ii}. (6.10)

In the modifying process we write the main procedure denoted MSDS which

was used only in the last phase of our parallel proposed algorithm. The MSDS

procedure uses two arrays X and Y to store the numbers of the sets D0(Ii)

and <0(Ii) respectively. The i−th position of the arrays X and Y represents

the numbers |D0(Ii)| and |<0(Ii)| respectively. The MSDS procedure (as SDS

procedure) calls all subsets of V (G0) one by one and checks if the current sub-

set induces a derived subgraph or not. If it is, the MSDS procedure (different

from SDS) calls SUBPROCEDURE-1 which returns the array X. If the current

subset does not induce a derived subgraph, the MSDS procedure (different from

SDS) calls SUBPROCEDURE-2 which returns the array Y . The MSDS proce-

dure (as SDS procedure) finds the number of derived subgraphs and determines

the residual and non-residual edges. Below, we present a high-level outline of

the MSDS procedure which returns the following:

98

1: Create the empty arrays X1,Y1 and X2 Y2

2: Initialize-subset(G0, S0)
3: while Not Done do
4: Next-Subset (G0, S)
5: Check-Subset(G0, S)
6: if S induces a derived subgraph then
7: nd(G0) ←− nd(G0) + 1

{If the current subset induces a derived subgraph, the algorithm counts all derived
subgraphs which contain an arbitrary subset of global vertices.}

8: SUBPROCEDURE-1
{Once a derived subgraph has been induced, the algorithm counts the frequency for
each edge e = (vi, vj)}

9: for each edge e = (vi, vj) do
10: if S[i] = S[j] = 1 then
11: E[i, j] ←− E[i, j] + 1
12: end if
13: end for

{If the current subset does not induce a derived subgraph, the algorithm counts all
subgraphs which contain an arbitrary subset of global vertices as the only pairwise
non-adjacent vertices.}

14: else
15: SUBPROCEDURE-2
16: end if
17: end while

Algorithm 14: MSDS(G0, n, m)

1- The number of derived subgraph nd(G0) for the given graph

2- The number |D0(Ii)| that is represented in the i−th position of the array X,

for any arbitrary global set Ii

3- The number |<0(Ii)| that is represented in the i−th position of the array Y ,

for any arbitrary global set Ii

4- The residual and non-residual edges

The MSDS procedure considers two disjoint sets with a constant number of

global vertices, the first denoted V g
1 and the second denoted V g

2 . Then the MSDS

99

procedure returns the arrays (X1, Y1) and (X2, Y2) corresponding to V g
1 and V g

2

respectively.

Implementation Note 1

In step 8 of procedure MSDS, we use the SUBPROCEDURE-1 which re-

turns the two arrays X1 and X2. The sub-procedure initially creates (in lines

1-2) two empty sets I and J and two integers k and z. The for loop in lines

3−11 looks for the global vertices of V g
1 (or V g

2) and stores those vertices in the

set I (or in the set J). In line 12 we create an index for each subset I of global

vertices. We let this index equals i. In line 13 we increase the i−th position of

the array X1 by one. This means that the number of derived subgraphs which

contains the subset Ii ∈ V g
1 is increased by one. In line 14 we create an index

for the subset J of global vertices. We let this index equals j. In line 15 we

increase the j−th position of the array X2 by one. This means that the number

of derived subgraphs which contains the subset Jj ∈ V g
2 is increased by one.

How fast is SUBPROCEDURE-1 ? Because the length of the current sub-

set S equals n, the for loop in lines 3−11 is executed O(n) times, which in total

takes O(n) time. Other steps in the sub-procedure take time O(1). Therefore,

the total running time is O(n).

Implementation Note 2

In step 15 of procedure MSDS, we use the SUBPROCEDURE-2 which

returns the two arrays Y1 and Y2. In line 1 we induce the subgraph S (is

100

1: I, J ←− φ
2: k, z ←− 0
3: for each vi ∈ S do
4: if vi ∈ V g

1 then
5: I ←− I ∪ vi

6: k ←− k + 1
7: else if vi ∈ V g

2 then
8: J ←− J ∪ vi

9: z ←− z + 1
10: end if
11: end for
12: i ←− index.subsets(I, k, |V g

1 |)
13: x1[i] ←− x1[i] + 1
14: j ←− index.subsets(J, z, |V g

2 |)
15: x2[j] ←− x2[j] + 1

Algorithm 15: SUBPROCEDURE-1: Compute X1 and X2

induced on the subset S). In lines (2− 4) we create two empty sets I and J and

some integer numbers k, z, and d.

The for loop in lines 5 − 21 looks for the global vertices in V g
1 (or V g

2) and

stores those vertices in the set I (or in the set J). In lines 6 and 9 we consider

here only the global vertices which are pairwise non-adjacent vertices in the in-

duced subgraph S . In line 13 the value di refers to the degree of the local (not

global) vertex vi ∈ V (S). In line 15 if there is an isolated local vertex in the

induced subgraph S we delete the subgraph S and terminate the sub-procedure.

In line 16 we create an index for each subset I of global vertices. We let this

index equal i. In line 17 we increase the i−th position of the array Y1 by one.

This means that the number of subgraphs which contains the subset Ii ∈ V g
1 (as

the only pairwise non-adjacent vertices in S) is increased by one. In line 18

we create an index for the subset J of global vertices. We let this index equal

j. In line 19 we increase the j−th position of the array Y2 by one. This means

101

that the number of subgraphs which contains the subset Jj ∈ V g
2 (as the only

pairwise non-adjacent vertices in S) is increased by one. Finally, in line 22 we

delete the induced subgraph S.

How fast is SUBPROCEDURE-2 ? Because the length of the current sub-

set S equals n, the for loop in lines 5−21 is executed O(n) times, which in total

take O(n) time. Other steps in the sub-procedure take time O(1). Therefore,

the total running time is O(n).

1: S is the induced subgraph on S
2: I, J ←− φ
3: k, z ←− 0
4: d ←− 1
5: for each vi ∈ S do
6: if vi ∈ V g

1 and deg(vi) = 0 then
7: I ←− I ∪ vi

8: k ←− k + 1
9: else if vi ∈ V g

2 and deg(vi) = 0 then
10: J ←− J ∪ vi

11: z ←− z + 1
12: else
13: d ←− d × di,
14: end if
15: if d 6= 0 then
16: i ←− index.subsets(I, k, |V g

1 |)
17: y1[i] ←− y1[i] + 1
18: j ←− index.subsets(J, z, |V g

2 |)
19: y2[j] ←− y2[j] + 1
20: end if
21: end for
22: Delete the induced subgraph S

Algorithm 16: SUBPROCEDURE-2: Compute Y1 and Y2

The MSDS algorithm uses all the sub-procedures; Initialize, Next-Subset,

and Check-Subset as does the SDS algorithm. There are two additional subrou-

102

tines SUBPROCEDURE-1 and SUBPROCEDURE-2 every one of them

running in O(n) time. Therefore, the modified procedure MSDS has the same

running time as the SDS algorithm. It runs in O(n2n) time, where n is the

number of vertices in the given graph.

The proposed PDS algorithm is a parallel application of the serial derived

subgraph algorithm. The graph G0 will be divided into a number of subgraphs

in order to apply the proposed method to each of them. The following section

describes the assumptions needed to do this.

6.5 Parallel Derived Subgraph Algorithm

In this section, we outline the parallel method used to find the set of all de-

rived subgraphs, and to recognize the residual and non-residual edge of a given

undirected graph G0.

6.5.1 Assumptions and Definitions

The partitioning of the graph G0 into a number of subgraphs is the key idea in

the parallel derived subgraph algorithm (denoted PDS). Let the vertices of the

graph G0 = (V,E) are partitioned into the two sets V1 and V2. We define the set

of bridge (shared) edges to be the edge subset H(G0) ⊂ E(G0) where an edge

(v, w) ∈ H(G0), if and only if v ∈ V1 and w ∈ V2. A vertex is considered in the

global set of vertices V g(G0), if and only if the vertex is an endpoint for some

edges in H(G0). We use the set of local vertices, denoted V l as the set V − V g,

103

and we use V g
i to denote the vertex set V g ∩ Vi where i = 1, 2.

To simplify the presentation and make our proposed parallel algorithm clear,

we first apply the algorithm on the special class of graphs that have a non-empty

proper subset W of the vertex set V of the input graph such that the number

of edges joining W and V −W is one. The tree graphs and the graph shown in

Fig.(6.3a) belong to this class.

Let G1 and G2 be the two subgraphs induced on V1 and V2 respectively such

that there is only one edge e = (v, u) connecting G1 and G2, where v and u

are the global vertices of G1 and G2 respectively. We will use the term missing

set to describe the set of derived subgraphs of G0 that contain the bridge edge

e = (v, u), such that, deg(v) = 1 or deg(u) = 1, or deg(v) = deg(u) = 1. Let this

missing set be denoted D
(e)
out(G1,G2), and its cardinality be denoted n

(e)
out(G1,G2).

The method will then find all the derived subgraphs that belong to D
(e)
out(G1,G2).

The number of derived subgraph nd(G0) satisfies the following equality (see

Lemma (6.5)):

nd(G0) = nd(G1)nd(G2) + ne
out(G1,G2). (6.11)

To calculate ne
out(G1,G2) let <1(v) (<2(u)) denotes the set of all induced

subgraphs of G1 (G2) that contain the global vertices v (u) as the only isolated

vertex. The set of derived subgraphs of G1 (G2) that contain v (u) is denoted

D1(v) (D2(u)). Based on that the following three derived subgraph sets can be

104

constructed:

The Set S1: The set of all non-empty derived subgraphs induced by all sub-

graphs <1(v) and <2(u) together, S1 =< <1(v) ∪ <2(u) >.

The Set S2: The set of derived subgraphs induced by D1(v), and <(u) to-

gether, S2 =< D1(v) ∪ <2(u) >.

The Set S3: The set of all derived subgraphs induced by D2(u), and <1(v)

together, S3 =< D2(u) ∪ <1(v) >.

Note that all derived subgraphs resulting from the above sets keep track of the

global vertices and the bridge edges. We give the following example to illustrate

how the PDS-Algorithm works.

Example 6.2.

This example is a straightforward implementation of the following lemma (6.5)

using the graph G0 shown in Fig. (6.3a). The graph G0 has been divided into

two equal subgraphs G1 and G2 each is a triangle, then

nd(G1)nd(G2) = 5 × 5 = 25.

The global vertices of G1 and G2 are v2 and v4 respectively (shown black in

Fig. (6.3a)). As

|<1(v2)| = |<2(v4)| = 1, |D1(v2)| = |D2(v4)| = 3. (see Fig. 6.3), then

105

v4
v2

v2 v4

v5

v6

v1

v3

nd 3(C) = 5

v 4

v5

v6

global
vertex

v

(e)

v

n (C) = 5
d 3

v3

1

v
2

(c)

(b)

(d)
v3

v
2

v2

v2 v4

v4

v4

v
5

v4

v2

v
6

v4

v2

v6

5

v4

v2

(a)

v1

v3

1
v

Figure 6.3: (a) A graph G0 that contains v2 and v4 as the global vertices. (b) The two
subgraphs G1, G2. (c) The derived subgraphs induced by <1(v2) and <2(v4), (d) The derived
subgraphs induced by <2(v4) and D1(v2). (e) The derived subgraphs induced by <1(v2) and
D2(v4).

106

ne
out(G1,G2) = |<1(v2)||<2(v4)| + |D1(v2)||<2(v4)| + |<1(v2)||D2(v4)|.

n
e=(v2,v4)
out (G1,G2) = 1 × 1 + 3 × 1 + 1 × 3 = 7.

Thus, by substituting in equation (6.11) we get:

nd(G0) = 25 + 7 = 32.

Lemma 6.5.

Let V = V1 ∪ V2 be a partition of the vertex set V (G0) of a graph G0. Let the

subgraphs induced by V1 and V2 be denoted G1 and G2 respectively. There is only

one bridge edge e = (v, u) such that v ∈ V (G1) and u ∈ V (G2). Then

nd(G0) = nd(G1)nd(G2) + ne
out(G1,G2) (6.12)

And

ne
out(G1,G2) = |<2(u)||<1(v)| + |D1(v)||<2(u)| + |<1(v)||D2(u)|. (6.13)

Proof.

Consider an arbitrary derived subgraph S ∈ D(G0). If S does not contain

the bridge edge e then S ∈ D(G1) or S ∈ D(G2) and hence S is counted in the

number nd(G1)nd(G2).

107

Let S contains the bridge edge e = (v, u) which means that S contains the

global vertices v and u. Therefore the edge e connects two subsets s1 ∈ V (G1)

and s2 ∈ V (G2). Let us consider here all possible kinds of s1 and s2 :

Case 1: s1 and s2 are derived subgraphs, then S is counted in nd(G1)nd(G2).

Case 2: s1 and s2 have the global vertices as the only isolated vertices, then

S ∈ S1.

Case 3: Let s1 ∈ D(G1) and s2 has an isolated vertex. If this isolated vertex

is u then S ∈ S2. Otherwise the subgraph S contains an isolated vertex. So that

S /∈ D(G0) and this contradicts our assumption.

Case 4: The last case is similar to Case 3 only we exchange the conditions

of s1 with the conditions of s2. Let s2 ∈ D(G2) and s1 has an isolated vertex.

If this isolated vertex is u then S ∈ S3. Otherwise the subgraph S contains an

isolated vertex. So that S /∈ D(G0) and this contradicts our assumption.

Then the derived subgraph S ∈< D(G1)∪D(G2) > ∪S1∪S2∪S3. This proves

the first direction.

Conversely, if S ∈ D(Gi), for any subgraph Gi ⊂ G0, then as in the proof of

Lemma(6.1) S ∈ D(G0). It follows that

108

D(G0) = {S : S ∈< D(G1) ∪ D(G2) >, or S ∈ (S1 ∪ S2 ∪ S3)}

and

nd(G0) = nd(G1)nd(G2) + |<2(u)||<1(v) + |D2(u)||<1(v)| + |<2(u)||D1(v)|.

Since ne
out(G1,G2) denotes the cardinality of the missing derived subgraph set,

then

ne
out(G1,G2) = |<2(u)||<1(v)| + |D2(u)||<1(v)| + |<2(u)||D1(v)|.

In summary, this subsection showed how to use the proposed PDS algorithm

to find the value of ne
out(G1,G2) in a parallel approach that divides the graph

G0 into two subgraphs. We showed a simple case in which the graph G0 has

been divided into two subgraphs G1 and G2 that are connected by only one

bridge edge. In the following subsections more divisions will be considered and

the algorithm will be compared to the serial method with respect to the running

time.

6.5.2 Desired Divide Step

A better graph partition criterion seeks a small shared edge that partitions the

vertices into roughly equal-sized pieces. If p subgraphs are required the partition

109

method is called a general p−way partition. An instance of graph partitioning

that deserves special attention is the graph bisection problem. This is simply

a variation on graph partitioning in which G0 must be divided into two sub-

sets. The most commonly used p−way partitioning method is recursive bisec-

tion. Unfortunately, although bisection seems considerably easier than general

p−way partitioning, it is still NP-hard. Fortunately, certain special graphs al-

ways have small separators, which partition the vertices (in polynomial time)

into balanced pieces. For any tree1, there always exists a single vertex whose

deletion partitions the tree so that no component contains more than n/2 of the

original n vertices. Similarly, every necklace graph (Figure 6.3a and 6.7a) has a

constant number of vertices whose deletion leaves two components with roughly

equal size. Every planar graph has a set of vertices whose deletion leaves no

component with more than 2n/3 vertices. The bounded degree graphs 2 have

a set of vertices whose deletion leaves two components with roughly equal size.

Graphs embeddable in interval graphs have a small set of vertices whose deletion

leaves two components with roughly equal-size. Our Divide Step runs on the

above graphs and the graphs with n vertices and m = O(n) edges. So that our

parallel derived subgraph algorithm runs on the above graphs. The proposed

algorithm uses a recursive bisection algorithm. In each phase the proposed al-

gorithm uses a simple optimal bisection algorithm working in logarithmic time

(see Fig. 6.4).

We use a very simple deterministic strategy to divide the input graph into

1The star grah K(1, n) is not included here because there is a formula which already computes the number
nd(K(1, n)) see Lemma 6.3.

2A graph is bounded degree if the maximum degree of its vertices is bounded.

110

Figure 6.4: An example demonstrating the use of recursive bisection which is used in our
proposed algorithm.

two roughly equal-sized graphs. Let the input be a graph G = (V,E) with n

verteices and m edges. Let V g be the set of global vertices. For all S ⊂ V (G),

define the neighborhood of S to be N(S) = {i ∈ V : ∃ j ∈ S, (i, j) ∈ E(G)}.

The output consists of two vertex subsets S and V −S with a roughly equal-size.

1: S ←− V g

2: I ←− N(S)
3: while |S| < n/2 do
4: S ←− S ∪ I
5: I ←− N(I)
6: end while

Algorithm 17: BISECTION(V (G), V g)

The first two steps can be executed in constant. The body of the while loop

is executed at most (log n) times, where each execution takes constant time.

Therefore the total expected running time is O(log n).

6.5.3 Description of the Parallel Derived Subgraphs Algorithm

In this subsection, we describe the first parallel efficient derived subgraph al-

gorithm that finds and counts all derived subgraphs of a graph G0 = (V,E)

which has n vertices and m edges. The input graph G0 will be divided into

a number of subgraphs with at least one shared edge connecting every two

of them(minimizing the shared edges). Let G0 = (V,E) be a graph with

111

vertex set V (G0) on n vertices and an edge set E(G0) on m edges. Let the

mapping Ψ : V (G0) −→ {1, 2, ..., l} represent the assignment of the vertex

set V (G0) to the set {1, 2, ..., l}. The mapping Ψ returns the number l of the

partition to which each vertex belongs. We define the set of local vertices by

V l = {v| Ψ(v) = Ψ(u) ∀ (v, u) ∈ E(G0)} and the set of global vertices by

V g = {v| ∃ (v, u) ∈ E with Ψ(v) 6= Ψ(u)}. Given that, we consider the graph

partitioning V (G0) = V1∪V2 and E(G0) = E1∪E2, where Ei refers to the set of

unordered pairs of distinct vertices of Vi for i = 1, 2. Then we assume that the

subsets V1 and V2 have nearly equal numbers of vertices while the shared edges

between them is minimum.

As shown in Fig. (6.5) all edges such as ei = (v, u) where v ∈ V g
i and u ∈ V g

j

are shared edges. The set of all shared edges H is given as follows:

H = {ei : ei = (v, u), v ∈ Vi and u ∈ Vj ∀ i 6= j}.

Applying the PDS algorithm on G0 are obtained the following four non-

identical subgraphs:

G1 is the induced subgraph on V1,

G2 is the induced subgraph on V2,

Ḡ1 is the induced subgraph on V1 ∪ < H >,

Ḡ2 is the induced subgraph on V2 ∪ < H >.

The two subgraphs G1 and G2 are called the partite of G0, while Ḡ1 and Ḡ2

112

G2G1

global vertex

shared edge

u v

w s

x

y

z

l

m

n

Figure 6.5: A graph G0 has two subgraphs G1 and G2, and V1 = {x, y, z, s, v}, V2 =
{l,m, n,w, u}. The shared edges are dotted

are called the assistant subgraphs. The set of global vertices of the partite sub-

graphs G1 and G2 were defined at the beginning of this subsection. The set of

global vertices of the assistant subgraphs Ḡ1 and Ḡ2 are V g
2 and V g

1 respectively.

We denote the missing derived subgraphs by Dh
out(G1,G2) for all h ⊂ H, and

its cardinality is nh
out(G1,G2). The partite vertex set incident with the edge set

h consists of si ⊂ V g
1 and sj ⊂ V g

2 . Let We define the following graph sets:

1- The set Di(si) gives all derived subgraphs of Gi which contain all the global

vertices of si.

Di(si) = {G| G ∈ D(Gi), s.t. for each global vertex v ∈ G =⇒ v ∈ si}.

2- The set <i(si) contains all subgraphs of Gi which contain all vertices in si as

the only pairwise nonadjacent vertices.

<i(si) = {G| G ⊂ Gi, s.t. ∀ v ∈ G deg(v) = 0 if and only if v ∈ si}.

113

3- The set D̄i(si) gives all derived subgraphs of Ḡi which contain all the global

vertices of si.

D̄i(si) = {G| G ∈ D(Ḡi), s.t. for each global vertex v ∈ G =⇒ v ∈ si}.

4- The set <̄i(si) contains all subgraphs of Ḡi which contain all vertices in si as

the only pairwise nonadjacent vertices.

<̄i(si) = {G| G ⊂ Ḡi, s.t. ∀ v ∈ G deg(v) = 0 if and only if v ∈ si}.

The set Dh
out(G1,G2) will be one of the following three sets:

The Set S1: The set of all non-empty derived subgraphs induced by all sets

<1(si) and <2(sj) together.

The Set S2: The set of derived subgraphs induced by all derived subgraphs

of D1(si) that contain si, and all subgraphs <2(sj) together.

The Set S3: The set of derived subgraphs induced by all derived subgraphs

of D2(sj) that contain sj, and all subgraphs <1(si) together.

The analogue of Lemma (6.5) is the following Lemma (6.6). It proves the

correctness of the steps which are executed by the proposed algorithm. So the

Lemma does not present the number nd(G0) as a function in the number of

vertices or the number of edges in the input graph, rather the way to obtain all

114

derived subgraph such that every distinct derived subgraph is generated only

once.

Lemma 6.6.

Let V = V1 ∪ V2 be a partition of the vertex set V (G0) of a graph G0. Let the

set of bridge edges is denoted H. The subgraphs induced by V1, V2, V1 ∪ H, and

V2 ∪ H are denoted G1, G2, Ḡ1, and Ḡ2 respectively. If |V g
1 | ≤ |V g

2 | and for any

subset si ∈ V g
1 the adjacent subset of V g

2 is sj. Then

nd(G0) = nd(G1)nd(G2) + nH
out(G1,G2) (6.14)

where

nH
out(G1,G2) =

∑

∀ si⊆ V g
1

(

|D̄2(si)||<1(si)|+{|D̄1(sj)|−|<1(si)|}|<2(sj)|

)

. (6.15)

Proof.

The same proof as for Lemma (6.5), except we consider the subset si ∈ V g
1

and sj ∈ V g
2 instead of v and u.

Consider an arbitrary derived subgraph S ∈ D(G0). If S does not contain

a bridge edge e then S ∈ D(G1) or S ∈ D(G2) and hence S is counted in the

number nd(G1)nd(G2).

Let S contains a set of bridge edges h which means that S contains two sets

of global vertices si ∈ V g
1 and sj ∈ V g

2 . Therefore the edge set h connects two

115

subgraphs µ1 ∈ V (G1) and µ2 ∈ V (G2). Let us consider here all possible types

of µ1 and µ2.

Case 1: µ1 and µ2 are derived subgraphs, then S is counted in nd(G1)nd(G2).

Case 2: µ1 and µ2 have the global vertices si and sj respectively as the only

isolated vertices, then S ∈ S1. Then

|S1| = |<1(si)||<2(sj)| (6.16)

Case 3: µ1 induces a derived subgraph of G1, and the subgraph induced on µ2

has a set of isolated vertices, sj . If sj is a set of pairwise nonadjacent vertices

in G2 then S ∈ S2. Otherwise the subgraph S contains isolated vertices and

hence S /∈ D(G0), which contradicts our assumptions. For case 3 we estimate

the number of derived subgraphs as follows.

We introduce the assistant subgraph Ḡ1. The derived subgraphs induced by

joining the subgraphs D̄1(sj) and <2(sj) together belong to the graphs of types

S1 and S2. The derived subgraphs belong to S1 and S2 can be induced from

joining the subgraphs D̄1(sj) and <2(sj) together. So that we can write

|D̄1(sj)||<2(sj)| = |S1| + |S2|

The subgraph set S1 is not included in case 3 then the number of derived

116

subgraphs that comply case 3 is

|S2| = |D̄1(sj)||<2(sj)| − |S1| (6.17)

Next we consider the subgraphs of the type S3 in case 4 below.

Case 4: µ2 induces a derived subgraph of G2, and the subgraph induced on

µ1 has a set of isolated vertices, si . If sj is a set of pairwise nonadjacent vertices

in G1 then S ∈ S3. Otherwise the subgraph S contains isolated vertices and

hence S /∈ D(G0), which contradicts our assumptions. For case 4 we estimate

the number of derived subgraphs as follows.

We introduce the assistant subgraph Ḡ2. The derived subgraphs induced by

joining the subgraphs D̄2(si) and <1(si) together belong to the graphs of types

S1 and S3. The derived subgraphs belong to S1 and S3 can be induced from

joining the subgraphs D̄2(si) and <1(si) together. So that we can write

|D̄2(si)||<1(si)| = |S1| + |S3|

The subgraph set S1 is not included in case 4 then the number of derived

subgraphs that comply case 4 is

|S3| = |D̄2(si)||<1(si)| − |S1| (6.18)

It follows from the last three cases (2, 3, 4) that all derived subgraphs Dh
out(G1,G2)

117

- that contain the edge set h and the two subsets of global vertices si and sj -

belong to one of the sets S1, S2, or S3. Then

nh
out(G1,G2) = |S1| + |S2| + |S3| (6.19)

From equations (6.16), (6.17) and (6.18) it follows that

nh
out(G1,G2) = |D̄1(sj)||<2(sj)| + |D̄2(si)||<1(si)| − |<1(si)||<2(sj)| (6.20)

Conversely, if S ∈ D(Gi), for any subgraph Gi ⊂ G0, then as in proof of

Lemma (6.1) S ∈ D(G0). Then

D(G0) = {S : S ∈ D(< G1∪G2 >), or S ∈ Dh
out(G1,G2) ∀ si incident with h}.

And

nd(G0) = nd(G1)nd(G2) + nH
out(G1,G2)

6.5.4 The Model of Computations

In our parallel algorithm to count the derived subgraphs and recognize residual

and non-residual edges, we consider a pyramid with a base of size dn/ log ne ×

dn/ log ne = 22d log n−log log n e that connects p = d(4n2/ log2 n−1)/3e processors.

118

These processors respectively form dlog n − log log ne + 1 meshes of size

dn/ log ne × dn/ log ne, dn/(2 log n)e × dn/(2 log n)e, ..., 1 × 1.

These meshes are stacked one on top of the other in decreasing order of size

and are interconnected. Each processor has a unique index P (l, i, j) where

0 ≤ l ≤ dlog n − log log ne, and 0 ≤ i, j ≤ dlog ne − 1. The following rela-

tionships can be defined for a pyramid:

1- The father of the processors P (l, i, j) is the processor P (l−1, di/2 e, dj/2 e).

2- The sons of the processor P (l, i, j) are the processors P (l + 1, 2i + 1, 2j + 1),

P (l + 1, 2i + 1, 2j) and P̄ (l + 1, 2i + 1, 2j + 1), P̄ (l + 1, 2i + 1, 2j).

6.5.5 The Algorithm PDS(G0, n,m)

The parallel derived subgraph algorithm (denoted PDS(G0, n,m)) assumes that

the input graph has n > 3 vertices and m edges. The input graph has only

one component. If the graph G0 has more than one component Ci, then we

independently find in parallel the set D(Ci) for all components, and hence

nd(G0) =
∏

i nd(Ci). The algorithm represents G0 by its adjacency matrix A

which is fed to the apex processor P (0, 0, 0).

The algorithm has two kinds of traversal. The first is the top-down traversal,

as shown in Fig.(6.6a) in which the graph in phase l on nl vertices is divided

119

Base

Apex G0

Apex

(0, 0, 0)

(1, 1, 1)(1, 1, 0)

(1, 0, 1)(1, 0, 0)

(2, 0, 0) (2, 0, 1)
(2, 0, 2) (2, 0, 3)

(2, 1, 3)(2, 1, 2)(2, 1, 1)
(2, 1, 0)

(2, 2, 0)
(2, 2, 1) (2, 2, 2)

(2, 2, 3)

(2, 3, 3)(2, 3, 2)(2, 3, 1)(2, 3, 0)

G(2, 0, 3)

G(2, 1, 3)

G(2, 2, 3)

G(2, 3, 3)

Last phase

phase 0

phase 1

G(1, 1, 1)

G(1, 0,0)
G(1, 0, 1)

G(1, 1,0)

p p
p p

pp
p

p
p

p p p p

p p

pp

p

nd

nd

nd

ndG(2, 0, 3)

nd

G(1, 0, 1)

G(2, 1, 3)

G(2, 0, 2)

G(2, 1, 3)

(a)

(b)

Last phase

phase 1

phase 0

top−down traversal

bottom−up traversal

Figure 6.6: (a) Pyramid-connected computer (top-down traversal) to find and count the set
of all derived subgraphs of G0, we assign processor P (l, i, j) to the subgraph G(l, i, j), (b)
Pyramid-connected computer(bottom-up traversal).

120

into four subgraphs in phase l + 1 on nl/2 (or nl/2 + ε) vertices. The second

is the bottom-up traversal as shown in Fig.(6.6b), in which each internal node

waits for the result of the work done by its children to begin finding the set of

all derived subgraphs of its associated subgraph.

We shall describe a single phase of the algorithm. We begin with the par-

titioning described above, where the processor P (0, 0, 0) at the apex level. Let

G(0, 0, 0) denote the input graph which is fed to the apex processor P (0, 0, 0).

The son processor P (l, i, j) is assigned to the subgraph G(l, i, j) which is ob-

tained from G(0, 0, 0) by executing the bisection subroutine l times.

To start the phase l, we use some processors from the available p proces-

sor for the algorithm. We assign processor P (l, i, j) to the subgraph G(l, i, j).

The son processors P (l + 1, 2i + 1, 2j + 1), P (l + 1, 2i + 1, 2j) are assigned to

the two partite subgraphs G(l + 1, 2i + 1, 2j + 1) and G(l + 1, 2i + 1, 2j). The

son processors P̄ (l + 1, 2i + 1, 2j + 1) and P̄ (l + 1, 2i + 1, 2j) are assigned to the

two assistant subgraphs Ḡ(l+1, 2i+1, 2j+1) and Ḡ(l+1, 2i+1, 2j) respectively.

The processor P (l, i, j) has the global set V g
l,i,j. The processors P (l + 1, 2i +

1, 2j + 1) and P̄ (l + 1, 2i + 1, 2j)) have the global set V g
l+1,2i+1,2j+1. The set of

global vertices of the two processors P (l+1, 2i+1, 2j), and P̄ (l+1, 2i+1, 2j+1)

is V g
l+1,2i+1,2j. The processor P (l, i, j) and its sons all together utilize the PDS

algorithm to find the set of all derived subgraphs of the graph G(l, i, j). This

can be done as follows:

121

I- The two processors P (l+1, 2i+1, 2j +1) and P (l+1, 2i+1, 2j) recursively

call PDS algorithm to do the following:

1− Find the set of all derived subgraphs and their numbers nd(G(l+1, 2i+

1, 2j + 1)), nd(G(l + 1, 2i + 1, 2j)).

2− Find the two arrays Yl+1,2i+1,2j+1 and Yl+1,2i+1,2j, where the i−th po-

sition contains the numbers |<l+1,2i+1,2j+1(si)| and |<l+1,2i+1,2j(si)|, for all

si ⊆ V g
l+1,2i+1,2j+1 or si ⊆ V g

l+1,2i+1,2j .

3− If the portion subgraph contains the global vertices V g
l,i,j of the phase

l, the processor finds the corresponding arrays Yl,i,j and Xl,i,j, where the

k−th position contains the numbers |<l,i,j(sk)| and |Dl,i,j(sk)| respectively

for all sk ⊆ V g
l,i,j.

4− Find the number of subgraphs El+1,2i+1,2j+1(e) and El+1,2i+1,2j(e) that

contain an edge e.

5− Then every processor will send its local output to the father processor

P (l, i, j).

The recursive process continues until the number of vertices in the sub-

graphs is less than or equal to log n + ε. In this case, the processors will

122

call the MSDS-Procedure (see subsection 6.4.2) to compute the arrays

Yl+1,2i+1,2j+1, and Yl+1,2i,2j, and the set of derived subgraphs of the associ-

ated subgraphs. The following code describes the above tasks of the pro-

cessors:

1: for each processor in parallel do
2: Induce its subgraph G(l + 1, 2i + 1, 2j + 1) and G(l + 1, 2i + 1, 2j)
3: if ni > log n + ε, for some constant ε > 0 then
4: Recursively call PDS-Algorithm
5: else
6: call MSDS(G(l + 1, 2i + 1, 2j + 1), ni,mi) or MSDS(G(l + 1, 2i + 1, 2j), ni,mi)
7: end if
8: end for
9: Send to the father processor.

1- nd(G(l + 1, 2i + 1, 2j + 1)) and nd(G(l + 1, 2i + 1, 2j)),
2- Yl+1,2i+1,2j+1 and Yl+1,2i+1,2j

3- El+1,2i+1,2j+1 and El+1,2i+1,2j

10: if the induced subgraphs have a subset sk ⊆ V g
l,i,j then

11: Send the arrays Yl,i,j and Xl,i,j to the father processor
12: end if

Algorithm 18: Processors P (l + 1, 2i + 1, 2j + 1), P (l + 1, 2i + 1, 2j)

II- The two processors P̄ (l+1, 2i+1, 2j +1) and P̄ (l+1, 2i+1, 2j) recursively

call PDS to do the following:

1− Find the two arrays X̄l+1,2i+1,2j+1 and X̄l+1,2i+1,2j, where the i−th po-

sition contains the numbers |D̄l+1,2i+1,2j+1(si)| and |Dl+1,2i+1,2j(si)| respec-

tively, for all si ⊆ V g
l+1,2i+1,2j+1 or si ⊆ V g

l+1,2i+1,2j.

2− If the assistant subgraph contains the global vertices V g
l,i,j of the pre-

vious phase l, the processor finds the corresponding arrays Ȳl,i,j and X̄l,i,j,

123

where the k−th position contains the numbers |<̄l,i,j(sk)| and |D̄l,i,j(sk)| for

all sk ⊆ V g
l,i,j.

3− Find the number of subgraphs Ēl+1,2i+1,2j+1(e) and Ēl+1,2i+1,2j(e) that

contain an edge e.

4− Then every processor will send its local output to the father processor

P (l, i, j).

The recursive process continues until the number of vertices in the sub-

graphs is less than or equal to log n+ ε. In this case, the processors will call

the MSDS-algorithm (see subsection 6.4.2) to return the arrays X̄l+1,2i+1,2j+1,

and X̄l+1,2i+1,2j, and the set of derived subgraphs of presenting subgraphs.

1: for each processor in parallel do
2: Induce its subgraph Gl+1,2i+1,2j or Gl+1,2i,2j

3: if ni > log n + ε, for some constant ε > 0 then
4: Recursively call PDS-Algorithm
5: else
6: call MSDS algorithm
7: end if
8: end for
9: Send X̄l+1,2i+1,2j , X̄l+1,2i,2j , Ēl+1,2i+1,2j+1 and Ēl+1,2i+1,2j to the father processor.

10: if The induced subgraphs have a subset sj ⊆ V g
l,i,j then

11: Send the arrays Yl,i,j and Xl,i,j to the father processor
12: end if

Algorithm 19: Processors P̄ (l + 1, 2i + 1, 2j), and P̄ (l + 1, 2i, 2j)

III- The processor P (l, i, j) receives nd(G(l + 1, 2i + 1, 2j + 1)), nd(G(l + 1, 2i +

1, 2j)) and the arrays of kind X and Y that were computed by its sons.

124

The tasks executed by processor P (l, i, j) are the following:

1− Processor P (l, i, j) stores the product of nd(G(l + 1, 2i + 1, 2j + 1)),

nd(G(l + 1, 2i + 1, 2j)) in the register total.

2− The processor computes the number nH
out(G(l + 1, 2i + 1, 2j + 1), G(l +

1, 2i + 1, 2j)). The processor adds this number to the value in the register

total.

3− The processor finds the graph sets D(l,i,j)(sk) and <l,i,j(sk) for any sub-

set sk ⊆ V g
l,i,j of its global vertices and stores their numbers in two arrays

of kind X and Y respectively. The k−th position of X and Y represents

the number |Dl,i,j(sk)| and |<l,i,j(sk)| respectively. The sizes of those arrays

are constant because the number of global vertices is constant, so that the

computing of this two arrays executes constant time. The processor sends

X and Y to its father processor in the phase l − 1.

If the set sk ⊆ V g
l,i,j and e are contained in the portion G(l+1, 2i+1, 2j+1),

we compute the set <l,i,j(si) as follows:

Since there is no common vertex between the global vertices in phase l and

the global vertices in phase l + 1, the subgraphs of kind <l,i,j(sk) consist of

two sets; the first set is the set of all graphs containing a derived subgraph

of D(G(l+1, 2i+1, 2j)) and a subgraph of <l+1,2i+1,2j+1(sk), the cardinality

125

of this set is equal to

|<l+1,2i+1,2j+1(sk)|{nd(G(l + 1, 2 + 1, 2j)) − 1}

. The second set is the set of graphs containing some shared edges but do

not contain any derived subgraph of D(G(l+1, 2i+1, 2j)), these subgraphs

are <̄l+1,2i+1,2j+1(sk). So we get the following relation

|<l,i,j(sk)| = |<̄l+1,2i+1,2j+1(sk)|+|<l+1,2i+1,2j+1(sk)|{nd(G(l+1, 2+1, 2j))−1}

In the same way we can say that

|Dl,i,j(sk)| = |D̄l+1,2i+1,2j+1(sk)|+|Dl+1,2i+1,2j+1(sk)|{nd(G(l+1, 2i+1, 2j))−1}

and

El,i,j(e) = Ēl+1,2i+1,2j+1(e) + El+1,2i+1,2j+1(e){nd(G(l + 1, 2i + 1, 2j) − 1)}.

If e = (v, u) is shared edge directly from lemma(6.7) and when si = v and

its adjacent global set sj = v, then

El,i,j(e) = ne
out(G(l + 1, 2i + 1, 2j + l), G(l + 1, 2i + 1, 2j))

The following code describes the above tasks of the processor P (l, i, j):

126

1: Processor P (l, i, j) do
2: Assign the processor P (l, i, j) to the input graph G(l, i, j)
3: Apply BISECTION(V (G(l, i, j)), V l, i, jg) to find two subset V (G(l + 1, 2i + 1, 2j + 1))

and V (G(l + 1, 2i + 1, 2j) of V (G(l, i, j)).
4: Assign the global vertices V g

l+1,2i+1,2j+1
and V g

l+1,2i+1,2j

5: Receive the data from its sons processors
6: for each sj ⊂ V g

l,i,j and e ∈ G(l, i, j) do
7: Compute xl,i,j [j]
8: Compute Yl,i,j [j]
9: Compute El,i,j [e]

10: end for
{ Compute Sum = nH

out(G(l + 1, 2i + 1, 2j + 1), G(l + 1, 2i + 1, 2j)). }
11: s ←− φ
12: for each vertex v ∈ V g

l+1,2i+1,2j+1
do

13: s ←− s ∪ v
14: i ←− index.subset(s, |s|, |V g

l+1,2i+1,2j+1
|)

15: if sj is the global set adjacent with si by the edge set η then

16: Sum ←− Sum + nη
out

(

G(l + 1, 2i + 1, 2j + 1), G(l + 1, 2i + 1, 2j)

)

17: end if
18: end for
19: nd(G(l, i, j)) ←− nd(G(l + 1, 2i + 1, 2j + 1))nd(G(l + 1, 2i + 1, 2j)) + Sum
20: If El,i,j(e) > nd(G(l, i, j))/2 then e is a residual edge otherwise, e is a non-residual edge.

Algorithm 20: The PDS-Algorithm

127

With the above definitions and under the described assumptions, the follow-

ing example shows how the parallel algorithm can be applied in the general case

where the input graph is partitioned such that more than one shared edge is

considered.

Example 6.3.

Consider the triangle necklace graph, that is a cycle of length n with every

vertex adjacent to one vertex of triangle. Figure (6.7a) shows a cycle of length

3 with every vertex adjacent to one vertex of a triangle. The graph G0 has the

partitions G1 and G2 in the first phase, where G1 has 4 vertices, while a graph

G2 has 8 vertices (see Figure (6.7b)). The graph G2 itself has the partitions G5

and G6 in the second phase. The number of derived subgraphs for each subgraph

G1, G5 and G6 is equal to 9.

The bottom-up Phase:

We have to find the set of all derived subgraphs of the subgraph G2. This can

be done as follows

nd(G5)nd(G6) = 9 × 9 = 81 (6.21)

where G5 and G6 are two subgraph of G2 and the global vertices of them are

V g
5 = {1} and V g

6 = {2}

|<5(1)| = |<6(2)| = 2 and |D5(1)| = |D6(2)| = 4.

128

Based on that the number of the three subgraph sets S1, S2, and S3 are:

S1 = |<5(1)| × |<6(2)| = 4,

S2 = |<5(1)| × |D6(2)| = 8,

S3 = |<6(2)| × |D5(1)| = 8.

n
e=(1,2)
out (G5, G6) = 4 + 8 + 8 = 20 (6.22)

From the above two equations (6.21) and (6.22), the number of derived sub-

graphs of G2 is equal

nd(G2) = 81 + 20 = 101 (6.23)

The top-down Phase:

We have to find the set of all derived subgraphs of the subgraph G0. This can

be done as follows

nd(G1)nd(G2) = 9 × 101 = 909 (6.24)

The set of global vertex of the partition G2 is V g
2 = {1, 2}, where |<2(1)| =

|<2(2)| = 10, |<2({1, 2})| = 0

The set of global vertex of the partition G1 is

V g
1 = {3}, where |<1(3)| = 2.

The set of shared edges is H = {e1, e2, } (see Fig. 6.7b), where

e1 = (1, 3), e2 = (2, 3)

129

The top−down Phase

(c)

7 8

d

2

5

9 10

d
n (G) = 9= 9

1

4

shared edge in the second phase

1

2

n (G)
 5 6

The bottom−up Phase

6
5

9

107

8

4
3

1

2
3

11

12

G3
G4

21

(b)

1

3

2

3
shared edges in the first phase

n (G)
d 2

6
3

12

11

d
= 9n (G)

 1

1
2 5

9

107

8

4

1

4
78

2
5

9

10

3

11

12

6

G0

(a)

Figure 6.7: (a) The triangle necklace graph G0, (b) the first phase of the algorithm in which
the input graph G0 has the partitions G1 and G2, the global vertices are marked black, the
shared edges are dotted. The two assistant subgraphs G3 and G4 of this phase are shown, (c)
the second phase in which the subgraph G2 hasthe partitions G5 and G6, and the shared is
dotted.

130

In order to calculate the three sets S1, S2, and S3 we induced the two subgraph

G3 = G1 ∪ H and G4 = G2 ∪ H (see Fig. 6.7b)

In the subgraphs G3 the set of global vertices is {1, 2} and the set of global

vertices in G4 is {3}. We found the following:

|D4(3)| = 96,

|D3(1)| = |D3(2)| = 6, and |D3({1, 2})| = 6

Based on that, for each edge set {e1}, {e2} {e1, e2} the subgraph sets S1 and

S2 are:

|D4(3)| × |<1(3)| = 96 × 2 = 192 (6.25)

Note that

|D4(3)|×|<1(3)| = {|<2(1)|+|<2(2)|+|<2(1, 2)|+|D2(1)|+|D2(2)|+|D2{1, 2}|}×|<1(3)|.

The set S1 induced by the union of the subgraphs of G1 which contain the

global vertex 3 as the only isolated one and the subgraphs of G1 which contain

the vertices 1 or 2 or {, 2} as the only isolated vertices. The set S2 induced by

the union of the derived subgraphs of G2 which contain the global vertex 1 or 2

or {1, 2} and the subgraphs of G1 which contain the vertex 3 as the only isolated

vertex.

But the subgraph set S3 for each edge set {e1}, {e2} {e1, e2} is:

{|D3(1)| − |<1(3)|} × |<2(1)| = 4 × 2 = 8 (6.26)

131

{|D3(2)| − |<1(3)|} × |<2(2)| = 4 × 2 = 8 (6.27)

|D3({1, 2})| − {|<1(3)|} × |<2({1, 2})| = 4 × 0 = 0 (6.28)

The set S3 induced by the union of the derived subgraphs of G1 which contain

the global vertex 3 and the subgraphs of G1 which contain the vertices 1 or 2 or

{, 2} as the only isolated vertices.

From the last four equations (6.25), (6.26), (6.27) and (6.28)

nH
out(G1, G2) = 192 + 8 + 8 + 0 = 208 (6.29)

From equation (6.24) and equation (6.29)

nd(G0) = nd(G1)nd(G2) + nH
out(G1, G2) = 909 + 208 = 1117 (6.30)

The example illustrates how we can get the set of all derived subgraphs of an

undirected given graph when there is more than one shared edge. The example

explains the method step by step which is used in the PDS algorithm.

6.5.6 The Work and The Running Time

In the following we analyze the work and time bounds for each phase of the

algorithm.

The Number of Phases

132

The central difficulty in obtaining a fast parallel derived subgraph algorithm

lies in the recursive structure of the algorithm. Since every phase l divides the

input graph into two subgraphs each one has number of vertices equals to 1/2

the number of the vertices in the previous phase; in other words if the number of

vertices of the input graph in phase l is equal to nl, then the number of vertices

of input graph in phase l+1 is equal to nl/2. Since the initial number of vertices

is n and the number of vertices in the last phase is log n, the number of phases

d is at most equal to dlog n − log log ne. Then the total number of phases is

O(log n) phase.

The Running Time per Phase

We can analyze the running time per phase l as follows: In the last phase

the processors call the MSDS-Procedure. This calling requires O(ni2
ni) time

to return nd(G(l, i, j)) and Xl,i,j, Yl,i,j. The partitioning process continues until

ni = log n. This means that the running time of the last phase is O(n log n).

There are a constant number of global vertices in each phase and there are at

most O(log n) phases. So that the total number of global vertices in the al-

gorithm is O(log n). Then the phases of the algorithm except the last phase

required at most O(log n) time. The expected running time of the bisection

partitions is O(log n) time. Then the expected total running time of the phase

is equal O(n log n).

From the above analysis it follows that there are at most O(log n) phases

and each phase takes O(n log n) run time. Then the proposed parallel algorithm

133

for find all derived subgraphs of a given undirected graph and recognize the

residual and non-residual edges in that graph has a total parallel running time

O(n log2 n).

The Number of Processors

The PDS algorithm uses a two dimensional pyramid-connected SIMD dis-

tributed memory computer which is described in section(6.5.3). The number of

connecting processors in this model is equal to p = d(4n2/ log2 n− 1)/3e proces-

sor.

As given above the time bound for the computation of the set of all derived

subgraphs and determining a residual and non-residual edges is O(n log2 n),

using a pyramid network of size O(4n2/ log2 n − 1)/3.

6.6 Conclusions

In this chapter we described the proposed PDS algorithm and showed how it

can be used to find all derived subgraphs of a given graph and to determine

the residual and non-residual edges in the given graph. We also estimated the

running time for this parallel algorithm. The algorithm runs in O(n log2 n) using

a pyramid-connected SIMD distributed memory computer of size O(4n2/ log2 n−

1)/3 and the cost is O(n3).

A parallel algorithm is cost optimal when its cost matches the run time of

the best known sequential algorithm for the same problem. The sequential run

134

time of (comparison based) derived subgraphs algorithm SDS is known to be

(n2n) (see section (6.4)). The proposed parallel derived subgraphs algorithm

PDS used O(n2/ log2 n) processors for O(n log n) time. Our parallel derived

subgraphs algorithm is cost optimal. The efficiency E(n) of the parallel derived

subgraphs algorithm is O(2n/n2).

We explained scientific, commercial applications for the derived subgraphs

problem and the residual and the non-residual edges in a given graph.

135

Bibliography

[1] S. G. Akl. Parallel Computation: Models and Methods, chapter 1 and 4,

pages 7, 189. Alan Apt, 1997.

[2] D. H. Chandra and D. V. Sarwate. Computing connected components on

parallel computers. Communications of ACM, 22:461–464, 1979.

[3] B. Chazelle. A faster deterministic algorithm for minimum spannig trees.

In FOCS, pages 22–31, 1997.

[4] B. Chazelle. A minimum spanning tree algorithm with inverse-ackermann

type complexity. Journal of the ACM, 47(6):1028–1047, November 2000.

[5] K. W. Chong, T. W. Lam, and Y. Han. On the parallel time complexity

of undirected connectivity and minimum spanning trees. SODA: ACM-

SIAM Symposium on Discrete Algorithms(A Conference on Theoretical and

Experimental Analysis of Discrete Algorithms), pages 243–250, 1999.

[6] K. W. Chong, T. W. Lam, and Y. Han. Concurrent threads and optimal

parallel minimum spanning trees algorithm. Journal of the ACM, 48(2):297–

323, March 2001.

136

[7] R. Cole, R. E. Tarjan, and P. N. Klein. A linear-work parallel algorithm for

finding minimum spanning trees. 6th Annaul ACM Symposium on Parallel

Algorithms and Architectures, pages 11–15, 1994.

[8] R. Cole, R. E. Tarjan, and P. N. Klein. Finding minimum spanning forests

in logarithmic time and linear work using random sampling. In Proc. SPAA

’96’, pages 243–250, 1996.

[9] R. Cole and U. Vishkin. Approximate parallel scheduling: Applications to

logarithmic-time optimal parallel graph algorithms. Information and Com-

putation, 92(1):1–47, 1991.

[10] J. Edmonds. Matroids and the greedy algorithm. Math. Programming,

1:127–136, 1971.

[11] M. El-Zahar. A graph-theoretic version of the union-closed sets conjecture.

Graph Theory, 26:155–163, 1997.

[12] M. J. Flynn. Some computer organizations and their effectiveness. IEEE

Trans. on Computers, 24(9):948–960, Sept 1972.

[13] H. N. Gabow, Z. Galil, and T. H. Spencer. Efficient implementation of

graph algorithms using contraction. Journal of the ACM, 36(3):540–572,

July 1989.

[14] R. L. Graham and Pavol Hell. On the history of the minimum spanning tree

problem. Annals of the History of Computing, 7(1):43–57, January 1985.

137

[15] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs

in the presence of isomorphism. University of North Carolina, Computer

science Technique Report TR03-021, 2003.

[16] J. Huan, W. Wang, and J. Prins. Spin: Mining maximal frequent subgraphs

from graph databases. KDD’04, August 22-25, Seattle, Washington, USA,

pages 581–586, 2004.

[17] J. Joseph. An Introduction to Parallel Algorithms. Addison-Wesley Publish-

ing Company, 1992.

[18] D. R. Karger, R. E. Tarjan, and P. N. Klein. A randomized linear-time

algorithm to find minimum spanning trees. Journal of the ACM, 42:321–

328, 1995.

[19] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc.

International Conference on Data Mining (ICDM’01), pages 313–326, 2001.

[20] J. Lam, F. Chin, and I. Chen. Efficient parallel algorithms for some graph

problems. Communications of the ACM, 25(9):659–665, 1982.

[21] M. Moussa. On the theory of graphs and their subgraphs. Master’s thesis,

Benha University, Benha, Egypt, April 1999.

[22] J. Nesetril, E. Milkov, and H. Nesetrilov. Otakar boruvka on minimum

spanning tree problem (translation of both the 1926 papers, comments,

history). Discrete Math., 233(3-36), 2001.

[23] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algo-

rithm. Journal of the ACM, 49(1):16–34, January 2002.

138

[24] B. Poonen. Union-closed families. Journal of Combin. Theory, A59:253–268,

1992.

[25] M. J. Quinn. Parallel Computing Theory and Practice. McGraw-Hill Series

in Computer Science, second edition, 1994.

[26] Y. Shloach and U. Vishkin. An o(log n) parallel connectivity algorithm. J.of

Algorithms, 3:57–67, 1982.

[27] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial

and Applied Mathematics., 1983.

[28] R. E. Tarjan and M. L. Fredman. Fibonacci heaps and their uses in improved

network optimization algorithms. Journal of the ACM, 34(3):596–615, July

1987.

[29] R. E. Tarjan and Uzi Vishkin. An efficient parallel biconnectivity algorithm.

SIAM Journal of COMPUT, 14(4):863–874, 1985.

[30] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In

Proc.2002 international Conf. on Data Mining(ICDM’02), pages 721–724,

2002.

[31] Q. Zou, W. Chu, D. Johnson, and H. Chiu. A pattern decomposition(pd)

algorithm for finding all frequent patterns in large datasets. IEEE interna-

tional Conference on Data Mining ICDM’01, pages 673–674, 2001.

139

