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Preface

This thesis contains research results on Gallai-Ramsey theory and its gener-
alizations, which were obtained by the author with collaborators between
September 2017 and February 2021. Apart from an introductory chapter
(Chapter 1), the reader will find six closely related technical chapters (Chap-
ters 2–7), which are mainly based on the research results that the author
obtained when he was working as a PhD student at Northwestern Polytechni-
cal University, Xi’an and the University of Twente.

Chapters 2 and 3 focus on determining the exact values of Gallai-Ramsey
numbers for several graphs. The other chapters mainly focus on studying
various generalizations or variants of Gallai-Ramsey theory. In Chapter 4, we
consider two extremal problems related to Gallai-colorings. In Chapter 5, we
study the Erdős-Gyárfás function with respect to Gallai-colorings. In Chapter 6,
we present a forbidden rainbow subgraph condition for an edge-colored graph
to have a highly-connected monochromatic subgraph. In Chapter 7, we deal
with the rainbow Erdős-Rothschild problem with respect to 3-term arithmetic
progressions.

Papers underlying this thesis

[1] Gallai-Ramsey numbers for a class of graphs with five vertices, Graphs
and Combinatorics 36 (2020), 1603–1618 (with L. Wang). (Chapter 2)

[2] Extremal problems and results related to Gallai-colorings, Discrete Mathe-
matics 344 (2021), 112567 (with H.J. Broersma and L. Wang). (Chap-
ters 3 and 4)
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[3] The Erdős-Gyárfás function with respect to Gallai-colorings, submitted
(with H.J. Broersma and L. Wang). (Chapter 5)

[4] Forbidden rainbow subgraphs that force large monochromatic or multi-
colored k-connected subgraphs, Discrete Applied Mathematics 285 (2020),
18–27 (with L. Wang). (Chapter 6)

[5] Integer colorings with no rainbow 3-term arithmetic progression, submit-
ted (with H.J. Broersma and L. Wang). (Chapter 7)

Other recent joint papers by the author

[1] Complete graphs and complete bipartite graphs without rainbow path,
Discrete Mathematics 342 (2019), 2116–2126 (with L. Wang and X. Liu).

[2] Monochromatic stars in rainbow K3-free and S+3 -free colorings, Discrete
Mathematics 343 (2020), 112131 (with L. Wang).

[3] Gallai-Ramsey numbers for rainbow S+3 and monochromatic paths, Dis-
cussiones Mathematicae Graph Theory (2019), in press (with L. Wang).
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Chapter 1

Introduction

At the beginning of this chapter, we first present some intuitive background
to the theme of this thesis, before introducing the formal terminology and
notation in Section 1.1. With this part in mind, the reader will hopefully
understand the content of this thesis more easily.

We begin by recalling the following "Party Problem" which was posed in
The American Mathematical Monthly in 1958 [24]:

"Prove that at a gathering of any six people, some three of them are either mutual

acquaintances (each of these three knows the other two people) or complete

strangers to each other (each of these three knows neither of the other two

people)."

In order to analyze and solve the above problem, we can model the relation-
ships (the acquainted pairs) by means of a diagram, as follows. We represent
the six people by six distinct and non-overlapping points v1, v2, . . . , v6, and
we join any two points by a line segment or curve (avoiding the other four
points) whenever the two corresponding people know each other. Then the
above problem can be reformulated as follows. Prove that every such diagram
on six points either contains three points that are all pairwise joined by a line
segment or curve, or three points with no line segment or curve joining any
two of them.

To prove this statement, we can start by looking at the point v1. By the
Pigeonhole Principle, there exist three points in {v2, v3, . . . , v6}, say v2, v3 and

1



2 Chapter 1. Introduction

v4 (possibly after permuting the labels), such that either all of them are joined
to v1 by a line segment or curve, or none of them is joined to v1 by a line
segment or curve. In the former case, we are clearly done if at least one of the
pairs in {v2, v3, v4} is joined by a line segment or curve. But we are also done
if none of the pairs in {v2, v3, v4} is joined by a line segment or curve. In the
latter case, we can find three required points in a similar way, by reversing
the role of the absence and presence of line segments or curves between pairs.
We leave this as an exercise to the reader.

In graph theoretical language, the above diagram, and its points and line
segments or curves are usually referred to as a (drawing of a) graph, and its
vertices and edges, respectively. We will define these concepts properly and
formally in the next section.

Graphs form a powerful tool in solving many real-world problems. In
addition, graph theory itself has developed into a mature independent math-
ematical branch, which has wide applications in combinatorics, geometry,
number theory, ergodic theory, measure theory, computer science, chemistry,
physics, biology, sociology, and so on.

In this thesis, the main focus lies on extending existing theory related to
the above problem. Historically, the main effort of graph theorists has been
to prove similar results for larger groups of people, i.e., to determine the
smallest number of people guaranteeing that there always exists a subgroup
of acquaintances or non-acquaintances of a certain size. This resulted in what
nowadays is referred to as Ramsey theory. This theory and its intriguing open
problems will be introduced in Section 1.2.

Here we continue our layman’s introduction with a second problem which
generalizes the above Party Problem. This variant of the Party Problem will
reveal that the existence or non-existence of acquaintanceships (or edges
in the corresponding graph) is not always sufficient to model more compli-
cated practical situations. Consider the following generalization of the Party
Problem.

Suppose that we distinguish between three instead of two possible rela-
tionships between two people, say that they could be either friends, enemies
or strangers. How many members should a group of people have in order to
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guarantee that there exist three members who are mutually either all friends,
all enemies, or all strangers?

In this case, since there are three different relationships to consider, the
above approach with the diagram and the corresponding graph is not suitable
for analyzing or solving the problem. Here the known concept of an edge-
colored graph comes in handy. As before, each member of the group is
represented by a vertex in the graph. We choose three distinct colors to
represent each of the three types of relationship. We assign one of these
colors to each of the edges of the graph, representing the type of relationship
between the corresponding pair of members in the group. So we consider a
complete graph (i.e., in which each pair of vertices is joined by an edge) whose
edges are assigned one of the three distinct colors. Now the problem can be
formulated as the following graph problem. What is the smallest number of
vertices in a complete graph guaranteeing that in any edge-coloring of this
graph using three colors, there exists a complete subgraph on three vertices
whose edges all have the same color. We remark that the answer to this
question is 17, and that a proof can be found in [88]. Interestingly, it is rather
easy to show that 17 is sufficient by using the solution to the Party Problem
and similar arguments as above to start the reasoning, but it is more difficult
to present an example showing that 16 is not always sufficient.

In the research on edge-colored graphs, one can distinguish two classes
of problems. In the first class the problem is to determine the minimum
number of colors needed to color the edges of a graph in such a way that
the resulting edge-colored graph satisfies certain requirements. A typical
example belonging to this first class was the (edge-coloring equivalent of the)
Four-Color Conjecture (nowadays a well-known and celebrated theorem), the
study of which has greatly promoted the development of graph theory. In the
second class of problems the purpose is to study the existence of subgraphs
with certain specific edge-colorings in a larger graph whose edges have already
been colored. Typical examples of such problems can be found in the area
of Ramsey theory, which is the main theme of this thesis. After providing
some basic terminology and notation in Section 1.1, we will introduce Ramsey
theory and its generalizations in Sections 1.2 and 1.3. In the final section of
this chapter, we will provide an overview of our main contributions to the
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field. In the subsequent chapters, the reader will find the exact statements
and proofs of our contributions, as well as more details related to the results
included in this thesis.

1.1 Terminology and notation

In this section, we introduce some basic terminology and notation. All graphs
considered in this thesis are finite undirected graphs without loops or multiple
edges, unless otherwise indicated. We use [22] for terminology and notation
not defined here.

Let G = (V (G), E(G)) be a graph, where V (G) is the set of vertices of G
and E(G) is the set of edges of G. The order and size of G are defined to be
the cardinality of V (G) and E(G), respectively. For a vertex v ∈ V (G), let
NG(v) be the set of neighbors of v in G, i.e., the set of all vertices adjacent to
v. The degree of a vertex v in G, denoted by dG(v), is the number of edges
incident with v in G. Note that dG(v) = |NG(v)| for a (simple) graph G. We
use ∆(G) = max{dG(v): v ∈ V (G)} and δ(G) = min{dG(v): v ∈ V (G)} to
denote the maximum degree and minimum degree of G, respectively. If two
distinct vertices u and v are adjacent in the graph G, then we denote the
edge e of G joining u and v simply as uv, and we say that u and v are the
end-vertices of e. If an edge of G has one end-vertex with degree 1 in G, we
sometimes call it a pendant edge.

We next introduce some special families of graphs. We refer to Figure 1.1
for small examples of the special graphs that will be defined below. A complete
graph of order n, denoted by Kn, is a graph of order n in which every two
vertices are adjacent. In particular, the complete graph K3 is also called a
triangle. With S+3 we denote the unique graph of order 4 consisting of a
triangle and one pendant edge. A path is a simple graph whose vertices can be
arranged in a linear sequence in such a way that two vertices are adjacent if
they are consecutive in the sequence, and are nonadjacent otherwise. A cycle
on three or more vertices is a simple graph whose vertices can be arranged
in a cyclic sequence in such a way that two vertices are adjacent if they are
consecutive in the sequence, and are nonadjacent otherwise. The length of a
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path or a cycle is the number of its edges. A path on n vertices and a cycle
on n vertices are denoted by Pn and Cn, respectively. A graph G is called
bipartite if V (G) can be partitioned into two disjoint sets A and B such that
every edge of G has one end-vertex in A and one end-vertex in B. Note that
a graph is bipartite if and only if it contains no cycle of odd length [110]. A
complete bipartite graph Ka,b is a bipartite graph with bipartition (A, B) such
that |A| = a, |B| = b, and every vertex in A is adjacent to every vertex in B. In
particular, the complete bipartite graph K1,n is also called a star.
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Figure 1.1: Examples of special graphs.

Given two graphs G and H, H is said to be a subgraph of G if V (H)⊆ V (G)
and E(H)⊆ E(G). If H is a subgraph of G, then we say that G contains H or
H is contained in G, denoted by G ⊇ H or H ⊆ G, respectively. A spanning
subgraph of a graph G is a subgraph with the same vertex set as G. For a
subset U ⊆ V (G), the subgraph of G induced by U , denoted by G[U], is the
subgraph of G whose vertex set is U and whose edge set consists of all edges
of G which have both end-vertices in U . For U ⊂ V (G), we let G − U denote
the subgraph of G induced by V (G) \U . In the special case when U = {u}, we
simply write G− u for G− {u}.

A graph is connected if, for every partition of its vertex set into two
nonempty sets A and B, there is an edge with one end-vertex in A and one
end-vertex in B; otherwise the graph is disconnected. Given two graphs G
and H, we say that G and H are disjoint if they have no common vertex.
The disjoint union of two disjoint graphs G and H, denoted by G ∪H, is the
graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). Note that a
disconnected graph G can be viewed as the disjoint union of connected graphs,
and each of these connected graphs is called a component of G. We use nG to
denote the disjoint union of n copies of G. The join of two disjoint graphs G
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and H, denoted by G ∨H, is the graph obtained from G ∪H by adding edges
joining every vertex of G to every vertex of H.

A vertex cut of a connected graph G is a subset U ⊂ V (G) such that G − U
is disconnected. The vertex connectivity κ(G) of a non-complete connected
graph G is the cardinality of a smallest vertex cut of G. For the complete
graph Kn (which has no vertex cut) it is defined by κ(Kn) = n− 1, and for a
disconnected graph it is zero. A graph G is k-connected if κ(G)≥ k. Menger’s
Theorem [141] shows that a graph G is k-connected if and only if for every
two distinct vertices u and v of G, there are at least k pairwise internally
disjoint paths connecting u and v in G.

For a positive integer n, let [n] = {1, 2, . . . , n}. For any real number x , let
dxe be the smallest integer that is greater than or equal to x , and bxc be the
greatest integer that is less than or equal to x . In this thesis, we will make
use of the standard Bachmann-Landau notation such as O (also commonly
known as Big O notation), o, Ω and Θ to indicate asymptotic growth rates of
functions.

For an integer k ≥ 1 and a graph G, we refer to a mapping c : E(G)→ [k]
as a k-edge-coloring (or just edge-coloring) of G. We call this (k-)edge-coloring
proper if any two distinct edges of G that share an end-vertex are assigned
different integers. If the mapping c is surjective, then the k-edge-coloring c is
called an exact k-edge-coloring. For convenience, we sometimes use names of
actual colors, like "red", "blue" or "green", instead of integers. A graph with an
edge-coloring c is denoted by (G, c), and we also refer to it as an edge-colored
graph. If the edge-coloring is clear, then we simply write G for (G, c). An
edge-colored graph is called rainbow if all edges are colored differently, and
monochromatic if all edges are colored the same. Given two graphs G, H and
an edge-coloring c of G, we say that (G, c) is rainbow H-free if (G, c) contains
no rainbow H. A Gallai-k-coloring is a rainbow triangle-free k-edge-coloring
of a complete graph, i.e., in a Gallai-k-coloring of Kn at most two distinct
integers are assigned to the edges of every copy of K3 in this edge-colored Kn.

Given an edge-colored graph (G, c) and an edge e ∈ E(G), we say that
cG(e) (or simply c(e)) is the color used on (i.e., assigned to) the edge e. For U ,
V ⊆ V (G) with U ∩ V = ;, we use E(U , V ) (respectively, C(U , V )) to denote
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the set of all edges between U and V (respectively, the set of colors used on
these edges between U and V ). If all the edges in E(U , V ) are colored by a
single color, then we use c(U , V ) to denote this color. In the special case when
U = {u}, we simply write E(u, V ), C(u, V ) and c(u, V ) for E({u}, V ), C({u}, V )
and c({u}, V ), respectively. We let C(G[U]) (or simply, C(U)) and C(G − U)
denote the set of colors used on E(G[U]) and E(G − U), respectively. For a
color i, the subgraph induced by color i is the subgraph consisting of all the
edges with color i and all the vertices that are incident with at least one edge
of color i.

Let G be an edge-colored complete graph with vertex set {v1, v2, . . . , vn},
and H1, H2, . . . , Hn be n pairwise disjoint edge-colored complete graphs. The
blow-up G(H1, H2, . . . , Hn) of G is an edge-colored complete graph with vertex
set
⋃n

i=1 V (Hi) such that

• cG(H1,H2,...,Hn)(x y) = cHi
(x y) if x , y ∈ V (Hi) for some i ∈ [n],

• cG(H1,H2,...,Hn)(x y) = cG(vi v j) if x ∈ V (Hi) and y ∈ V (H j) for some
1≤ i 6= j ≤ n.

If H1 = H2 = · · · = Hn = H, we will write G(n · H) for G(H, H, . . . , H). If
H1 = · · · = Hs = H ′ and Hs+1 = · · · = Hn = H ′′ for some 1 ≤ s < n, we will
write G(s · H ′, (n− s) · H ′′) for G(H ′, . . . , H ′, H ′′, . . . , H ′′). Similarly, we will
use the abbreviation G(s ·H ′, t ·H ′′, (n− s− t) ·H ′′′).

We now have all the necessary ingredients to introduce the rich area of
graph theory which is known under the common heading Ramsey theory.

1.2 Ramsey theory

Ramsey theory, named after the British mathematical logician Frank Plumpton
Ramsey, is an important branch of extremal combinatorics. It can be con-
sidered as a generalization of the Pigeonhole Principle. Its origin reveals an
important mathematical thought: complete disorder is impossible; any (large
enough) structure will necessarily contain an orderly substructure [144].
The first Ramsey-type result mentioned in the literature is the Hilbert Cube
Lemma [98], which was proved by David Hilbert in 1892. Since it would take
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considerable efforts and additional terminology to explain this lemma, and
according to [162] it did not have much influence at the time, we refrain from
stating it. We start this exposition with another two milestone Ramsey-type
results that appeared before the birth of Ramsey’s Theorem, namely Schur’s
Theorem and Van der Waerden’s Theorem.

In 1916, motivated by Fermat’s Last Theorem (which was a conjecture
at that time), Issai Schur [161] proved that for any n ≥ 1, the congruence
xn+ yn ≡ zn (mod p) has a nontrivial solution for all sufficiently large primes
p. Schur’s proof utilizes the following Ramsey-type theorem.

Theorem 1.1 (Schur’s Theorem [161]). For any positive integer k, there
exists a smallest positive integer s(k) such that for all n≥ s(k), every k-coloring
of [n] contains integers a, b, c of the same color with a+ b = c.

Here a k-coloring of [n] is an assignment of one of k distinct colors to
every integer of [n]. In 1927, the Dutch mathematician Bartel Leendert van
der Waerden [169] proved the following celebrated theorem on arithmetic
progressions.

Theorem 1.2 (Van der Waerden’s Theorem [169]). For any positive integers
k and `, there exists a smallest positive integer w(`; k) such that for all n ≥
w(`; k), every k-coloring of [n] contains a monochromatic `-term arithmetic
progression.

Here a monochromatic `-term arithmetic progression is a sequence in [n]
of the form a, a+ d, a+ 2d, . . . , a+ (`− 1)d, where d ∈ [n] and all entries
in the sequence have the same color. We now introduce the well-known
Ramsey’s Theorem (finite version), which was proved by Ramsey [153] back
in 1930.

Theorem 1.3 (Ramsey’s Theorem [153]). For any positive integers k and m,
there exists a smallest positive integer rk(m) such that for all n≥ rk(m), every
k-edge-coloring of Kn contains a monochromatic copy of Km.

The numbers rk(m) are called Ramsey numbers. The solution to the Party
Problem in the introductory section of this chapter shows that r2(3) ≤ 6,
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and one easily shows by a suitable 2-edge-coloring of K5 (two edge-disjoint
monochromatic C5s) that in fact equality holds.

Formally, given k positive integers m1, m2, . . . , mk, the classical k-colored
Ramsey number r(m1, m2, . . . , mk) is defined to be the minimum integer n
such that every k-edge-coloring of Kn contains a monochromatic copy of Kmi

in color i for some i ∈ [k]. In the special case when m1 = m2 = · · · = mk = m,
we simply write rk(m) for r(m, m, . . . , m). The existence of r(m1, m2, . . . , mk)
is ensured by Ramsey’s Theorem. Although the definition of Ramsey numbers
is easy to understand and their existence is guaranteed, the exact values are
extremely difficult to determine, even for some small integers m1, m2, . . . , mk.
There are only nine exact values of nontrivial 2-colored Ramsey numbers
known to date, as shown in Table 1.1. For multicolor Ramsey numbers, there
are only two known nontrivial exact values: r(3,3,3) = 17 (see [88]) and
r(3, 3, 4) = 30 (see [43]). The former value is the solution to the generalized
Party Problem as it was given as an example in the layman’s introduction of
this chapter.

s

r(s, t) t
3 4 5 6 7 8 9

3 6 9 14 18 23 28 36
4 18 25

Table 1.1: All known nontrivial 2-colored Ramsey numbers.

In 1935, Erdős and Szekeres [68] rediscovered Ramsey’s Theorem and
proved an upper bound on off-diagonal Ramsey numbers: r(s, t)≤

�s+t−2
s−1

�

.
When s is fixed and t is large, Bohman-Keevash [20] and Li-Rousseau-Zang
[118] proved the following lower and upper bounds, respectively.

cs t
s+1

2 (ln t)
1

s−2
− s+1

2 ≤ r(s, t)≤ (1+ o(1))ts−1(ln t)2−s.

For the diagonal case, Erdős [56] proved that r(t, t) ≥ (1+ o(1)) tp
2e

2t/2

using the probabilistic method. Spencer [165] improved the term 1p
2

to
p

2
and this is the best until now lower bound. For the upper bound, Conlon
[44] proved that r(t + 1, t + 1) ≤ t−c ln t/ ln ln t�2t

t

�

, which was improved to

r(t + 1, t + 1) ≤ e−c′(ln t)2�2t
t

�

by Sah [157] recently. For large values of k,
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the best known upper bound is rk(t) ≤ kkt which can be derived from the
argument of Erdős and Szekeres [68]. Recently, Conlon and Ferber [46]
proved a lower bound rk(t) ≥

�

27k/24+C
�t−o(t)

, where C depends on the
residue of k modulo 3. Soon afterwards, this lower bound was improved to
rk(t)≥

�

23k/8−1/4
�t−o(t)

by Wigderson [174].

We next give the definition of graph Ramsey numbers, which was initiated
in a series of papers due to Chvátal and Harary [37–40] of the 1970s. For
k graphs H1, H2, . . . , Hk, the k-colored Ramsey number r(H1, H2, . . . , Hk) is
defined to be the minimum integer n such that every k-edge-coloring of Kn

contains a monochromatic copy of Hi in color i for some i ∈ [k]. In the
special case when H1 = H2 = · · · = Hk = H, we simply write rk(H). Note that
r(Km1

, Km2
, . . . , Kmk

) = r(m1, m2, . . . , mk). For specific graphs, such as cycles,
paths, stars, books, fans, wheels, trees and forests, considerable progress on
determining graph Ramsey numbers has been obtained over the past few
decades, including exact values, asymptotic values and bounds for these
numbers. We refer the interested reader to the dynamic survey [152] and the
monograph of Graham, Rothschild and Spencer [87] for more details.

Finally, we briefly introduce some applications of Ramsey theory. Ramsey-
type results have close connections to various fields in mathematics and other
subject areas, including number theory, algebra, geometry, logic, topology,
ergodic theory, functional analysis, the theory of ultrafilters, set theory, in-
formation theory and theoretical computer science [156]. Typical results in
number theory include Schur’s Theorem and Van der Waerden’s Theorem,
as well as Szemerédi’s Theorem (see Theorem 7.1). The result of Erdős and
Szekeres [68] has had a great influence on geometry. Several Ramsey-type
results in ergodic theory can be found in the book of Furstenberg [84]. Ram-
sey theory has also been massively applied in information theory, especially
with respect to communication channels; see the survey of Roberts [154]. In
theoretical computer science, Ramsey theory has vast applications in different
problem areas, such as the information retrieval problem [176], Boolean
function computation [2] and order invariant decision trees [142]. For more
information on applications of Ramsey theory, we refer the reader to two
excellent surveys [149,156] and the references therein.
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1.3 Generalizations of Ramsey theory

Since Ramsey published his pioneering paper [153], many variants and
generalizations of Ramsey numbers have been considered, such as hypergraph
Ramsey numbers [50], anti-Ramsey numbers [67], rainbow Ramsey numbers
[70], ordered Ramsey numbers [8, 49], the Erdős-Hajnal Conjecture [63],
Gallai-Ramsey numbers and the Erdős-Gyárfás function. In this section, we
will introduce Gallai-Ramsey numbers and the Erdős-Gyárfás function, as they
play a key role in parts of the thesis.

1.3.1 Gallai-Ramsey theory

Recall that a Gallai-coloring is a rainbow triangle-free edge-coloring of a
complete graph, so no K3 in the colored complete graph is allowed to have
all its edges colored differently. The term Gallai-coloring was first used by
Gyárfás and Simonyi [92] in honor of Tibor Gallai’s decomposition theorem
for rainbow triangle-free colorings [85], but the study of Gallai-colorings has
arisen in a wide range of areas, such as poset theory [85], the Erdős-Hajnal
Conjecture [75], the rainbow Erdős-Rothschild problem [10,17], information
theory [111,112], perfect graph theory [31] and other studies of Ramsey-type
problems [91,93].

Gallai [85] gave the following characterization of the structure of a com-
plete graph with a Gallai-coloring.

Theorem 1.4 (Gallai [85,92,135]). In any Gallai-coloring of a complete graph,
the vertex set can be partitioned into nonempty sets V1, V2, . . . , Vm with m ≥ 2
such that

(1) for any pair i, j with 1 ≤ i < j ≤ m, there is only one color on the edges
between Vi and Vj , and

(2) there are at most two colors on the edges in
⋃

1≤i< j≤m E(Vi , Vj).

We call a vertex partition as given by the statement in Theorem 1.4 a Gallai
partition. Given a Gallai-coloring of a complete graph and a Gallai partition
V1, V2, . . . , Vm, with a chosen vi ∈ Vi for every i ∈ [m], the subgraph induced
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by {v1, v2, . . . , vm} is called the reduced graph of this partition. Although this
reduced graph is clearly a 2-edge-colored complete graph, the above result
does not give us any information about the cardinality of each set in the
partition or the coloring within each part, except that these colorings are
rainbow triangle-free.

In 2010, Gyárfás et al. [91] introduced the following restricted Ramsey
number RG(k, H). This is the smallest positive integer n such that in every
Gallai-k-coloring of Kn, there is a monochromatic copy of the graph H. The
term Gallai-Ramsey number was first used by Faudree et al. [72] in the
same year. We now give the definition of the Gallai-Ramsey number. For
graphs H1, H2, . . . , Hk and a graph G, the k-colored Gallai-Ramsey number
gr(G : H1, H2, . . . , Hk) is defined to be the minimum integer n such that every
rainbow G-free k-edge-coloring of Kn contains a monochromatic copy of Hi

in color i for some i ∈ [k]. In the special case when H1 = H2 = · · ·= Hk = H,
we simply write grk(G : H). Equivalently, grk(G : H) is the minimum integer
n such that every k-edge-coloring of Kn contains either a rainbow copy of G
or a monochromatic copy of H. It is clear that grk(G : H) ≤ rk(H) for any
two graphs G and H.

In the past decade, there has been a great development in the study of
Gallai-Ramsey numbers. Most of these works focus on the case when G is
a triangle [93,123], S+3 [80,119,120] or a path [117,121]. The following
general results for grk(G : H) were given by Gyárfás et al. [91] for G = K3,
and by Fujita and Magnant [80] for G = S+3 .

Theorem 1.5 (Gyárfás et al. [91], Fujita and Magnant [80]). Let G ∈ {K3, S+3 }.
If H is not bipartite, then grk(G : H) is exponential in k. If H is bipartite but
not a star, then grk(G : H) is linear in k.

In [75], Fox, Grinshpun and Pach posed the following conjecture on an
expression for the Gallai-Ramsey numbers of complete graphs in terms of
their 2-colored Ramsey numbers.
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Conjecture 1.1 (Fox, Grinshpun and Pach [75]). For integers k ≥ 1 and
t ≥ 3,

grk(K3 : Kt) =

(

(r2(Kt)− 1)k/2+ 1, if k is even,

(t − 1) · (r2(Kt)− 1)(k−1)/2+ 1, if k is odd.

The cases with t = 3 and t = 4 of the above conjecture were verified
in [36,91] and [123], respectively. The cases for t ≥ 5 are still open. There
are also a lot of results on Gallai-Ramsey numbers for other monochromatic
subgraphs, such as bipartite graphs [34,122,175], cycles and paths [23,26,
34,78,93,116,164,172,177,178], stars [91,119], fans [138], wheels [163],
double stars [106], books [181] and other specific graphs [139,173,179,180].
Gallai-Ramsey numbers have also been generalized to hypergraphs; see [27].
For more results on this topic, we refer the reader to two surveys [82,83] and
a book [137]. In Section 3.4, we give a short survey on known Gallai-Ramsey
numbers for rainbow triangles and some open problems.

1.3.2 The Erdős-Gyárfás function

Let p and q be positive integers with 2 ≤ q ≤
�p

2

�

. An edge-coloring of the
complete graph Kn is said to be a (p, q)-coloring if every Kp receives at least q
distinct colors. The function f (n, p, q) is defined to be the minimum number
of colors that are needed for Kn to have a (p, q)-coloring. This function was
first introduced by Erdős and Shelah [58, 59], but Erdős and Gyárfás [62]
were the first to study it in depth; it is now known as the Erdős-Gyárfás
function. This function generalizes the multicolored Ramsey number, since
determining f (n, p, 2) is equivalent to determining the Ramsey number of Kp.
Using the lower bound on rk(p), we have that f (n, p, 2) is at most logarithmic
in n. Moreover, if p ≥ 4, then f (n, p,

�p
2

�

) =
�n

2

�

.

Erdős and Gyárfás [62] studied the behavior of f (n, p, q) when q varies
from

�p
2

�

to 2. They proved that the smallest q such that f (n, p, q) is quadratic
in n is

�p
2

�

−
� p

2

�

+2 for p ≥ 4, and the smallest q such that f (n, p, q) is linear
in n is

�p
2

�

−p+3. Erdős and Gyárfás also showed that f (n, p, p) is polynomial
in n, while Conlon et al. [48] proved that f (n, p, p− 1) is subpolynomial in n.
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Thus the smallest q such that f (n, p, q) is polynomial in n equals p.

The exact value of the Erdős-Gyárfás function is very difficult to determine,
even for some small values of p and q. For example, the best known lower
bound for f (n, 4, 3) is O(log n) [77], while the best until now upper bound
is eO(

p
log n) [145]. There is clearly a large gap between the lower and upper

bound. On the other hand, some special cases of this function are closely
related to other interesting problems. For example, f (n, 9, 34) relates to a
Turán type hypergraph problem posed by Brown, Erdős and Sós [25, 62],
f (n, 5, 9) relates to sets containing no 3-term arithmetic progression [3], and
f (n, 3, 3) and f (n, 5, 9) relate to some problems on properly colored complete
graphs [62,155].

In 2000, Axenovich, Füredi and Mubayi [5] defined r(G, H, q) to be the
minimum number of colors in an edge-colored graph G such that every sub-
graph H receives at least q colors, and they studied r(Kn,n, Kp,p, q) systemati-
cally. In [114], Krueger investigated the asymptotic behavior of r(Kn, Pm, q).
Motivated by the additive energy in additive combinatorics, Pohoata and
Sheffer [151] introduced the Color Energy Method. Using this method, they
studied the Erdős-Gyárfás function, as well as a problem of distinct distances
that is related to the Erdős distinct distances problem [55, 89] in discrete
geometry. Recently, this method was further developed by Fish-Pohoata-
Sheffer [73] and Balogh-English-Heath-Krueger [9]. The Erdős-Gyárfás func-
tion was also studied in the setting of hypergraphs, see [47, 147]. In [76],
Fox, Pach and Suk studied a semi-algebraic variant of the Erdős-Gyárfás
function. For more information on this topic, we refer the interested reader
to [1,6,7,30,33,54,113,146,158,159], Section 3.5.1 of [51] and Section 7
of [148].

1.4 Outline of the main results of this thesis

Apart from this introductory chapter, this thesis contains six technical chapters
that are based on earlier submitted papers. In these chapters, we mainly
concentrate on determining exact values of Gallai-Ramsey numbers of graphs.
We also consider some related problems, such as Gallai-Ramsey multiplicity,
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the Erdős-Gyárfás function and the rainbow Erdős-Rothschild problem. The
remainder of this thesis is organized as follows.

In Chapter 2, we consider the Gallai-Ramsey number for a rainbow triangle
and monochromatic subgraphs H, where H belongs to a class of connected
graphs with five vertices and at most six edges. There are in total thirteen
graphs in this graph class, and the Gallai-Ramsey numbers for eight of them
have been studied step by step in several papers by others. We determine the
exact values of the Gallai-Ramsey number for all the remaining five graphs.
In addition, we also obtain Ramsey numbers and Gallai-Ramsey numbers for
a class of unicyclic graphs F2,n, where F2,n is the graph obtained by adding
n− 2 pendant edges to a single vertex of a C4.

In Chapter 3, we determine the exact value of the Gallai-Ramsey number
for a rainbow triangle and a monochromatic K4+ e, where K4+ e is the graph
on five vertices consisting of a K4 with one pendant edge. For an integer s
with 0≤ s ≤ k, if H1 = · · ·= Hs = K4+ e and Hs+1 = · · ·= Hk = K3, then we
will write grk(K3 : s ·K4+ e, (k− s) ·K3) for gr(K3 : H1, H2, . . . , Hk). We in fact
determine the exact values of grk(K3 : s · K4+ e, (k− s) · K3) for all 0≤ s ≤ k.

In Chapter 4, we first consider the maximum number of edges that are
not contained in any rainbow triangle or monochromatic triangle in a k-edge-
coloring of Kn. We determine a lower bound on this number using a variant
of the Gallai-Ramsey number, and obtain an upper bound using Szemerédi’s
Regularity Lemma. Secondly, we consider the Gallai-Ramsey multiplicity
problem for rainbow and monochromatic triangles. For n≥ grk(K3 : K3), we
give upper and lower bounds for the minimum number of monochromatic
triangles in a Gallai-k-coloring of Kn, yielding the exact value for k = 3 and
sufficiently large n.

In Chapter 5, we consider the Erdős-Gyárfás function within the framework
of Gallai-colorings. We use the function g(n, p, q) to denote the minimum
number of colors needed for a Gallai-(p, q)-coloring of Kn. Using the anti-
Ramsey number for K3, we have that g(n, p, q) is nontrivial only for 2 ≤
q ≤ p − 1. Note that determining g(n, p, 2) is equivalent to determining
the Gallai-Ramsey number grk(K3 : Kp). We give a general lower bound on
g(n, p, q) and we study how this function falls off from being equal to n− 1
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when q = p− 1 and p ≥ 4 to being Θ(log n) when q = 2. In particular, for
appropriate p and n, we prove that g = n− c when q = p− c and c ∈ {1,2},
g ≤

�

n1/2� − 1 when q =
�

(p − 1)1/2
�

, and g is logarithmic in n when
2≤ q ≤ dlog2 pe. These results provide an upper bound on grk(K3 : Kp).

In Chapter 6, we consider a Gallai-Ramsey-type problem for highly con-
nected subgraphs. Recall that the Gallai-Ramsey number grk(G : H) is the
smallest integer n such that every rainbow G-free k-edge-coloring contains a
monochromatic copy of H. Instead of dealing with a fixed subgraph H, we
consider the problem for a general k-connected (monochromatic) subgraph.
To be more precise, we study the forbidden rainbow subgraph condition for
a large k-connected monochromatic subgraph in an edge-colored complete
graph. We also study an analogous problem in which the host graphs are
complete bipartite graphs. Furthermore, we consider determining the order
of the largest k-connected 2-edge-colored subgraph in a Gallai-3-coloring.

In Chapter 7, we study the rainbow Erdős-Rothschild problem with respect
to 3-term arithmetic progressions. Integer colorings without rainbow 3-term
arithmetic progressions generalize edge-colorings without rainbow triangles.
We obtain the asymptotic number of r-colorings of [n] without rainbow 3-
term arithmetic progressions using the Hypergraph Container Method, and
we show that the typical colorings with this property are 2-colorings. We also
prove that [n] attains the maximum number of rainbow 3-term arithmetic
progression-free r-colorings among all subsets of [n]. Moreover, the exact
number of rainbow 3-term arithmetic progression-free r-colorings of Zp is
obtained, where p is any prime and Zp is the cyclic group of order p.



Chapter 2

Gallai-Ramsey numbers for a
class of graphs with five
vertices

In this chapter, we consider the Gallai-Ramsey number grk(K3 : H), where H
is a connected graph with five vertices and at most six edges. There are in total
thirteen different choices for the graph H, and the Gallai-Ramsey numbers for
eight of them have been determined step by step in several papers by others.
In this chapter, we determine the exact value of the Gallai-Ramsey number
for all the remaining five graphs. In addition, we obtain some related results
for a class of unicyclic graphs.

2.1 Introduction

Recall that the Gallai-Ramsey number grk(G : H) is the minimum integer n
such that every k-edge-coloring of Kn contains either a rainbow copy of G or a
monochromatic copy of H. We start by remarking that determining the exact
values of grk(G : H) is far from trivial, even for choices of G and H with a
small number of vertices and edges. The Gallai-Ramsey numbers grk(K3 : H)
for all different choices of a graph H on four vertices can be found in several

17
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earlier papers. However, these numbers have not been established yet for
several graphs with five vertices, and determining the exact values for these
graphs is of fundamental importance in this research area. In this chapter,
we mainly focus on studying grk(K3 : H), where H belongs to the class of
connected graphs with five vertices and at most six edges. There are thirteen
graphs in this graph class (see Figure 2.1 for an illustration of the graphs F1 -
F13). The Gallai-Ramsey numbers for F1, F2, . . . , F8 have been determined by
Faudree et al. [72] for F1 and F2, Gyárfás et al. [91] for F3, Wang et al. [173]
for F4 and F5, Fujita and Magnant [78] for F6, Wu et al. [175] for F7, and
Mao et al. [138] for F8. In the subsequent sections, we will determine the
Gallai-Ramsey numbers for all the remaining graphs in this class.

1
F 2

F 3
F

4
F 5

F
6
F

7
F

8
F

9
F

10
F

11
F

12
F

13
F

Figure 2.1: All connected graphs with five vertices and at most
six edges.

For the graphs F9 and F10, we will prove the following result in Section 2.2.

Theorem 2.1. For any integer k ≥ 1, we have

grk(K3 : F9) = grk(K3 : F10) =

(

8 · 5(k−2)/2+ 1, if k is even,

4 · 5(k−1)/2+ 1, if k is odd.

For the graph F11, we will prove that grk(K3 : F11) = k + 4 in a more
general form in Section 2.3. In fact, we shall consider the Ramsey numbers
and Gallai-Ramsey numbers for a class of unicyclic graphs F2,n. For n ≥ 3,
let F2,n denote the graph obtained by adding n− 2 pendant edges to a single
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vertex of a C4. The vertex with degree n is called the center of F2,n. It is easy
to see that |V (F2,n)|= |E(F2,n)|= n+ 2. Note that F2,3 = F11. To resolve the
Gallai-Ramsey numbers for this class of unicyclic graphs, we will prove the
following two results in Section 2.3.

Theorem 2.2. For any integer n ≥ 3, r2(F2,n) = 2n− ε, where ε = 1 if n is
even, and ε = 0 otherwise.

Theorem 2.3. Let k and n be two positive integers.

(1) If k ≥ 1 and n ∈ {3, 4}, then grk(K3 : F2,n) = r2(F2,n) + k− 2.

(2) If k ≥ 3, then grk(K3 : F2,5) = k+ 9.

(3) If k ≥ 3 and n≥ 6, then

k(n− 1) + 2≥ grk(K3 : F2,n)≥

(

5n/2+ k− 6, if n is even,

(5n− 1)/2+ k− 4, if n is odd.

For the graphs F12 and F13, we will prove the following result in Sec-
tion 2.4.

Theorem 2.4. For any integer k ≥ 1, we have

grk(K3 : F12) = grk(K3 : F13) =

(

9 · 5(k−2)/2+ 1, if k is even,

4 · 5(k−1)/2+ 1, if k is odd.

2.2 Gallai-Ramsey numbers for F9 and F10

In this section, we will prove Theorem 2.1. We begin with the following
simple results which will be used later.

Proposition 2.5. If H1 is a subgraph of H2, then grk(K3 : H1)≤ grk(K3 : H2).

Theorem 2.6 (Hendry [97]). r2(F9) = r2(F10) = 9.

We shall use the following known result about the Gallai-Ramsey number
grk(K3 : K3), and this result will also be used in Chapters 3, 4 and 5.
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Theorem 2.7 (Chung and Graham [36], Gyárfás et al. [91]). For any integer
k ≥ 1, we have

grk(K3 : K3) =

(

5k/2+ 1, if k is even,

2 · 5(k−1)/2+ 1, if k is odd.

Recall that the complete bipartite graph K1,n (n≥ 1) is also called a star.
In the sequel, we shall call an isolated vertex (i.e., a vertex with degree 0) a
trivial star.

Since F9 is a subgraph of F10, we have grk(K3 : F9) ≤ grk(K3 : F10) by
Proposition 2.5. Thus Theorem 2.1 follows immediately from the following
two lemmas, the first of which provides lower bounds for grk(K3 : F9), and
the second of which provides the matching upper bounds for grk(K3 : F10).

Lemma 2.8. For any integer k ≥ 1, we have

grk(K3 : F9)>

(

8 · 5(k−2)/2, if k is even,

4 · 5(k−1)/2, if k is odd.

Proof. As usual, the proof of the lower bounds is by construction. If k is
even, then let G2 be a 2-edge-colored K8 which contains no monochromatic
F9, using colors 1 and 2 (such G2 exists by Theorem 2.6). Suppose that
2i < k and we have constructed a (2i)-edge-coloring G2i of Kn2i

containing
neither a rainbow K3 nor a monochromatic F9, where n2i := 8 · 5(2i−2)/2. Let
G′ be a 2-edge-colored K5 using colors 2i+ 1 and 2i+ 2 which contains no
monochromatic K3, i.e., colors 2i+ 1 and 2i+ 2 induce two monochromatic
copies of C5. We construct G2i+2 such that G2i+2 is the blow-up G′(5 · G2i) of
G′. Finally, we obtain a k-edge-coloring Gk of Kn containing neither a rainbow
K3 nor a monochromatic F9, where n= 8 · 5(k−2)/2.

If k is odd, then let G1 be a monochromatic K4 using color 1. Suppose
that 2i − 1 < k and we have constructed a (2i − 1)-edge-coloring G2i−1 of
Kn2i−1

which contains neither a rainbow K3 nor a monochromatic F9, where
n2i−1 := 4 ·5(2i−2)/2. Let G′′ be a 2-edge-colored K5 using colors 2i and 2i+1
which contains no monochromatic K3. We construct G2i+1 such that G2i+1 is
the blow-up G′′(5 · G2i−1) of G′′. Finally, we obtain a k-edge-coloring Gk of
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Kn with n = 4 ·5(k−1)/2 containing neither a rainbow K3 nor a monochromatic
F9.

Lemma 2.9. For any integer k ≥ 1, we have

grk(K3 : F10)≤

(

8 · 5(k−2)/2+ 1, if k is even,

4 · 5(k−1)/2+ 1, if k is odd.

Proof. We prove the statement by induction on k. The case k = 1 is trivial and
the case k = 2 holds by Theorem 2.6, so we may assume k ≥ 3. Suppose the
statement holds for all k′ < k, and we will prove it for k. For a contradiction,
suppose that G is a Gallai-k-coloring of Kn containing no monochromatic F10,
where

n :=

(

8 · 5(k−2)/2+ 1, if k is even,

4 · 5(k−1)/2+ 1, if k is odd.

Since k ≥ 3, we have n≥ 21. By Theorem 1.4, there exists a Gallai partition
V1, V2, . . . , Vm with m≥ 2. We choose such a partition such that |V1| ≥ |V2| ≥
· · · ≥ |Vm| and m is minimal. Since r2(F10) = 9, we have 2≤ m≤ 8. Assume
that colors 1 and 2 are the two colors used between the parts (if there is only
one color used between the parts, then let color 1 be this color). We first have
the following simple facts since G is monochromatic F10-free.

Fact 2.1. Let U, V be two nonempty subsets of V (G) with U ∩ V = ; and
c(U , V ) = c0, where c0 ∈ [k]. Then

(1) there is no monochromatic P4 using color c0 within U or V , respectively;

(2) if |U | ≥ 3 and |V | ≥ 2, then c0 /∈ C(U);

(3) if |U | ≥ 2 and |V | ≥ 2, then there is no vertex with color c0 to both U and
V in V (G) \ (U ∪ V ).

Claim 2.1. We have 4 ≤ m ≤ 8, and C
�

Vi ,
⋃

j∈[m]\{i} Vj
�

= {1,2} for every
i ∈ [m].

Proof. Suppose 2≤ m≤ 3. If m= 3, then at least two of the colors c(V1, V2),
c(V1, V3) and c(V2, V3) are the same color, say c(V1, V2) = c(V1, V3). This
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implies that V1 and V (G) \ V1 form a Gallai partition with exactly two parts,
contradicting the minimality of m.

Thus m = 2 and c(V1, V2) = 1. If |V2| ≥ 2, then 1 /∈ C(V1) by Fact 2.1
(2) and since n ≥ 21. Applying induction on k within V1, we have |V (G)|=
|V1|+ |V2| ≤ 2|V1| ≤ 2(grk−1(K3 : F10)−1)< n, a contradiction. Thus |V2| = 1
and |V1| = n− 1. By Fact 2.1 (1), color 1 induces a subgraph G(1) such that
each component is a K3 or a star within V1. In order to avoid a rainbow K3

and a monochromatic P4 in color 1, there is only a single color between each
pair of components. By Theorem 2.7, we have

grk−1(K3 : K3) =

(

2 · 5(k−2)/2+ 1, if k is even,

5(k−1)/2+ 1, if k is odd.

Note that F10 is a subgraph of K1,3,3 and K2,2,2. Since |V1| is not divisible by 3,
G(1) contains at most nk := grk−1(K3 : K3)− 2 components each of which is
a K3. For 0≤ i ≤ nk, if there are exactly nk − i components each of which is
a K3, then there are at most i + 1 components each of which is a nontrivial
star; otherwise there is a monochromatic K2,2,2. Thus after removing at most
2(nk − i) + i + 1 vertices, there is no edge using color 1 within V1. Thus
|V (G)| = |V1|+ |V2| ≤ 2(nk − i) + i + 1+ (grk−1(K3 : F10)− 1) + 1 < n, a
contradiction. Therefore, 4≤ m≤ 8.

If
�

�C
�

Vi ,
⋃

j∈[m]\{i} Vj
�

�

� = 1 for some i ∈ [m], then Vi and V (G)\Vi form a
Gallai partition with exactly two parts, contradicting the minimality of m.

By Claim 2.1, we have 4 ≤ m ≤ 8. Let r be the number of parts with at
least three vertices, i.e., |Vr | ≥ 3 and |Vr+1| ≤ 2 (here we define |Vm+1|= 0).
Since m≤ 8 and |V (G)| ≥ 21, we have 1≤ r ≤ m≤ 8. We divide the rest of
the proof into four cases based on the number r.

Case 1. r = 1.

For i ∈ {1, 2}, let Ai be the union of parts with color i to V1. By Claim 2.1,
A1 and A2 are two nonempty sets and at least one of A1 and A2 contains
more than one vertex, say |A1| ≥ 2. By Fact 2.1 (2), we have 1 /∈ C(V1).
Thus |V1| ≤ grk−1(K3 : F10)− 1. Moreover, since 2 ≥ |V2| ≥ · · · ≥ |Vm| and
m ≤ 8, we have |A1|+ |A2| ≤ 14. If |A2| ≥ 2, then 2 /∈ C(V1), which implies
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|V (G)| = |V1|+|A1|+|A2| ≤ grk−2(K3 : F10)−1+14< n, a contradiction. Thus
|A2| = 1. We further have |A1| ≥ 3; otherwise |V (G)| = |V1|+ |A1|+ |A2| ≤
grk−1(K3 : F10)− 1+ 2+ 1 < n. By Fact 2.1 (2), we have 1 /∈ C(A1), which
implies |A1| ≤ grk−1(K3 : F10)− 1. Therefore, |V (G)| = |V1|+ |A1|+ |A2| ≤
grk−1(K3 : F10)− 1+min{grk−1(K3 : F10)− 1+ 1,14}< n, a contradiction.

Case 2. r = 2.

In this case, we may assume that c(V1, V2) = 1. Then by Fact 2.1 (2), for
i ∈ {1,2}, we have 1 /∈ C(Vi) and thus |Vi| ≤ grk−1(K3 : F10)− 1. Recall that
m ≤ 8 and 2 ≥ |V3| ≥ · · · ≥ |Vm|. If |V6| ≥ 2, then there is a monochromatic
K2,2,2 by r2(K3) = 6, contradicting Fact 2.1 (3). Thus |V3 ∪ · · · ∪ Vm| ≤ 9.
By Fact 2.1 (3), we also have that there is no vertex with color 1 to both
V1 and V2. Thus we can partition V3 ∪ · · · ∪ Vm into three parts A, B and C
such that, c(A, V1) = c(C , V2) = 1 and c(A, V2) = c(C , V1) = c(B, V1 ∪ V2) = 2.
If |A∪ B| ≥ 2 and |C ∪ B| ≥ 2, then for i ∈ {1,2}, we have 2 /∈ C(Vi) and
thus |V (G)|= |V1|+ |V2|+ |V3 ∪ · · · ∪ Vm| ≤ 2(grk−2(K3 : F10)− 1) + 9< n, a
contradiction. Thus |A∪ B| ≤ 1 or |C ∪ B| ≤ 1, say |C ∪ B| ≤ 1, so |B| ≤ 1.

We first suppose |B| = 1 and |C | = 0. Since m ≥ 4, we have |A| ≥ 1,
and thus 2 /∈ C(V2) by Fact 2.1 (2). Since |A| = |V (G)| − |V1| − |V2| − |B| ≥
n− (grk−1(K3 : F10)−1)− (grk−2(K3 : F10)−1)−1> 2, we have 1, 2 /∈ C(A).
By the induction hypothesis, we have |V (G)|= |V1|+ |V2|+ |A|+ |B|+ |C | ≤
(grk−1(K3 : F10)− 1) + 2(grk−2(K3 : F10)− 1) + 1< n, a contradiction.

Next we suppose |B| = 0. By Claim 2.1, we have |A| ≥ 1 and |C | = 1. If
|A| ≥ 2, then 2 /∈ C(V2) and |V2| ≤ grk−2(K3 : F10)− 1. Since |A| = |V (G)| −
|V1| − |V2| − |C | ≥ n− (grk−1(K3 : F10)− 1)− (grk−2(K3 : F10)− 1)− 1 > 2,
we have 1,2 /∈ C(A). Therefore, we have |V (G)| ≤ (grk−1(K3 : F10)− 1) +
2(grk−2(K3 : F10) − 1) + 1 < n, a contradiction. Hence, |A| = 1. By the
minimality of m, we have c(A, C) = 2. By Fact 2.1 (1), color 2 induces a
subgraph G(2) such that each component is a K3 or a star within V1. In order
to avoid a rainbow K3 and a monochromatic P4 in color 2, there is only a
single color between each pair of components. Since 1 /∈ C(V1) and by Fact 2.1
(3), G(2) contains at most n′k := grk−2(K3 : K3)−1 components each of which
is a K3. Moreover, for 0 ≤ j ≤ n′k, if there are exactly n′k − j components
each of which is a K3, then there are at most j components each of which is
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a nontrivial star. Thus after removing at most 2(n′k − j) + j vertices, there
is no edge using color 2 within V1. Thus |V (G)| = |V1|+ |V2|+ |A|+ |C | ≤
2|V1|+ 2≤ 2(2(n′k − j) + j+ (grk−2(K3 : F10)− 1)) + 2< n, a contradiction.

Case 3. r = 3.

By Fact 2.1 (3), we may assume that c(V1, V2 ∪ V3) = 1 and c(V2, V3) = 2.
Thus 1 /∈ C(V1) ∪ C(V2) ∪ C(V3) and 2 /∈ C(V2) ∪ C(V3). By the induction
hypothesis, we have |V1| ≤ grk−1(K3 : F10)− 1, |V2| ≤ grk−2(K3 : F10)− 1
and |V3| ≤ grk−2(K3 : F10)− 1. Since m ≤ 8 and 2 ≥ |V4| ≥ · · · ≥ |Vm|, we
have |V4|+ · · ·+ |Vm| ≤ 10. If c(v, V1) = 1 for some v ∈ V4 ∪ · · · ∪ Vm, then
c(v, V2) 6= 1 and c(v, V3) 6= 1 by Fact 2.1 (3). But then c(v, V2) = c(v, V3) = 2,
a contradiction. Thus c(V1, V4 ∪ · · · ∪ Vm) = 2. Note that |V4 ∪ · · · ∪ Vm| =
|V (G)| − |V1| − |V2| − |V3| ≥ 5. By Fact 2.1 (2), we have 2 /∈ C(V1) and
2 /∈ C(V4 ∪ · · · ∪ Vm). Thus |V (G)| = |V1| + |V2| + |V3| + |V4 ∪ · · · ∪ Vm| ≤
3(grk−2(K3 : F10)− 1) +min{grk−1(K3 : F10)− 1,10}< n, a contradiction.

Case 4. r ≥ 4.

By Fact 2.1 (3), there is no monochromatic K3 in the subgraph H of
the reduced graph induced on the first four parts. Thus H is one of the
two1 2-edge-colorings of K4 without a monochromatic K3. By Fact 2.1 (2),
1,2 /∈ C(V1) ∪ C(V2) ∪ C(V3) ∪ C(V4). Thus for i ∈ [4], |Vi| ≤ grk−2(K3 :
F10)− 1, so |V5 ∪ · · · ∪ Vm| ≥ 5. If 6≤ m≤ 8, then there is a monochromatic
K1,2,3, a contradiction. Thus m = 5 and |V5| ≥ 5. In order to avoid a
monochromatic F10, G is a blow-up of the unique 2-edge-coloring of K5

without a monochromatic K3. By Fact 2.1 (2), 1, 2 /∈ C(V1)∪C(V2)∪· · ·∪C(V5).
Applying induction on k, we have |V (G)| ≤ 5(grk−2(K3 : F10)− 1) < n, a
contradiction.

2.3 (Gallai-)Ramsey numbers for F2,n

We first give our proof of the statement in Theorem 2.2, determining the
2-colored Ramsey numbers for F2,n.

1It is well-known that there are exactly two 2-edge-colorings of K4 without a monochromatic
copy of K3. The first one satisfies that each color induces a P4. The second one satisfies that
one color induces a C4 and the other color induces a 2K2.
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Proof of Theorem 2.2. Let n′ := 2n− ε, where ε = 1 if n is even, and ε = 0
otherwise. Since K1,n is a subgraph of F2,n and r2(K1,n) = n′ (proven in [28]),
we have r2(F2,n)≥ n′.

For the upper bound, suppose that G is a 2-edge-coloring of Kn′ containing
no monochromatic F2,n. Since r2(F2,3) = 6 (see [97]), we may assume that
n ≥ 4. Then G contains a monochromatic K1,n, say H is a monochromatic
K1,n in G with V (H) = {u, v1, v2, . . . , vn} and c(u, {v1, v2, . . . , vn}) = 1. Let
V (G) \ V (H) = {w1, w2, . . . , wn′−n−1}. For each 1 ≤ i ≤ n′ − n− 1, there is
at most one edge using color 1 in E(wi , {v1, v2, . . . , vn}) in order to avoid a
monochromatic F2,n. Note that n≥ 4 and n′− n− 1≥ 2. If c(wi , {v1, v2, . . . ,
vn}) = 2 for some 1≤ i ≤ n′− n− 1, then it is easy to find a monochromatic
F2,n in color 2, a contradiction. Thus we may consider the following two cases
based on C({w1, w2}, {v1, v2, . . . , vn}).

For the first case, suppose that c({w1, w2}, {v1, v2, . . . , vn−1}) = 2 and
c({w1, w2}, vn) = 1. In order to avoid a monochromatic F2,n in color 2, we
have c({w1, w2}, u) = 1. Then uw1vnw2u is a C4 in color 1, which together
with {v1, v2, . . . , vn−2} forms a monochromatic F2,n centered at u, a contra-
diction. For the second case, suppose that c({w1, w2}, {v1, v2, . . . , vn−2}) =
c(w1vn) = c(w2vn−1) = 2 and c(w1vn−1) = c(w2vn) = 1. Note that we
also have c({w1, w2}, u) = 1, similarly as above. If c(v1vn−1) = 1, then
uw1vn−1v1u is a C4 in color 1, which together with {v2, v3, . . . , vn−2, vn} forms
a monochromatic F2,n centered at u, a contradiction. Thus c(v1vn−1) = 2,
and by symmetry c({v1, v2, . . . , vn−2}, {vn−1, vn}) = 2. If n = 4, then there is
a F2,4 in color 2 centered at v1. If n ≥ 5, then n′ − n− 1 ≥ 4 and we have
c(w3vn−1) = 2 or c(w3vn) = 2, say c(w3vn−1) = 2. Then vn−1v1vnv2vn−1 is
a C4 in color 2, which together with {v3, v4, . . . , vn−2, w2, w3} forms a F2,n

centered at vn−1, a contradiction.

Next, we give our proof of the statement in Theorem 2.3, determining the
exact values, lower and upper bounds for grk(K3 : F2,n).

Proof of Theorem 2.3. We first prove the lower bounds by constructing some
appropriate Gallai-k-colorings of complete graphs without a monochromatic
F2,n. For n ∈ {3,4}, let G2 be a 2-edge-coloring of the complete graph on
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r2(F2,n) − 1 vertices using colors 1 and 2 without a monochromatic F2,n.
We then construct G3, . . . , Gk, where for each 3 ≤ i ≤ k, Gi is obtained by
adding a new vertex to Gi−1 such that all the new edges get color i. Note
that |V (Gk)|= r2(F2,n) + k− 3, and Gk contains neither a rainbow K3 nor a
monochromatic F2,n.

Let G′ be the unique 2-edge-coloring of K5 using colors 2 and 3 without
a monochromatic K3. For odd n ≥ 5, let H1 be a monochromatic K(n−1)/2

using color 1 and let G3 be the blow-up G′(5 ·H1) of G′. For even n≥ 6, let
H2 (resp., H3) be a monochromatic Kn/2 (resp., Kn/2−1) using color 1 and
let G3 = G′(1 · H2, 4 · H3). Let G3, . . . , Gk be a sequence of edge-colorings
satisfying that for each 3≤ i ≤ k−1, Gi+1 is obtained by adding a new vertex
to Gi such that all the new edges get color i+1. Note that Gk contains neither
a rainbow K3 nor a monochromatic F2,n. For n≥ 6, we have

|V (Gk)|=

(

5n/2+ k− 7, if n is even,

(5n− 1)/2+ k− 5, if n is odd.

For n = 5, we further construct G′k by adding a new vertex to Gk such that
all the new edges get color 1. Then G′k contains neither a rainbow K3 nor a
monochromatic F2,5, and |V (G′k)|= k+ 8.

For establishing the upper bounds, let

nk :=







r2(F2,n) + k− 2, if n ∈ {3, 4} and k ≥ 1,

k+ 9, if n= 5 and k ≥ 2,

k(n− 1) + 2, if n≥ 6 and k ≥ 2.

We will prove that every Gallai-k-coloring of Knk
contains a monochromatic

F2,n. The case k = 1 and n ∈ {3,4} is trivial, and the case k = 2 and n ≥ 3
holds by Theorem 2.2. So we may assume k ≥ 3 in the following. For a contra-
diction, suppose that G is a Gallai-k-coloring of Knk

without a monochromatic
F2,n. We choose such a G where k is minimal. Let V1, V2, . . . , Vm be a Gallai
partition with |V1| ≥ |V2| ≥ · · · ≥ |Vm| and 2≤ m≤ r2(F2,n)− 1. We choose it
such that m is minimal. Assume that colors 1 and 2 are the two colors used
between the parts.
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We first suppose m ≥ 4. In this case, we have |V (G) \ V1| ≥ 3. In order
to avoid a monochromatic F2,n and since k ≥ 3, we have 2 ≤ |V1| ≤ n− 1.
For i ∈ {1,2}, let Ai be the union of parts with color i to V1. If n /∈ {4,5},
then max{|A1|, |A2|} ≥ d(|V (G)| − |V1|)/2e ≥ d(nk − (n− 1))/2e ≥ n, which
implies that there is a monochromatic F2,n, a contradiction. If n= 5, then we
must have |V1| = |A1| = |A2| = 4 and k = 3 by a similar argument. For any
edge uv ∈ E(A1, A2), we have c(uv) ∈ {1,2}, resulting in a monochromatic
F2,5, a contradiction. If n = 4, then 2 ≤ |V1| ≤ 3 and 3 ≥ max{|A1|, |A2|} ≥
d(k+ 5− 3)/2e ≥ 3, say |A1|= 3. If |V1|= 3, then 2≤ |A2| ≤ 3. For avoiding
a monochromatic F2,4, we have 1,2 /∈ C(A1, A2), a contradiction. If |V1|= 2,
then |A2| = 3 and k = 3. Let A1 = {u1, u2, u3} and A2 = {v1, v2, v3}. In order to
avoid a monochromatic F2,4, there is at most one edge using color 1 between
ui and A2 for each i ∈ [3], and there is at most one edge using color 2 between
v j and A1 for each j ∈ [3]. Thus there are at most six edges between A1 and
A2, a contradiction.

Therefore, we have 2≤ m≤ 3. In this case, we may assume that m= 2,
since every Gallai-coloring admitting a Gallai partition with exactly three
parts also admits a Gallai partition with exactly two parts. Without loss of
generality, let c(V1, V2) = 1. Since k ≥ 3, we have |V1| ≥ d|V (G)|/2e ≥ n.
Thus |V2| = 1 for avoiding a monochromatic F2,n in color 1. If 1 /∈ C(V1),
then |V (G)| = |V1|+ |V2| ≤ (nk−1 − 1) + 1 < nk by the minimality of k, a
contradiction. Thus 1 ∈ C(V1), say v1, v2 ∈ V1 with c(v1v2) = 1. In order to
avoid a monochromatic F2,n in color 1, we have 1 /∈ C({v1, v2}, V1 \ {v1, v2}).
Since G is rainbow K3-free, we have c(v1v) = c(v2v) for any v ∈ V1 \ {v1, v2}.
In order to avoid a monochromatic F2,n, there are at most n− 1 vertices in
V1 \ {v1, v2} with a single color to {v1, v2}. Note that |V1 \ {v1, v2}| = nk − 3
and |C({v1, v2}, V1 \ {v1, v2})| ≤ k− 1.

If n≥ 6, then there are at least d(nk−3)/(k−1)e ≥ n vertices in V1\{v1, v2}
with a single color to {v1, v2}. This implies that there is a monochromatic F2,n,
a contradiction.

If n = 3, then there exist four vertices u1, u2, u3, u4 ∈ V1 \ {v1, v2} such
that c({v1, v2}, {u1, u2}) = i and c({v1, v2}, {u3, u4}) = j, where 2≤ i < j ≤ k.
Since G is rainbow K3-free, we have C({u1, u2}, {u3, u4})⊆ {i, j}. Then there
is a monochromatic F2,3 in color i or j, a contradiction.
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If n = 4, then we may consider the following two cases. Firstly, sup-
pose there exist five vertices u1, u2, . . . , u5 ∈ V1 \ {v1, v2} such that c({v1, v2},
{u1, u2, u3}) = i and c({v1, v2}, {u4, u5}) = j, where i and j are two distinct
colors in {2,3, . . . , k}. We have C({u1, u2, u3}, {u4, u5}) ⊆ {i, j} since G is
rainbow K3-free. In order to avoid a monochromatic F2,4 in color j, there
are at least two edges using color i between u4 (resp., u5) and {u1, u2, u3}.
Thus there exists a vertex, say u1, such that c(u1, {u4, u5}) = i, resulting in a
monochromatic F2,4, a contradiction.

Secondly, suppose there exist six vertices u1, u2, . . . , u6 ∈ V1 \ {v1, v2} with
c({v1, v2}, {u1, u2}) = i, c({v1, v2}, {u3, u4}) = j and c({v1, v2}, {u5, u6}) = `,
where 2 ≤ i < j < ` ≤ k. Without loss of generality, we may assume that
c(u1u3) = i. Then c(u1u4) = j and c(u1, {u5, u6}) = `. Since c(u4u5) ∈ { j,`},
there is a monochromatic F2,4 in color j or `, a contradiction.

If n= 5, then by the Pigeonhole Principle, we may consider the following
two cases. Firstly, suppose there exist nine vertices u1, u2, . . . , u9 ∈ V1 \{v1, v2}
with c({v1, v2}, {u1, u2, u3, u4}) = i, c({v1, v2}, {u5, u6, u7}) = j and c({v1, v2},
{u8, u9}) = `, where i, j and ` are three distinct colors in {2, 3, . . . , k}. In order
to avoid a monochromatic F2,5 in color j (resp., `), there are at most two
edges using color j (resp., `) between each u ∈ {u5, u6, u7} (resp., {u8, u9})
and {u1, u2, u3, u4}. Hence, there are at least ten edges using color i between
{u1, u2, u3, u4} and {u5, u6, . . . , u9}. In particular, there exists a vertex u ∈
{u1, u2, u3, u4} such that there are at least three edges using color i between u
and {u5, u6, . . . , u9}, resulting in a monochromatic F2,5, a contradiction.

Secondly, suppose there exist eight vertices u1, u2, . . . , u8 ∈ V1 \ {v1, v2}
with c({v1, v2}, {u1, u2}) = i, c({v1, v2}, {u3, u4}) = j, c({v1, v2}, {u5, u6}) = s
and c({v1, v2}, {u7, u8}) = t, where 2 ≤ i < j < s < t ≤ k. Since there are at
most two edges using color i in E(u1, {u3, u4, . . . , u8}), we may assume that
c(u1, {u7, u8}) = t without loss of generality. Then there is at most one edge
using color t in E(u7, {u3, u4, u5, u6}), so we may assume that c(u7, {u5, u6}) =
s. For avoiding a rainbow K3, we have c(u1, {u5, u6}) = s. For avoiding a
monochromatic F2,5 in color s, we have c(u8, {u5, u6}) = t, resulting in a
monochromatic F2,5 in color t with center u8, a contradiction.
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2.4 Gallai-Ramsey numbers for F12 and F13

In this section, we will prove Theorem 2.4. We start by recalling the following
known Ramsey numbers which will be used in our proofs.

Theorem 2.10 (Hendry [97]). r2(F12) = r2(F13) = 10.

Theorem 2.4 follows immediately from the following two lemmas, the
first of which provides lower bounds for grk(K3 : F12) and grk(K3 : F13), and
the second of which provides the matching upper bounds for grk(K3 : F12)
and grk(K3 : F13).

Lemma 2.11. For any integer k ≥ 1 and graph H ∈ {F12, F13}, we have

grk(K3 : H)>

(

9 · 5(k−2)/2, if k is even,

4 · 5(k−1)/2, if k is odd.

Proof. If k is even, then let G2 be a 2-edge-colored K9 which contains no
monochromatic H, using colors 1 and 2. Suppose that 2i < k and we have
constructed a (2i)-edge-coloring G2i of Kn2i

containing neither a rainbow K3

nor a monochromatic H, where n2i := 9 ·5(2i−2)/2. Let G′ be a 2-edge-colored
K5 using colors 2i+ 1 and 2i+ 2 which contains no monochromatic K3, i.e.,
colors 2i+1 and 2i+2 induce two monochromatic copies of C5. We construct
G2i+2 such that G2i+2 = G′(5 · G2i) is a blow-up of G′. Finally, we obtain a k-
edge-coloring Gk of Kn containing neither a rainbow K3 nor a monochromatic
H, where n= 9 · 5(k−2)/2.

If k is odd, then let G1 be a monochromatic K4 using color 1. Suppose
that 2i − 1 < k and we have constructed a (2i − 1)-edge-coloring G2i−1 of
Kn2i−1

which contains neither a rainbow K3 nor a monochromatic H, where
n2i−1 := 4 · 5(2i−2)/2. Let G′′ be a 2-edge-colored K5 using colors 2i and
2i + 1 which contains no monochromatic K3. We construct G2i+1 such that
G2i+1 = G′′(5 · G2i−1) is a blow-up of G′′. Finally, we obtain a k-edge-coloring
Gk of Kn containing neither a rainbow K3 nor a monochromatic H, where
n= 4 · 5(k−1)/2.
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Lemma 2.12. For any integer k ≥ 1 and graph H ∈ {F12, F13}, we have

grk(K3 : H)≤

(

9 · 5(k−2)/2+ 1, if k is even,

4 · 5(k−1)/2+ 1, if k is odd.

Proof. We prove the statement by induction on k. The case k = 1 is trivial and
the case k = 2 holds by Theorem 2.10, so we may assume k ≥ 3. Suppose the
statement holds for all k′ < k, and we will prove it for k. For a contradiction,
suppose that G is a Gallai-k-coloring of Kn containing no monochromatic H,
where

n :=

(

9 · 5(k−2)/2+ 1, if k is even,

4 · 5(k−1)/2+ 1, if k is odd.

Since k ≥ 3, we have n ≥ 21. Let V1, V2, . . . , Vm be a Gallai partition with
|V1| ≥ |V2| ≥ · · · ≥ |Vm| and 2 ≤ m ≤ r2(H)− 1 = 9. We choose it such that
m is minimal. We may assume that colors 1 and 2 are the two colors used
between the parts (if there is only one color used between the parts, then
let color 1 be this color). We first have the following simple facts since G is
monochromatic H-free.

Fact 2.2. Let U, V be two nonempty subsets of V (G) with U ∩ V = ; and
c(U , V ) = c0, where c0 ∈ [k]. Then

(1) there is no monochromatic P4 using color c0 within U or V , respectively;

(2) if |U | ≥ 3 and |V | ≥ 3, then c0 /∈ C(U) and c0 /∈ C(V ), respectively;

(3) if |U | ≥ 3 and |V | ≥ 2, then there is no monochromatic P3 using color c0

within U;

(4) if |U | ≥ 4, then there is no monochromatic K3 using color c0 within U;

(5) if |U | ≥ 2 and |V | ≥ 2, then there is no vertex with color c0 to both U and
V in V (G) \ (U ∪ V ).

Fact 2.3. Let U, V be two nonempty subsets of V (G) with U ∩ V = ; and
c(U , V ) = c0, where c0 ∈ [k]. Then
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(1) if H = F12 and |U | ≥ 4, then there is no monochromatic P3 using color c0

within U;

(2) if H = F13, |U | ≥ 3 and |V | ≥ 2, then c0 /∈ C(U).

Claim 2.2. We have 4 ≤ m ≤ 9, and C
�

Vi ,
⋃

j∈[m]\{i} Vj
�

= {1,2} for every
i ∈ [m].

Proof. If m = 3, then at least two of the colors c(V1, V2), c(V1, V3) and c(V2, V3)
are the same color, say c(V1, V2) = c(V1, V3). This implies that V1 and V (G)\V1

form a Gallai partition with exactly two parts, contradicting the minimality
of m. If m= 2, then c(V1, V2) = 1. If |V2| ≥ 3, then 1 /∈ C(V1) by Fact 2.2 (2).
Applying induction on k within V1, we have |V (G)| = |V1|+ |V2| ≤ 2|V1| ≤
2(grk−1(K3 : H) − 1) < n, a contradiction. If |V2| = 2, then by Fact 2.2
(3), color 1 induces a matching within V1. If |V2| = 1, then by Fact 2.2
(1) and (4), color 1 induces a subgraph such that each component is a star
within V1. Thus when 1 ≤ |V2| ≤ 2, we can partition V1 into two subsets V ′1
and V ′′1 such that 1 /∈ C(V ′1) and 1 /∈ C(V ′′1 ). By the induction hypothesis,
|V (G)| = |V ′1 |+ |V

′′
1 |+ |V2| ≤ 2(grk−1(K3 : H)− 1) + 2 < n, a contradiction.

Therefore, 4≤ m≤ 9.

If
�

�C
�

Vi ,
⋃

j∈[m]\{i} Vj
�

�

� = 1 for some i ∈ [m], then Vi and V (G)\Vi form a
Gallai partition with exactly two parts, contradicting the minimality of m.

By Claim 2.2, we have 4 ≤ m ≤ 9. Let r be the number of parts with at
least three vertices, i.e., |Vr | ≥ 3 and |Vr+1| ≤ 2 (here we define |Vm+1|= 0).
Since m≤ 9 and |V (G)| ≥ 21, we have 1≤ r ≤ m≤ 9. We divide the rest of
the proof into four cases based on the number r.

Case 1. r ≥ 4.

By Fact 2.2 (5), there is no monochromatic K3 in the subgraph R of the
reduced graph induced on the first four parts. Thus R is one of the two
2-edge-colorings of K4 without a monochromatic K3. Thus 1,2 /∈ C(V1) by
Fact 2.2 (2). If m ≤ 5, then |V (G)| ≤ 5|V1| ≤ 5(grk−2(K3 : H)− 1) < n, a
contradiction. If 6 ≤ m ≤ 9, then 1 ≥ |V5| ≥ · · · ≥ |Vm|; otherwise there is
a monochromatic K1,2,3 since r2(K3) = 6, a contradiction. Moreover, since
n = |V (G)| =

∑4
i=1 |Vi|+

∑m
j=5 |Vj| ≤ 4|V1|+ 5 ≤ 4(grk−2(K3 : H)− 1) + 5,
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we have n = 21, k = 3, |Vi| = 4 for i ∈ [4] and |Vj| = 1 for j ∈ {5,6, . . . , 9}.
Note that there is a monochromatic K3 in the subgraph of the reduced graph
induced on V1, V2, . . . , V6, i.e., there is a monochromatic K1,4,4 or K1,1,4 in G.
If the former holds, then we are done. If the latter holds, then there is a
monochromatic F12 using six edges of the K1,1,4, and a monochromatic F13

using five edges of the K1,1,4 and one edge between the first four parts, a
contradiction.

Case 2. r = 3.

In order to avoid a monochromatic K3,3,3 which contains a monochromatic
H, we may assume that c(V1, V2 ∪ V3) = 1 and c(V2, V3) = 2. Then 1 /∈ C(V1)
and 1, 2 /∈ C(V2)∪C(V3) by Fact 2.2 (2). By the induction hypothesis, we have
|V1| ≤ grk−1(K3 : H)−1, |V2| ≤ grk−2(K3 : H)−1 and |V3| ≤ grk−2(K3 : H)−1.
So |V4 ∪ · · · ∪ Vm| ≥ 4. Recall that m ≤ 9 and 2 ≥ |V4| ≥ · · · ≥ |Vm|. Thus
|V4∪ · · ·∪Vm| ≤ 2+2+1+1+1+1 = 8; otherwise there is a monochromatic
K1,2,2 in G. If c(v, V1) = 1 for some v ∈ V4 ∪ · · · ∪ Vm, then c(v, V2) 6= 1 and
c(v, V3) 6= 1 by Fact 2.2 (5). But then c(v, V2) = c(v, V3) = 2, a contradiction.
Thus c(V1, V4 ∪ · · · ∪ Vm) = 2. Recall that we have |V4 ∪ · · · ∪ Vm| ≥ 4. Thus
2 /∈ C(V1) and 2 /∈ C(V4 ∪ · · · ∪ Vm) by Fact 2.2 (2). Hence, |V1| ≤ grk−2(K3 :
H)− 1 and |V4 ∪ · · · ∪ Vm| ≤ min{8, grk−1(K3 : H)− 1} = 8. Then |V (G)| =
∑3

i=1 |Vi|+
∑m

j=4 |Vj| ≤ 3(grk−2(K3 : H)− 1) + 8< n, a contradiction.

Case 3. r = 1.

For each i ∈ {1,2}, let Ai be the union of parts with color i to V1. Then
|A1| + |A2| ≤ 16. If |A1| ≥ 3 and |A2| ≥ 3, then 1,2 /∈ C(V1) by Fact 2.2
(2). By the induction hypothesis, we have |V (G)| = |V1| + |A1| + |A2| ≤
grk−2(K3 : H) − 1 + 16 < n, a contradiction. If |A1| ≥ 3 and |A2| ≤ 2,
then 1 /∈ C(V1) and 1 /∈ C(A1) by Fact 2.2 (2). By the induction hypothesis,
|V (G)| = |V1|+|A1|+|A2| ≤ 2(grk−1(K3 : H)−1)+2< n, a contradiction. Thus
|A1| ≤ 2, and by symmetry |A2| ≤ 2. By Claim 2.2, we have |A1| ≥ 1, |A2| ≥ 1
and max{|A1|, |A2|}= 2, say 1≤ |A2| ≤ |A1|= 2. Note that |V1| ≥ n− 4≥ 17.

If H = F12, then there is no monochromatic P3 using color 1 or color 2
within V1 by Fact 2.3 (1). Thus there is no rainbow P3 using colors 1 and 2;
otherwise there is a monochromatic P3 using color 1 or 2 since G is rainbow
K3-free. Thus colors 1 and 2 induce a matching within V1. Then there exists a
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subset U ⊆ V1 with |U | ≤ b|V1|/2c such that 1, 2 /∈ C(V1 \U). By the induction
hypothesis, |V (G)| = |V1|+ |A1|+ |A2| ≤ 2(grk−2(K3 : F12)− 1) + 4 < n, a
contradiction.

If H = F13, then 1 /∈ C(V1) by Fact 2.3 (2). Now |V (G)| = |V1|+|A1|+|A2| ≤
grk−1(K3 : F13)− 1+ 4< n, a contradiction.

Case 4. r = 2.

In this case, we may assume that c(V1, V2) = 1. Then by Fact 2.2 (2), we
have 1 /∈ C(Vi) for i ∈ {1, 2}. Thus |Vi| ≤ grk−1(K3 : H)−1. Recall that m≤ 9
and 2≥ |V3| ≥ · · · ≥ |Vm|. If |V6| ≥ 2, then there is a monochromatic K2,2,2 in
G, contradicting Fact 2.2 (5). Hence, |V3∪· · ·∪Vm| ≤ 2+2+2+(m−5)≤ 10.
By Fact 2.2 (5), there is no vertex with color 1 to both V1 and V2. Thus we
can partition V3 ∪ · · · ∪ Vm into three parts A, B and C such that c(A, V1) =
c(C , V2) = 1 and c(A, V2) = c(C , V1) = c(B, V1 ∪ V2) = 2. Note that we have
|A∪ B| ≤ 2 or |B ∪ C | ≤ 2; otherwise 2 /∈ C(V1) and 2 /∈ C(V2) by Fact 2.2 (2),
and then |V (G)| = |V1|+ |V2|+ |A|+ |B|+ |C | ≤ 2(grk−2(K3 : H)−1)+10< n,
a contradiction. Without loss of generality, we may assume |B ∪ C | ≤ 2, so
|B| ≤ 2 and |C | ≤ 2.

If H = F12, then we first suppose |B|= 2 and |C |= 0. By the minimality
of m, we have |A| 6= 0, and thus 2 /∈ C(V2). If |A| ≥ 3, then 1,2 /∈ C(A). Thus
|V (G)| ≤ (grk−1(K3 : F12)−1)+2(grk−2(K3 : F12)−1)+2< n, a contradiction.
Hence, |A| ≤ 2, but then |V (G)| ≤ (grk−1(K3 : F12)− 1) + (grk−2(K3 : F12)−
1) + 4< n, a contradiction.

Next, we suppose |B| = 1 and |C | ≤ 1. If |A| ≥ 3 or |A| = 2, then we can
derive a contradiction similarly as above. Thus |A| ≤ 1. If |A|= 0 or |C |= 0,
then |V (G)| ≤ 2(grk−1(K3 : F12) − 1) + 2 < n. Hence, |A| = |C | = 1. By
Fact 2.2 (3), color 2 induces a matching within V1 and V2. For each i ∈ {1, 2},
we can delete all the edges of color 2 within Vi after removing at most b|Vi|/2c
vertices. Thus |V (G)| ≤ 4(grk−2(K3 : F12)− 1) + 3< n, a contradiction.

Hence, we have |B| = 0 and |C | ≤ 2. If we further have |A| ≥ 3, then
2 /∈ C(V2) and 1,2 /∈ C(A). This implies |V (G)| ≤ (grk−1(K3 : F12)− 1) +
2(grk−2(K3 : F12) − 1) + 2 < n, a contradiction. Thus |A| ≤ 2. Note that
|V2| ≥ 4; otherwise |V (G)| ≤ (grk−1(K3 : F12) − 1) + 3 + 4 < n. By the
minimality of m, we have |A| 6= 0 and |C | 6= 0. By Fact 2.3 (1), color 2 induces
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a matching within V1 and V2. Thus |V (G)| ≤ 4(grk−2(K3 : F12)−1)+4< n, a
contradiction.

If H = F13, then |A∪ B| ≤ 1 or |B ∪ C | ≤ 1; otherwise 2 /∈ C(V1) and
2 /∈ C(V2) by Fact 2.3 (2), and then |V (G)| = |V1|+ |V2|+ |A|+ |B|+ |C | ≤
2(grk−2(K3 : F13)− 1) + 10 < n, a contradiction. Without loss of generality,
we may assume |B ∪ C | ≤ 1, so |B| ≤ 1 and |C | ≤ 1. We first suppose |B|= 1
and |C | = 0. By the minimality of m, we have |A| 6= 0. Then 2 /∈ C(V2) by
Fact 2.3 (2), so |A| ≥ n− (grk−1(K3 : F13)−1)− (grk−2(K3 : F13)−1)−1> 3.
Then 1,2 /∈ C(A), so |V (G)| = |V1|+ |V2|+ |A|+ 1 ≤ (grk−1(K3 : F13)− 1) +
2(grk−2(K3 : F13)− 1) + 1< n, a contradiction.

Therefore, |B| = 0 and |C | ≤ 1. By the minimality of m, we have |A| ≥ 1
and |C | = 1. If |A| ≥ 3, then 2 /∈ C(V2) and 1,2 /∈ C(A). Thus |V (G)| ≤
(grk−1(K3 : F13)− 1) + 2(grk−2(K3 : F13)− 1) + 1 < n, a contradiction. If
|A| = 2, then 2 /∈ C(V2), which implies |V (G)| ≤ (grk−1(K3 : F13) − 1) +
(grk−2(K3 : F13)− 1) + 3 < n, a contradiction. Hence |A| = |C | = 1. Then
|V (G)| ≤ 2(grk−1(K3 : F13)− 1) + 2< n, a contradiction.



Chapter 3

The Gallai-Ramsey number for
K4+ e

In this chapter, we determine the Gallai-Ramsey number grk(K3 : K4+ e) for
the graph K4+ e on five vertices consisting of a K4 with a pendant edge. At
the end of the chapter, we also give a short survey on known Gallai-Ramsey
numbers and some open problems.

3.1 Introduction

Recall that the Gallai-Ramsey number grk(K3 : H) is the minimum integer n
such that every k-edge-coloring of Kn contains either a rainbow copy of K3

or a monochromatic copy of H. Let K4+ e denote the graph on five vertices
consisting of a K4 with a pendant edge, i.e., K4+ e is the graph obtained from
the graph F12 of Figure 2.1 by joining the two vertices with degree 2 by an
edge. We prove the following result.

Theorem 3.1. For any integer k ≥ 1, we have

grk(K3 : K4+ e) =

(

17k/2+ 1, if k is even,

4 · 17(k−1)/2+ 1, if k is odd.

35
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In fact, we will prove a more general result. For an integer s with 0 ≤
s ≤ k, if H1 = · · · = Hs = K4 + e and Hs+1 = · · · = Hk = K3, we will write
grk(K3 : s · K4 + e, (k− s) · K3) for gr(K3 : H1, H2, . . . , Hk). In this chapter, we
will prove Theorem 3.1 in the following more general form. Theorem 3.1
immediately follows from Theorem 3.2 by choosing s = k.

Theorem 3.2. For integers k ≥ 1 and 0≤ s ≤ k, we have

grk(K3 : s · K4+ e, (k− s) · K3)

=



















17s/2 · 5(k−s)/2+ 1, if s is even and k− s is even,

2 · 17s/2 · 5(k−s−1)/2+ 1, if s is even and k− s is odd,

8 · 17(s−1)/2 · 5(k−s−1)/2+ 1, if s is odd and k− s is odd,

4 · 17(s−1)/2 · 5(k−s)/2+ 1, if s is odd and k− s is even.

We will prove the above result in the usual way, by establishing suitable
lower bounds for the four cases in Section 3.2, and matching upper bounds
in Section 3.3. We will need the following known Ramsey numbers in our
proofs.

Theorem 3.3. The following Ramsey numbers have been established:

(1) (Greenwood and Gleason [88]) r(K3, K3) = 6, r(K4, K4) = 18;

(2) (Clancy [41]) r(K4+ e, K3) = 9;

(3) (Harborth and Mengersen [95]) r(K4+ e, K4+ e) = 18.

3.2 Proof of the lower bounds

For convenience, let

g(k, s) :=



















17s/2 · 5(k−s)/2, if s is even and k− s is even,

2 · 17s/2 · 5(k−s−1)/2, if s is even and k− s is odd,

8 · 17(s−1)/2 · 5(k−s−1)/2, if s is odd and k− s is odd,

4 · 17(s−1)/2 · 5(k−s)/2, if s is odd and k− s is even.
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We shall prove grk(K3 : s · K4 + e, (k− s) · K3) > g(k, s) by construction.
Let G0 be a single vertex and G1 be a monochromatic copy of K4 using color 1.
If s is even, then we will begin with G0 and iteratively construct Gallai-colored
graphs. If s is odd, then we will begin with G1 and iteratively construct
Gallai-colored graphs. Suppose we have constructed Gi for some i < k. Let
G′ be a 2-edge-colored K5 using colors i + 1 and i + 2 which contains no
monochromatic copy of K3, and G′′ be a 2-edge-colored K17 using colors i + 1
and i + 2 which contains no monochromatic copy of K4. We construct Gi+2 or
Gi+1 based on the following rules:

(1) if i ≤ s− 2, then we construct Gi+2 such that Gi+2 = G′′(17 · Gi);

(2) if s ≤ i ≤ k− 2, then we construct Gi+2 such that Gi+2 = G′(5 · Gi);

(3) if i = k− 1, then we construct Gi+1 by joining two copies of Gi with
edges using color k.

Finally, we obtain a Gallai-k-colored graph Gk of order g(k, s), which contains
neither a monochromatic copy of K4 + e in any of the first s colors nor a
monochromatic copy of K3 in any of the last k− s colors.

3.3 Proof of the upper bounds

In this section, we shall prove grk(K3 : s · K4 + e, (k − s) · K3) ≤ g(k, s) + 1
by induction on k+ s. The case k = 1 is trivial, the case k = 2 follows from
Theorem 3.3, and the case s = 0 follows from Theorem 2.7. So we may
assume that the result holds for all k′ + s′ < k+ s and we will prove it for
k+ s, where k ≥ 3 and 1≤ s ≤ k.

Let G be a Gallai-k-coloring of Kn, where n := g(k, s) + 1. For a contradic-
tion, suppose that G contains neither a monochromatic copy of K4+ e in any
of the first s colors nor a monochromatic copy of K3 in any of the last k− s
colors. By Theorem 1.4, let V1, V2, . . . , Vt (t ≥ 2) be a Gallai partition of V (G).
We choose such a partition so that t is minimum. We may assume that red
and blue are the two colors used between these parts, where red and blue are
two of the k colors. Note that n= g(k, s) + 1≥ 21 since k ≥ 3 and 1≤ s ≤ k.
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Claim 3.1. t ≥ 4.

Proof. If t = 3, then at least two of the colors c(V1, V2), c(V1, V3) and c(V2, V3)
are the same color, say c(V1, V2) = c(V1, V3). This implies that V1 and V (G)\V1

form a Gallai partition with exactly two parts, contradicting the minimality
of t. Thus t = 2, and we may assume that c(V1, V2) is red without loss of
generality.

If there is no red edge within both V1 and V2, then G[V1] and G[V2] are
two Gallai-(k− 1)-colorings. By the induction hypothesis, if red is one of the
first s colors, then

n= |V1|+ |V2| ≤ 2 · g(k− 1, s− 1)

=



















2 · 17(s−1)/2 · 5(k−s)/2, if s− 1 is even and k− s is even,

2 · 2 · 17(s−1)/2 · 5(k−s−1)/2, if s− 1 is even and k− s is odd,

2 · 8 · 17(s−2)/2 · 5(k−s−1)/2, if s− 1 is odd and k− s is odd,

2 · 4 · 17(s−2)/2 · 5(k−s)/2, if s− 1 is odd and k− s is even

≤ g(k, s),

a contradiction. If red is one of the last k− s colors, then

n= |V1|+ |V2| ≤ 2 · g(k− 1, s)

=



















2 · 17s/2 · 5(k−s−1)/2, if s is even and k− s− 1 is even,

2 · 2 · 17s/2 · 5(k−s−2)/2, if s is even and k− s− 1 is odd,

2 · 8 · 17(s−1)/2 · 5(k−s−2)/2, if s is odd and k− s− 1 is odd,

2 · 4 · 17(s−1)/2 · 5(k−s−1)/2, if s is odd and k− s− 1 is even

≤ g(k, s),

a contradiction.

If G[V1] or G[V2] contains a red edge, then red is one of the first s colors.
Without loss of generality, we may assume that G[V1] contains a red edge. In
order to avoid a red copy of K4+ e, there is no red edge within V2 and there is
no red copy of K3 within V1 (recall that n≥ 21). By the induction hypothesis,
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we have

n= |V1|+ |V2| ≤ g(k, s− 1) + g(k− 1, s− 1)

=































































8 · 17(s−2)/2 · 5(k−s)/2+ 4 · 17(s−2)/2 · 5(k−s)/2,

if s is even and k− s is even,

4 · 17(s−2)/2 · 5(k−s+1)/2+ 8 · 17(s−2)/2 · 5(k−s−1)/2,

if s is even and k− s is odd,

17(s−1)/2 · 5(k−s+1)/2+ 2 · 17(s−1)/2 · 5(k−s−1)/2,

if s is odd and k− s is odd,

2 · 17(s−1)/2 · 5(k−s)/2+ 17(s−1)/2 · 5(k−s)/2,

if s is odd and k− s is even

≤ g(k, s),

a contradiction. This completes the proof of Claim 3.1.

We define R to be a 2-edge-coloring of Kt with V (R) = {v1, v2, . . . , vt} and
c(vi v j) = c(Vi , Vj) for any 1 ≤ i < j ≤ t (i.e., R is the reduced graph of the
Gallai partition). Note that if R contains a 2-edge-colored subgraph H, then G
also contains a copy of H (in fact, G contains a blow-up of H). For each i ∈ [t],
let N r

i := { j ∈ [t] \ {i}: c(vi v j) is red}, N b
i := { j ∈ [t] \ {i}: c(vi v j) is blue},

d r
i := |N r

i | and d b
i := |N b

i |. By Claim 3.1 and the minimality of t, we have
d r

i ≥ 1 and d b
i ≥ 1 for every i ∈ [t]. We claim that at least one of red and

blue is among the first s colors. Indeed, if both red and blue are among
the last k − s colors, then R contains no monochromatic copy of K3. So
t ≤ r(K3, K3)− 1 = 5. Moreover, for every i ∈ [t], since d r

i ≥ 1 and d b
i ≥ 1,

there is no red edge and no blue edge within Vi in G. By the induction
hypothesis, we have n=

∑t
i=1 |Vi| ≤ 5 · g(k− 2, s)≤ g(k, s), a contradiction.

Let R := {i ∈ [t]: G[Vi] contains a red edge} and B := {i ∈ [t]: G[Vi]
contains a blue edge}. Let x0 := |[t] \ (R ∪B)|, x1 := |R 4B| and x2 :=
|R ∩B|, so t = x0+ x1+ x2. We have the following simple facts.

Fact 3.1. The following six statements hold.
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(1) For any i ∈ R (resp., i ∈B), we have that vi is not contained in any red
copy of K3 (resp., blue copy of K3) in R.

(2) For any i, j ∈ R (resp., i, j ∈B) with i 6= j, we have that c(Vi , Vj) is blue
(resp., red).

(3) For any i ∈ R (resp., i ∈B), we have d r
i ≤ 3 (resp., d b

i ≤ 3).

(4) For any i ∈ [t], we have d r
i ≤ 8 and d b

i ≤ 8.

(5) For any i ∈ [t], G[Vi] contains neither a red copy of K3 nor a blue copy of
K3.

(6) x2 ≤ 1.

Proof. By the symmetry of red and blue, we will only prove the red case for
(1)–(5). Note that if red is one of the last k− s colors, then Fact 3.1 holds
clearly. So we may assume that red is one of the first s colors.

(1) If there exists an i ∈ R such that vi is contained in a red copy of K3

in R, say vi v j v`vi, then in order to avoid a red copy of K4 + e, we have that
c(Vi ∪ Vj ∪ V`, V (G) \ (Vi ∪ Vj ∪ V`)) is blue. By the minimality of t, we have
t = 2, contradicting Claim 3.1.

(2) If there exist some i, j ∈ R with i 6= j such that c(Vi , Vj) is red, then
for avoiding a red copy of K4+ e, we have that c(Vi ∪ Vj , V (G) \ (Vi ∪ Vj)) is
blue. By the minimality of t, we have t = 2, contradicting Claim 3.1.

(3) If there exists an i ∈ R such that d r
i ≥ 4, then {v j : j ∈ N r

i } forms a
blue copy of Kd r

i
by (1). In order to avoid a blue copy of K4 + e, we have

d r
i = 4 and c

�
⋃

j∈N r
i

Vj ,
⋃

`∈[t]\N r
i

V`
�

is red. By the minimality of t, we have
t = 2, contradicting Claim 3.1.

(4) Suppose d r
i ≥ 9 for some i ∈ [t]. In order to avoid a red copy of

K4 + e, there is no red copy of K3 in R[{v j : j ∈ N r
i }]. Since r(K3, K4 + e) = 9,

there is a blue copy of K4+ e (and thus a blue copy of K3), a contradiction.

(5) Suppose that G[Vi] contains a red copy of K3 for some i ∈ [t]. Since
d r

i ≥ 1, we may assume that c(Vi , Vj) is red for some j ∈ [t] \ {i}. In order to
avoid a red copy of K4+ e, we have that c(Vi ∪ Vj , V (G) \ (Vi ∪ Vj)) is blue. By
the minimality of t, we have t = 2, contradicting Claim 3.1.
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(6) If x2 = |R ∩B| ≥ 2, then we can derive a contradiction by (2).

We divide the rest of the proof into two cases according to where red and
blue are in the list of colors.

Case 1. Red is among the first s colors and blue is among the last k− s colors.

In this case, there is no red copy of K4 + e and no blue copy of K3 in G.
Since r(K4 + e, K3) = 9, we have 4 ≤ t ≤ 8. Recall that d r

i ≥ 1 and d b
i ≥ 1

for every i ∈ [t]. So there is no blue edge within each Vi. Thus |B| = 0,
x1 = |R|, x2 = 0 and x0 = t − x1. We claim that x1 ≤ 2, since otherwise if
|R| ≥ 3, then there is a blue copy of K3 by Fact 3.1 (2).

For each i ∈ R , G[Vi] contains no red copy of K3 by Fact 3.1 (5). By the
induction hypothesis, we have

|Vi| ≤ g(k− 1, s− 1)

=



















17(s−1)/2 · 5(k−s)/2, if s− 1 is even and k− s is even,

2 · 17(s−1)/2 · 5(k−s−1)/2, if s− 1 is even and k− s is odd,

8 · 17(s−2)/2 · 5(k−s−1)/2, if s− 1 is odd and k− s is odd,

4 · 17(s−2)/2 · 5(k−s)/2, if s− 1 is odd and k− s is even

≤
1

4
g(k, s).

For each i ∈ [t] \ (R ∪B), by the induction hypothesis, we have

|Vi| ≤ g(k− 2, s− 1)

=



















17(s−1)/2 · 5(k−s−1)/2, if s− 1 is even and k− s− 1 is even,

2 · 17(s−1)/2 · 5(k−s−2)/2, if s− 1 is even and k− s− 1 is odd,

8 · 17(s−2)/2 · 5(k−s−2)/2, if s− 1 is odd and k− s− 1 is odd,

4 · 17(s−2)/2 · 5(k−s−1)/2, if s− 1 is odd and k− s− 1 is even

≤
1

8
g(k, s).

Thus n≤ (x1/4+ x0/8)g(k, s). It suffices to prove that x1/4+ x0/8≤ 1.
If x1 ≤ 8 − t, then x1/4+ x0/8 = (2x1 + x0)/8 = (x1 + t)/8 ≤ 1. Thus
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we may assume x1 ≥ 9− t. Recall that we have t ≤ 8 and x1 ≤ 2 in this
case. So |R| = x1 ≥ 1 and 7 ≤ t ≤ 8. For any i ∈ R , we have d r

i ≤ 2 for
avoiding a blue copy of K3 and by Fact 3.1 (1). Thus d b

i ≥ 4. Since there
is no blue copy of K3, we have that {v j : j ∈ N b

i } forms a red copy of Kd b
i
.

Then c
�
⋃

j∈N b
i

Vj ,
⋃

`∈[t]\N b
i

V`
�

is blue. By the minimality of t, we have t = 2,
contradicting Claim 3.1.

Case 2. Both red and blue are among the first s colors.

In this case, we have 4 ≤ t ≤ 17 since r(K4+ e, K4+ e) = 18. Moreover,
we have s ≥ 2 and thus g(k, s) ≥ 34 (recall that k ≥ 3). By the induction
hypothesis, for every i ∈ [t]\(R∪B), we have |Vi| ≤ g(k−2, s−2) = 1

17
g(k, s).

For any i ∈ [t], G[Vi] contains neither a red copy of K3 nor a blue copy of K3

by Fact 3.1 (5). Thus for each i ∈ R ∩B , by the induction hypothesis, we
have |Vi| ≤ g(k, s− 2) = 5

17
g(k, s). And for each i ∈ R 4B , we have

|Vi| ≤ g(k− 1, s− 2)

=



















17(s−2)/2 · 5(k−s+1)/2, if s− 2 is even and k− s+ 1 is even,

2 · 17(s−2)/2 · 5(k−s)/2, if s− 2 is even and k− s+ 1 is odd,

8 · 17(s−3)/2 · 5(k−s)/2, if s− 2 is odd and k− s+ 1 is odd,

4 · 17(s−3)/2 · 5(k−s+1)/2, if s− 2 is odd and k− s+ 1 is even

≤
5

34
g(k, s).

Thus n ≤ (5x2/17 + 5x1/34 + x0/17)g(k, s). It suffices to prove that
10x2+ 5x1+ 2x0 = 2t + 8x2+ 3x1 ≤ 34.

Claim 3.2. x2 = 0.

Proof. By Fact 3.1 (6), we have x2 ≤ 1. For a contradiction, supposeR∩B =
{1}. By Fact 3.1 (3), we have d r

1 ≤ 3 and d b
1 ≤ 3, so t ≤ 7. If t ≤ 5, then

2t + 8x2+ 3x1 ≤ 10+ 8+ 12 ≤ 34. If 6 ≤ t ≤ 7, then we may assume that
d r

1 = 3 without loss of generality, say N r
1 = {2, 3, 4}. By Fact 3.1 (1), we have

that c(v2v3) = c(v3v4) = c(v2v4) is blue. By Fact 3.1 (1) and (2), we have
2,3, 4 /∈ R ∪B . Thus x1 ≤ t − 4, so 2t + 8x2+ 3x1 ≤ 8+ 5t − 12≤ 34.
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Claim 3.3. |R| ≤ 3 and |B| ≤ 3. If |R| = 3 (resp., |B| = 3), then |B| ≤ 1
(resp., |R| ≤ 1).

Proof. If |R| ≥ 4 (resp., |B| ≥ 4), then G contains a blue (resp., red) K2,2,2,2

by Fact 3.1 (2). This implies a monochromatic copy of K4 + e in G. Thus
|R| ≤ 3 and |B| ≤ 3.

If |R| = 3 and 2 ≤ |B| ≤ 3, then R[{vi : i ∈ R}] and R[{vi : i ∈ B}]
form a blue clique and a red clique (by Fact 3.1 (2)), respectively. By Fact 3.1
(1), for any i ∈ R (resp., i ∈ B), there is at most one red (resp., blue)
edge between vi and {v j : j ∈ B} (resp., {v j : j ∈ R}). Thus there are at
most |R|+ |B| < |R||B| edges between {vi : i ∈ R} and {vi : i ∈ B}, a
contradiction. Therefore, if |R|= 3, then |B| ≤ 1, and similarly, if |B|= 3,
then |R| ≤ 1.

By Claims 3.2 and 3.3, we have x2 = 0 and x1 = |R|+ |B| ≤ 4. If t ≤ 11,
then 2t + 8x2+ 3x1 ≤ 22+ 0+ 12= 34. If 13≤ t ≤ 17, then |R|= |B|= 0
by Fact 3.1 (3) and (4), so 2t+8x2+3x1 ≤ 34+0+0 = 34. Thus t = 12. We
have x1 = |R|+ |B|= 4; otherwise 2t + 8x2+ 3x1 ≤ 24+ 0+ 9≤ 34. Then
we further have |R| ≥ 1 and |B| ≥ 1 by Claim 3.3. Without loss of generality,
let 1 ∈ R , 2 ∈B and let c(V1, V2) be blue. Moreover, by Fact 3.1 (3) and (4),
we have d r

1 = 3, d b
1 = 8, d b

2 = 3 and d r
2 = 8. We may further assume that

c(V1, V3∪V4∪· · ·∪V9) is blue. By Fact 3.1 (1), we have c(V2, V3∪V4∪· · ·∪V9)
is red. Since r(K3, K3) = 6, there is either a red copy of K3 or a blue copy of
K3 in R[{v3, v4, . . . , v9}]. Then there is either a red copy of K4 + e or a blue
copy of K4+ e in G. This contradiction completes the proof of Theorem 3.2.

3.4 A short survey on known Gallai-Ramsey numbers

In this section, we present a summary, to the best of our knowledge, of all
the known exact values of Gallai-Ramsey numbers for rainbow triangles. In
addition, we give an analysis of the known results and provide some open
problems.

Known exact values. It was shown by Gyárfás et al. [91] that grk(K3 : H)
is linear in k for bipartite graphs H (except if H is a star), and grk(K3 : H) is
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exponential in k for non-bipartite graphs H. This is similar to the multicolor
Ramsey numbers for graphs. It is well-known that rk(H) is polynomial in k
for bipartite graphs H and at least exponential in k for non-bipartite graphs
H. We summarize all the known exact values of Gallai-Ramsey numbers
grk(K3 : H) in Tables 3.1 and 3.2.

0H

1T 2T

m
P
*

1m - m

ˆ
m
K

1 2

m
B

1 1 22 mm

m
W

11 2

2 3

3

m

4

r

t
S

2r

2 1r -

2 1r +

1t -

1 2n -

2,nF

3

1 2 1 2n m

( , )S n m

Figure 3.1: An illustration of some special graphs.

For the sake of notation, we introduce some additional families of graphs
(see Figure 3.1). For m ≥ 1, the book graph Bm is defined by Bm = K2 ∨ Km.
For m≥ 2, the kipas K̂m is defined by K̂m = K1 ∨ Pm. For m≥ 3, let P∗m denote
the graph consisting of the path Pm with an extra edge joining one end and
the vertex at distance 2 along the path from that end. Note that the graph
P∗5 was denoted by F5 in Figure 2.1. For m ≥ 3, the wheel Wm is defined by
Wm = K1 ∨ Cm. For r ≥ 1 and t ≥ 2r + 1, the graph Sr

t is obtained from a star
of order t by adding an extra r independent edges between the leaves of the
star. Note that the graphs S1

5 and S2
5 were denoted by F4 and F8 in Figure 2.1,

respectively. For n ≥ m ≥ 0, the double star S(n, m) is the graph consisting
of the disjoint union of stars K1,n and K1,m with an extra edge joining their
centers. Note that the graph S(2,1) was denoted by F2 in Figure 2.1. The
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graphs F9, F10, F12, F13 and F2,n were defined in Chapter 2. The graph H0 is a
5-vertex graph obtained by removing the edges of a copy of K2 ∪ P3 from K5.
The graph T1 is a 6-vertex tree obtained from a path of length 4 by attaching a
pendant edge at the second vertex along the path. The graph T2 is a 6-vertex
tree obtained from a path of length 4 by attaching a pendant edge at the third
vertex along the path.

H grk(K3 : H) (k ≥ 3) Cite

K1,t (t ≥ 3)

(

(5t − 3)/2, if t is odd,

5t/2− 3, if t is even
[91]

Pn

�

n−2
2

�

k+
 

n
2

£

+ 1 [178]
C4 k+ 4 [72]
C2n (n≥ 3) (n− 1)k+ n+ 1 [178]
K2,n (2≤ n≤ 17 or
n is large enough)

k− 2+ r2(K2,n) [122,175]

K3,3 2k+ 14 [175]
K3,n (4≤ n≤ 5 or
n is large enough)

2(k− 2) + r2(K3,n) [122]

nK2 (n− 1)k+ n+ 1 [72,175]
S(n, m) (m≥ 1 and
even n≥ 6m+ 7)

5n
2
+m(k− 3) + 1 [106]

S(n, m) (m≥ 1 and
odd n≥ 6m+ 7)

5(n−1)
2
+m(k− 3) + 2 [106]

F2,3 k+ 4 Theorem 2.3
F2,4 k+ 5 Theorem 2.3
F2,5 k+ 9 Theorem 2.3
S(2,1) k+ 4 [72]
T1, S(3, 1) k+ 5 [72]
T2, S(2, 2) 2k+ 4 [72]

Table 3.1: Gallai-Ramsey numbers for bipartite graphs.

Two driving conjectures. Given a connected bipartite graph H, let s(H) be
the order of the smallest part and let b(H) be the order of the largest part of
the bipartition of H. For general connected bipartite graphs, the following
conjecture was posed in [175].
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H grk(K3 : H) (k ≥ 3) Cite

K3

(

5k/2+ 1, if k is even,

2 · 5(k−1)/2+ 1, if k is odd
[36,91]

K4

(

17k/2+ 1, if k is even,

3 · 17(k−1)/2+ 1, if k is odd
[123]

K4+ e

(

17k/2+ 1, if k is even,

4 · 17(k−1)/2+ 1, if k is odd
Theorem 3.1

C2n+1 (n≥ 2) n · 2k + 1 [172,178]

F8

(

83
2
· 5(k−4)/2+ 1

2
, if k is even,

4 · 5(k−1)/2+ 1, if k is odd
[138]

F9, F10

(

8 · 5(k−2)/2+ 1, if k is even,

4 · 5(k−1)/2+ 1, if k is odd
Theorem 2.1

F12, F13

(

9 · 5(k−2)/2+ 1, if k is even,

4 · 5(k−1)/2+ 1, if k is odd
Theorem 2.4

Bm
(2≤ m≤ 5)

(

(r2(Bm)− 1) · 5
k−2

2 + 1, if k is even,

2 · (r2(Bm)− 1) · 5
k−3

2 + 1, if k is odd
[181]

W4

(

14 · 5(k−2)/2+ 1, if k is even,

28 · 5(k−3)/2+ 1, if k is odd
[163]

K̂4

(

2 · 5k/2, if k is even,

4 · 5(k−1)/2+ 1, if k is odd
[180]

P∗m (m≥ 4)

(

2(m− 1) · 5(k−2)/2+ 1, if k is even,

(m− 1) · 5(k−1)/2+ 1, if k is odd
[173]

S1
t (t ≥ 4)

(

2(t − 1) · 5(k−2)/2+ 1, if k is even,

(t − 1) · 5(k−1)/2+ 1, if k is odd
[173]

S2
6

(

2 · 5k/2+ 1
4
· 5(k−2)/2+ 3

4
, if k is even,

 

51
10
· 5(k−1)/2+ 1

2

£

, if k is odd
[139]

S2
8

(

14 · 5
k−2

2 + 1
2
· 5

k−4
2 + 1

2
, if k is even,

7 · 5
k−1

2 + 1
4
· 5

k−3
2 + 3

4
, if k is odd

[139]

H0

(

9 · 5(k−2)/2+ 1, if k is even,

4 · 5(k−1)/2+ 1, if k is odd
[180]

Table 3.2: Gallai-Ramsey numbers for non-bipartite graphs.
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Conjecture 3.1 (Wu et al. [175]). For any integer k ≥ 2 and connected
bipartite graph H, if r2(H)≥ 3b(H)− 2, then

grk(K3 : H) = (s(H)− 1)(k− 2) + r2(H).

The assumption r2(H)≥ 3b(H)−2 in Conjecture 3.1 is necessary (consider
the cases H = K1,t with t ≥ 5, H = S(n, m) with m ≥ 1 and n ≥ 6m+ 7,
and H = F2,n with even n ≥ 8 or odd n ≥ 5). This conjecture is true for all
connected bipartite graphs H shown in Table 3.1 with r2(H) ≥ 3b(H)− 2.
In particular, this conjecture holds for paths of even order, even cycles, K2,n

(2 ≤ n ≤ 17 or n large enough), K3,n (3 ≤ n ≤ 5 or n large enough), T2 and
S(2,2). Furthermore, there exist graphs H which violate r2(H)≥ 3b(H)− 2
but satisfy grk(K3 : H) = (s(H)− 1)(k− 2) + r2(H). For example, paths of
odd order, F2,3, F2,4, S(2,1), T1 and S(3,1). The Ramsey numbers of all the
graphs shown in Table 3.1 can be found in the survey [152] and the references
therein.

A driving conjecture for non-bipartite graphs is Conjecture 1.1 which con-
cerns complete graphs. This conjecture was only confirmed for the complete
graphs K3 and K4. The conjectured exact values (which are also lower bounds)
for grk(K3 : Kt) are expressions in terms of the 2-colored Ramsey numbers.
If one can prove an upper bound on grk(K3 : Kt), then it will yield an upper
bound on r2(Kt). Moreover, Conjecture 1.1 has a close relationship with the
multicolor Erdős-Hajnal conjecture [75].

The influence of the parity of the number of colors. As shown in Tables 3.1
and 3.2, an interesting observation is that for all known exact values of
grk(K3 : H), if H is bipartite, then grk(K3 : H) does not depend on the parity
of k; if H is non-bipartite but not a cycle, then grk(K3 : H) depends on the
parity of k. We do not know why this phenomenon happens. One possible
reason might be the extremal structures, that is, the Gallai-k-colorings of Kn

without monochromatic copies of H, where n = grk(K3 : H)− 1. Although
we do not know whether the extremal structure for each graph H is unique or
not, we can give an analysis based on the extremal structures that were given
in the references shown in Tables 3.1 and 3.2.

For most bipartite graphs H, the extremal structures were constructed as
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follows (see also [175]). Let G2 be a 2-edge-colored complete graph of order
r2(H)− 1 without monochromatic copies of H. We then construct G3, . . . , Gk,
where for each 3≤ i ≤ k, Gi is obtained by adding s(H)− 1 new vertices to
Gi−1 such that all the new edges get color i. The resulting k-edge-colored
complete graph Gk has order (s(H)− 1)(k− 2) + r2(H)− 1 and contains no
monochromatic copies of H. Note that such constructions do not depend on
the parity of k.

Next, we consider non-bipartite graphs. Before providing the construc-
tions, we first introduce some additional notation and results. Given two
graphs H and F , we say that F is a homomorphic copy of H if there is a
map ϕ : V (H)→ V (F) such that ϕ(u)ϕ(v) ∈ E(F) for each edge uv ∈ E(H).
Let m(H) be the smallest integer n such that every 2-edge-coloring of Kn

contains a monochromatic homomorphic copy of H. We claim that if K3 ⊆ H
and K3 is a homomorphic copy of H, then m(H) = 6. Indeed, since K3 is a
homomorphic copy of H, then m(H) ≤ r2(K3) = 6. Since K3 ⊆ H, we have
that C5 is not a homomorphic copy of H. The 2-edge-coloring of K5 in which
each color induces a C5 implies that m(H) > 5. Thus m(H) = 6. Note that
for H ∈ {K3, F8, F9, F10, F12, F13, Bm, W4, K̂m, P∗m, Sr

t , H0}, we have m(H) = 6.
For any non-bipartite graph H, we claim that if both K3 and C5 are homo-
morphic copies of H, then m(H) = 5. Indeed, since every 2-edge-coloring
of K5 contains a monochromatic copy of F for some F ∈ {K3, C5}, we have
m(H) ≤ 5. Since H is non-bipartite, we have that P4 is not a homomorphic
copy of H. The 2-edge-coloring of K4 in which each color induces a P4 implies
that m(H)> 4. Thus m(H) = 5. Note that for n≥ 2, we have m(C2n+1) = 5.

For most of the non-bipartite graphs H, the extremal structures depend
on the parity of k. We first consider the case that k is even (the constructions
can also be found in [136]). Let G2 be a 2-edge-colored complete graph of
order r2(H)− 1 without monochromatic copies of H. We construct G4, . . . , Gk

as follows. For each 4≤ 2i ≤ k, let G′ be a 2-edge-colored complete graph of
order m(H)− 1 using colors 2i− 1 and 2i which contains no monochromatic
homomorphic copies of H. We construct G2i such that G2i is the blow-up
G′((m(H) − 1) · G2i−2) of G′. Finally, we obtain a k-edge-coloring Gk of
Kn containing neither a rainbow K3 nor a monochromatic H, where n =
(r2(H)− 1) · (m(H)− 1)(k−2)/2. Note that for any graph H in Table 3.2 except



3.4. A short survey on known Gallai-Ramsey numbers 49

for F8, K̂4, S2
6 and S2

8 , this construction is sharp for even k ≥ 4.

We next consider the case that k is odd. There are two constructions in
this case. We now introduce the first construction (see also [136]). Similar
to the case that k is even, we obtain a Gallai-(k− 1)-coloring Gk−1 of Knk−1

without monochromatic H, where nk−1 = (r2(H) − 1) · (m(H) − 1)(k−3)/2.
Let G′′ be a monochromatic complete graph of order χ(H)− 1 with color k,
where χ(H) is the chromatic number of H. We construct Gk such that Gk is
the blow-up G′′((χ(H)− 1) · Gk−1) of G′′. Then Gk is a k-edge-coloring of Kn

containing neither a rainbow K3 nor a monochromatic H, where n = (χ(H)−
1) · (r2(H)−1) · (m(H)−1)(k−3)/2. We next introduce the second construction.
Let G1 be a monochromatic complete graph of order |V (H)| − 1 with color
1. We construct G3, . . . , Gk as follows. For each 3 ≤ 2i + 1 ≤ k, let G′′′ be a
2-edge-colored complete graph of order m(H)− 1 using colors 2i and 2i+ 1
which contains no monochromatic homomorphic copies of H. We construct
G2i+1 such that G2i+1 is the blow-up G′′′((m(H)− 1) · G2i−1) of G′′′. Finally,
we obtain a k-edge-coloring Gk of Kn with n = (|V (H)|−1) ·(m(H)−1)(k−1)/2

containing neither a rainbow K3 nor a monochromatic H. Note that for
H ∈ {K3, K4, C2n+1}, both of the two constructions above are sharp for odd
k ≥ 3. For H ∈ {Bm(2 ≤ m ≤ 5), W4}, the first construction is sharp for
odd k ≥ 3. For H ∈ {K4 + e, F8, F9, F10, F12, F13, K̂4, P∗m, S1

t , H0}, the second
construction is sharp for odd k ≥ 3.

The influence of the constraint on rainbow triangles. In view of the addi-
tional constraint on rainbow triangles, we have grk(K3 : H)≤ rk(H) for every
H and k. For most of the graphs shown in Tables 3.1 and 3.2, the inequality
is strict whenever k ≥ 3. However, there exist graphs H such that equality
holds for k ≥ 3 (the constraint on rainbow triangles has no influence). This
phenomenon happens for both bipartite and non-bipartite graphs. An example
for bipartite graphs is the matching nK2. For any n ≥ 1 and k ≥ 1, we have
grk(K3 : nK2) = rk(nK2) = (n− 1)k+ n+ 1 [42, 72, 175]. An example for
non-bipartite graphs is the odd cycle C2n+1. For any fixed k and sufficiently
large n, we have grk(K3 : C2n+1) = rk(C2n+1) = n · 2k + 1 [102, 172, 178].
Let A be the set of all pairs (H, k) such that grk(K3 : H) = rk(H). A natu-
ral problem is to determine the set A . An equivalent problem is for what
graphs H and integers k ≥ 3, there exists an extremal structure for rk(H)
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which is rainbow triangle-free. When we study the Gallai-Ramsey numbers
grk(K3 : H), we in fact only investigate the Gallai-k-colorings. However, it
was shown in [17] that for n large enough and every k with 3 ≤ k ≤ n− 1,
the number of Gallai-k-colorings of Kn is much smaller than the number of
k-edge-colorings of Kn. This property may force grk(K3 : H)< rk(H) to hold
for certain graphs H of sufficiently large order and integers k ≥ 3.



Chapter 4

Two extremal problems and
results related to
Gallai-colorings

In this chapter, we consider two natural extremal problems related to Gallai-
colorings. In the first part we determine upper and lower bounds for the
maximum number of edges that are not contained in any rainbow triangle
or monochromatic triangle in a k-edge-coloring of Kn. In the second part, for
n ≥ grk(K3 : K3), we determine upper and lower bounds for the minimum
number of monochromatic triangles in a Gallai-k-coloring of Kn.

4.1 Introduction

Recall that the Gallai-Ramsey number grk(K3 : H) is the minimum integer n
such that every k-edge-coloring of Kn contains either a rainbow copy of K3 or a
monochromatic copy of H. As we have seen in the previous two chapters, it is
far from trivial to determine exact values of Gallai-Ramsey numbers, even for
a small graph H. There the lower bounds were obtained by showing specific
k-edge-colorings of complete graphs that do not admit a rainbow copy of K3

or a monochromatic copy of H. Instead of disallowing a rainbow copy of K3

51
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and a monochromatic copy of H, it is natural to consider the related problem
of determining the maximum number of edges that are not contained in any
rainbow copy of K3 or monochromatic copy of H. The analogous problem
for classical Ramsey numbers was considered in [107, 128, 133]; in these
papers the authors studied the maximum number of edges not contained in
any monochromatic copy of H over all k-edge-colorings of Kn. For k ≥ 2, let
fk(n, H) denote the maximum number of edges not contained in any rainbow
triangle or monochromatic copy of H, over all k-edge-colorings of Kn. The
first part of this chapter is devoted to obtaining upper and lower bounds on
fk(n, K3).

Let ex(n, H) be the maximum number of edges of an H-free graph of order
n, i.e., the Turán number of H. By Turán’s Theorem, the unique Kr+1-free
graph on n vertices with ex(n, Kr+1) edges is the Turán graph Tr(n), i.e., the
complete r-partite graph on n vertices with class sizes as equal as possible.
Let t(n, r) be the number of edges of Tr(n). Note that we have the trivial
upper bound fk(n, H) ≤ t(n, grk(K3 : H)− 1). For the case H = K3, we will
prove the following theorem.

Theorem 4.1. For any real number δ > 0, there exists an n0 such that for all
integers n≥ n0, we have t(n, grk−1(K3 : K3)− 1)≤ fk(n, K3)< t(n, grk−1(K3 :
K3)− 1) +δn2.

We conjecture that the lower bound on fk(n, K3) in Theorem 4.1 is in
fact the exact value of fk(n, K3). Moreover, we can generalize this result to a
general graph H (see Theorem 4.10).

The second part of this chapter is devoted to the Gallai-Ramsey multiplicity
problem. By the definition of the Gallai-Ramsey number, if n≥ grk(K3 : H),
then any Gallai-k-coloring of Kn contains a monochromatic copy of H. In
fact, there could be more than one monochromatic copy of H. In light of
this, it is natural to consider the minimum number of monochromatic copies
of H (as an unlabeled graph) in a Gallai-k-coloring of Kn. Let gk(H, n)
denote the minimum number of monochromatic copies of H taken over
all Gallai-k-colorings of Kn. The analogous problem for classical Ramsey
numbers is known as the Ramsey multiplicity problem, that is, to consider
the minimum number Mk(H, n) of monochromatic copies of H taken over all
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k-edge-colorings of Kn (see [45,52,74,96] for some recent results). With the
additional restriction imposed on Gallai-colorings, it is obvious that gk(H, n)≥
Mk(H, n). In 1959, Goodman [86] proved the following classical result
concerning M2(K3, n).

Theorem 4.2 (Goodman [86]). For any positive integer n, we have

M2(K3, n) =











n(n− 2)(n− 4)/24, if n is even,

n(n− 1)(n− 5)/24, if n≡ 1 mod 4,

(n+ 1)(n− 3)(n− 4)/24, if n≡ 3 mod 4.

For the case of 3-edge-colorings, Cummings et al. [52] proved the follow-
ing result, using flag algebras and a probabilistic argument.

Theorem 4.3 (Cummings et al. [52]). There exists an integer n0 such that for
n≥ n0, if we write n = 5m+ r for nonnegative integers m and r with 0≤ r ≤ 4,
then

M3(K3, n) = r
�

m+ 1

3

�

+ (5− r)
�

m

3

�

.

Our next result shows that g3(K3, n) = M3(K3, n) for n sufficiently large,
and gives upper and lower bounds for gk(K3, n) for other values of k.

Theorem 4.4. For any integer n≥ grk(K3 : K3), we write n= 5b(k−1)/2cm+ r,
where m and r are nonnegative integers with 0≤ r ≤ 5b(k−1)/2c− 1. Then

gk(K3, n)≤







r
�

m+ 1

3

�

+
�

5(k−1)/2− r
�

�

m

3

�

, if k is odd,

rM2(K3, m+ 1) +
�

5(k−2)/2− r
�

M2(K3, m), if k is even.

Moreover, let s0 = 1 if k is odd, and s0 = 2 if k is even. Then

gk(K3, n)≥
s0n(n− 1)(n− 2)

grk(K3 : K3)(grk(K3 : K3)− 1)(grk(K3 : K3)− 2)
.

In general, we conjecture that the above upper bound on gk(K3, n) in
Theorem 4.4 is in fact the exact value of gk(K3, n), but we can only verify this
for the following cases: (1) k = 3 and n sufficiently large, (2) k ≥ 3 and n=
grk(K3 : K3), (3) k is odd and grk(K3 : K3)≤ n≤ grk(K3 : K3) + 5(k−1)/2− 1.
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4.2 Preliminaries

In the following, we will introduce the Regularity Lemma, Embedding Lemma
and Slicing Lemma that will be used in our proof of Theorem 4.1. Given a
graph F and two disjoint nonempty sets X , Y ⊆ V (F), the density of (X , Y ) is
defined to be

d(X , Y ) :=
|E(X , Y )|
|X ||Y |

.

We say that (X , Y ) is ε-regular if for any X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X |
and |Y ′| ≥ ε|Y |, we have |d(X ′, Y ′)− d(X , Y )| ≤ ε. For a positive real number
d, we say that an ε-regular pair (X , Y ) is (ε, d)-regular if d(X , Y )≥ d.

Lemma 4.5 (Multicolor Regularity Lemma, see e.g. [108, 128, 168]). For
any real ε > 0 and positive integers k and m, there exist n′ and M, such that
every k-edge-colored graph F with n≥ n′ vertices admits a partition V1, V2, . . . , Vt

of V (F) satisfying

(1) m≤ t ≤ M;

(2) for all 1≤ i < j ≤ t, we have ||Vi| − |Vj|| ≤ 1; and

(3) for all but at most ε
� t

2

�

pairs (i, j), the pair (Vi , Vj) is ε-regular for each
color.

We call the partition as given in Lemma 4.5 a multicolored ε-regular parti-
tion. Given ε, d > 0, a k-edge-colored graph F and a partition V1, V2, . . . , Vt of
V (F), we define the reduced graph R = R(d) as follows: V (R) = {1,2, . . . , t}
and i and j are adjacent in R if (Vi , Vj) is ε-regular for each color and there
exists a color with density at least d in E(Vi , Vj). Moreover, we define the mul-
ticolored reduced graph Rc = Rc(d) as follows: V (Rc) = V (R), E(Rc) = E(R),
and for each edge i j ∈ E(Rc), i j is assigned an arbitrary color c0 such that
(Vi , Vj) has density at least d with respect to the subgraph of F induced by
the edges of color c0. Note that the reduced graph for an ε-regular partition
defined above is different from the reduced graph for a Gallai partition defined
in Section 1.3.1.

Given two graphs G and H, we say that G is a homomorphic copy of H
if there is a map ϕ : V (H) → V (G) such that ϕ(u)ϕ(v) ∈ E(G) for each
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edge uv ∈ E(H). Note that Ks is a homomorphic copy of H if and only
if s ≥ χ(H), where χ(H) is the chromatic number of H. We will use the
following consequence of the Embedding Lemma. Lemma 4.6 below is in fact
a corollary of Lemma 2.4 in [100].

Lemma 4.6 (Multicolor Embedding Lemma, see e.g. [100,101,108]). For
every d > 0, any positive integer k and any graph G, there exist ε = ε(k, d, G)>
0 and a positive integer n0 = n0(k, d, G) with the following property. Suppose
that F is a k-edge-colored graph on n≥ n0 vertices with a multicolored ε-regular
partition V1, V2, . . . , Vt which defines the multicolored reduced graph Rc = Rc(d).
If Rc contains a monochromatic homomorphic copy of G, then F contains a
monochromatic copy of G. If Rc contains a rainbow copy of G, then F contains a
rainbow copy of G.

Lemma 4.7 (Slicing Lemma, see e.g. [108, 128]). Let 0 < ε,α, d < 1 with
ε ≤ min {d,α, 1/2}. If a pair (X , Y ) is (ε, d)-regular, then for any X ′ ⊆ X
and Y ′ ⊆ Y with |X ′| ≥ α|X | and |Y ′| ≥ α|Y |, we have that (X ′, Y ′) is an
(ε′, d − ε)-regular pair, where ε′ :=max {2ε,ε/α}.

Finally, we consider the Turán number. It is well-known that ex(n, Kr+1) =
t(n, r) = (1− 1/r)

�n
2

�

+ o(n2). In fact, if n≡ p (mod r) where 0≤ p ≤ r−1,
then t(n, r) = (1− 1/r)n2/2+ (p− r)p/(2r). Thus (1− 1/r)n2/2− r/8 ≤
t(n, r)≤ (1− 1/r)n2/2. We will use this more precise bound in our proofs.

4.3 Results related to the number of edges

For the proof of Theorem 4.1, we first define the following variant of the
Gallai-Ramsey number. Given a set V and an integer k ≤ |V |, let

� V
≤k

�

(resp.,
�V

k

�

) be the set of all nonempty subsets of V of size at most k (resp., size k).

Definition 4.1. For a graph H and an integer k ≥ 2, let GR∗k(H) be the
minimum integer n∗ such that for every coloring c :

�[n∗]
≤2

�

→ [k], at least one
of the following statements holds:

(1∗) the restriction of c to
�[n∗]

2

�

contains either a rainbow triangle or a
monochromatic homomorphic copy of H;
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(2∗) for some 1≤ i < j ≤ n∗, we have c({i, j}) = c({i}) or c({i, j}) = c({ j}).

In other words, GR∗k(H)− 1 is the maximum integer n∗∗ such that for the
complete graph Kn∗∗ with vertex set [n∗∗], there exists a coloring c :

�[n∗∗]
≤2

�

→
[k] satisfying

(1∗∗) the restriction of c to
�[n∗∗]

2

�

is a Gallai-k-coloring without a monochro-
matic homomorphic copy of H; and

(2∗∗) for any 1≤ i < j ≤ n∗∗, we have c({i, j}) 6= c({i}) and c({i, j}) 6= c({ j}).

For a setH of graphs, let GRk(H ) denote the minimum integer n such
that every Gallai-k-coloring of Kn contains a monochromatic copy of H for
some H ∈H .

Lemma 4.8. For a graph H, letH be the set of all homomorphic copies of H.
Then

(1) GR∗k(H)≥ GRk−1(H ),

(2) fk(n, H)≥ t(n, GRk−1(H )− 1),

(3) if there exists a coloring c satisfying conditions (1∗∗) and (2∗∗) such
that all elements of

�[GR∗k(H)−1]
1

�

use a single color, then fk(n, H) ≥ t(n,
GR∗k(H)− 1).

Proof. Let n∗k := GRk−1(H ). We first prove (1). Let F be a Gallai-(k − 1)-
coloring of Kn∗k−1 without a monochromatic copy of H ′ for any H ′ ∈H . We
color the vertices of F with the kth color and then we obtain a k-coloring of
�[n∗k−1]
≤2

�

satisfying conditions (1∗∗) and (2∗∗). Thus GR∗k(H)≥ n∗k.

Next, we prove (2). Let G be a Gallai-(k− 1)-coloring of Kn∗k−1 without a
monochromatic copy of H ′ for any H ′ ∈H . Let V (G) = {1, 2, . . . , n∗k − 1} and
let G′ be the Turán graph Tn∗k−1(n) with parts V1, V2, . . . , Vn∗k−1. We color the
edges of G′ such that for any 1≤ i < j ≤ n∗k − 1, we have cG′(Vi , Vj) = cG(i j).
Let G′′ be a k-edge-coloring of Kn obtained by coloring the edges within each
part using color k from the above (k− 1)-edge-coloring of G′. We claim that
all the edges between the n∗k−1 parts are neither contained in a rainbow copy
of K3 nor in a monochromatic copy of H in G′′. Indeed, note that there is no
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rainbow copy of K3 using color k. Thus if G′′ contains a rainbow copy of K3,
then G is not a Gallai-coloring, a contradiction. If there is an edge e between
these n∗k − 1 parts such that e is contained in a monochromatic copy of H,
then G contains a monochromatic homomorphic copy of H, a contradiction.
Thus fk(n, H)≥ |E(G′)|= t(n, n∗k − 1).

Finally, we prove (3). Let nk := GR∗k(H)− 1. Let c be a coloring as in the
statement of the lemma, and we may assume that all elements of

�[nk]
1

�

are

colored by color 1. Note that the restriction of c to
�[nk]

2

�

is a Gallai-(k− 1)-
coloring without a monochromatic homomorphic copy of H. Let W be the
Turán graph Tnk

(n) with parts V1, V2, . . . , Vnk
. We color the edges of W such

that cW (Vi , Vj) = c({i, j}) for any 1≤ i < j ≤ nk. Let W ′ be a k-edge-coloring
of Kn obtained by coloring the edges within each part using color 1 from
the above (k− 1)-edge-coloring of W . It is easy to check that all the edges
between the nk parts are neither contained in a rainbow copy of K3 nor in a
monochromatic copy of H in W ′. Thus fk(n, H)≥ |E (W )|= t(n, nk).

Note that we have GR∗k(H) = GRk−1(H ) = 2 whenever H is a bipartite
graph, whereH is the set of all homomorphic copies of H. A natural question
is for which non-bipartite graph H it holds that GR∗k(H) = GRk−1(H )? We
can verify that K3 is such a graph.

Lemma 4.9. Let H (K3) be the set of all homomorphic copies of K3. For any
integer k ≥ 2, we have GR∗k(K3) = GRk−1(H (K3)) = grk−1(K3 : K3).

Proof. For every graph H ′ ∈ H (K3), we have that H ′ contains K3 as a sub-
graph by the definition. Thus GRk−1(H (K3))≥ grk−1(K3 : K3). Moreover, by
Lemma 4.8 (1), we have GR∗k(K3)≥ GRk−1(H (K3))≥ grk−1(K3 : K3).

For k ≥ 2, let n∗k := grk−1(K3 : K3), and we will prove GR∗k(K3) ≤ n∗k by
induction on k. When k = 2, we have GR∗2(K3) = 3 = n∗2 clearly. Suppose that
for all 2 ≤ k′ ≤ k− 1, we have GR∗k′(K3) ≤ n∗k′ . We will prove it for k′ = k.
Let n be the maximum integer such that there is a coloring c :

�[n]
≤2

�

→ [k]
satisfying conditions (1∗∗) and (2∗∗). It suffices to show that n≤ n∗k − 1. By
Theorem 1.4, there is a Gallai partition V1, V2, . . . , Vm (m ≥ 2) of [n]. Note
that K3 ∈H (K3). For avoiding a monochromatic copy of K3, we have m≤ 5.
We choose such a partition so that m is minimum. Let R be an edge-coloring
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of a complete graph with V (R) = {v1, v2, . . . , vm} and c(vi v j) = c(Vi , Vj) for
any i 6= j.

If m = 5 (resp., m = 4), then R is the unique 2-edge-coloring of K5 without
a monochromatic copy of K3 (resp., R is one of the two 2-edge-colorings of K4

without a monochromatic copy of K3). Then there is no edge using color 1
or 2 within each part Vi for avoiding a monochromatic copy of K3, and there
is no vertex using color 1 or 2 within each part Vi by condition (2∗∗). Thus
if k = 3, then n ≤ 5 = n∗3 − 1, and if k ≥ 4, then n ≤ 5(GR∗k−2(K3)− 1) ≤
5(grk−3(K3 : K3)− 1)≤ n∗k − 1 by the induction hypothesis and Theorem 2.7.
If m = 3, then at least two of the colors c(V1, V2), c(V1, V3) and c(V2, V3) are
the same color, say c(V1, V2) = c(V1, V3). This implies that V1 and V2 ∪ V3 form
a Gallai partition with exactly two parts, contradicting the minimality of m. If
m = 2, then we may assume c(V1, V2) = 1. Then color 1 cannot be used on
� V1
≤2

�

and
� V2
≤2

�

. Thus n≤ 2(GR∗k−1(K3)− 1)≤ 2(grk−2(K3 : K3)− 1)≤ n∗k − 1
by the induction hypothesis and Theorem 2.7.

By Lemma 4.9, we have GR∗k(K3) = GRk−1(H (K3)). As in the proof of
Lemma 4.8 (1), we can construct an extremal coloring

�[GR∗k(K3)−1]
≤2

�

→ [k]
satisfying conditions (1∗∗) and (2∗∗) in which we assign a single color to
all elements of

�[GR∗k(K3)−1]
1

�

. It is worth noticing that not all the extremal
colorings assign a single color to all singletons. For example, Figure 4.1 gives
an extremal coloring of GR∗4(K3) with two colors on singletons.

Figure 4.1: An extremal coloring of GR∗4(K3) with two colors
on singletons.

Now we have all the ingredients for our proof of Theorem 4.1.
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Proof of Theorem 4.1. The lower bound follows from Lemmas 4.8 (2) and 4.9.
In the following, we will prove fk(n, K3) < t(n, grk−1(K3 : K3)− 1) + δn2.
Let nimk(n, K3) be the maximum number of edges not contained in any
monochromatic copy of K3 over all k-edge-colorings of Kn. Note that fk(n, K3)
≤ nimk(n, K3). For sufficiently large n, since nim2(n, K3) = t(n, 2) (proven
in [107]) and nim3(n, K3) = t(n, 5) (proven in [128]), we have fk(n, K3) =
t(n, grk−1(K3 : K3)−1) for k ∈ {2, 3}. In the following, we may assume k ≥ 4.

Let Nk := grk−1(K3 : K3). We choose d such that d ≤ δ/k. Moreover,
let ε1 = ε1(k, d/2, K3) and n1 = n1(k, d/2, K3) (resp., ε2 = ε2(k, d, K3) and
n2 = n2(k, d, K3)) be the values obtained by applying Lemma 4.6. Let n′1 and
M1 be the values obtained by applying Lemma 4.5 with ε1 and 1/ε1. Then
we choose ε such that ε ≤ min

�

δ/4,ε1/M1,ε2, d/2
	

. Let n′ and M be the
values obtained by applying Lemma 4.5 with ε and 1/ε. Furthermore, let
n0 =max

n

n′, n′1M ,
p

(Nk − 1)/(2δ), M M1n1/3, n2

o

and n≥ n0.

Let F be a k-edge-coloring of Kn, and F ′ be the spanning subgraph of F
with E(F ′) = {e ∈ E(F): e is not contained in any rainbow or monochromatic
copy of K3}. For a contradiction, suppose |E(F ′)| ≥ t(n, Nk − 1) + δn2. Let
V1, V2, . . . , Vt be a partition of V (F ′) obtained by applying Lemma 4.5 to F ′

with ε and 1/ε, where 1/ε ≤ t ≤ M . Let R = R(d) be the reduced graph. Since
there are at most

�n/t
2

�

edges within a part, at most (n/t)2 edges between any
two parts, and less than kd (n/t)2 edges between a pair of parts with density
less than d for each color, we have

|E(R)|>
t(n, Nk − 1) +δn2− t

�
n
t
2

�

− ε
� t

2

�

�

n
t

�2
− kd

�

n
t

�2 � t
2

�

�

n
t

�2

>
t2
��

1− 1
Nk−1

�

n2

2
− Nk−1

8
+δn2−

�

1
t
+ ε+ kd

�

n2

2

�

n2

=
�

1−
1

Nk − 1
+ 2δ−

Nk − 1

4n2 −
1

t
− ε− kd

�

t2

2

≥
�

1−
1

Nk − 1

�

t2

2
,

where the last inequality is by the choices of n, d and ε. Therefore, we have
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|E(R)| ≥ t(t, Nk − 1) + 1. So R contains a copy R′ of KNk
. Without loss of

generality, let V (R′) = {1,2, . . . , Nk}. Then for any 1 ≤ i < j ≤ Nk, we have
that (Vi , Vj) is ε-regular for each color, and there exists a color ci j with density
at least d in E(Vi , Vj).

For each i ∈ [Nk], we have |Vi| = n/t ≥ (n′1M)/M = n′1. Thus we can
apply Lemma 4.5 with ε1 and 1/ε1 to F[Vi] (note that here we consider
F[Vi], not only F ′[Vi]). Then there exist two subsets Vi,1, Vi,2 ⊆ Vi with
|Vi,1| = |Vi,2| ≥ |Vi|/M1 such that (Vi,1, Vi,2) is an (ε1, 1/k)-regular pair for
some color ci ∈ [k]. From the choice of d, we have 1/k ≥ d/2, so (Vi,1, Vi,2)
is an (ε1, d/2)-regular pair for color ci . We define a coloring ϕ :

�V (R′)
≤2

�

→ [k]
such that ϕ({i}) = ci and ϕ({i, j}) = ci j. Note that there might be more
than one choice for ϕ({i}) and ϕ({i, j}), and we may choose an arbitrary one
from these choices. By Lemma 4.9, we have |V (R′)|= Nk = grk−1(K3 : K3) =
GR∗k(K3). Thus at least one of the following statements holds:

(1) R′ contains a rainbow copy of K3;

(2) R′ contains a monochromatic homomorphic copy of K3;

(3) ϕ({i, j}) = ϕ({i}) for some 1≤ i 6= j ≤ Nk.

If (1) or (2) holds, then there is a rainbow or monochromatic copy of
K3 in F ′ by Lemma 4.6, a contradiction. If (3) holds, then by applying
Lemma 4.7 with α = 1/M1, we have that (Vj , Vi,1) and (Vj , Vi,2) are two
(εM1, d − ε)-regular (and thus (ε1, d/2)-regular) pairs for color ci. Thus
(Vi,1, Vi,2), (Vj , Vi,1) and (Vj , Vi,2) are three (ε1, d/2)-regular pairs for color ci .
By Lemma 4.6, there is a monochromatic copy of K3 which contains two edges
of F ′, a contradiction.

By similar arguments as in the proof of Theorem 4.1, we can prove
the following result for a general graph H. The main difference is that we
need to find a copy of Kg with g = rk(Kχ(H)−1) in the reduced graph Ri

of F(Vi). This is guaranteed by choosing appropriate parameters so that
|E(Ri)|> ex(|V (Ri)|, Kg). We omit the details.
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Theorem 4.10. For any δ > 0, there exists an n0 such that for all integers n≥
n0 and any graph H, we have t(n, GRk−1(H )−1)≤ fk(n, H)< t(n, GR∗k(H)−
1) +δn2, whereH is the set of all homomorphic copies of H.

4.4 The Gallai-Ramsey multiplicity problem

We first prove the upper bound in Theorem 4.4, by construction. Let G2 be a 2-
edge-colored K5 using colors 1 and 2 which contains no monochromatic copy
of K3, i.e., colors 1 and 2 induce two monochromatic copies of C5. Suppose
that 2i < k − 2 and we have constructed a Gallai-(2i)-coloring G2i of Kn2i

without a monochromatic copy of K3, where n2i := 5i. Let G′ be a 2-edge-
colored K5 using colors 2i+ 1 and 2i+ 2 which contains no monochromatic
copy of K3. Let G2i+2 = G′(5 · G2i), i.e., G2i+2 is a blow-up of G′. This way,
when k is odd (resp., k is even), we obtain a Gallai-(k− 1)-coloring Gk−1 of
Knk−1

(resp., Gallai-(k− 2)-coloring Gk−2 of Knk−2
) without a monochromatic

copy of K3, where nk−1 = 5(k−1)/2 (resp., nk−2 = 5(k−2)/2). In the following,
we will construct a Gallai-k-coloring Gk from Gk−1 or Gk−2.

If k is odd, then let A (resp., B) be a monochromatic copy of Km (resp.,
Km+1) using color k. Let Gk = Gk−1(r · B, (5(k−1)/2 − r) · A). Then Gk is
a Gallai-k-coloring of Kn with r

�m+1
3

�

+
�

5(k−1)/2− r
�

�m
3

�

monochromatic
copies of K3 (here we define

�1
3

�

=
�2

3

�

= 0 for the sake of notation). If k is
even, then let C be a 2-edge-coloring (using colors k− 1 and k) of Km with
M2(K3, m) monochromatic copies of K3, and let D be a 2-edge-coloring (using
colors k− 1 and k) of Km+1 with M2(K3, m+ 1) monochromatic copies of K3.
Let Gk = Gk−2(r · D, (5(k−2)/2 − r) · C). Then Gk is a Gallai-k-coloring of Kn

with rM2(K3, m+ 1) +
�

5(k−2)/2− r
�

M2(K3, m) monochromatic copies of K3.
This completes the proof for the upper bound in Theorem 4.4.

It is worth noting that no matter whether k is odd or even, the above
extremal coloring is a blow-up of a complete graph of order 5b(k−1)/2c with a
special edge-coloring. Recall that we have g3(K3, n) = r

�m+1
3

�

+(5− r)
�m

3

�

for
sufficiently large n. An interesting fact is that the above sharpness example for
k = 3 is the unique Gallai-3-coloring of Kn achieving the minimum number of
monochromatic copies of K3, which can be derived from a result of [52]. But
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when k is an even number, the extremal colorings achieving the upper bound
are not unique. For example, let F be a 2-edge-coloring (using colors k−1 and
k) of Km+2 with M2(K3, m+2)monochromatic copies of K3. Since M2(K3, m)+
M2(K3, m+ 2) = 2M2(K3, m+ 1) for any odd number m by Theorem 4.2, we
can also construct Gk such that Gk = Gk−2(1·F, (r−2)·D, (5(k−2)/2− r+1)·C).
However, it is still a blow-up of a complete graph of order 5b(k−1)/2c with a
special edge-coloring.

Before presenting our proof for the lower bound in Theorem 4.4, we first
provide the exact value of gk(K3, grk(K3 : K3)).

Theorem 4.11. If k is odd, then gk(K3, grk(K3 : K3)) = 1, and if k is even, then
gk(K3, grk(K3 : K3)) = 2.

Proof. By the definition of the Gallai-Ramsey number grk(K3 : K3), we have
gk(K3, grk(K3 : K3)) ≥ 1. Moreover, it follows from the above extremal
coloring that gk(K3, grk(K3 : K3))≤ 1 if k is odd, and gk(K3, grk(K3 : K3))≤ 2
if k is even. Thus it suffices to prove that gk(K3, grk(K3 : K3))≥ 2 when k is
even. We will prove this by induction on k. For k = 2, the statement is trivial
since M2(K3, 6) = 2. We may assume that the statement holds for all even
k′ ≤ k− 2 and we will prove it for k (k ≥ 4).

Let F be a Gallai-k-coloring of Kgrk(K3:K3) and suppose (for a contradiction)
that F contains only one monochromatic copy of K3. Using Theorem 1.4,
let V1, V2, . . . , Vt (t ≥ 2) be a Gallai partition of V (F). We choose such a
partition so that t is minimum. We may assume that colors 1 and 2 are
the two colors used between these parts. Let R be a 2-edge-coloring of Kt

with V (R) = {v1, v2, . . . , vt} and c(vi v j) = c(Vi , Vj) for any 1 ≤ i < j ≤ t.
Since M2(K3, 6) = 2, we have t ≤ 5; otherwise F contains at least two
monochromatic copies of K3.

If 2 ≤ t ≤ 3, then we may assume that t = 2 by the minimality of t
(since every edge-colored graph admitting a Gallai partition with three parts
also admits a Gallai partition with two parts). Without loss of generality, let
c(V1, V2) = 1 and |V1| ≥ |V2|. Firstly, assume 1 /∈ C(V1). Then F[V1] is a Gallai-
(k− 1)-coloring. Note that |V1| ≥ |V (F)|/2 ≥ (5k/2+ 1)/2 > 2 · 5(k−2)/2+ 2.
Since k is even, we have grk−1(K3 : K3) = 2 · 5(k−2)/2 + 1. Thus there is
a monochromatic copy of K3 in F[V1]. Let v be a vertex of this K3. Since
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|V1 \{v}| ≥ 2 ·5(k−2)/2+1, there is a monochromatic copy of K3 in F[V1 \{v}].
So there exist two monochromatic copies of K3 in F[V1], a contradiction. We
conclude that 1 ∈ C(V1). In order to avoid two monochromatic copies of
K3, we have |V2| = 1 and there is at most one edge with color 1 in F[V1].
Thus there is a Gallai-(k− 1)-coloring of K|V1|−1. Since |V1| − 1≥ grk−1(K3 :
K3), there is a monochromatic copy of K3 in F[V1]. Then there exist two
monochromatic copies of K3 in F , another contradiction. This solves the case
2≤ t ≤ 3.

If t = 4, then we first suppose that R contains a monochromatic copy of
K3, say c(v1v2) = c(v2v3) = c(v3v1) = 1. Let V ′ = V1∪V2∪V3. If c(V4, V ′) = 2,
then V4 and V ′ form a Gallai partition with exactly two parts, contradicting
the minimality of t. Thus c(V4, Vi) = 1 for some i ∈ {1,2,3}. But then
c(Vi , V (G) \ Vi) = 1, contradicting the minimality of t. Therefore, R is one
of the two 2-edge-colorings of K4 without a monochromatic copy of K3. In
both cases we can derive that there is at most one edge with color 1 or 2 in
⋃4

j=1 F[Vj]. Thus |V (F)| ≤ 4(grk−2(K3 : K3)− 1) + 1 < grk(K3 : K3) by the
induction hypothesis, a contradiction.

The remaining case is t = 5. In this case, there is no edge with color 1 or
2 in

⋃5
j=1 F[Vj]; otherwise F contains a 2-edge-coloring of K6 which contains

at least two monochromatic copies of K3. By the induction hypothesis, we
have |V (F)| ≤ 5(grk−2(K3 : K3)− 1) < grk(K3 : K3), a contradiction. This
completes the proof of Theorem 4.11.

Now we have all the ingredients to present our proof for the lower bound
in Theorem 4.4. Let s0 = 1 if k is odd, and s0 = 2 if k is even. By Theorem 4.11,
we have gk(K3, grk(K3 : K3)) = s0. This implies that if v1, v2, . . . , vgrk(K3:K3)

are any grk(K3 : K3) vertices of Kn, then Kn[{v1, v2, . . . , vgrk(K3:K3)}] contains
at least s0 monochromatic copies of K3. Since each monochromatic copy of
K3 is contained in

� n−3
grk(K3:K3)−3

�

distinct copies of Kgrk(K3:K3), there are at least









s0
� n

grk(K3:K3)

�

� n−3
grk(K3:K3)−3

�









=
�

s0n(n− 1)(n− 2)
grk(K3 : K3)(grk(K3 : K3)− 1)(grk(K3 : K3)− 2)

�
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monochromatic copies of K3 in any Gallai-k-coloring of Kn. This completes
the proof of Theorem 4.4.

We obtain the following corollary.

Corollary 4.12. Let k be an odd integer. If 0 ≤ t ≤ 5(k−1)/2 − 1, then
gk(K3, grk(K3 : K3) + t) = t + 1.

Proof. The upper bound follows from Theorem 4.4. For the proof of the lower
bound, we will use induction on t. The case t = 0 follows from Theorem 4.11.
We may assume that gk(K3, grk(K3 : K3)+(t−1)) = (t−1)+1 = t holds and
we will prove it for t (1 ≤ t ≤ 5(k−1)/2 − 1). Let n = grk(K3 : K3) + t. Note
that each monochromatic copy of K3 is contained in

� n−3
n−1−3

�

= n− 3 distinct
copies of Kn−1, and there are

� n
n−1

�

= n distinct copies of Kn−1 in Kn. By the
induction hypothesis, there are at least dtn/(n− 3)e= t + 1 monochromatic
copies of K3 in any Gallai-k-coloring of Kn.

4.5 Concluding remarks

In Section 4.3, we studied the maximum number (denoted by fk(n, H)) of
edges that are not contained in any rainbow triangle or monochromatic
copy of H. There we showed that fk(n, H) ≥ t(n, GRk−1(H )− 1), where
H is the set of homomorphic copies of H. Let f ′k(n, H) be the maximum
number of edges not contained in any monochromatic copy of H over all
Gallai-k-colorings of Kn. Then we clearly have f ′k(n, H)≤ fk(n, H). Using the
sharpness example constructed in the proof of Lemma 4.8 (2), we can also
show that f ′k(n, H) ≥ t(n, GRk−1(H )− 1). Thus we have t(n, GRk−1(H )−
1) ≤ f ′k(n, H) ≤ fk(n, H). An interesting and natural question is for which
graphs H the equality f ′k(n, H) = fk(n, H) holds.

Another problem related to Section 4.3 is to determine the maximum
number nimk(n, H) of edges not contained in any monochromatic copy
of H over all k-edge-colorings of Kn. As remarked in [128], if the Erdős-
Sós Conjecture holds for a tree T (i.e., ex(n, T) ≤ (|V (T)| − 2)n/2), then
nimk(n, T) ≥ (k− 1)ex(n, T) for n ≥ k2(|V (T)| − 1)2 with (|V (T)| − 1) | n.
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In fact, when T is a star, we can prove the above statement for all integers
n≥ k2(|V (T )| − 1)2.

Let H be an n-vertex K1,h-free graph with ex(n, K1,h) edges. Note that
the maximum degree of H is at most h − 1. For every i ∈ [k − 1], let
fi : V (H)→ [n] be an arbitrary bijection and let Hi be the graph obtained by
mapping H on [n] via fi . Let H∗ be the graph with vertex set [n] and edge set
⋃

i∈[k−1] E(Hi). Note that ∆(H∗)≤ (k− 1)(h− 1). For any vertex u, there is
a vertex v that is at distance at least three from u in H∗ since n>∆(H∗)2+ 1.
If there is an edge e incident with u or v such that e ∈ E(Hi) ∩ E(H j) for
some 1 ≤ i 6= j ≤ k − 1, then after switching u and v in fi, we claim that
there is no edge e′ incident with u or v satisfying e′ ∈ E(Hi)∩ E(H`) for any
` ∈ [k−1]\{i}. Otherwise, suppose that there is an edge vw ∈ E(Hi)∩ E(H`)
after switching u and v in fi. This implies that before switching u and v
in fi, we have vw ∈ E(H`) and uw ∈ E(Hi). Thus uwv is a path of length
two in H∗, contradicting the fact that v is at distance at least three from
u. Thus we can repeat this process to obtain a graph with no edge e such
that e ∈ E(Hi)∩ E(H j) for some 1 ≤ i 6= j ≤ k− 1. Hence, we can color Kn

with c(e) = i if e ∈ E(Hi) for each i ∈ [k− 1] and c(e) = k otherwise. Thus
nimk(n, K1,h)≥

∑

i∈[k−1] |E(Hi)|= (k− 1)ex(n, K1,h).

Moreover, let G be a k-edge-coloring of Kn with nimk(n, K1,h) edges not
contained in any monochromatic copy of K1,h. For i ∈ [k], let Gi (resp., Gnim

i )
denote the spanning subgraph of G with edge set E(Gi) = {e ∈ E(G): c(e) = i}
(resp., E(Gnim

i ) = {e ∈ E(G): e is not contained in any monochromatic copy
of K1,h, c(e) = i}) and let Vi = {v ∈ V (G): dGi

(v) ≥ h}. If n > k(h− 1) + 1,
then

⋃

i∈[k] Vi = V (G), and every vertex of Vi is an isolated vertex in Gnim
i

for every i ∈ [k]. Since ex(n, K1,h) = b(h− 1)n/2c, we have nimk(n, K1,h) =
∑

i∈[k] e(G
nim
i ) ≤

∑

i∈[k] ex
�

n− |Vi|, K1,h

�

≤ ex
�

∑

i∈[k](n− |Vi|), K1,h

�

≤
ex((k − 1)n, K1,h). Note that ex((k − 1)n, K1,h) = (k − 1)ex(n, K1,h) + η,
where η = b(k− 1)/2c if h is even and n is odd, and η = 0 otherwise.
Therefore, for n ≥ k2h2, if h is even and n is odd, then (k− 1)ex(n, K1,h) ≤
nimk(n K1,h) ≤ (k − 1)ex(n, K1,h) + b(k− 1)/2c, and otherwise, we have
nimk(n, K1,h) = (k−1)ex(n, K1,h). In particular, we have the following result in
the case k = 2, which partly answers a problem of Keevash and Sudakov [107]
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in the special case when H is a star.

Proposition 4.13. For n sufficiently large, we have nim2(n, K1,h) = ex(n, K1,h).

In Section 4.4, we studied the minimum number of copies of K3 over
all Gallai-k-colorings of Kn. Given an arbitrary k-edge-coloring G of Kn, let
rk(K3, n) and mk(H, n) be the number of rainbow triangles and monochro-
matic copies of H in G, respectively. It is interesting to consider the behavior
of rk(K3, n)+mk(H, n). Clearly if k ≤ 2, then rk(K3, n)+mk(H, n) = mk(H, n),
and if G is rainbow, then rk(K3, n) +mk(H, n) =

�n
3

�

. However, the general
behavior of rk(K3, n) +mk(H, n) seems difficult to determine.

Finally, we pose two conjectures. Note that we have shown that Conjec-
ture 4.1 below holds for the following cases: (1) k = 3 and n sufficiently large,
(2) k ≥ 3 and n= grk(K3 : K3), (3) k is odd and grk(K3 : K3)≤ n≤ grk(K3 :
K3) + 5(k−1)/2− 1.

Conjecture 4.1. For n≥ grk(K3 : K3), we write n = 5b(k−1)/2cm+ r, where m
and r are nonnegative integers with 0≤ r ≤ 5b(k−1)/2c− 1. Then

gk(K3, n) =







r
�

m+ 1

3

�

+
�

5(k−1)/2− r
�

�

m

3

�

, if k is odd,

rM2(K3, m+ 1) +
�

5(k−2)/2− r
�

M2(K3, m), if k is even.

Conjecture 4.2. If k ≥ 2, then fk(n, K3) = t(n, grk−1(K3 : K3)− 1).



Chapter 5

The Erdős-Gyárfás function
with respect to Gallai-colorings

In this chapter, we consider the function g(n, p, q) that is the minimum number
of colors needed for a Gallai-(p, q)-coloring of Kn. Using the anti-Ramsey
number for K3, we show that g(n, p, q) is nontrivial only for 2≤ q ≤ p−1. We
give a general lower bound for this function and we study how this function
falls off from being equal to n−1 when q = p−1 and p ≥ 4 to being Θ(log n)
when q = 2. In particular, for appropriate p and n, we prove that g = n− c
when q = p− c and c ∈ {1, 2}, g ≤

�

n1/2�− 1 when q =
�

(p− 1)1/2
�

, and g
is logarithmic in n when 2≤ q ≤ dlog2 pe.

5.1 Introduction

Recall that the Erdős-Gyárfás function f (n, p, q) is the minimum number of
colors in an edge-coloring of Kn such that every Kp receives at least q colors. In
this chapter, we investigate the Erdős-Gyárfás function within the framework
of Gallai-colorings. A Gallai-coloring of the complete graph Kn is said to be a
Gallai-(p, q)-coloring if every Kp receives at least q distinct colors. We define
g(n, p, q) to be the minimum number of colors that are needed for Kn to
have a Gallai-(p, q)-coloring. Clearly, we have f (n, p, q) ≤ g(n, p, q) if both

67
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functions are defined for these values of n, p and q.

For studying g(n, p, q) it is convenient to introduce the following function.
For 1 ≤ q ≤

�p
2

�

, let gk
q (p) be the smallest positive integer n such that every

Gallai-k-coloring of Kn contains a copy of Kp receiving at most q distinct
colors. Restated, gk

q (p)− 1 is the largest positive integer n′ such that there
is a Gallai-k-coloring of Kn′ in which every Kp receives at least q+ 1 distinct
colors, i.e., such that g(n′, p, q+ 1)≤ k. Moreover, the following relationship
holds:

gk
q−1(p)≤ n⇔ g(n, p, q)> k (i.e., gk

q−1(p)> n⇔ g(n, p, q)≤ k).

Throughout the remainder of the chapter, we concentrate on the function
gk

q (p) and derive upper and lower bounds and some exact values for this
function. It is worth noting that Erdős introduced an analogue of the function
gk

q (p) when he posed the problem on f (n, p, q) in his original paper [58].
Notice that gk

1(p) = grk(K3 : Kp).

We first point out that gk
q (p) is nontrivial only for 1≤ q ≤ p− 2 (equiva-

lently, g(n, p, q) is nontrivial only for 2≤ q ≤ p− 1). When q ≥ p− 1, we can
deduce gk

q (p) using the following anti-Ramsey result.

Theorem 5.1 (Erdős, Simonovits and Sós [67], Gyárfás and Simonyi [92]).
At most p− 1 colors can be used in any Gallai-coloring of Kp.

Corollary 5.2. For integers k ≥ 1, p ≥ 3 and q ≥ p− 1, there is no Gallai-k-
coloring of Kn in which every Kp receives at least q + 1 distinct colors. Thus
gk

q (p) = p for q ≥ p− 1.

Moreover, if k < q, then it is obvious that gk
q (p) = p. In the sequel, we

will always assume that k ≥ q and 1≤ q ≤ p− 2 when we consider gk
q (p). It

is easy to verify the following inequalities:

gk
q (p)≤ gk+1

q (p), gk
q+1(p)≤ gk

q (p) and gk+1
q+1(p)≤ gk

q (p).

In [75], Fox, Grinshpun and Pach proved the following asymptotic result.
Note that for k = 3 and q = 2, this result is a special case of the multicolor
generalization of the well-known Erdős-Hajnal Conjecture.
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Theorem 5.3 (Fox, Grinshpun and Pach [75]). Let k and q be fixed positive
integers with q ≤ k. Every Gallai-k-coloring of Kn contains a set of order
Ω
�

n(
q
2)/(

k
2) log

ck,q

2 n
�

which uses at most q colors, where ck,q only depends on k
and q. Moreover, this bound is tight apart from the constant factor.

It is worth noticing that the problem studied by Fox, Grinshpun and Pach
is to find the largest subgraph Kp using at most q colors in every Gallai-k-
coloring of Kn, for fixed k and q, when n is sufficiently large. But in this
chapter, we mainly focus on the problem to determine the smallest n such
that there is a Kp using at most q colors in every Gallai-k-coloring of Kn, for
fixed p and q, when k ∈ [1,+∞) (or k→∞). Therefore, the above theorem
cannot give us much support, since it requires that n is sufficiently large, in
fact,

n≥ n0 = 22228k2

.

But we can prove an upper bound of 22k(p−2)/q+1 on gk
q (p) (see Theorem 5.4

below). If 22k(p−2)/q+1 ≥ n0, then k = o(p), which implies that for fixed p and
q, only o(p) gk

q (p)’s can be bounded using the above theorem.

Theorem 5.4. For integers p, q, k with p ≥ 3, 1 ≤ q ≤ p − 2 and k ≥ q, we
have gk

q (p)≤ 22k(p−2)/q+1.

We postpone all proofs of our results to later sections. Note that Theo-
rem 5.4 implies that g(n, p, q)> q−1

2(p−2)(log2 n−1), where p ≥ 3, 2≤ q ≤ p−1

and n ≥ 22p−3. In [62], Erdős and Gyárfás obtained an upper bound for
f (n, p, q) using the Lovász Local Lemma. However, it seems difficult to deter-
mine a nontrivial general upper bound for g(n, p, q) (or, equivalently, lower
bound for gk

q (p)). Although we can prove some nontrivial results (see, for ex-
ample Proposition 5.5 below) using the Local Lemma, it cannot help us much
in determining an upper bound for g(n, p, q). A graph with an edge-coloring
is called q-colored if its edges are colored with at most q distinct colors.

Proposition 5.5. For fixed integers s, q, k, and appropriately large integer p
with s ≥ 4 and k ≥ max

¦

�s
2

�

, 2q+ 1
©

, there exists a k-edge-coloring of Kn
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containing neither a rainbow Ks nor a q-colored Kp with

n=







(s− 2)pL1/
�

1−(s2)
�

(c+ o(1))
�

�s
2

�

− 2.1
�

ln
�

pL1/
�

1−(s2)
��







�

(s2)−2.1
�

/(s−2)

,

where c is a constant and L =
�s

2

�

(k− 1)2−(
s
2)(k− 2) · · ·

�

k−
�s

2

�

+ 1
�

.

We can slightly improve Theorem 5.4 for q = 1 by proving the following
upper bound on gk

1(p).

Theorem 5.6. For integers k ≥ 3 and p ≥ 5, we have gk
1(p) = grk(K3 : Kp)<

22k(p−2)−3.

When q = p− 2, we can prove the following result, thereby improving
some results obtained in [18].

Theorem 5.7. For integers p ≥ 4 and k ≥ p− 2, we have gk
p−2(p) = k+ 2.

The above result is equivalent to g(n, p, p− 1) = n− 1, where n≥ p ≥ 4.
Using Theorem 5.7, we can show that gk

q (p) is at least quadratic in k for
q =

�

(p− 1)1/2
�

− 1.

Theorem 5.8. For integers p ≥ 17 and k ≥ q =
�

(p − 1)1/2
�

− 1, we have
gk

q (p)≥ k2+ 2k+ 2.

Note that Theorem 5.8 implies that g
�

n, p,
�

(p− 1)1/2
�

�

≤
�

n1/2�− 1
for p ≥ 17 and n large enough. When q = p− 3, we can prove the following
result, which is equivalent to g(n, p, p− 2) = n− 2 for n≥ p ≥ 8.

Theorem 5.9. For integers p ≥ 8 and k ≥ p− 3, we have gk
p−3(p) = k+ 3.

Furthermore, we can determine the exact value of gk
2(5). Using this result,

we can show that gk
q (p) is exponential in k for all 1≤ q ≤

�

log2(p− 1)
�

.

Theorem 5.10. For integers k ≥ 2, we have gk
2(5) = 2k + 1.

Theorem 5.11. For integers p ≥ 5 and k ≥ q =
�

log2(p− 1)
�

, we have
gk

q (p)≥ 2k + 1.
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Note that Theorem 5.10 implies that g(n, 5, 3) = dlog2 ne, where n ≥ 5.
Theorem 5.11 implies that g

�

n, p, dlog2 pe
�

≤ dlog2 ne for p ≥ 5 and n large
enough.

Erdős, Hajnal and Rado [64] studied the minimum integer n such that
for any k-edge-coloring of Kn there is a (k − 1)-colored Km (see Section
18 of [64]). Motivated by this problem, we study gk

k−1(p) for k ≤ p − 1.
If p is sufficiently larger than k, then gk

k−1(p) = O
�

(p/ logc
2 p)k/(k−2)� by

Theorem 5.3. So we will focus on the case k/p→ 1. By Theorems 5.7 and 5.9,
we have gk

k−1(p) = p+ 1 for k ∈ {p− 1, p− 2} and large enough p. A natural
question is whether gk

k−1(p) = p+ 1 for k = p− c, where c is a constant and
p is large enough. The following theorem answers this question.

Theorem 5.12. For integers c, p and k with c ≥ 1, p ≥ 2(8+ c)c+1 − 1 and
k = p− c, we have gk

k−1(p) = p+ 1.

5.2 Preliminaries

Since every 2-edge-coloring of Kn contains a connected monochromatic span-
ning subgraph, we have the following corollary by Theorem 1.4.

Corollary 5.13. In any Gallai-coloring of a complete graph, there is a connected
monochromatic spanning subgraph.

We shall also use the following simple result in our proofs.

Lemma 5.14. Let G be a Gallai-coloring of a complete graph, V ⊂ V (G) and
v ∈ V (G)\V . Then there is at most one color on the edges between v and V that
is not used on any edge within V (that is, |C(v, V ) \ C(V )| ≤ 1).

Proof. Suppose that c(vu) = 1, c(vw) = 2 and 1,2 /∈ C(V ), where u, w ∈ V .
Then we may further assume that c(uw) = 3. Now {u, v, w} forms a rainbow
triangle, a contradiction.

A covering of a graph G is a subset V ⊆ V (G) such that every edge of G
has at least one end-vertex in V .
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Theorem 5.15 (The König-Egerváry Theorem, König [109], Egerváry [53]).
In any bipartite graph, the number of vertices in a minimum covering is the same
as the number of edges in a maximum matching.

Finally, we introduce the Lovász Local Lemma. Let (Ω,F , Pr) be a proba-
bility space and let A1, A2, . . . , An be events. A graph D with V (D) = {v1, v2,
. . . , vn} is called a dependency graph for events A1, A2, . . . , An if for every i, the
event Ai is mutually independent of all A j with vi v j /∈ E(D) and i 6= j, i.e., Ai is
independent of any Boolean function of the events in {A j : vi v j /∈ E(D), i 6= j}.
We shall use the following form of the Local Lemma due to Spencer.

Lemma 5.16 (The Lovász Local Lemma, Erdős and Lovász [66], Spencer
[166]). Let A1, A2, . . . , An be events in a probability space (Ω,F , Pr) with de-
pendency graph D. If there exist positive real numbers y1, y2, . . . , yn such that
for each i, yiPr(Ai)< 1 and ln yi >

∑

vi v j∈E(D) y jPr(A j), then Pr
�

∧n
i=1Ai

�

> 0.

5.3 General upper and lower bounds

Before proving Theorem 5.4, we first prove two lemmas. The proof ideas of
Lemmas 5.17 and 5.18 below are from [77]. For an edge-colored Kn, a vertex
v ∈ V (Kn) and a color i, let di(v) be the number of edges in color i incident
with v.

Lemma 5.17. If an edge-coloring of Kn with n≥ 4 satisfies di(v)≤
n
4

for each
v ∈ V (Kn) and each color i, then there exists a rainbow copy of K3.

Proof. It suffices to show that the number of non-rainbow K3’s is less than
�n

3

�

. Note that for any vertex v and any color i, there are at most
�di(v)

2

�

non-rainbow K3’s with two edges in color i incident with vertex v. Thus the
number of non-rainbow K3’s is at most

∑

v∈V (Kn)

∑

i

di(v)(di(v)− 1)
2

≤ 4n
(n/4)(n/4− 1)

2
<

�

n

3

�

,
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where the first inequality holds since
∑

i
di(v)(di(v)−1)

2
≤ 4 (n/4)(n/4−1)

2
(using

0≤ di(v)≤
n
4
,
∑

i di(v) = n− 1, and noting that the function f (x) = x(x−1)
2

is convex with f (x)≥ f (1) = 0 for any x ≥ 1).

Let [k] be a set of colors and tq =
∑q

i=1

�k
i

�

. Let I = {I ⊆ [k] : 1≤ |I | ≤
q} = {I1, I2, . . . , Itq

}. Then we define gk
q (p1, p2, . . . , ptq

) to be the smallest
positive integer n such that every Gallai-k-coloring of Kn contains a copy of
Kpi

all edges of which have colors from one set Ii for some i ∈ [tq].

Lemma 5.18. We have

gk
q (p1, p2, . . . , ptq

)≤ 4 · max
1≤i≤k

gk
q

�

p(i)1 , p(i)2 , . . . , p(i)tq

�

,

where p(i)j = p j − 1 if i ∈ I j , and p(i)j = p j otherwise.

Proof. Let n≥ 4 ·max1≤i≤k gk
q

�

p(i)1 , p(i)2 , . . . , p(i)tq

�

. By Lemma 5.17, for every
Gallai-coloring of Kn, there exists a vertex v and a color ` with d`(v)>

n
4
. Let

N`(v) = {u : c(uv) = `}. Then |N`(v)| > gk
q

�

p(`)1 , p(`)2 , . . . , p(`)tq

�

. In this case
there is a copy of Kpi

all edges of which have colors from one set Ii for some i.
This proves the statement of the lemma.

Now we have all ingredients to present our proofs of Theorems 5.4 and
5.6.

Proof of Theorem 5.4. Note that gk
q (p) = gk

q (p, p, . . . , p). We can repeatedly
apply Lemma 5.18 until in some step we get gk

q (p1, p2, . . . , ptq
)≤ 2. In each

step, we have gk
q (p1, p2, . . . , ptq

) ≤ 4 · gk
q

�

p(i)1 , p(i)2 , . . . , p(i)tq

�

for some i. For
each i ∈ [k], let α(i) be the number of steps in which we apply Lemma 5.18 for
color i. By the definition of gk

q (p1, p2, . . . , ptq
), we have gk

q (p1, p2, . . . , ptq
) =

1 < 2 if p j = 1 for some j ∈ [tq]. We also have gk
q (p1, p2, . . . , ptq

) = 2 if
p j = 2 for all j ∈ [tq] with |I j| = q. Thus we have

∑

I∈I ,|I |=q

∑

i∈I α(i)≤ (p−

2)
�k

q

�

. So
∑k

i=1α(i) =
1

(k−1
q−1)
∑

I∈I ,|I |=q

∑

i∈I α(i) ≤
1

(k−1
q−1)
�k

q

�

(p− 2) = k(p−2)
q

.

We conclude that gk
q (p) ≤ 4

k(p−2)
q · 2 = 2

2k(p−2)
q +1, completing the proof of

Theorem 5.4.
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Proof of Theorem 5.6. The proof is similar to the proof of Theorem 5.4. The
only difference is that we repeatedly apply Lemma 5.18 until in some step
we get gk

1(p1, p2, . . . , ptq
) < 32. Note that gk

1(2) = 2 ≤ 32, gk
1(2, . . . , 2,

6) = 6 < 32, gk
1(2, . . . , 2, 3,5) = r(3,5) = 14 < 32 (see [88]), gk

1(2, . . . , 2, 4,
4) = r2(K4) = 18< 32 (see [88]), gk

1(2, . . . , 2, 3, 3, 4) = g3
1(3, 3, 4) = 17< 32

(see [123]) and gk
1(2, . . . , 2, 3,3,3,3) = g4

1(3) = 26< 32 (see Theorem 2.7).
Thus we have

∑k
i=1α(i)≤ k(p−2)−4 in this case, so gk

1(p)< 4k(p−2)−4 ·32 =
22k(p−2)−3.

In the rest of this section, we prove Proposition 5.5, using a similar method
to that used in [171].

Proof of Proposition 5.5. Consider a k-edge-coloring G of Kn, where each edge
receives color i (1≤ i ≤ k− 1) with probability r

k−1
and color k with proba-

bility 1− r (for small r, to be determined shortly), and these probabilities are
mutually independent. For each set S of s vertices, let AS be the event that
G[S] is a rainbow Ks. For each set T of p vertices, let BT be the event that
G[T] is a q-colored Kp. We shall show that Pr((∧SAS)∧ (∧T BT ))> 0.

Define a graph D with a vertex set corresponding to all possible AS and
BT such that (the vertex corresponding to) AS is adjacent to (the vertex
corresponding to) BT if and only if |S ∩ T | ≥ 2, and AS (resp., BT ) is adjacent
to AS′ (resp., BT ′) if and only if |S ∩ S′| ≥ 2 (resp., |T ∩ T ′| ≥ 2). Then D
is a dependency graph. We define NAA, NAB, NBA and NBB such that NX Y is
the number of vertices in D of type Y (so corresponding either to a number
of AS vertices or a number of BT vertices) adjacent to a fixed vertex of type
X (so either one AS vertex or one BT vertex). In order to be able to apply
Lemma 5.16, for each S, let the positive real number yi = y correspond to
event AS , and for each T , let yi = z correspond to event BT . By Lemma 5.16,
to show that Pr((∧SAS) ∧ (∧T BT )) > 0, it suffices to show that there exist
positive real numbers r, y, z such that

r < 1, yPr(As)< 1, zPr(BT )< 1, (5.1)

ln y > yPr(As)NAA+ zPr(BT )NAB, (5.2)
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and
ln z > yPr(As)NBA+ zPr(BT )NBB. (5.3)

Note that for r small, we have

Pr(BT )≤
�

k− 1

q

�

� qr

k− 1

�(p2)
+
�

k− 1

q− 1

��

1− r +
(q− 1)r

k− 1

�(p2)

≤
�

k− 1

q

�

� r

2

�(p2)
+
�

k− 1

q− 1

�

�

1−
r

2

�(p2)

≤
��

k− 1

q

�

+
�

k− 1

q− 1

��

�

1−
r

2

�(p2)

≤
�

k

q

�

exp
�

−
r

2

�

p

2

��

= exp

�

−
rp2

4
+

rp

4
+ ln

�

k

q

�

�

and

Pr(AS)≤
�

k− 1
�s

2

�

��

s

2

�

!
� r

k− 1

�(s2)

+
�

k− 1
�s

2

�

− 1

���

s

2

�

− 1
�

!
�

s

2

�

(1− r)
� r

k− 1

�(s2)−1

=
�

s

2

�

(k− 1)(k− 2) · · ·
�

k−
�

s

2

�

+ 1
�

� r

k− 1

�(s2)−1

·

 

k−
�s

2

�

�s
2

� ·
r

k− 1
+ 1− r

!

≤ Lr(
s
2)−1.

We bound NAA, NAB, NBA and NBB as follows:

NAA ≤
�

s

2

��

n− 2

s− 2

�

≤ s2ns−2, NAB ≤
�

s

2

��

n− 2

p− 2

�

≤ s2np−2,

NBA ≤
�

p

2

��

n− 2

s− 2

�

≤ p2ns−2, NBB ≤
�

p

2

��

n− 2

p− 2

�

≤ p2np−2.
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Let α= (s− 2)/
�

�s
2

�

− 2.1
�

and β = 1/
�

�s
2

�

− 1
�

. We set

r = c1n−αL−β , p = c2nα(ln n)Lβ , y = 1+ ε, z = exp
�

c3nα(ln n)2 Lβ
�

,

where c1, c2, c3 are appropriately chosen, ε� 1 and n tends to infinity. Then
we have

yPr(AS)NAA ≤ (1+ ε)Lr(
s
2)−1s2ns−2 = (1+ ε)s2c

(s2)−1
1 n

−1.1(s−2)
(s2)−2.1 ,

yPr(AS)NBA ≤ (1+ ε)Lr(
s
2)−1p2ns−2 = (1+ ε)c

(s2)−1
1 c2

2 L2βn
α− 0.1(s−2)
(s2)−2.1 (ln n)2,

zPr(BT )NAB ≤ exp
�

c3nα(ln n)2 Lβ −
rp2

4
+

rp

4

+ ln
�

k

q

�

+ 2 ln s+ (p− 2) ln n
�

≤ exp
�

c3nα(ln n)2 Lβ −
c1c2

2

4
nα(ln n)2 Lβ

+ o(nα(ln n)2) + c2nα(ln n)2 Lβ
�

≤ exp
��

c3−
c1c2

2

4
+ c2+ o(1)

�

nα(ln n)2 Lβ
�

,

and

zPr(BT )NBB ≤ exp
�

c3nα(ln n)2 Lβ −
rp2

4
+

rp

4

+ ln
�

k

q

�

+ 2 ln p+ (p− 2) ln n
�

≤ exp
��

c3−
c1c2

2

4
+ c2+ o(1)

�

nα(ln n)2 Lβ
�

.

If we choose c1, c2, c3 such that c3−
c1c2

2

4
+ c2 + o(1)< 0, then inequalities

(5.1)-(5.3) hold. Setting c = c2 in the above expression for p, and expressing
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n in terms of p, we have

n≥







(s− 2)pL1/
�

1−(s2)
�

(c+ o(1))
�

�s
2

�

− 2.1
�

ln
�

pL1/
�

1−(s2)
��







�

(s2)−2.1
�

/(s−2)

.

5.4 Proofs of Theorems 5.7 and 5.8

We first present our proof of Theorem 5.7.

Proof of Theorem 5.7. We first show that there is a Gallai-k-coloring of Kk+1,
in which there is no Kp receiving at most p − 2 distinct colors. The case
k = p− 2 is trivial since Kp−1 contains no Kp. For k ≥ p− 1, let V (Kk+1) =
{v1, v2, . . . , vk+1}. For every 1 ≤ i < j ≤ k + 1, we color the edge vi v j

using color i. Note that for any three vertices vi , v j , vk with i < j < k,
we have c(vi v j) = c(vi vk), so there is no rainbow triangle. For any p ver-
tices vi1 , vi2 , . . . , vip with i1 < i2 < · · · < ip, we have C({vi1 , vi2 , . . . , vip}) =
{i1, i2, . . . , ip−1}, so every Kp receives p− 1 distinct colors.

Next, we show that gk
p−2(p)≤ k+ 2 by induction on k. For the base case,

if k = p− 2, then it is trivial that gk
p−2(p) = p. Now assume that it holds for

every p− 2≤ k′ ≤ k− 1, and we will prove it for k.

For a contradiction, suppose that G is a Gallai-k-coloring of Kk+2 without
a (p−2)-colored Kp. Using Theorem 1.4, let V1, V2, . . . , Vm (m≥ 2) be a Gallai
partition of V (G). Note that m≤ p− 1 since p− 2≥ 2. If m≥ 4, then we can
choose nonempty subsets V ′i ⊆ Vi (1≤ i ≤ m) such that

∑m
i=1 |V

′
i |= p. Since

G is a Gallai-coloring, we have |C(V ′i )| ≤ |V
′
i |−1 (1≤ i ≤ m) by Theorem 5.1.

Then
�

�C
�
⋃m

i=1 V ′i
�

�

�≤ 2+
∑m

i=1(|V
′
i | − 1) = 2+ p−m≤ p− 2. Thus there is

a (p− 2)-colored Kp in G, a contradiction. Hence, we have m≤ 3. Note that
if G contains a Gallai partition with exactly three parts, then G also contains a
Gallai partition with exactly two parts. Thus we may assume that m= 2 and
c(V1, V2) = 1.

Claim 5.1. 1 /∈ C(V1) and 1 /∈ C(V2).
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Proof. By symmetry, we only prove 1 /∈ C(V1). If 1 ∈ C(V1), then we may
choose V ′1 ⊆ V1 and V ′2 ⊆ V2 such that 1 ∈ C(V ′1) and |V ′1 |+ |V

′
2 | = p. Thus

|C(V ′1∪V ′2)| ≤ |C(V
′

1)|+|C(V
′

2)| ≤ |V
′

1 |−1+|V ′2 |−1 = p−2, a contradiction.

Claim 5.2. |V1|= |C(V1)|+ 1 and |V2|= |C(V2)|+ 1.

Proof. By symmetry, we only prove it for V1. By Theorem 5.1, we have
|V1| ≥ |C(V1)|+ 1, so it suffices to prove |V1| ≤ |C(V1)|+ 1. Suppose for a
contradiction that |V1| ≥ |C(V1)|+ 2. If |C(V1)| ≤ p − 3, then |V1| ≤ p − 1
in order to avoid a (p − 2)-colored Kp. Thus we can choose V ′2 ⊆ V2 with
|V1|+ |V ′2 | = p. Since |C(V ′2)| ≤ |V

′
2 | − 1, we have |C(V1 ∪ V ′2)| ≤ 1+ |C(V1)|+

|V ′2 |−1≤ |C(V1)|+p−|V1| ≤ |C(V1)|+p−(|C(V1)|+2) = p−2, a contradiction.
Thus |C(V1)| ≥ p− 2, and then we have |V1| ≤ |C(V1)|+ 1 by Claim 5.1 and
the induction hypothesis.

We now show that C(V1) ∩ C(V2) = ;. Otherwise, suppose 2 ∈ C(V1) ∩
C(V2). We choose V ′1 ⊆ V1 and V ′2 ⊆ V2 such that 2 ∈ C(V ′1), 2 ∈ C(V ′2) and
|V ′1 |+ |V

′
2 | = p. Then |C(V ′1 ∪ V ′2)| ≤ 1+ |C(V ′1)|+ |C(V

′
2)| − 1 ≤ |V ′1 | − 1+

|V ′2 | − 1 = p − 2, a contradiction. Finally, by Claims 5.1 and 5.2, we have
k+ 2 = |V (G)| = |V1|+ |V2| = |C(V1)|+ 1+ |C(V2)|+ 1≤ k− 1+ 2 = k+ 1, a
contradiction.

In the following, instead of proving Theorem 5.8, we will prove the
following more general result.

Theorem 5.19. For integers p � m ≥ 2 and k ≥ q =
�

(p − 1)1/m
�

− 1, we
have gk

q (p)≥ (k+ 1)m+ 1.

Proof. By Theorem 5.7, we have gk
q (q + 2) > k + 1. Let G0 be a Gallai-k-

coloring of Kk+1 in which the largest q-colored complete subgraph has order
at most q + 1, and let G1 = G0. Suppose for some 1 ≤ i < m we have
constructed a k-edge-coloring Gi of K(k+1)i . Then we construct Gi+1 such
that Gi+1 = G0((k + 1) · Gi). Finally, we obtain a k-edge-coloring Gm of
K(k+1)m . It is easy to check that Gm is a Gallai-coloring and that the largest
q-colored complete subgraph has order at most (q+ 1)m ≤ p− 1. Thus we
have gk

q (p)≥ (k+ 1)m+ 1.
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5.5 Proof of Theorem 5.9

In this section, we present our proof of Theorem 5.9. For the lower bound,
we will construct a Gallai-k-coloring of Kk+2 without a (p − 3)-colored Kp.
The case k = p − 3 is trivial since Kp−1 contains no Kp. For k ≥ p − 2, let
V (Kk+2) = {v1, v2, . . . , vk+2}. For every 1≤ i ≤ k and i < j ≤ k+ 2, we color
the edge vi v j using color i, and we color the edge vk+1vk+2 with color k. Then
we obtain a desired edge-coloring.

For the upper bound, we will use induction on k. For the base case, if
k = p− 3, then it is trivial that gk

p−3(p) ≤ k+ 3. Now assume that it holds
for every p− 3 ≤ k′ ≤ k− 1, and we will prove it for k. For a contradiction,
suppose that G is a Gallai-k-coloring of Kk+3 without a (p− 3)-colored Kp.
By the induction hypothesis, we may assume that all the k colors appear in
G (that is, C(G) = [k]). Using Theorem 1.4, let V1, V2, . . . , Vm (m ≥ 2) be a
Gallai partition of V (G). We choose it such that m is minimum.

Case 1. m≥ 4.

In this case, by the minimality of m, there are exactly two colors used
between the parts, say colors 1 and 2. If m ≥ 5, then we can choose one
vertex vi from each Vi (1 ≤ i ≤ 5) to form a 2-colored K5. Then we choose
another p− 5 vertices v6, v7, . . . , vp one by one arbitrarily. Note that for each
6 ≤ i ≤ p, when we add vertex vi to Gi−1 = G[{v1, v2, . . . , vi−1}], we add at
most one new color that is not used in Gi−1, by Lemma 5.14. Thus we obtain
a (p− 3)-colored Kp, a contradiction. Hence, we have m= 4.

Claim 5.3. For any i ∈ [4], we have 1,2 /∈ C(Vi). For any 1 ≤ i < j ≤ 4, we
have C(Vi)∩ C(Vj) = ;.

Proof. If C(Vi)∩{1, 2} 6= ; for some i ∈ [4], then we can choose nonempty sub-
sets V ′` ⊆ V` (1≤ `≤ 4) such that

∑4
`=1 |V

′
` | = p and C(V ′i )∩{1, 2} 6= ;. Since

G is a Gallai-coloring, we have |C(V ′` )| ≤ |V
′
` | − 1 (1≤ `≤ 4) by Theorem 5.1.

Then
�

�C
�
⋃4
`=1 V ′`

�

�

�≤ 2+
�
∑4
`=1 |C(V

′
` )|
�

− 1≤ 2+
�
∑4
`=1(|V

′
` | − 1)

�

− 1 =
2+ p−4−1 = p−3. Thus there is a (p−3)-colored Kp in G, a contradiction.
If C(Vi)∩ C(Vj) 6= ; for some 1 ≤ i < j ≤ 4, say c0 ∈ C(Vi)∩ C(Vj), then we
can choose nonempty subsets V ′` ⊆ V` (1 ≤ ` ≤ 4) such that

∑4
`=1 |V

′
` | = p,
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c0 ∈ C(V ′i ) and c0 ∈ C(V ′j ). Then
�

�C
�
⋃4
`=1 V ′`

�

�

�≤ 2+
�
∑4
`=1 |C(V

′
` )|
�

− 1≤
2+
�
∑4
`=1(|V

′
` | − 1)

�

− 1= p− 3. Thus there is a (p− 3)-colored Kp in G, a
contradiction.

Claim 5.4. For any i ∈ [4], we have |Vi| ≤ |C(Vi)|+ 1.

Proof. Suppose for a contradiction that |Vi| ≥ |C(Vi)|+2 for some i ∈ [4], say
i = 1. If |C(V1)| ≤ p− 5, then |V1| ≤ p− 4 in order to avoid a (p− 3)-colored
Kp. Thus we can choose nonempty subsets V ′j ⊆ Vj (2 ≤ j ≤ 4) such that

|V1|+
∑4

j=2 |V
′
j | = p. Then

�

�C
�

V1∪(
⋃4

j=2 V ′j )
�

�

�≤ 2+|C(V1)|+
∑4

j=2(|V
′
j |−1)≤

2+ |C(V1)|+ (p− |V1|)− 3 ≤ 2+ |C(V1)|+ p− (|C(V1)|+ 2)− 3 = p− 3, a
contradiction.

If |C(V1)| ≥ p− 3, then |V1| ≤ |C(V1)|+ 2 by Claim 5.3 and the induction
hypothesis. If |C(V1)| = p−4, then |V1| ≤ p−2 = |C(V1)|+2 in order to avoid
a (p− 3)-colored Kp. Thus |V1| = |C(V1)|+ 2 whenever |C(V1)| ≥ p− 4. By
Theorem 5.7, there is a (p1− 2)-colored Kp1

in G[V1] for every 4≤ p1 ≤ |V1|.
Let H be a copy of a (p− 5)-colored Kp−3 in G[V1]. Then we can choose one
vertex from each Vj (2≤ j ≤ 4) such that these vertices together with H form
a (p− 3)-colored Kp, a contradiction.

By Claims 5.3 and 5.4, we have |V (G)| =
∑4

i=1 |Vi| ≤
∑4

i=1(|C(Vi)|+ 1)≤
k− 2+ 4= k+ 2< k+ 3, a contradiction.

Case 2. 2≤ m≤ 3.

By the minimality of m, we may assume that m= 2 and c(V1, V2) = 1.

Claim 5.5. At most one of V1 and V2 contains an edge with color 1.

Proof. If 1 ∈ C(V1) and 1 ∈ C(V2), then we can choose V ′1 ⊆ V1 and V ′2 ⊆ V2

such that |V ′1 |+ |V
′

2 | = p, 1 ∈ C(V ′1) and 1 ∈ C(V ′2). Then |C(V ′1 ∪ V ′2)| ≤
|C(V ′1)|+ |C(V

′
2)| − 1≤ |V ′1 | − 1+ |V ′2 | − 1− 1= p− 3, a contradiction.

Claim 5.6. We have |Vi| = |C(Vi)|+ 1 and |V3−i| = |C(V3−i)|+ 2 for some
i ∈ [2].

Proof. Recall that |Vi| ≥ |C(Vi)|+ 1 for each i ∈ [2] by Theorem 5.1. First
suppose that |Vi| ≥ |C(Vi)|+ 2 for all i ∈ [2]. Note that for each i ∈ [2],
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since |Vi| ≥ 2, we have |C(Vi)| ≥ 1 and thus |Vi| ≥ 3. Moreover, if |C(V1)|= 1
(resp., |C(V2)|= 1), then G[V1] (resp., G[V2]) is a monochromatic complete
subgraph of order at least 3, and if |C(V1)| ≥ 2 (resp., |C(V2)| ≥ 2), then
G[V1] (resp., G[V2]) contains a (p′ − 2)-colored Kp′ for every 4 ≤ p′ ≤ |V1|
(resp., 4≤ p′ ≤ |V2|) by Theorem 5.7. Thus we can choose a (pi − 2)-colored
Kpi

in G[Vi] for each i ∈ [2] such that 3≤ pi ≤ |Vi| and p1+ p2 = p. So there
is a (p − 3)-colored Kp in G, a contradiction. Hence, we may assume that
|V1|= |C(V1)|+ 1 without loss of generality.

If |V2| = |C(V2)|+ 1, then k+ 3 = |V1|+ |V2| = |C(V1)|+ |C(V2)|+ 2, so
|C(V1)|+ |C(V2)| = k+ 1. Then C(V1)∩ C(V2) 6= ;. Let C ′ = C(V1)∩ C(V2),
and we have 1 /∈ C ′ by Claim 5.5. If 1 /∈ C(V1) and 1 /∈ C(V2), then |C ′| ≥ 2
(otherwise we have |C(V1)|+ |C(V2)| ≤ k). Then we can choose V ′1 ⊆ V1 and
V ′2 ⊆ V2 with |V ′1 ∪ V ′2 | = p such that |C(V ′1)∩ C(V ′2)| ≥ 2. Then |C(V ′1 ∪ V ′2)| ≤
1+ |C(V ′1)|+ |C(V

′
2)| − 2≤ 1+ |V ′1 | − 1+ |V ′2 | − 1− 2 = p− 3, a contradiction.

Hence, without loss of generality, we may assume that 1 ∈ C(V1), c0 ∈ C ′ and
c0 6= 1. Then we can choose V ′1 ⊆ V1 and V ′2 ⊆ V2 with |V ′1 ∪ V ′2 | = p such
that {1, c0} ⊆ C(V ′1) and c0 ∈ C(V ′2). Then |C(V ′1 ∪ V ′2)| ≤ |C(V

′
1)|+ |C(V

′
2)| −

1 ≤ |V ′1 | − 1 + |V ′2 | − 1 − 1 = p − 3, a contradiction. Therefore, we have
|V2| ≥ |C(V2)|+ 2.

If 1≤ |C(V2)| ≤ p−4, then |V2| ≤ p−2 in order to avoid a (p−3)-colored
Kp. Let V ′1 ⊆ V1 such that |V ′1 ∪ V2|= p. Then |V2|= p− |V ′1 | ≤ p− (|C(V ′1)|+
1)≤ p− (|C(V ′1 ∪ V2)| − |C(V2)|)≤ p− (p− 2− |C(V2)|) = |C(V2)|+ 2, where
the second inequality is by |C(V ′1 ∪ V2)| ≤ 1+ |C(V ′1)|+ |C(V2)|, and the last
inequality follows from the assumption that G contains no (p− 3)-colored
Kp. If p − 3 ≤ |C(V2)| ≤ k − 1, then by the induction hypothesis we have
|V2| ≤ |C(V2)|+2. If |C(V2)| = k, then |V2| = k+3−|V1| ≤ k+2 = |C(V2)|+2.
Therefore, we have |V2|= |C(V2)|+ 2.

By Claim 5.6, we may assume that |V1| = |C(V1)|+1 and |V2| = |C(V2)|+2
without loss of generality.

Claim 5.7. C(V1)∩ C(V2) = ;.
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Proof. For a contradiction, suppose that C ′ = C(V1)∩ C(V2) 6= ;. Similar to
the second paragraph in the proof of Claim 5.6, we have 1 /∈ C(V1), 1 /∈ C(V2)
and |C ′|= 1, say C ′ = {c0}.

If |V2| ≤ p − 2, then we can choose V ′1 ⊆ V1 such that |V ′1 ∪ V2| = p
and c0 ∈ C(V ′1). Now we have |C(V ′1 ∪ V2)| ≤ 1+ |C(V ′1)|+ |C(V2)| − 1 ≤
1+ (|V ′1 | − 1) + (|V2| − 2)− 1 = p − 3, a contradiction. Thus |V2| ≥ p − 1
and |C(V2)|= |V2| − 2≥ p− 3. Let uv be an edge within V1 with c(uv) = c0.
Then G[V2 ∪ {u, v}] is a (|C(V2)|+ 1)-colored K|V2|+2. If |C(V1)| ≥ 2, then
|C(V2∪{u, v})| ≤ k−1, and thus we can derive a contradiction by the induction
hypothesis. Thus we have C(V1) = {c0} and |V1|= 2.

By Theorem 5.7, we may assume that H is a copy of a (p − 5)-colored
Kp−3 in G[V2]. If c0 ∈ C(H), then G[V (H)∪V1] is a (p−4)-colored Kp−1. For
any vertex w ∈ V2 \ V (H), we have |C(w, V (H)∪ V1) \ C(V (H)∪ V1)| ≤ 1 by
Lemma 5.14, which implies a (p−3)-colored Kp, a contradiction. If c0 /∈ C(H)
and there is an edge x y with color c0 such that x ∈ V (H) and y ∈ V2 \ V (H),
then C(y, V (H)) \ C(H) = {c0} by Lemma 5.14. Then G[V (H)∪ V1 ∪ {y}] is
a (p− 3)-colored Kp, a contradiction. Hence, G[V2] contains no edge in color
c0 which has an end-vertex in V (H). Thus we may assume that x y is an edge
with color c0 such that x , y ∈ V2 \ V (H). By Theorem 5.7, we may further
assume that H ′ is a copy of a (p− 6)-colored Kp−4 in H. By Lemma 5.14, we
have |C(x , V (H ′))\C(H ′)| ≤ 1 and C(y, V (H ′)∪{x})\C(V (H ′)∪{x}) = {c0}.
Then G[V (H ′)∪ V1 ∪ {x , y}] is a (p− 3)-colored Kp, a contradiction.

By Claim 5.6, we have |C(V1)|+ |C(V2)| = |V1|+ |V2| − 3 = k. Then we
have either 1 ∈ C(V1) or 1 ∈ C(V2) by Claims 5.5 and 5.7. We first consider
the case 1 ∈ C(V1) and 1 /∈ C(V2). We define a subset V ′2 ⊆ V2 as follows.
If |V2| ≤ p − 3, then V ′2 = V2. If |V2| ≥ p − 2, then we choose V ′2 such that
G[V ′2] is a (p− 4)-colored Kp−2 (using Theorem 5.7). Then let V ′1 ⊂ V1 such
that |V ′1 | = p− |V ′2 | and 1 ∈ C(V ′1). Since |C(V ′1 ∪ V ′2)| ≤ |C(V

′
1)|+ |C(V

′
2)| ≤

|V ′1 | − 1+ |V ′2 | − 2= p− 3, we derive a contradiction. Next, we consider the
case 1 /∈ C(V1) and 1 ∈ C(V2). In this case, we have |V2| ≥ p, since otherwise
if |V2| ≤ p − 1, then we can choose V ′1 ⊂ V1 with |V ′1 ∪ V2| = p such that
|C(V ′1 ∪ V2)| ≤ |C(V ′1)|+ |C(V2)| ≤ |V ′1 | − 1+ |V2| − 2 = p− 3, a contradiction.
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By Theorem 5.7, we may assume that H is a copy of a (p − 4)-colored
Kp−2 in G[V2]. Let u be any vertex in V1. If 1 ∈ C(H), then G[V (H)∪ {u}] is
a (p− 4)-colored Kp−1. For any vertex v ∈ V2 \ V (H), we have |C(v, V (H)∪
{u})\C(V (H)∪{u})| ≤ 1 by Lemma 5.14, which implies a (p−3)-colored Kp,
a contradiction. If 1 /∈ C(H) and there is an edge x y with color 1 such that
x ∈ V (H) and y ∈ V2 \ V (H), then C(y, V (H)) \ C(H) = {1} by Lemma 5.14.
Then G[V (H)∪ {u, y}] is a (p− 3)-colored Kp, a contradiction. If 1 /∈ C(H)
and G[V2] contains no edge with color 1 incident with a vertex of H, then
we may assume that x y is an edge with color 1 such that x , y ∈ V2 \ V (H).
By Theorem 5.7, we may further assume that H ′ is a copy of a (p − 5)-
colored Kp−3 in H. By Lemma 5.14, we have |C(x , V (H ′)) \ C(H ′)| ≤ 1 and
C(y, V (H ′) ∪ {x}) \ C(V (H ′) ∪ {x}) = {1}. Then G[V (H ′) ∪ {x , y, u}] is a
(p− 3)-colored Kp. This contradiction completes the proof of Theorem 5.9.

Remark 5.1. The bound p ≥ 8 in Theorem 5.9 is best possible. Indeed, if
p = 7, then we can show that g5

4(7) > 8 by the following example. Let G1

(resp., G2) be a K4 using colors 1 and 2 (resp., colors 3 and 4) such that
colors 1 and 2 (resp., colors 3 and 4) induce two monochromatic copies of a
P4. Let G be a 5-colored K8 obtained by joining G1 and G2 using edges that
all get color 5. It is easy to check that G contains neither a rainbow K3 nor
a 4-colored K7. When p = 6, we can prove that g4

3(6) = 8 and g5
3(6) = 10

(see Section 5.8). When p = 5, the function gk
2(5) is exponential in k by

Theorem 5.10.

5.6 Proofs of Theorems 5.10 and 5.11

We first present our proof of Theorem 5.10.

Proof of Theorem 5.10. We first show that there is a Gallai-k-coloring of K2k ,
in which there is no K5 receiving at most two distinct colors. For k = 2, let
G2 be an edge-coloring of K4 with colors 1 and 2 such that color 1 induces
a perfect matching and color 2 induces a C4. It is easy to check that there
is neither a rainbow K3 nor a monochromatic K3 in G2, and G2 contains no
2-colored K5 clearly. Suppose for some 2≤ i ≤ k− 1 we have constructed a
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Gallai-i-coloring Gi of K2i in which there is neither a monochromatic K3 nor
a 2-colored K5. Then we construct an (i+ 1)-edge-coloring Gi+1 of K2i+1 by
joining two copies of Gi with edges that all get color i + 1. Since Gi contains
no rainbow K3, there is no rainbow K3 in Gi+1. Since Gi contains neither a
monochromatic K3 nor a 2-colored K5, there is no 2-colored K5 in Gi+1. By
repeating this process, we finally obtain a Gallai-k-coloring Gk of K2k without
a 2-colored K5.

We now prove that gk
2(5)≤ 2k + 1 by induction on k. For the base case, it

is trivial that g2
2(5) = 5. Now assume that it holds for every 2 ≤ k′ ≤ k− 1,

and we will prove it for k ≥ 3.

For a contradiction, suppose that G is a Gallai-k-coloring of K2k+1 without
a 2-colored K5. Using Theorem 1.4, let V1, V2, . . . , Vm (m ≥ 2) be a Gallai
partition of V (G). We choose it such that m is minimum. Since there is no
2-colored K5, we have m≤ 4. If m = 4, then by the minimality of m, there are
exactly two colors used between the parts, say colors 1 and 2. In order to avoid
a 2-colored K5, there is no edge with color 1 or 2 within each part. If k = 3,
then there is only color 3 within these parts. Note that max1≤i< j≤4 |Vi∪Vj| ≥ 5,
so there is a 2-colored K5. Thus k ≥ 4. By the induction hypothesis, we have
|V (G)|= |V1|+ |V2|+ |V3|+ |V4| ≤ 4 · 2k−2 = 2k, a contradiction.

Thus 2≤ m≤ 3, and by the minimality of m we may assume m= 2 and
c(V1, V2) = 1. If 1 /∈ C(V1) and 1 /∈ C(V2), then by the induction hypothesis,
we have |V (G)| = |V1|+ |V2| ≤ 2k−1+ 2k−1 = 2k, a contradiction. If 1 ∈ C(V1)
and 1 ∈ C(V2), then G contains a monochromatic K4. By Lemma 5.14, G
contains a 2-colored K5, a contradiction. Thus we may assume that 1 ∈ C(V1)
and 1 /∈ C(V2) without loss of generality.

Claim 5.8. Color 1 induces a bipartite graph within V1.

Proof. We first show that G[V1] contains no monochromatic K3 with color 1.
Otherwise, suppose {u, v, w} forms a monochromatic K3 with color 1 within V1.
Then for any vertex x ∈ V2, we have that {u, v, w, x} forms a monochromatic
K4. By Lemma 5.14, there is a 2-colored K5 in G, a contradiction.

We next show that G[V1] contains no C4 with exactly three edges in color
1. Otherwise, if G[V1] contains such C4, say c(uv) = c(vw) = c(wz) = 1
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and c(zu) = 2. In order to avoid a rainbow K3, we have c(uw) ∈ {1,2} and
c(vz) ∈ {1, 2}. Then for any vertex x ∈ V2, we have that {u, v, w, z, x} forms a
2-colored K5, a contradiction.

Finally, we show that G[V1] contains no monochromatic odd cycle in color
1 (thus color 1 induces a bipartite graph within V1). Suppose that C2t+1 =
a1a2 · · · a2t+1a1 (t ≥ 2) is a monochromatic cycle using color 1 in G[V1].
Since there is no C4 with exactly three edges in color 1, we have c(a1a4) = 1,
so c(a1a6) = 1, c(a1a8) = 1, · · · , c(a1a2t) = 1. Then {a1, a2t , a2t+1} forms a
monochromatic K3 in color 1, a contradiction.

Let E1 be the set of edges with color 1 in G[V1], and let V ′1 ⊆ V1 be the set
of vertices incident with some edge of E1. By Claim 5.8, we may partition V ′1
into two parts A and B such that 1 /∈ C(A) and 1 /∈ C(B). Since 1 ∈ C(V1), we
have A 6= ; and B 6= ;. Let V ′′1 = V1 \ V ′1 (it is possible that V ′′1 = ;).

Claim 5.9. The following statements hold:

(1) for any color i ∈ C(V ′1), we have i /∈ C(V2);

(2) |V2| ≤ 2|C(V2)|;

(3) |A| ≤ 2|C(A)| and |B| ≤ 2|C(B)|.

Proof. (1) If i = 1, then it holds clearly. If i 6= 1, then we may assume that
c(uv) = i for some u, v ∈ V ′1 . Since u ∈ V ′1 , there exists a vertex w ∈ V ′1 \ {u, v}
with c(uw) = 1. In order to avoid a rainbow K3, we have c(vw) ∈ {1, i}. If i ∈
C(V2), then there is a 2-colored K5 using colors 1 and i in G, a contradiction.

(2) Let |C(V2)| = j (0 ≤ j ≤ k − 1). If j = 0, then |V2| = 1 = 20. If
j = 1, then G[V2] is a monochromatic complete subgraph. If |V2| ≥ 3, then G
contains a 2-colored K5 since 1 ∈ C(V1), a contradiction. Thus |V2|= 2= 21.
If 2≤ j ≤ k− 1, then |V2| ≤ 2 j by the induction hypothesis.

(3) By symmetry, we only prove it for A. If |C(A)| 6= 1, then |A| ≤ 2|C(A)|

by the same argument as in (2). If |C(A)|= 1, then G[A] is a monochromatic
complete subgraph. Suppose |A| ≥ 3, say u, v, w ∈ A. Recall that 1 /∈ C(A). By
the definition of A and B, there exists a vertex x ∈ B such that c(ux) = 1. In
order to avoid a rainbow K3, we have C(x , {v, w})⊆ C(A)∪{1}. Note that for
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any vertex y ∈ V2, we have c(y, {u, v, w, x}) = 1. Thus {u, v, w, x , y} forms a
2-colored K5, a contradiction.

Claim 5.10. |A| ≥ 2 and |B| ≥ 2.

Proof. By symmetry, we only prove |A| ≥ 2. If |A| = 1, say A = {u}, then
we have c(u, B) = 1 by the definition of B. By Claim 5.9 (1), we have
C(B)∩ C(V2) = ;, so |C(B)|+ |C(V2)| ≤ k− 1. If V ′′1 = ;, then by Claim 5.9
(2) and (3) we have |V (G)| = |A|+ |B|+ |V2| ≤ 1+ 2|C(B)| + 2|C(V2)| ≤ 1+
�

2|C(B)|+|C(V2)| + 1
�

≤ 1+ 2k−1 + 1 < 2k + 1, a contradiction. Thus V ′′1 6= ;,
say v ∈ V ′′1 . Note that v is not incident with any edge in color 1. Thus we
may further assume that c(uv) = 2. In order to avoid a rainbow K3, we have
c(v, B) = 2. Then 2 /∈ C(B) and 2 /∈ C(V2) in order to avoid a 2-colored K5, so
|C(B)|+ |C(V2)| ≤ k− 2. Then |V (G)|= |A|+ |B|+ |V2|+ |V ′′1 | ≤ 1+ 2|C(B)|+
2|C(V2)|+2k−1 ≤ 1+

�

2|C(B)|+|C(V2)|+1
�

+2k−1 ≤ 1+2k−2+1+2k−1 < 2k+1,
a contradiction.

Claim 5.11. C(B) \ C(A) 6= ; and C(A) \ C(B) 6= ;.

Proof. By symmetry, we only prove C(B) \ C(A) 6= ;. Recall that 1 /∈ C(A) and
1 /∈ C(B). By Claim 5.10, we have |C(B)| ≥ 1. Since G[B] is a Gallai-coloring,
there exists a color, say color 2, inducing a connected spanning subgraph of
G[B] by Corollary 5.13. We will show that 2 /∈ C(A). For a contradiction,
suppose that there are two vertices u, v ∈ A with c(uv) = 2. We may further
assume that c(uw) = 1 and c(wx) = 2, where w, x ∈ B. Then c(vw) ∈ {1,2}
and c(ux) ∈ {1,2}. Thus c(vx) /∈ {1,2}, since otherwise {u, v, w, x} together
with a vertex in V2 forms a 2-colored K5. Then c(vw) = c(ux) = 2 in order to
avoid a rainbow K3. Since v is incident with some edge in color 1, we may
assume that c(v y) = 1 for some y ∈ B \ {w, x}. In order to avoid a rainbow
K3, we have C(y, {u, w})⊆ {1, 2}. Then {u, v, w, y} together with a vertex in
V2 forms a 2-colored K5, a contradiction.

By Claim 5.9 (1), we have C(A) ∩ C(V2) = ; and C(B) ∩ C(V2) = ;.
Recall that 1 /∈ C(A) and 1 /∈ C(B ∪ V ′′1 ). By Claim 5.11, we further have
|C(A)| ≤ k− |{1}| − |C(B) \ C(A)| − |C(V2)| ≤ k− 2− |C(V2)|. Thus |V (G)|=
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|A|+ |V2|+ |B∪V ′′1 | ≤ 2k−2−|C(V2)|+2|C(V2)|+2k−1 ≤ 2k−2+1+2k−1 < 2k+1,
a contradiction. This completes the proof of Theorem 5.10.

Next, we present our proof of Theorem 5.11.

Proof of Theorem 5.11. By Theorem 5.10, we have gq
2(5) = 2q + 1≤ p. Thus

every Gallai-q-colored Kp contains a 2-colored K5. Let g = gk
q (p). Then every

Gallai-k-coloring of Kg contains a Gallai-q-colored Kp, and thus a 2-colored
K5. Hence, gk

q (p)≥ gk
2(5) = 2k + 1.

In fact, we can generalize Theorem 5.11 as follows.

Theorem 5.20. For integers p, q, k with q ≤ log2(p− 1) and k ≥ q, we have
gk

q (p)≥
�

(p− 1)1/q
�k + 1.

Proof. Let a :=
�

(p − 1)1/q
�

. We show that there is a Gallai-k-coloring of
Kak , in which there is no Kp receiving at most q distinct colors. Let G1 be a
monochromatic copy of Ka with color 1. Suppose for some 1≤ i ≤ k− 1 we
have constructed a Gallai-i-coloring Gi of Kai . Then we construct an (i+ 1)-
edge-coloring Gi+1 of Kai+1 by joining a copies of Gi using edges that all get
color i + 1. Finally, we obtain a Gallai-k-coloring Gk of Kak . For any q distinct
colors c1, c2, . . . , cq, the largest complete subgraph in Gk using only these q
colors has order at most aq ≤ p− 1. Thus gk

q (p)≥ ak + 1.

5.7 Proof of Theorem 5.12

We first introduce an additional definition and prove some useful lemmas. An
exact Gallai-k-coloring is a Gallai-k-coloring in which all the k colors are used.

Lemma 5.21. For any n ≥ 2, there are at least dn/2e colors each inducing a
star in every exact Gallai-(n− 1)-coloring of Kn.

Proof. We prove the statement by induction on n. For the base case, if
2 ≤ n ≤ 3, the statement clearly holds. Now assume that it holds for every
2 ≤ n′ ≤ n− 1, and we will prove it for n. Let G be an exact Gallai-(n− 1)-
coloring of Kn. Let V1, V2, . . . , Vm be a Gallai partition of V (G) such that m is
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minimum. If m≥ 4, then by Theorem 5.1 we have |C(G)| ≤ 2+
∑m

i=1 |C(Vi)| ≤
2+

∑m
i=1(|Vi| − 1)≤ 2+ n−m≤ n− 2, a contradiction. Thus 2≤ m≤ 3, so

m = 2 by the minimality of m. Without loss of generality, we may assume
that c(V1, V2) = 1 and |V1| ≥ |V2|. We claim that 1 /∈ C(V1) ∪ C(V2) and
C(V1) ∩ C(V2) = ;, since otherwise |C(G)| ≤ 1 + |C(V1)| + |C(V2)| − 1 ≤
|V1| − 1+ |V2| − 1 ≤ n− 2. If |V2|= 1, then G[V1] is an exact Gallai-(n− 2)-
coloring of Kn−1. By the induction hypothesis, the number of colors each
inducing a star is at least 1+ d(n− 1)/2e ≥ dn/2e. If |V1| ≥ |V2| ≥ 2, then by
the induction hypothesis, the number of colors each inducing a star is at least
d|V1|/2e+ d|V2|/2e ≥ dn/2e.

Lemma 5.22. For integers c, n, N with c ≥ 2, n≥ 2(7+ c)c and N ≥ n− 3n
(7+c)c ,

we have N
(2+c)(6+c)c−1 − 2≥ n

(7+c)c .

Proof. Let a = 6+ c. Then a ≥ 8. Since

(2+ c)(6+ c)c−1
�

N

(2+ c)(6+ c)c−1 − 2−
n

(7+ c)c

�

≥
�

n−
3n

(7+ c)c

�

− 2(2+ c)(6+ c)c−1−
(2+ c)(6+ c)c−1n

(7+ c)c

=

�

1−
3

(7+ c)c
−
(2+ c)(6+ c)c−1

(7+ c)c

�

n− 2(2+ c)(6+ c)c−1

≥
�

1−
3

(7+ c)c
−
(2+ c)(6+ c)c−1

(7+ c)c

�

2(7+ c)c − 2(2+ c)(6+ c)c−1

= 2(7+ c)c − 4(2+ c)(6+ c)c−1− 6

= 2((a+ 1)a−6− 2(a− 4)aa−7)− 6

= 2

 

a−6
∑

i=0

�

a− 6

i

�

ai − 2aa−6+ 8aa−7

!

− 6

= 2

 

a−8
∑

i=0

�

a− 6

i

�

ai + (a− 6)aa−7+ aa−6− 2aa−6+ 8aa−7

!

− 6

= 2
a−8
∑

i=0

�

a− 6

i

�

ai + 4aa−7− 6 ≥ 0,
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we have N
(2+c)(6+c)c−1 − 2≥ n

(7+c)c .

Lemma 5.23. For any c ≥ 1 and n≥ 2(7+ c)c , there are at least dn/(7+ c)ce
colors each inducing a star in every exact Gallai-(n− c)-coloring of Kn.

Proof. We prove the statement by induction on c. For the base case, if c = 1,
the statement holds by Lemma 5.21. Now assume that it holds for every
1 ≤ c′ ≤ c − 1, and we will prove it for c with c ≥ 2. Let G be an exact
Gallai-(n− c)-coloring of Kn using colors 1,2, . . . , n− c. For a contradiction,
suppose that the number of colors each inducing a star in G is less than n

(7+c)c .

Claim 5.12. Let N be an integer satisfying N ≤ n and N
(2+c)(6+c)c−1−2≥ n

(7+c)c .
For any V ′ ⊆ V (G) with |V ′|= N , C(V ′)∩ C(V ′, V (G) \ V ′) = ; and C(V ′)∩
C(V (G) \ V ′) = ;, let G′ = G[V ′]. If G′ is an exact Gallai-(N − c)-coloring of
KN , then V (G′) has a Gallai partition consisting of exactly two parts V ′1 and
V ′2 , such that |C(V ′1)|= |V

′
1 | − c, |C(V ′2)|= |V

′
2 | − 1, c(V ′1 , V ′2) /∈ C(V ′1)∪ C(V ′2)

and C(V ′1)∩ C(V ′2) = ;.

Proof. Note that the integer N and subset V ′ satisfying the above conditions
exist since we can choose N = n, V ′ = V (G) and G′ = G. Without loss of
generality, let C(G′) = [N − c]. Firstly, we assume that there exists some color
` ∈ [N − c] such that the subgraph of G′ induced by color ` has at least two
nontrivial components. Then we recolor all the edges of color ` in one of its
nontrivial components with color N − c + 1. Let G′′ be the resulting coloring
of KN . It is easy to check that G′′ is an exact Gallai-(N − (c− 1))-coloring of
KN . Since N

(2+c)(6+c)c−1 − 2 ≥ n
(7+c)c , we have N ≥ 2(7+ (c − 1))c−1. By the

induction hypothesis, there are at least N
(7+(c−1))c−1 colors each inducing a star

in G′′. Recall that C(V ′)∩ C(V ′, V (G) \ V ′) = ; and C(V ′)∩ C(V (G) \ V ′) = ;.
There are at least N

(7+(c−1))c−1 − 2≥ n
(7+c)c colors each inducing a star in G, a

contradiction.

Next, we may assume that every color induces a subgraph with exactly one
nontrivial component in G′. Let V ′1 , V ′2 , . . . , V ′m be a Gallai partition of V (G′)
such that m is minimum and |V ′1 | = max1≤i≤m{|V ′i |}, and let S be the set of
colors used between these parts. Then 1≤ |S| ≤ 2 and for every 1≤ i < j ≤ m,
we have (C(V ′i )∩ C(V ′j )) \ S = ;.
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If m≥ 4, then N−c = |C(G′)| ≤ |S|+
∑m

i=1 |C(V
′
i )| ≤ 2+

∑m
i=1(|V

′
i |−1)≤

N+2−m, so m≤ 2+c. Thus |V ′1 | ≥ N/(2+c)≥ 2(6+c)c−1 = 2(7+(c−1))c−1.
Moreover, |C(V ′1)| ≥ N− c−|S|−

∑m
i=2 |C(V

′
i )| ≥ N− c−2−

∑m
i=2(|V

′
i |−1) =

|V ′1 | − c +m− 3≥ |V ′1 | − c + 1. Let C(V ′1) = {ci : i = 1, 2, . . . , |C(V ′1)|}. For all
|V ′1 |− c+2≤ j ≤ |C(V ′1)| (if |C(V

′
1)|> |V

′
1 |− c+1), we recolor all the edges of

color c j with color c1 in G′[V ′1], so we obtain an exact Gallai-(|V ′1 | − (c − 1))-

coloring of K|V ′1 |. By the induction hypothesis, there are at least
|V ′1 |

(7+(c−1))c−1

colors each inducing a star in G′[V ′1]. Thus the number of colors each inducing

a star in G is at least
|V ′1 |

(7+(c−1))c−1 − |S| ≥ N
(2+c)(7+(c−1))c−1 − 2 ≥ n

(7+c)c , a
contradiction.

Thus 2 ≤ m ≤ 3, so m = 2 by the minimality of m. Then |V ′1 | ≥ N/2 ≥
2(7+(c−1))c−1. Note that |C(V ′1)| ≥ N−c−|C(V ′2)|−|S| ≥ N−c−|V ′2 |+1−1 =
|V ′1 |−c. If |C(V ′1)| ≥ |V

′
1 |−c+1, then we can derive a contradiction by a similar

argument as above. Thus we have |C(V ′1)| = |V
′

1 | − c, so |C(V ′2)| = |V
′

2 | − 1,
S ∩ (C(V ′1)∪ C(V ′2)) = ; and C(V ′1)∩ C(V ′2) = ;.

We will use an algorithm to find dn/(7+ c)ce colors each inducing a star
in G. Let V (0)1 := V (G), V (0)2 := ;, G(0) := G, t := 1, A := ; and B := ;. The
algorithm at time i (i ≥ 1) consists of two steps.

Step 1. By applying Claim 5.12 to N =
�

�V (i−1)
1

�

�, V ′ = V (i−1)
1 and G′ =

G
�

V (i−1)
1

�

, we obtain a Gallai partition V (i)1 , V (i)2 of V (G′) such that
�

�C
�

V (i)1

�

�

�

=
�

�V (i)1

�

� − c,
�

�C
�

V (i)2

�

�

� =
�

�V (i)2

�

� − 1, c
�

V (i)1 , V (i)2

�

/∈ C
�

V (i)1

�

∪ C
�

V (i)2

�

and
C
�

V (i)1

�

∩ C
�

V (i)2

�

= ;.
Step 2. If

�

�V (i)2

�

� = 1, then let ct = c
�

V (i)1 , V (i)2

�

, t := t+1 and A := A∪V (i)2 ;
otherwise if

�

�V (i)2

�

�≥ 2, then let B := B ∪ V (i)2 .

We repeat the above steps until t ≥ n
(7+c)c + 1. Finally, we obtain t − 1

distinct colors c1, c2, . . . , ct−1 each inducing a star in G. It remains to show
that the above algorithm is valid. Since for any j ≤ i − 1 with V ( j)2 ⊆ B
we have

�

�V ( j)2

�

� ≥ 2 and
�

�C
�

V ( j)2

�

�

� =
�

�V ( j)2

�

�− 1, the number of colors each

inducing a star in G
�

V ( j)2

�

is at least
l

�

�V ( j)2

�

�/2
m

by Lemma 5.21. Recall that

c
�

V ( j)1 , V ( j)2

�

/∈ C
�

V ( j)1

�

∪C
�

V ( j)2

�

and C
�

V ( j)1

�

∩C
�

V ( j)2

�

= ; for every j ≤ i−1.
Thus |B|< 2n

(7+c)c ; otherwise the number of colors each inducing a star in G is

at least n
(7+c)c , a contradiction. Thus

�

�V (i−1)
1

�

�= n− |B| − |A| > n− 3n
(7+c)c . By
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Lemma 5.22,
�

�V (i−1)
1

�

� satisfies the condition of N in Claim 5.12. Moreover,
V (i−1)

1 (resp., G(i−1)) satisfies the condition of V ′ (resp., G′) in Claim 5.12.
Thus we can apply Claim 5.12 in Step 1, so the algorithm is valid.

Now we have all ingredients to present our proof of Theorem 5.12.

Proof of Theorem 5.12. The cases c ∈ {1,2} follow from Theorems 5.7 and
5.9, so we may assume that c ≥ 3. The lower bound gk

k−1(p)> p is trivial. For
the upper bound, let G be a Gallai-k-coloring of Kp+1. We may assume that G
is an exact Gallai-k-coloring, where k = p−c = p+1−(c+1). By Lemma 5.23,
the number of colors each inducing a star in G is at least p+1

(7+(c+1))c+1 ≥ 2. Let
i be a color that induces a star in G, and let v be a vertex with maximum
degree in this star. Then G− v is a copy of Kp using at most k− 1 colors. The
result follows.

5.8 Two results for K6

In this section, we shall prove g4
3(6) = 8 and g5

3(6) = 10.

Theorem 5.24. g4
3(6) = 8.

Proof. We first show that g4
3(6)> 7 by construction. Taking a copy of K7 with

vertex set U ∪ {x , y, z}, where U = {u, v, w, s}, we color the edges such that
c(uv) = c(vw) = c(ws) = 1, c(vs) = c(su) = c(uw) = 2, c(x , U) = c(z, U) =
c(z y) = 3 and c(y, U) = c(y x) = c(xz) = 4. It is easy to check that the
resulting coloring is a Gallai-4-coloring of K7 without a 3-colored K6.

Next we prove that g4
3(6) ≤ 8. For a contradiction, suppose that G is a

Gallai-4-colored K8 containing no 3-colored K6 and V (G) = {u1, u2, . . . , u8}.

Claim 5.13. There is no vertex u ∈ V (G) such that |C(u, V (G− u))|= 1.

Proof. Suppose there exists a vertex u ∈ V (G) with |C(u, V (G − u))|= 1, say
c(u8, V (G − u8)) = 1. Let F be the spanning subgraph of G − u8 consisting of
all the edges in color 1. Let S ⊆ V (G − u8) be a minimum covering of F and
T = V (F) \ S = V (G) \ (S ∪ {u8}). In order to avoid a 3-colored K6, we have
|S| ≥ 2.
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We next show that F is a bipartite graph. Firstly, F contains no C3;
otherwise G contains a monochromatic K4 in color 1, so there is a 3-colored
K6 by Lemma 5.14. Secondly, suppose that F contains a copy W of C5. It
is easy to check that |C(V (W )) ∩ {2,3,4}| ≤ 2 in order to avoid a rainbow
triangle, so W ∪ {u8} forms a 3-colored K6, a contradiction. Thus F contains
no C5. Finally, suppose that F contains a copy of C7, say u1u2 · · ·u7u1. Since
F contains no C3, we may assume that c(u1u3) = 2 without loss of generality.
In order to avoid a rainbow triangle in G or a C5 in F , we have c(u1u4) = 2.
Then c(u2u4) = 2 in order to avoid a rainbow triangle in G or a C3 in F . Now
{u8, u1, u2, u3, u4} forms a 2-colored K5. By Lemma 5.14, there is a 3-colored
K6 in G. This contradiction implies that F contains no odd cycle and thus F is
a bipartite graph.

Since F is bipartite, we have |S| ≤
�

|V (G− u8)|/2
�

= 3. If |S| = 3, then
|T |= 4, say S = {u1, u2, u3} and T = {u4, u5, u6, u7}. By Theorem 5.15, there
is a matching of size 3 in F , i.e., G− u8 contains three pairwise nonadjacent
edges in color 1. It is easy to check that these three edges must appear
between S and T . Without loss of generality, we may assume that c(u1u4) =
c(u2u5) = c(u3u6) = 1. Note that 1 /∈ C(T), so we may further assume that
C({u4, u5, u6}) ⊆ {2,3}. Then C(S, {u4, u5, u6}) ⊆ {1,2,3} in order to avoid
a rainbow triangle. Now S forms a monochromatic K3 in color 4; otherwise
there is a 3-colored K6 within S∪{u8, u4, u5, u6}. Since G is a Gallai-coloring, it
is easy to see that c(S, {u4, u5, u6}) = 1. Then S∪{u8, u4, u5} forms a 3-colored
K6, a contradiction. Therefore, we have |S|= 2 and |T |= 5, say S = {u1, u2}
and T = {u3, u4, . . . , u7}. Note that C(T) ⊆ {2,3,4}, so there is a 2-colored
K4 within T by Theorem 5.7. Without loss of generality, we may assume that
C(X ) ⊆ {2,3}, where X = {u3, u4, u5, u6}. Moreover, we may assume that
c(u1u3) = 1 by Theorem 5.15. Then C(X ∪ {u1}) = {1,2,3} by Lemma 5.14,
which implies that X ∪ {u8, u1} forms a 3-colored K6, a contradiction.

Let V1, V2, . . . , Vm be a Gallai partition of V (G) such that m is minimum. If
there is only one color between these parts, then we assume that color 1 is
this color, and if there are two colors between these parts, then we assume
that colors 1 and 2 are these two colors.

Claim 5.14. m≤ 3.
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Proof. Suppose m ≥ 4. In order to avoid a 3-colored K6, the following
statements hold: (1) m = 4; (2) 1,2 /∈

⋃m
i=1 C(Vi); (3) color 3 (resp., color

4) is used in exactly one of these parts; (4) there is neither a 2-colored
K5 nor a monochromatic K3 within each part. Thus we have

∑m
i=1 |Vi| ≤

max{4+ 1+ 1+ 1, 2+ 2+ 1+ 1}= 7< |V (G)|, a contradiction.

By Claim 5.14 and the minimality of m, we have m = 2. Note that at most
one of 1 ∈ C(V1) and 1 ∈ C(V2) holds; otherwise G contains a monochromatic
K4 and thus G contains a 3-colored K6 by Lemma 5.14. Firstly, we consider
the case that 1 /∈ C(V1) and 1 /∈ C(V2), i.e., C(Vi) ⊆ {2,3,4} for i ∈ [2]. In
this case, we have |V1| ≤ 5 and |V2| ≤ 5, so |V1| ≥ 3 and |V2| ≥ 3. We claim
that there is no 2-colored K4 within each Vi for i ∈ [2]. Indeed, if there
is a 2-colored copy K of K4 in some Vi, say i = 1 and C(K) ⊆ {2,3}, then
C(V2) = {4} in order to avoid a 3-colored K6. If |V2| = 4, then it is easy to
find a 3-colored K6 in G. If |V2| = 3, then |V1| = 5. Now G also contains a
3-colored K6 no matter whether 4 ∈ C(V1) or 4 /∈ C(V1). Hence, there is no
2-colored K4 within each Vi for i ∈ [2]. By Theorem 5.7, we have g3

2(4) = 5,
so |Vi| ≤ 4 for i ∈ [2], which implies that |V1| = |V2| = 4 and moreover,
C(V1) = C(V2) = {2,3,4}. For any two distinct colors c1, c2 ∈ {2,3,4}, we
say that c1 and c2 are adjacent if there are two adjacent edges e and f such
that c(e) = c1 and c( f ) = c2. Note that if c1 and c2 are adjacent, then there
is a 2-colored K3 with colors c1 and c2. Without loss of generality, we may
assume that colors 2 and 3 are adjacent in G[V1]. Then colors 2 and 3 are
nonadjacent in G[V2], and thus color 4 is adjacent to both color 2 and color 3
in G[V2]. But then color 4 is adjacent to neither color 2 nor color 3 in G[V1],
a contradiction.

Finally, we consider the case that exactly one of 1 ∈ C(V1) and 1 ∈ C(V2)
holds, say 1 ∈ C(V1) and 1 /∈ C(V2).

Claim 5.15. The following statements hold:

(1) there is no monochromatic K3 in color 1 within V1;

(2) C(V1)∩ C(V2) = ;.
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Proof. If (1) does not hold, then G contains a monochromatic K4. Thus there
is a 3-colored K6 by Lemma 5.14. This contradiction proves (1). We next
prove (2). Suppose that C(V1)∩ C(V2) 6= ;, say 2 ∈ C(V1)∩ C(V2). If colors 1
and 2 are adjacent in G[V1], then G contains a 2-colored K5. By Lemma 5.14,
there is a 3-colored K6, a contradiction. Thus colors 1 and 2 are nonadjacent
in G[V1], and we may assume that u1, u2, u3, u4 ∈ V1 such that c(u1u2) = 1,
c(u3u4) = 2 and 1,2 /∈ C({u1, u2}, {u3, u4}). Since G is a Gallai-coloring, we
have |C({u1, u2}, {u3, u4})| = 1. Assume that u5u6 is an edge with color 2
in G[V2]. Then {u1, u2, . . . , u6} forms a 3-colored K6, a contradiction. This
completes the proof of (2).

In order to avoid a 3-colored K6, we have |V2| ≤ 5, so |V1| ≥ 3. Then
|C(V1)| ≥ 2 by Claim 5.15 (1). If |C(V1)|= 2, then |C(V2)|= 2 by Claim 5.15
(2). In this case, we have |V1| ≤ 3 (resp., |V2| ≤ 4) in order to avoid a 3-
colored K6. Then |V1|+ |V2| ≤ 3+ 4< |V (G)|, a contradiction. If |C(V1)|= 3,
then |C(V2)| = 1 by Claim 5.15 (2). In this case, we have |V1| ≤ 4 (resp.,
|V2| ≤ 3) in order to avoid a 3-colored K6. Then |V1|+ |V2| ≤ 4+3< |V (G)|, a
contradiction. If |C(V1)|= 4, then |C(V2)|= 0 by Claim 5.15 (2). In this case,
we have |V2|= 1, contradicting to Claim 5.13. This contradiction completes
the proof.

Theorem 5.25. g5
3(6) = 10.

Proof. We first show that g5
3(6) > 9 by construction. Taking a copy of K9

with vertex set U ∪ V ∪ {x , y}, where U = {r, s, t} and V = {u, v, w, z}, we
color the edges such that c({x , y}, U ∪ V ) = 1, c(x y) = c({u, z}, {v, w}) = 2,
c(rs) = c(st) = c(vw) = 3, c(r t) = c(uz) = 4 and c(U , V ) = 5. Let G′ be the
resulting coloring. It is easy to check that G′ is a Gallai-coloring. Moreover,
for any two distinct colors i, j ∈ [5], we need to delete at least four vertices
such that there is neither color i nor color j on edges of the remaining graph.
Thus G′ is a Gallai-5-coloring of K9 without a 3-colored K6.

Next we prove that g5
3(6) ≤ 10. For a contradiction, suppose that G is a

Gallai-5-colored K10 containing no 3-colored K6 and V (G) = {u1, u2, . . . , u10}.
Let V1, V2, . . . , Vm be a Gallai partition of V (G) such that m is minimum. If
there is only one color between these parts, then we assume that color 1 is
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this color, and if there are two colors between these parts, then we assume
that colors 1 and 2 are these two colors.

If m≥ 4, then in order to avoid a 3-colored K6, the following statements
hold: (1) m = 4; (2) 1,2 /∈

⋃m
i=1 C(Vi); (3) for each i ∈ {3,4,5}, color i is

used in exactly one of these parts; (4) there is neither a 2-colored K5 nor a
monochromatic K3 within each part. Thus

∑m
i=1 |Vi| ≤max{5+ 3 · 1,4+ 2+

2 · 1,2+ 2+ 2+ 1} = 8 < |V (G)|, a contradiction. Hence, 2 ≤ m ≤ 3. By
the minimality of m, we have m = 2. Note that at most one of 1 ∈ C(V1)
and 1 ∈ C(V2) holds; otherwise G contains a monochromatic K4 and thus G
contains a 3-colored K6 by Lemma 5.14. We divide the rest of the proof into
two cases.

Case 1. 1 /∈ C(V1) and 1 /∈ C(V2).

In this case, we have C(Vi)⊆ {2,3,4,5} for i ∈ [2]. Since g4
3(6) = 8, we

have |Vi| ≤ 7 and thus |V3−i| ≥ 3 for each i ∈ [2]. We claim that there is
no 2-colored K4 within each Vi for i ∈ [2]. Indeed, if there is a 2-colored
copy K of K4 in some Vi, say i = 1 and C(K) ⊆ {2,3}, then C(V2) ⊆ {4,5}
in order to avoid a 3-colored K6. Thus |V2| ≤ 4 for avoiding a 3-colored K6.
If |V2| = 4, then 4,5 /∈ C(V1), which implies that G[V1] is a 2-colored K6, a
contradiction. If |V2| = 3, then |V1| = 7. In order to avoid a 3-colored K6,
we have C(V1) = {2,3,4,5}, colors 4 and 5 are nonadjacent in G[V1], and
G[V1] contains no monochromatic K3 in color 4 or 5. If G[V1] contains a
monochromatic 2K2 in color 4 and a monochromatic 2K2 in color 5, then
|V1| ≥ 8, a contradiction. Thus we may assume that G[V1] contains no
monochromatic 2K2 in color 4. Then there is a vertex u ∈ V1 such that
G[V1 \ {u}] contains no edge in color 4, which implies that G[V1 \ {u}] is a
3-colored K6, a contradiction. Hence, there is no 2-colored K4 within each Vi

for i ∈ [2].
By Theorem 5.7, we have g4

2(4) = 6, so |Vi| ≤ 5 for i ∈ [2], which implies
that |V1| = |V2| = 5 and moreover, C(V1) = C(V2) = {2, 3, 4, 5} since g3

2(4) = 5.
Without loss of generality, we may assume that colors 2 and 3 are adjacent
in G[V1]. Recall that if two distinct colors c1 and c2 are adjacent, then there
is a 2-colored K3 with colors c1 and c2. Then colors 2 and 3 are nonadjacent
in G[V2]. We may assume that u1, u2, u3, u4 ∈ V2 such that c(u1u2) = 2 and
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c(u3u4) = 3. Then C({u1, u2}, {u3, u4})⊆ {4,5}. In order to avoid a rainbow
triangle, there is exactly one color on the edges between {u1, u2} and {u3, u4},
say color 4. Then color 4 is adjacent to neither color 2 nor color 3 in G[V1],
so color 4 is adjacent to color 5 in G[V1]. Since |V2| = 5 and G[V2] contains a
monochromatic K2,2 in color 4, we have that colors 4 and 5 are adjacent in
G[V2]. Then G contains a 3-colored K6 with colors 1, 4 and 5, a contradiction.

Case 2. Exactly one of 1 ∈ C(V1) and 1 ∈ C(V2) holds.

Without loss of generality, we may assume 1 ∈ C(V1) and 1 /∈ C(V2). We
have C(V1)∩ C(V2) = ; by the same argument as in the proof of Claim 5.15.
Thus |C(V1)|+ |C(V2)|= 5. For avoiding a 3-colored K6 and since g4

3(6) = 8,
we have the following inequality:

|V1|+ |V2| ≤



















2+ 7, if |C(V1)|= 1 and |C(V2)|= 4,

3+ 5, if |C(V1)|= 2 and |C(V2)|= 3,

4+ 4, if |C(V1)|= 3 and |C(V2)|= 2,

6+ 2, if |C(V1)|= 4 and |C(V2)|= 1,

contradicting the fact that |V (G)|= 10. Thus it suffices to consider the case
|C(V1)| = 5 and |C(V2)| = 0. In this case, we have |V2| = 1, say V2 = {u10}.
Let F be the spanning subgraph of G[V1] consisting of all the edges in color
1. Let S ⊆ V1 be a minimum covering of F and T = V1 \ S. Note that
C(T )⊆ {2,3, 4,5}. Since g4

3(6) = 8, we have |T | ≤ 7 and thus |S| ≥ 2.

We next show that F is a bipartite graph. By similar arguments as in the
proof of Claim 5.13, there is no C` in F for ` ∈ {3,5,7}. We now show that
F contains no C9. Suppose for a contradiction that u1u2 · · ·u9u1 is a cycle in
F . Since F contains no C3, we may assume that c(u1u3) = 2 without loss of
generality. In order to avoid a rainbow triangle in G or a C7 in F , we have
c(u1u4) = 2. Then c(u2u4) = 2 in order to avoid a rainbow triangle in G or a
C3 in F . Now {u10, u1, u2, u3, u4} forms a 2-colored K5. By Lemma 5.14, there
is a 3-colored K6 in G. This contradiction implies that F contains no odd cycle
and thus F is a bipartite graph.

Since F is bipartite, we have |S| ≤
�

|V1|/2
�

= 4.
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Claim 5.16. |S|= 2 and |T |= 7.

Proof. If |S| = 3 and |T | = 6 (resp., |S| = 4 and |T | = 5), then F contains
a matching of size 3 (resp., 4) by Theorem 5.15. It is easy to check that
this matching must appear between S and T . Without loss of generality,
let u1, u2, u3 ∈ S, u4, u5, . . . , u8 ∈ T , and c(u1u4) = c(u2u5) = c(u3u6) =
1. Recall that 1 /∈ C(T), so we may further assume that C({u4, u5, u6}) ⊆
{2, 3}. Then C({u1, u2, u3}, {u4, u5, u6})⊆ {1, 2, 3} in order to avoid a rainbow
triangle. Now 1,2,3 /∈ C({u1, u2, u3}); otherwise there is a 3-colored K6 in
G[{u1, u2, . . . , u6, u10}]. Thus C({u1, u2, u3}) ⊆ {4,5}. Then c({u1, u2, u3},
{u4, u5, u6}) = 1 in order to avoid a rainbow triangle. Note that 1 /∈ C(T).
If C(u7, {u4, u5, u6})∩ {4,5} 6= ;, say c(u7u4) = 4, then C(u7, {u1, u2, u3}) ⊆
{1,4}, which implies that {u1, u2, u3, u4, u7, u10} forms a 3-colored K6, a
contradiction. Thus C(u7, {u4, u5, u6}) ⊆ {2,3}. Then c(u1u7) ∈ {1,2,3},
which implies that {u1, u4, u5, u6, u7, u10} forms a 3-colored K6, a contradiction.

By Claim 5.16 and Theorem 5.15, we may assume that S = {u1, u2}, T =
{u3, u4, . . . , u9} and c(u1u3) = c(u2u4) = 1 without loss of generality. Since
1 /∈ C(T ), we may further assume c(u3u4) = 2. Then c(u1u4), c(u2u3) ∈ {1, 2},
so c(u1u2) /∈ {1,2}; otherwise {u1, u2, u3, u4, u10} forms a 2-colored K5 and
thus G contains a 3-colored K6 by Lemma 5.14. Without loss of generality, let
c(u1u2) = 3. Then c(u1u4) = c(u2u3) = 1 in order to avoid a rainbow triangle.

Claim 5.17. For any vertex u ∈ T \ {u3, u4}, we have 4 ∈ C(u, {u3, u4}) ⊆
{2, 4} or 5 ∈ C(u, {u3, u4})⊆ {2, 5}.

Proof. Firstly, we have 3 /∈ C(u, {u3, u4}); otherwise it is easy to check that
C({u, u1, u2, u3, u4, u10}) = {1,2,3} in order to avoid a rainbow triangle,
which is a contradiction. Secondly, we have C(u, {u3, u4})∩ {4,5} 6= ;; oth-
erwise if c(uu3) = c(uu4) = 2, then C({u, u1, u2, u3, u4, u10}) = {1, 2, 3}. This
contradiction completes the proof of Claim 5.17.

By Claim 5.17 and the Pigeonhole Principle, we may assume that 4 ∈
C(ui , {u3, u4})⊆ {2,4} for i ∈ {5, 6,7}.
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Claim 5.18. For each i ∈ {5, 6,7}, we have c(ui , {u3, u4}) = 4.

Proof. For a contradiction, suppose that C(ui , {u3, u4}) = {2,4} for some
i ∈ {5,6,7}, say c(u5u3) = 2 and c(u5u4) = 4. Then c({u1, u2}, u5) =
1. If c(u6u3) = 4, then C(u6, {u1, u4, u5}) ⊆ {1,2,4}, which implies that
G[{u1, u3, u4, u5, u6, u10}] is a 3-colored K6, a contradiction. Thus c(u6u3) = 2,
so c(u6u4) = 4 since 4 ∈ C(u6, {u3, u4}). By symmetry, we have c(u7u3) = 2
and c(u7u4) = 4. Then c({u1, u2}, {u6, u7}) = 1. If C({u5, u6, u7})∩ {2, 4} 6= ;,
then G[{u10, u1, u3, u4, . . . , u7}] contains a 3-colored K6, a contradiction. Thus
C({u5, u6, u7}) ⊆ {3,5}. Then G[{u10, u1, u2, u5, u6, u7}] is a 3-colored K6, a
contradiction.

By Claim 5.18, we have c({u5, u6, u7}, {u3, u4}) = 4. In order to avoid a
rainbow triangle, we have C({u1, u2}, {u5, u6, u7}) ⊆ {1,4}. If 3 ∈ C({u5, u6,
u7}) (resp., C({u5, u6, u7}) ∩ {2,4} 6= ;), then G[{u10, u1, u2, u4, u5, u6, u7}]
(resp., G[{u10, u1, u3, u4, . . . , u7}]) contains a 3-colored K6, a contradiction.
Thus c({u5, u6, u7}) = 5. Then G[{u10, u1, u4, u5, u6, u7}] is a 3-colored K6.
This contradiction completes the proof.

5.9 Concluding remarks

In this chapter, we studied the behavior of g(n, p, q), which is the minimum
number of colors that are needed for Kn to have a Gallai-coloring in which
every Kp receives at least q distinct colors. We now give a comparison of our
results on g(n, p, q) with the classical Erdős-Gyárfás function f (n, p, q).

Firstly, Corollary 5.2 implies that g(n, p, q) makes sense only for 2≤ q ≤
p− 1, while f (n, p, q) makes sense for 2≤ q ≤

�p
2

�

. Secondly, since we have
an additional constraint on rainbow triangles, the value of g(n, p, q) is at least
that of f (n, p, q) for 2≤ q ≤ p− 1. In fact, we have g(n, p, q)� f (n, p, q) for
certain values of n, p and k. For instance, for appropriate p and n, Theorems
5.7 and 5.9 imply that g(n, p, p− 1) = n− 1 and g(n, p, p− 2) = n− 2, while
Conlon et al. [48] proved that f (n, p, p− 1) is subpolynomial in n. Thirdly,
for appropriate p and n, we have g

�

n, p, dlog2 pe
�

≤ dlog2 ne (implied by
Theorem 5.11) and f

�

n, p, dlog2 pe
�

≤ dlog2 ne (see [62]). Moreover, we
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have g(n, p, 2) = Ω(log2 n) by Theorem 5.6. Thus g(n, p, q) = Θ(log2 n) for
2≤ q ≤ dlog2 pe. But the best known upper and lower bounds on rk(p) (see
Section 1.2) imply that log2 n

p log2 log2 n
≤ f (n, p, 2)≤ 8

3

�

1
4
+ 1

p−o(p) log2 n
�

. Hence,
it is possible that f (n, p, q) = o(log2 n) for some q with 2 ≤ q ≤ dlog2 pe.
If this is true, then f (n, p, q) = o(g(n, p, q)) for these values of q. There is
not much known about the classical Erdős-Gyárfás function f (n, p, q) when
2≤ q ≤ p−2. Further exploration of the behavior of f (n, p, q) for 2≤ q ≤ p−2
will help us to understand how the additional constraint on rainbow triangles
forces the total number of colors to increase. Moreover, investigating the
bounds on the multicolor Ramsey number rk(p) will also help to study the
range of the values of f (n, p, q).

Next, we present several open problems. Theorems 5.8 and 5.11 imply that
g
�

n, p,
�

(p− 1)1/2
�

�

and g
�

n, p, dlog2 pe
�

are at most O(n1/2) and O(log n),
respectively. We know that g(n, p, p−1) is linear in n, g(n, p, 2) is logarithmic
in n, and g(n, p, q)≥ g(n, p, q− 1). Thus for any fixed p (p is large enough),
there exists a value q such that g(n, p, q) is polynomial in n and g(n, p, q− 1)
is subpolynomial in n. A natural problem is to find the smallest q such
that g(n, p, q) is polynomial in n, and the largest q such that g(n, p, q) is
logarithmic in n.

Another natural problem is to find the threshold for linear g(n, p, q), i.e.,
the smallest q such that g(n, p, q) is linear in n. We were not able to solve this
problem, but in light of Theorems 5.7, 5.9 and 5.12, we pose the following
problem.

Problem 5.1. Given a constant c ≥ 2, does there exist a p0 such that for all
integers p ≥ p0 and k ≥ p− c, we have gk

p−c(p) = k+ c? (Equivalently, given
a constant c′ ≥ 1, does there exist a p0 such that for all integers p ≥ p0 and
n≥ p, we have g(n, p, p− c′) = n− c′?)

The following construction shows that gk
p−c(p) ≥ k + c. Let G be a

copy of Kk+c−1 with vertex set {v1, v2, . . . , vk+c−1}. For every 1 ≤ i ≤ k and
i < j ≤ k + c − 1, we color the edge vi v j using color i, and we color all
the remaining edges with color k. In the case c ∈ {2,3}, Theorems 5.7 and
5.9 answer Problem 5.1 positively. For c ≥ 4, Theorem 5.12 shows that
gk

p−c(p) = k+ c for k = p− c+ 1 and sufficiently large p.





Chapter 6

Forbidden rainbow subgraphs
that force large
monochromatic or 2-colored
k-connected subgraphs

The results in this chapter are motivated by considering and generalizing
the following implication of Gallai-Ramsey numbers. If the Gallai-Ramsey
number grm(K3 : H) = n, then forbidding a rainbow K3 in an m-colored Kn

implies the existence of a monochromatic copy of H in this Kn. A natural
question is which stronger forbidden rainbow subgraph conditions imply a
large k-connected monochromatic subgraph in such a Kn.

Let n, k, m be positive integers with n� m� k, and let G (resp.,H ) be
the set of connected (resp., disconnected) graphs G forcing that there exists
a k-connected monochromatic subgraph of order at least n− f (G, k, m) in
every rainbow G-free exact m-edge-coloring of Kn, where f (G, k, m) does not
depend on n. The set G was determined by Fujita and Magnant in [81]. In
this chapter, we give a complete characterization of H , and we show that
G ∪H consists of precisely P6, P3 ∪ P4, K2 ∪ P5, K2 ∪ 2P3, 2K2 ∪ K3, 2K2 ∪ P+4 ,
3K2 ∪ K1,3 and their subgraphs.
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We also consider an analogous problem for complete bipartite graphs. Let
s, t, k, m be positive integers with min {s, t} � m� k, and let B be the set
of bipartite graphs H forcing that there exists a k-connected monochromatic
subgraph of order at least s + t − f (H, k, m) in any rainbow H-free exact
m-edge-coloring of Ks,t , where f (H, k, m) does not depend on s or t. We
prove that the setB consists of precisely 2P3, 2K2 ∪ K1,3 and their subgraphs.

Finally, we study how to force large k-connected 2-colored subgraphs
instead of monochromatic subgraphs. We show that for 1 ≤ k ≤ 3 and
sufficiently large n, every Gallai-3-coloring of Kn contains a k-connected
subgraph of order at least n− b(k− 1)/2c using at most two colors. For any
positive integer t, we also show that the above statement is false for k = 4t.

6.1 Introduction

In 1983, Matula [140] studied the following Ramsey-type problem involving
graph connectivity. Let R(k; m) be the smallest integer n such that every
m-edge-coloring of Kn contains a k-connected monochromatic subgraph. For
m, k ≥ 2, Matula [140] proved that 2m(k−1)+1≤ R(k; m)< 10m(k−1)/3+1
and 4k− 3 ≤ R(k; 2) < (3+ (11/3)1/2)(k− 1) + 1. However, this result has
no restriction on the order of the k-connected monochromatic subgraph.

It is easy to check that any 2-edge-coloring of Kn contains a monochromatic
spanning tree, hence a (1-)connected monochromatic subgraph of order n. In
general, it is impossible to force a spanning monochromatic subgraph with
a higher connectivity in every 2-colored Kn. For instance, consider a 2-edge-
coloring of Kn using red and blue such that the monochromatic subgraph
induced by the red edges is a spanning star (only having connectivity 1). Then
the spanning monochromatic subgraph with all the blue edges is K1 ∪ Kn−1

and hence disconnected. Thus in order to force a monochromatic subgraph
with a higher connectivity, we have to restrict ourselves to subgraphs with
order smaller than n. In 2008, Bollobás and Gyárfás [21] posed the following
conjecture involving forcing a monochromatic subgraph of order at least
n− 2(k− 1).
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Conjecture 6.1 (Bollobás and Gyárfás [21]). If n > 4(k − 1), then every
2-edge-coloring of Kn contains a monochromatic k-connected subgraph of
order at least n− 2(k− 1).

In [79], Fujita and Magnant proved that Conjecture 6.1 holds in case
n> 6.5(k− 1).

Theorem 6.1 (Fujita and Magnant [79]). If n> 6.5(k− 1), then every 2-edge-
coloring of Kn contains a monochromatic k-connected subgraph of order at least
n− 2(k− 1).

Recently, Lo, Wu and Xie [132] proved that Conjecture 6.1 is true for
n ≥ 5k −min{

p
4k− 2+ 3,0.5k + 4}, and there is a counterexample with

n= 5k− 2
�p

2k− 1
�

− 3.

For at least three colors, we adopt the following definition of an almost
spanning k-connected monochromatic subgraph.

Definition 6.1 (Fujita and Magnant [81]). Given positive integers k and m,
for sufficiently large n compared to k and m, an almost spanning k-connected
monochromatic subgraph, denoted by ASMS(k), is a k-connected monochro-
matic subgraph of order at least n − f (k, m) in an edge-colored Kn using
exactly m colors, where f (k, m) does not depend on n.

In the context of studying edge-colorings of Kn using m colors, it was
shown that the largest order of a highly-connected monochromatic subgraph
would be n/(m−1) (see [124,125,127]). Thus, in order to force an ASMS(k),
we must consider additional restrictions on the edge-coloring of Kn, such as
forbidden proper subgraphs [105] or forbidden rainbow subgraphs [81].
Since we are focussing on edge-colorings, throughout this chapter we will not
consider forbidden rainbow subgraphs with isolated vertices. Moreover, we
will not consider forbidden rainbow subgraphs of order less than 3 either, for
the simple reason that every edge-coloring of Kn (n≥ 2) contains a rainbow
K2.

Let P+4 be the unique tree with degree sequence 1, 1, 1, 2, 3; note that we
used F2 to denote this tree in Chapter 2 (see Figure 2.1). In [81], Fujita and
Magnant proved the following result.
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Theorem 6.2 (Fujita and Magnant [81]). Let n, k, m be positive integers with
n � m � k and let G be the set of connected graphs G of order at least 3
without isolated vertices such that there is an ASMS(k) in any rainbow G-free
exact m-edge-coloring of Kn. Then G consists of precisely K3, P6, P+4 and their
connected subgraphs of order at least 3.

In this chapter, in order to establish the counterpart of the above result for
disconnected forbidden subgraphs, we first consider the following question.

Question 6.1. For what disconnected graphs H of order at least 3 without
isolated vertices does the following statement hold? Let n, k, m be positive
integers with n � m � k and m ≥ |E(H)|. There is an ASMS(k) in every
rainbow H-free exact m-edge-coloring of Kn.

Let H be the set of disconnected graphs H satisfying the statement in
Question 6.1. Given a graph H, the component number c0(H) is the number of
components of H. For each integer i ≥ 2, letH (i) := {H | c0(H) = i, H ∈H }
and defineH (1) := G . Clearly, we haveH =

⋃

i≥2H
(i). We shall prove the

following result in Section 6.2.

Theorem 6.3. The setH consists of precisely P3∪P4, K2∪P5, K2∪2P3, 2K2∪K3,
2K2∪P+4 , 3K2∪K1,3 and their disconnected subgraphs of order at least 3 without
isolated vertices.

By Theorems 6.2 and 6.3, we have that G ∪H consists of precisely P6,
P3 ∪ P4, K2 ∪ P5, K2 ∪2P3, 2K2 ∪ K3, 2K2 ∪ P+4 , 3K2 ∪ K1,3 and their subgraphs
of order at least 3 without isolated vertices.

For any graph G /∈ G ∪H , the largest monochromatic k-connected sub-
graph in a rainbow G-free edge-coloring of Kn will not be almost spanning,
but how large should it be? We shall prove the following additional result for
a class of graphs in Section 6.3.

Theorem 6.4. For any graph H ∈ G ∪H , if n is sufficiently larger than m
and k, then any rainbow (P3 ∪H)-free exact m-edge-coloring of Kn contains a
k-connected monochromatic subgraph of order at least βn, where β = β(H) is a
constant, not depending on n, m or k.
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Another natural question is to consider an analogous problem for complete
bipartite graphs instead of complete graphs.

Question 6.2. For what bipartite graphs H of order at least 3 without isolated
vertices does the following statement hold? Let s, t, k, m be positive integers
with min {s, t} � m� k and m≥ |E(H)|. There is a k-connected monochro-
matic subgraph of order at least s+ t − f (H, k, m) in every rainbow H-free
exact m-edge-coloring of Ks,t , where f (H, k, m) does not depend on s or t.

Let B be the set of bipartite graphs H satisfying the statement in Ques-
tion 6.2. We shall prove the following result in Section 6.4.

Theorem 6.5. The setB consists of precisely 2P3, 2K2∪K1,3 and their subgraphs
of order at least 3 without isolated vertices.

Finally, instead of looking for monochromatic subgraphs, we try to force
large 2-colored subgraphs in Gallai-3-colorings. In [75], Fox, Grinshpun and
Pach proved that every Gallai-3-coloring of Kn contains a 2-colored complete
graph of order Ω(n1/3 log2 n) (see Theorem 5.3). In [170], Wagner proved that
every Gallai-3-coloring of Kn contains a 2-colored subgraph with chromatic
number at least n2/3. In the final part of this chapter, we consider large
k-connected 2-colored subgraphs in Gallai-3-colorings.

By the following example we know that such a largest k-connected 2-
colored subgraph has order at most n− b(k− 1)/2c. Let G be a copy of Kn

with V (G) = V1 ∪ V2 ∪ V3 such that |V1| = n− k+ 1, |V2| = d(k− 1)/2e and
|V3| = b(k − 1)/2c. We color the edges of G such that the edges between
V2 and V1 ∪ V3 are red, the edges between V1 and V3 are blue, and all the
remaining edges are green. It is easy to see that G is a Gallai-3-coloring of Kn,
and the largest k-connected 2-colored subgraph has order n− b(k− 1)/2c. In
light of this example, we may consider the following question.

Question 6.3. For k ≥ 1 and sufficiently large n, does every Gallai-3-coloring
of Kn contain a k-connected 2-colored subgraph of order at least n− b(k−
1)/2c?

In Section 6.5, we deal with this question. We prove that Question 6.3
has an affirmative answer for 1≤ k ≤ 3, and give a counterexample to show
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that this question has a negative answer when k = 4t, where t is any positive
integer. We also provide a conjecture related to Question 6.3, and prove some
special cases of this conjecture.

6.2 A characterization of the set H

We begin with the following lemmas and corollary which will be used in our
proofs.

Lemma 6.6 (Fujita and Magnant [81]). Let m ≥ 3 and k ≥ 2. If n ≥
(m + 11)(k − 1) + 7k ln k, then every Gallai-m-coloring of Kn contains a k-
connected monochromatic subgraph of order at least n−m(k− 1).

Lemma 6.7 (Fujita and Magnant [81]). For G ∈ {K1,3, P+4 }, if m ≥ 4, k ≥ 1
and n ≥ 7.5(k − 1), then every rainbow G-free exact m-edge-coloring of Kn

contains a k-connected monochromatic subgraph of order at least n− 3k+ 2.

Lemma 6.8 (Fujita and Magnant [81]). Let k ≥ 1 and m≥max
¦

k
2
+ 8,15

©

.
If n ≥ (m+ 11)(k − 1) + 7k ln k+ 2m+ 3, then every rainbow P6-free exact
m-edge-coloring of Kn contains a k-connected monochromatic subgraph of order
at least n− 7k+ 2.

Corollary 6.9. Let k ≥ 2 and m ≥ max
¦

k
2
+ 8,44

©

. For every H ∈ {K2 ∪
K3, K2 ∪ P+4 , K2 ∪ P5, P3 ∪ P4}, if n≥ (m+ 11)(k− 1) + 7k ln k+ 2m+ 3, then
every rainbow H-free exact m-edge-coloring of Kn contains an ASMS(k) (that is,
H ∈H (2)).

Proof. For any H ∈ {K2 ∪ K3, K2 ∪ P+4 , K2 ∪ P5, P3 ∪ P4}, let G be an exact
m-edge-coloring of Kn without a rainbow H, and suppose that there exists no
ASMS(k).

Firstly, we consider the case H = K2 ∪ K3. By Lemma 6.6, there is a
rainbow K3 in G, say with vertex set V . Then C(V (G) \ V ) ⊆ C(V ) for
avoiding a rainbow K2 ∪ K3. If |C(V (G) \ V )| ≤ 2, then there is an ASMS(k)
by Theorem 6.1. Thus |C(V (G) \ V )| = |C(V )| = 3. Since |V (G) \ V | ≥
(m+ 11)(k− 1) + 7k ln k+ 2m, there is also a rainbow K3 in G[V (G) \ V ] by
Lemma 6.6, say with vertex set V ′. Since the number of colors used in G is
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at least 44, there is an edge e with c(e)≥ 4 such that e is incident with some
vertex in V (G) \ (V ∪ V ′). Then there is a rainbow K2 ∪ K3, a contradiction.

Secondly, we consider the case H = K2 ∪ P+4 . By Lemma 6.7, there is a
rainbow P+4 in G, say with vertex set U = {u1, u2, . . . , u5} such that c(u1u2) =
1, c(u2u3) = 2, c(u3u4) = 3 and c(u3u5) = 4. Then C(V (G) \ U)⊆ {1, 2, 3, 4}
for avoiding a rainbow K2 ∪ P+4 . If |C(V (G) \ U)| ≤ 2 , then there is an
ASMS(k) by Theorem 6.1, a contradiction. If |C(V (G) \ U)| = 4, then by
Lemma 6.7, there is also a rainbow P+4 in G[V (G) \U], say with vertex set U ′.
Since the number of colors used in G is at least 44, there is an edge e with
c(e) ≥ 5 such that e is incident with some vertex in V (G) \ (U ∪ U ′). Then
there is a rainbow K2 ∪ P+4 , a contradiction. Thus |C(V (G) \ U)|= 3. So we
may assume that C(V (G) \ U) = {c1, c2, c3} ⊂ {1,2,3,4} and c(ei) = ci for
i ∈ [3], where e1, e2 and e3 are three edges in G[V (G) \ U]. Let U ′′ be the
set of vertices incident with at least one of e1, e2 and e3, so |U ′′| ≤ 6. Since
m−
�

|U ||U ′′|+
�|U |

2

�

�

≥ 4, we have |C(U , V (G)\(U∪U ′′))∩{5, 6, . . . , m}| ≥ 4.

It is easy to check that there is a rainbow K2 ∪ P+4 , a contradiction.

Finally, we consider the cases H = K2∪ P5 and H = P3∪ P4. By Lemma 6.8,
there is a rainbow P6 in G, say with vertex set W = {w1, w2, . . . , w6} such that
c(wiwi+1) = i for each i ∈ [5]. When H = K2 ∪ P5, we have C(V (G) \W ) ⊆
{2, 3, 4} for avoiding a rainbow K2∪P5, and moreover we have C({w1, w3, w4,
w6}, V (G) \W ) ⊆ {1,2, . . . , 5} for the same reason. Thus we may assume
that c(w2w′) = 6 for some w′ ∈ V (G) \W . In order to avoid a rainbow
K2 ∪ P5, we have C(w′, V (G) \ (W ∪ {w′})) ⊆ {2,3}, and we further have
C(V (G) \ (W ∪ {w′})) ⊆ {2,3}. By Theorem 6.1, there is an ASMS(k), a
contradiction.

When H = P3 ∪ P4, we have C(W, V (G) \W ) ⊆ {1,2, . . . , 5} for avoiding
a rainbow P3 ∪ P4. Thus we may assume that c(x y) = 6, where x and y are
two distinct vertices in V (G) \W . If c(w2 x) = 1, then w2 x y and w3w4w5w6

form a rainbow P3 ∪ P4, a contradiction. If c(w2 x) = 5 (resp., c(w2 x) ∈
{2,3}), then w3w4w5 (resp., w4w5w6) and w1w2 x y form a rainbow P3 ∪ P4,
a contradiction. Thus c(w2 x) = 4, and by symmetry we have c(w2 y) = 4,
c(w5 x) = c(w5 y) = 2. For any vertex z ∈ V (G)\(W∪{x , y}), if c(xz) /∈ {3, 6},
then it is easy to find a rainbow P3 ∪ P4. If c(xz) ∈ {3,6}, then w1w2 xz and
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yw5w6 form a rainbow P3 ∪ P4, a contradiction.

Note that if G and H are two graphs with G ⊆ H, then any rainbow
G-free edge-coloring of Kn certainly contains no rainbow H. Thus we have
the following simple result.

Fact 6.1. Let G and H be two graphs of order at least 3 without isolated vertices.
If G ⊆ H, then G /∈ G ∪H implies H /∈H .

Now we give a complete characterization ofH (2).

Theorem 6.10. The set H (2) consists of precisely P3 ∪ P4, K2 ∪ P5, K2 ∪ K3,
K2 ∪ P+4 and their subgraphs of order at least 3 with component number 2.

Proof. In the following, we will prove thatH (2) is a subset of P3∪ P4, K2∪ P5,
K2 ∪ K3, K2 ∪ P+4 and their subgraphs of order at least 3 with component
number 2. This together with Corollary 6.9 and Fact 6.1 completes the proof
of Theorem 6.10.

For the proof, we will consider two edge-colorings R1 and R2 (see Fig-
ure 6.1) constructed as follows. Let R be an m-edge-coloring of Kn with
V (R) = V1 ∪ V2 ∪ V3, such that each of V1, V2 and V3 contains about n/3 ver-
tices. We color the edges such that C(V1, V2) = {1}, C(V2) = C(V2, V3) = {2},
C(V3) = C(V3, V1) = {3}, and all the edges within V1 are colored with color 1
except for a rainbow matching (resp., rainbow star) using all the remaining
colors, and let R1 (resp., R2) be the resulting edge-coloring of Kn. Note that
both the largest monochromatic k-connected subgraphs of R1 and R2 have
order about 2n/3, so neither R1 nor R2 contains an ASMS(k). Thus every
graph inH (2) should be a rainbow subgraph of both R1 and R2.

Recall that we have G = {K3, P3, P4, P5, P6, K1,3, P+4 } (see Theorem 6.2).
By Fact 6.1, each graph inH is a union of graphs in G ∪ {K2}. In the rest of
the proof, we consider six types of graphs that are possible inH (2) (note that
some graphs might be contained in two types).

Type 1. K2 ∪ G, where G ∈ G ∪ {K2};
Type 2. P6 ∪ G, where G ∈ G ;

Type 3. K3 ∪ G, where G ∈ G ;

Type 4. P5 ∪ G, where G ∈ G ;
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Figure 6.1: The edge-colorings R1 and R2.

Type 5. K1,3 ∪ G and P+4 ∪ G, where G ∈ G ;

Type 6. P3 ∪ G and P4 ∪ G, where G ∈ G .

Since every rainbow K2 ∪ P6 contains six distinct colors (at least three
colors in {4, 5, . . . , m}), there is no rainbow K2∪P6 in R2. Thus K2∪P6 /∈H (2)

and there is no graph of Type 2 that is possible inH (2). For Type 1, K2 ∪ K3,
K2∪ P5, K2∪ P+4 along with their subgraphs of order at least 3 and component
number 2 are possible inH (2).

Note that in R1, every rainbow K3 is colored by colors 1, 2 and 3, every
rainbow K1,3 contains colors 1 and 3, every rainbow P5 contains colors 1
and 3, and every rainbow P3 contains an edge with color 1 or color 3. Thus
K3 ∪ P3, K1,3 ∪ P3, P+4 ∪ P3, P5 ∪ P3 /∈ H (2), so there is no graph of Types 3, 4
and 5 that is possible in H (2). For the same reason with K2 ∪ P6, we have
2P4 /∈H (2). Thus only 2P3 and P3 ∪ P4 of Type 6 are possible inH (2).

In the following, we consider the setH .

Lemma 6.11. The set H is a subset of P3 ∪ P4, K2 ∪ P5, K2 ∪ 2P3, 2K2 ∪ K3,
2K2 ∪ P+4 , 3K2 ∪ K1,3 and their disconnected subgraphs of order at least 3.

Proof. By Fact 6.1, each graph inH is a union of graphs in G ∪ {K2}. Thus
for every H ∈H , we have ∆(H)≤ 3. Using the edge-coloring R2 constructed
in the proof of Theorem 6.10, we can deduce that

• H has at most four components,

and further that
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• if ∆(H) = 1, then e(H) ≤ 4; if ∆(H) = 2, then e(H) ≤ 5; if ∆(H) = 3,
then e(H)≤ 6.

Moreover, by Fact 6.1 we have that for every H ∈H ,

• for any two components C1 and C2 of H, C1 ∪ C2 ∈H (2).

Now for every graph H ′ ∈ H (2) = {P3 ∪ P4, 2P3, K2 ∪ P4, K2 ∪ P3, 2K2, K2 ∪
P5, K2 ∪ K3, K2 ∪ P+4 , K2 ∪ K1,3}, we can construct graphs that are possible in
H by adding components to H ′ subject to the properties shown above. This
completes the proof.

Lemma 6.12. Let k ≥ 2 and m ≥ max
¦

k
2
+ 8, 77

©

. For every H ∈ {K2 ∪ 2P3,
2K2 ∪ K3, 2K2 ∪ P+4 , 3K2 ∪ K1,3}, if n ≥ (m+ 11)(k− 1) + 7k ln k+ 2m+ 3,
then every rainbow H-free exact m-edge-coloring of Kn contains an ASMS(k)
(that is, H ∈H ).

Proof. For any H ∈ {K2 ∪ 2P3, 2K2 ∪ K3, 2K2 ∪ P+4 , 3K2 ∪ K1,3}, let G be a
rainbow H-free exact m-edge-coloring of Kn, and suppose that there exists no
ASMS(k).

Firstly, we consider the case H = K2 ∪ 2P3. By Lemma 6.8, there is a
rainbow P6 in G, say with vertex set U = {u1, u2, . . . , u6} such that c(uiui+1) =
i for each i ∈ [5]. For avoiding a rainbow K2 ∪ 2P3, we have C(V (G) \
U) ⊆ {1,2,4,5} and |C(ui , V (G) \ U)∩ {6,7, . . . , m}| ≤ 1 for each i ∈ {3,4}.
Moreover, if there exist two vertices x , y ∈ V (G) \ U with c(xu1), c(yu1) ∈
{6,7, . . . , m} and c(xu1) 6= c(yu1), then xu1 y, u2u3u4 and u5u6 form a
rainbow K2 ∪ 2P3, a contradiction. Thus |C(u1, V (G) \ U)∩ {6, 7, . . . , m}| ≤ 1,
and by symmetry we have |C(u6, V (G)\U)∩{6, 7, . . . , m}| ≤ 1. Since there are
at least 77 colors used in G, we have C({u2, u5}, V (G) \U)∩{6, 7, . . . , m} 6= ;,
say c(u2u) = m for some u ∈ V (G) \ U . In order to avoid a rainbow K2 ∪ 2P3,
we have that G[V (G) \ (U ∪{u})] is a monochromatic subgraph using color 4,
contradicting the assumption that G contains no ASMS(k).

Secondly, we consider the case H = 2K2 ∪ K3. By Corollary 6.9, there is
a rainbow K2 ∪ K3 in G, say with vertex set V = {v1, v2, v3, v4, v5} such that
c(v1v2) = 1, c(v2v3) = 2, c(v3v1) = 3 and c(v4v5) = 4. Then C(V (G) \ V ) ⊆
{1, 2, 3, 4} to avoid a rainbow 2K2∪K3. We first suppose that C({v4, v5}, V (G)\
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V )∩ {5, 6, . . . , m} 6= ;, say c(v4v) = 5 for some v ∈ V (G) \ V . Then C(V (G) \
(V ∪ {v})) ⊆ {1,2,3}, and by Theorem 6.1 we have C(V (G) \ (V ∪ {v})) =
{1,2,3}. By Lemma 6.6, G[V (G) \ (V ∪ {v})] contains a rainbow K3, say
with vertex set V ′. In order to avoid a rainbow 2K2 ∪ K3, we have C(V ′ ∪
{v} ∪ (V \ {v4}), V (G) \ (V ∪ V ′ ∪ {v})) ⊆ {1,2,3,4,5}. Since the number
of colors used in G is at least 77, which is greater than

�|V∪V ′∪{v}|
2

�

, we
may further assume that c(v4v′) = m for some v′ ∈ V (G) \ (V ∪ V ′ ∪ {v}).
But then c(vv′) /∈ [m], a contradiction. Therefore, C({v4, v5}, V (G) \ V ) ∩
{5, 6, . . . , m} = ;. Since there are at least 77 colors used in G, we may assume
that |C(v1, V (G) \ V ) ∩ {5,6, . . . , m}| ≥ 2, say c(v1v′′) = 5 and c(v1v′′′) = 6
for some v′′, v′′′ ∈ V (G) \ V . Then c(v′′v′′′) ∈ {2,4}, and we thus have
C(V (G) \ (V ∪ {v′′, v′′′})) ⊆ {2,4}. By Theorem 6.1, there is an ASMS(k), a
contradiction.

Next, we consider the case H = 2K2 ∪ P+4 . By Corollary 6.9, there is a
rainbow K2 ∪ P+4 in G, say with vertex set W = {w1, w2, . . . , w7} such that
c(w1w2) = 1, c(w2w3) = 2, c(w3w4) = 3, c(w3w5) = 4 and c(w6w7) = 5.
Then C(V (G) \W ) ⊆ {1,2, . . . , 5} for avoiding a rainbow 2K2 ∪ P+4 . We
first suppose that C({w6, w7}, V (G) \W )∩ {6,7, . . . , m} 6= ;, say c(w6w) = 6
for some w ∈ V (G) \W . Then C(V (G) \ (W ∪ {w})) ⊆ {1,2,3,4}, and by
Theorem 6.1 we have |C(V (G) \ (W ∪ {w}))| ≥ 3. Let c1, c2, c3 be three
distinct colors used in G[V (G) \ (W ∪ {w})] and let c(ei) = ci for 1 ≤ i ≤ 3,
where e1, e2 and e3 are three edges in G[V (G) \ (W ∪ {w})]. Let W ′ be the
set of vertices incident with at least one of e1, e2 and e3, so |W ′| ≤ 6. Let
A= V (G) \ (W ∪W ′ ∪ {w}). In order to avoid a rainbow 2K2 ∪ P+4 , we have
|C(wi , A) ∩ {7,8, . . . , m}| ≤ 1 for each wi ∈ W \ {w6}. Since the number of
colors used in G is at least 77, which is greater than

�|W∪{w}|
2

�

+ |W ||W ′|+
|W \ {w6}|, we may further assume that c(w6w′) = m for some vertex w′ ∈ A.
Let w′′ ∈ A\ {w′}. Recall that c(w′w′′) ∈ C(V (G) \ (W ∪ {w})) ⊆ {1,2,3,4}.
Thus {w6, w7, w, w′, w′′} forms a rainbow P+4 , which together with some edge
within {w1, w2, . . . , w5} and some edge within W ′ forms a rainbow 2K2 ∪ P+4 ,
a contradiction.

Therefore, C({w6, w7}, V (G)\W )∩{6, 7, . . . , m} = ;. Thus every edge with
color in {6, 7, . . . , m} is incident with a vertex in {w1, w2, . . . , w5}. If C(V (G)\
W )∩ {3,4} 6= ;, say c(ab) = 3 for some a, b ∈ V (G) \W , then |C(wi , V (G) \
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(W ∪ {a, b})) ∩ {6,7, . . . , m}| ≤ 1 for i ∈ [5]. Thus |C(G)| ≤ 5+
�|W |

2

�

< m,
a contradiction. Thus C(V (G) \W ) = {1,2,5}. Let c( f1) = 1, c( f2) = 2 and
c( f3) = 5, where f1, f2 and f3 are three edges in G[V (G) \W]. Let W ′′ be
the set of vertices incident with at least one of f1, f2 and f3. For avoiding a
rainbow 2K2 ∪ P+4 , we have |C(wi , V (G) \ (W ∪W ′′))∩ {6,7, . . . , m}| ≤ 1 for
i ∈ {2,4,5}. For j ∈ {1,3}, if |C(w j , V (G) \ (W ∪W ′′)) ∩ {6,7, . . . , m}| ≥ 3,
say c(w j x1) = 6, c(w j x2) = 7 and c(w j x3) = 8, then for any vertex y ∈
V (G) \ (W ∪W ′′ ∪ {x1, x2, x3}), we have c(x1 y) /∈ [m], a contradiction. Thus
|C(G)| ≤ 3+ 2 · 2+

�|W |
2

�

< m, a contradiction.

Finally, we consider the case H = 3K2 ∪ K1,3. From the above argu-
ment, there is a rainbow 2K2 ∪ P+4 in G, say with vertex set B and color set
{1, 2, . . . , 6}. In order to avoid a rainbow 3K2 ∪ K1,3, we have C(V (G) \ B)⊆
{1, 2, . . . , 6} and |C(b, V (G)\B)∩{7, 8, . . . , m}| ≤ 1 for any vertex b ∈ B. Thus
|C(G)| ≤ |B|+

�|B|
2

�

< m, a contradiction.

From Corollary 6.9, Fact 6.1, Lemmas 6.11 and 6.12, we conclude that
the statement of Theorem 6.3 is valid.

6.3 Proof of Theorem 6.4

We first state some known results which will be used in our proofs.

Lemma 6.13 (Gyárfás [90]). Every m-edge-coloring of Kn has a monochromatic
connected subgraph with at least n

m−1
vertices.

Lemma 6.14 (Liu, Morris and Prince [125]). Every m-edge-coloring of Ks,t

has a monochromatic component of order at least s+t
m

.

Lemma 6.15 (Mader [134]). Let d be a real number, and let G be a graph
with average degree d. Then G has a d

4
-connected subgraph H, and therefore

|V (H)| ≥ d
4
.

Lemma 6.16 (Liu, Morris and Prince [125]). Let n, m, k be positive integers
and ε > 0 satisfying m ≥ 3 and n ≥ 11(2+ε)

ε
k2m2. Then in any m-edge-

coloring of Kn, there is a k-connected monochromatic subgraph of order at least
n

m−1
−
�

1+ 1
m(m−2) + ε

�

k2m.
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We have the following simple corollary that is obtained by setting ε= 1
4

in Lemma 6.16.

Corollary 6.17. If m ≥ 3, k ≥ 2 and n ≥ 99k2m2, then in any m-edge-
coloring of Kn, there is a k-connected monochromatic subgraph of order at least

n
m−1
− 19

12
k2m.

In the following, we first consider the case k = 1 in Theorem 6.4.

Theorem 6.18. For any graph H ∈ G ∪ H , if m ≥ 77 and n ≥ 4m, then
any rainbow (P3 ∪ H)-free exact m-edge-coloring of Kn contains a connected
monochromatic subgraph of order at least n−|V (H)|

|E(H)| .

Proof. For any H ∈ G ∪H , let G be a rainbow (P3 ∪ H)-free exact m-edge-
coloring of Kn with C(G) = [m]. Suppose that G contains no connected
monochromatic subgraph of order at least n−|V (H)|

|E(H)| .

Since H ⊆ G ∪H , every rainbow H-free edge-coloring of Kn contains an
almost spanning 2-connected (and thus connected) monochromatic subgraph
with order greater than n−|V (H)|

|E(H)| . Thus there is a rainbow H in G, say with
vertex set V (H) and color set C(H) = {1, 2, . . . , |E(H)|}. Let C ′ = C(G)\C(H).
If |C(G−V (H))∩C ′| ≤ 1 (that is, |C(G−V (H))| ≤ |E(H)|+1), then there is a
connected monochromatic subgraph of order at least n−|V (H)|

|E(H)| by Lemma 6.13,
a contradiction. Thus |C(G − V (H))∩ C ′| ≥ 2, say m− 1, m ∈ C(G − V (H)).
In order to avoid a rainbow P3 ∪ H, for any two edges e1, e2 ∈ E(G − V (H))
with c(e1) 6= c(e2) and c(e1), c(e2) ∈ C ′, we have that e1 and e2 are non-
adjacent. Let U = {v ∈ V (G− V (H)): v is incident with an edge of color m in
G − V (H)} and V = V (G − V (H)) \ U . Note that we have U 6= ; and V 6= ;.
Then C(U , V )⊆ C(H), and there is a connected monochromatic subgraph of
order at least |U |+|V ||E(H)| =

n−|V (H)|
|E(H)| by Lemma 6.14, a contradiction.

Next we consider the case k ≥ 2 in Theorem 6.4.

Theorem 6.19. For any graph H ∈ G ∪H , if k ≥ 2, m≥max
¦

k
2
+ 8, 77

©

and
n ≥ 12 · 99k2m2, then any rainbow (P3 ∪ H)-free exact m-edge-coloring of Kn

contains a k-connected monochromatic subgraph of order at least n−|V (H)|
13|E(H)| .
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Proof. For any H ∈ G ∪H , let G be a rainbow (P3 ∪ H)-free exact m-edge-
coloring of Kn with C(G) = [m]. Suppose that G contains no k-connected
monochromatic subgraph of order at least n−|V (H)|

13|E(H)| . Since H ∈ G ∪H , we
may further assume that there is a rainbow H in G; otherwise there would
be an ASMS(k) of order greater than n−|V (H)|

13|E(H)| . Consider a rainbow copy of
H in G with vertex set V (H) and color set C(H) = {1,2, . . . , |E(H)|}. Let
C ′ = C(G) \ C(H) = {|E(H)|+ 1, . . . , m}. Recall that for any H ∈ G ∪H , we
have |V (H)| ≤ 10 and |E(H)| ≤ 6.

If |C(G − V (H))∩ C ′| ≤ 1 (that is, |C(G− V (H))| ≤ |E(H)|+ 1), then by
Corollary 6.17 there is a k-connected monochromatic subgraph of order at
least n−|V (H)|

|E(H)| −
19(|E(H)|+1)

12
· k2, which is at least n−|V (H)|

13|E(H)| , a contradiction.

Thus |C(G − V (H)) ∩ C ′| ≥ 2. In order to avoid a rainbow P3 ∪ H, for
any two edges e1, e2 ∈ E(G − V (H)) with c(e1) 6= c(e2) and c(e1), c(e2) ∈ C ′,
we have that e1 and e2 are non-adjacent. For every |E(H)|+ 1 ≤ i ≤ m, let
Ui = {v ∈ V (G)\V (H): v is incident with an edge of color i in G−V (H)}, and
let Um+1 = V (G− V (H)) \

�
⋃

i∈C ′ Ui

�

. Since |C(G− V (H))∩ C ′| ≥ 2, at least
two of the sets U|E(H)|+1, . . . , Um, Um+1 are non-empty. Let Ui1 , . . . , Uit

be all
the non-empty sets of U|E(H)|+1, . . . , Um, Um+1, where 2≤ t ≤ m− |E(H)|+ 1.
Note that all the edges between these t sets are colored by colors in C(H), and
C(U j) ⊆ C(H)∪ { j} for all j ∈ {i1, . . . , it}. Then for each j ∈ {i1, . . . , it}, we
have |U j| ≤ bn/12c − 1; otherwise there exists a k-connected monochromatic

subgraph F with |V (F)| ≥ |U j |
|E(H)| −

19(|E(H)|+1)
12

· k2 ≥ bn/12c
|E(H)| −

19(|E(H)|+1)
12

· k2 ≥
n−|V (H)|
13|E(H)| by Corollary 6.17. If t ≤ 12, then |V (G− V (H))| ≤ t · (bn/12c− 1)≤

12 · (n/12− 1) = n− 12< n− |V (H)|, a contradiction. Thus t ≥ 13.

We now choose a subset L ⊆ {1, . . . , t} such that A=
⋃

`∈L Ui` and B =
⋃

h∈[t]\L Uih satisfy

(1) |A| ≥ |B|;

(2) |A| − |B| is minimum subject to (1).

Claim 6.1. |A| − |B| ≤ n−|V (H)|
6

.

Proof. If |A| − |B| ≥ b(n− |V (H)|)/6c+ 1, then for an arbitrary element s ∈ L,
let A′ = A\ Uis and B′ = B ∪ Uis . Then |A′| − |B′|= |A| − |Uis | − (|B|+ |Uis |) =
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|A|−|B|−2|Uis |. Thus |A′|−|B′| ≥ |A|−|B|−2(n/12−1) = |A|−|B|−n/6+2≥
b(n− |V (H)|)/6c+ 1− n/6+ 2 ≥ 0 and |A′| − |B′| ≤ |A| − |B| − 2 < |A| − |B|,
contradicting the choice of L. Thus |A| − |B| ≤ b(n − |V (H)|)/6c ≤ (n −
|V (H)|)/6.

Since 0≤ |A| − |B| ≤ n−|V (H)|
6

and |A|+ |B| = n− |V (H)|, we have |A||B| ≥
5(n−|V (H)|)

12
· 7(n−|V (H)|)

12
= 35(n−|V (H)|)2

144
. Thus there are at least 35(n−|V (H)|)2

144
edges

between A and B. Since all the edges between A and B are colored by colors
in C(H), there are at least 35(n−|V (H)|)2

144|E(H)| edges using a single color, say color 1.
Consider the bipartite graph H ′ with bipartition (A, B) and E(H ′) = {uv : u ∈
A, v ∈ B, c(uv) = 1}. The average degree d of H ′ satisfies d ≥ 2

n−|V (H)| ·
35(n−|V (H)|)2

144|E(H)| = 35(n−|V (H)|)
72|E(H)| . By Lemma 6.15, there is a subgraph H ′′ ⊆ H ′

such that κ(H ′′) ≥ 1
4
· 35(n−|V (H)|)

72|E(H)| >
n−|V (H)|
13|E(H)| > k. Then H ′′ is a k-connected

monochromatic subgraph of order at least n−|V (H)|
13|E(H)| , a contradiction.

For every H ∈ G ∪H , set β(H) = 1
14|E(H)| . Then Theorem 6.4 follows

from Theorems 6.18 and 6.19.

6.4 A characterization of the set B

We begin with the following proposition.

Proposition 6.20. The setB is a subset of 2P3, 2K2∪K1,3 and their subgraphs
of order at least 3.

Proof. Let Ks,t be a complete bipartite graph with s vertices in one partite set U
and t vertices in the other partite set V . We will consider three edge-colorings
of Ks,t (see Figure 6.2) constructed as follows.

The edge-coloring A1 is an m-edge-coloring of Ks,t with U = U1∪U2∪· · ·∪
Um such that each of U1, U2, . . . , Um contains about s/m vertices. We color the
edges such that c(Ui , V ) = i for i ∈ [m]. The edge-coloring A2 is an m-edge-
coloring of Ks,t with U = U1∪U2∪{u} such that each of U1, U2 contains about
(s− 1)/2 vertices. We color the edges such that c(U1, V ) = 1, c(U2, V ) = 2
and C(u, V ) = {1,2, . . . , m}. The edge-coloring A3 is an m-edge-coloring of
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Ks,t with U = U3 ∪ U4 ∪ · · · ∪ Um and V = V3 ∪ V4 ∪ · · · ∪ Vm, such that each
of U3, U4, . . . , Um contains about s/(m− 2) vertices, and each of V3, V4, . . . , Vm

contains about t/(m− 2) vertices. We color the edges such that c(Ui , Vi) = i
for every 3 ≤ i ≤ m, c

�
⋃r

j=3 U j ,
⋃m
`=r+1 V`

�

= c
�
⋃r

j=3 Vj ,
⋃m
`=r+1 U`

�

= 1,
and all the remaining edges are colored with color 2, where r = b(m+ 2)/2c.

V VV

1A 2A

3A

1U 2U m
U

m
U

1U 2U u

3U 4U r
U 1rU + 2rU +

3V 4V r
V 1rV + 2rV + m

V

Figure 6.2: The edge-colorings A1, A2 and A3.

Note that the largest monochromatic k-connected subgraphs of A1, A2 and
A3 have order about s/m+ t, (s− 1)/2+ t and (s+ t)/2, respectively. Thus
every graph inB must be a rainbow subgraph of A1, A2 and A3.

For any graph H ∈ B , since A1 is rainbow P4-free and A3 is rainbow
K1,4-free, the longest path in H has length at most 2 and ∆(H) ≤ 3. Thus
each component of H is a graph in {K2, P3, K1,3}. Since A2 is rainbow 4K2-free,
H has at most 3 components. Moreover, every rainbow K1,3 in A3 uses both
color 1 and color 2, and every rainbow P3 in A3 uses at least one of color 1
and color 2. Thus P3 ∪K1,3 /∈B . Furthermore, since A2 is rainbow (K2 ∪2P3)-
free, we have K2 ∪ 2P3 /∈B . From the above argument, we can deduce that
B ⊆ {P3, K1,3, 2K2, K2 ∪ P3, K2 ∪ K1,3, 2P3, 3K2, 2K2 ∪ P3, 2K2 ∪ K1,3}.

Next, we characterize the structure of edge-colored complete bipartite
graphs without a rainbow K1,3.
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Theorem 6.21. For s ≥ t ≥ 3, let Ks,t be edge-colored such that it contains no
rainbow K1,3. Then, after renumbering the colors, one of the following holds:

(1) at most four colors are used;

(2) if m is the number of colors used in the edge-coloring, then one partite
set U can be partitioned into m− 1 non-empty parts U2, U3, . . . , Um, and
the other partite set V can be partitioned into m− 1 non-empty parts
V2, V3, . . . , Vm, such that C(Ui , Vi)⊆ {1, i} for each i ∈ {2, 3, . . . , m}, and
every other edge is colored by color 1.

Proof. Let G be a rainbow K1,3-free edge-coloring of Ks,t with partite sets U =
{u1, u2, . . . , us} and V = {v1, v2, . . . , vt}. Let C(G) = [m]. For a contradiction,
suppose that there are at least five colors used in G and (2) does not hold.

We call two adjacent edges of distinct colors a "∧". Note that every
color appears on some ∧. We claim that there are two ∧s with four distinct
colors (possibly such two ∧s have common vertices, but no common edges).
Indeed, since (2) does not hold, we may assume that colors 2 and 3 form
a ∧ without loss of generality. In order to avoid two ∧s with four distinct
colors, each pair of colors in C(G) \ {2,3} cannot form a ∧. Let c(u′v′) = c1,
c(u′′v′′) = c2, where c1, c2 ∈ C(G) \ {2,3}, c1 6= c2, u′, u′′ ∈ U and v′, v′′ ∈
V . For avoiding two required ∧s, we have c(u′v′′) = c(u′′v′) = 2 or 3,
say 2. So C({u′, v′}, V (G) \ {u′, v′, u′′, v′′}) ⊆ {2, c1} and C({u′′, v′′}, V (G) \
{u′, v′, u′′, v′′}) ⊆ {2, c2}. For any color c ∈ C(G) \ {2, c1, c2} and an edge
uv with c(uv) = c, we have u ∈ U \ {u′, u′′} and v ∈ V \ {v′, v′′}. Then
c(u, {v′, v′′}) = c(v, {u′, u′′}) = 2. Moreover, for any two distinct colors c′, c′′ ∈
C(G)\{2}, the edge using color c′ and the edge using color c′′ are non-adjacent.
Thus (2) holds if we exchange color 1 and color 2, a contradiction. Thus there
are two ∧s with four distinct colors. We may further consider four types of
such two ∧s (see Figure 6.3).

Firstly, if there are two ∧s of type (A), then c(u1v3) /∈ [m] for avoiding a
rainbow K1,3, a contradiction. Thus there are no two ∧s of type (A). Secondly,
we consider type (B). For avoiding two ∧s of type (A) and since G is a
rainbow K1,3-free edge-coloring using at least five colors, we may assume
that c(u3v5) = 5. But then c(u1v5) /∈ [m], a contradiction. Thus there are no
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1u 2u 3u

1v 2v 3v 4v

1 2 3 4

(A) (B) (C) (D)

1u 2u

1v 2v 3v

1 2 3 4

1u 2u

1v 2v 3v

1 2 3 4

1u 2u

1v 2v

1

2 3

4

Figure 6.3: Four types of ∧s.

two ∧s of type (B), and there are no two ∧s of type (C) for the same reason.
Finally, we consider type (D). For avoiding a rainbow K1,3 and since there
are at least five colors used in G, we may assume that c(u3v3) = 5. But then
c(u1v3) /∈ [m] for avoiding a rainbow K1,3 and avoiding two ∧s of type (A), a
contradiction. The result follows.

Corollary 6.22. Given positive integers k, m, s, t with m≥ k+4 and min {s, t} ≥
m−1, there is a spanning k-connected monochromatic subgraph in any rainbow
K1,3-free exact m-edge-coloring of Ks,t .

Proof. Let G be a rainbow K1,3-free exact m-edge-coloring of Ks,t with partite
sets U and V . Since m≥ k+ 4≥ 5 and by Theorem 6.21, there is a partition
U2, U3, . . . , Um of U and a partition V2, V3, . . . , Vm of V , such that C(Ui , Vi) ⊆
{1, i} for each i ∈ {2,3, . . . , m}, and every other edge is colored by color 1.

Let H be the subgraph induced by color 1. Then |V (H)|= s+ t. For any
vertex set W of k− 1 vertices w1, w2, . . . , wk−1 ∈ V (G), let U ′i = Ui \W and
V ′i = Vi \W for every i ∈ {2,3, . . . , m}. Since m ≥ k+ 4, there are at least
three distinct subindices i1, i2, i3 ∈ {2, 3, . . . , m} and three distinct subindices
j1, j2, j3 ∈ {2,3, . . . , m}, such that U ′α = Uα 6= ; and V ′β = Vβ 6= ; for each
α ∈ {i1, i2, i3} and each β ∈ { j1, j2, j3}. Thus H −W is connected, so H is
k-connected.

Lemma 6.23. Given positive integers k, m, s, t with m ≥ max {k+ 4, 7} and
min {s, t} ≥ m, there is a k-connected monochromatic subgraph of order at least
s+ t − 5 in any rainbow (2P3)-free exact m-edge-coloring of Ks,t .
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Proof. Let G be a rainbow (2P3)-free exact m-edge-coloring of Ks,t with partite
sets U = {u1, u2, . . . , us} and V = {v1, v2, . . . , vt}. For a contradiction, suppose
that G contains no k-connected monochromatic subgraph of order at least
s+ t − 5. By Corollary 6.22, there is a rainbow K1,3 in G, say c(u1vi) = i for
1≤ i ≤ 3.

For avoiding a rainbow 2P3, we have |C(vi , U \ {u1})∩ {4,5, . . . , m}| ≤ 1
for every i ∈ [3]. If |C(u1, V \{v1, v2, v3})∩{4, 5, . . . , m}| ≥ 1, say c(u1v4) = 4,
then |C(V (G) \ {u1, v1, v2, v3, v4})| = 1 for avoiding a rainbow 2P3, which
implies that there is a k-connected monochromatic subgraph of order at least
s + t − 5, a contradiction. Thus C(u1, V \ {v1, v2, v3}) ∩{4,5, . . . , m} = ;.
Since |C(G)| = m ≥ 7, we may assume that c(u2v4) = m. Then c(u2, V \
{v1, v2, v3}) = c(v4, U \ {u1}) = m and thus C(V (G) \ {u1, v1, v2, v3}) = {m},
resulting in a k-connected monochromatic subgraph of order at least s+ t−4,
a contradiction.

Lemma 6.24. Given positive integers k, m, s, t with m ≥ max {k+ 4,16} and
min {s, t} ≥ m+ 1, there is a k-connected monochromatic subgraph of order at
least s+ t − 6 in any rainbow (2K2 ∪ K1,3)-free exact m-edge-coloring of Ks,t .

Proof. Let G be a rainbow (2K2∪K1,3)-free exact m-edge-coloring of Ks,t with
partite sets U = {u1, u2, . . . , us} and V = {v1, v2, . . . , vt}. For a contradiction,
suppose that G contains no k-connected monochromatic subgraph of order at
least s+ t − 6. By Corollary 6.22, there is a rainbow K1,3 in G, say c(u1vi) = i
for 1≤ i ≤ 3.

If |C(u1, V \{v1, v2, v3})∩{4, 5, . . . , m}| ≥ 2, say c(u1v4) = 4 and c(u1v5) =
5, then |C(V (G) \ {u1, v1, v2, . . . , v5})|= 1 for avoiding a rainbow 2K2 ∪ K1,3,
which implies that there is a k-connected monochromatic subgraph of order
at least s+ t−6, a contradiction. So |C(u1, V \{v1, v2, v3})∩{4, 5, . . . , m}| ≤ 1.
For any i ∈ {1, 2, 3}, if |C(vi , U \ {u1})∩ {4, 5, . . . , m}| ≥ 4, say c(viu j) = j + 2
for every j ∈ {2, 3, 4, 5}, then c(u6v4) /∈ [m] for avoiding a rainbow 2K2∪K1,3,
a contradiction. Thus |C(vi , U \ {u1})∩{4, 5, . . . , m}| ≤ 3 for each i ∈ {1, 2, 3}.

Since there are at least 16 colors used in G, we have |C(V (G) \ {u1, v1, v2,
v3}) ∩ {4,5, . . . , m}| ≥ 3. In order to avoid a rainbow 2K2 ∪ K1,3, we may
assume that there is a rainbow K1,3 using colors m − 2, m − 1 and m in
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G − {u1, v1, v2, v3}, say with vertex set W . Then for any edge e ∈ E(G −W ∪
{u1, v1, v2, v3}), we have c(e) /∈ [m], a contradiction.

From Proposition 6.20, Lemmas 6.23 and 6.24, we conclude that the
statement of Theorem 6.5 is valid.

6.5 Large k-connected 2-colored subgraphs in every
Gallai-3-coloring

We first state and prove two lemmas that immediately imply Question 6.3 has
an affirmative answer for 1≤ k ≤ 3.

Lemma 6.25. For any integer n ≥ 7, every Gallai-3-coloring of Kn contains a
2-connected 2-colored subgraph of order n.

Proof. Let G be a Gallai-3-coloring of Kn and suppose for a contradiction that
G contains no 2-connected spanning subgraph using at most two colors. We
first prove the following claim concerning every 3-edge-coloring of Kn.

Claim 6.2. For any integer n≥ 7, there is a 2-connected 2-colored subgraph
of order n− 1 in every 3-edge-coloring (not necessarily a Gallai-coloring) of
Kn.

Proof. Let F be a 3-edge-coloring of Kn using red, blue and green. For a
contradiction, suppose that F contains no 2-connected 2-colored subgraph of
order n− 1. By Theorem 6.1, there exists a 2-connected subgraph R of order
at least n−2 using either {green} or {red, blue}. If |V (R)| ≥ n−1, then R is a
desired subgraph, so we may assume that |V (R)|= n− 2.

Let V (F) \ V (R) = {u, v}. First we consider the case that R is a monochro-
matic subgraph colored by green. Since |V (R)|= n− 2≥ 5, there are at least
two edges between u and V (R) using a single color. Then R and u form a
2-connected subgraph of order n−1 using at most two colors, a contradiction.
Therefore, we may further assume that R is colored by red and blue. Then
there is at most one edge using red or blue between u (resp., v) and R. Hence,
there is a subset R′ ⊂ V (R) with |R′| = n− 4 ≥ 3 such that c({u, v}, R′) is
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green. Then there is a monochromatic complete bipartite graph K2,n−4 colored
by green, which is 2-connected. Let V (R) \ R′ = {x , y}. Then we can find
a 2-connected 2-colored subgraph with vertex set R′ ∪ {u, v, x} by a similar
argument to the first case, a contradiction.

By Claim 6.2, G contains a 2-connected 2-colored (say red and blue)
subgraph H of order n− 1. Let V (G) \ V (H) = {v}. Then there is at most
one edge using red or blue between v and H. First suppose that c(vu) is red
and c(v, V (H) \ {u}) is green for some u ∈ V (H). In order to avoid a rainbow
triangle, we have that C(u, V (H) \ {u}) ⊆ {red, green}. Then we obtain a
K2 ∨ Kn−2 using red and green, which is a 2-connected 2-colored subgraph
of order n. Thus we may further assume that c(v, V (H)) is green. Since any
2-edge-coloring of a complete graph contains a monochromatic spanning tree,
there is a spanning tree colored by either {red} or {blue, green} in G[V (H)].
In both cases, such a spanning tree together with vertex v forms a 2-connected
spanning subgraph of G using at most two colors, a contradiction.

Lemma 6.26. For any integer n ≥ 7, every Gallai-3-coloring of Kn contains a
3-connected 2-colored subgraph of order at least n− 1.

Proof. Let G be a Gallai-3-coloring of Kn, say using red, blue and green.
Suppose that G contains no 3-connected 2-colored subgraph of order at least
n − 1. By Lemma 6.25, G contains a 2-connected spanning subgraph H
using at most two colors, say red and blue. Note that H is not 3-connected;
otherwise H would be the desired subgraph. So we may further assume that
X = {x1, x2} is a vertex cut of H. Note that H−X has at least two components.
Let A be the union of vertices in some components of H − X and let B be the
union of vertices in the remaining components of H−X such that |A| ≥ |B|> 0.
Then all the edges between A and B are colored by green, that is, G[A∪ B]
contains a monochromatic complete bipartite graph H ′ of order n− 2 using
green.

If |B| ≥ 3, then H ′ is 3-connected. Furthermore, since |A∪ B|= n− 2≥ 5,
there are at least three edges between x1 and A∪B using either {red} or {blue,
green}. If the former holds, then G − {x2} contains a 3-connected subgraph
using red and green of order n− 1. And if the latter holds, then G − {x2}
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contains a 3-connected subgraph using blue and green of order n− 1. In both
cases we can derive a contradiction. Thus 1≤ |B| ≤ 2.

If |B| = 2, then let B = {b1, b2}. There exists at least one edge using red or
blue between B and X , say c(x1 b1) being red. Then C(x1, A) ⊆ {red, green}
in order to avoid a rainbow triangle. Then G−{x2} contains a 3-connected
subgraph K3,n−4 using red and green, a contradiction.

If |B| = 1, say B = {b}, then |A| = n− 3 ≥ 4. If c(x1 b) (resp., c(x2 b)) is
green, then H − {x2} (resp., H − {x1}) is disconnected, contradicting the fact
that H is 2-connected. Thus C(B, X )⊆ {red,blue}. Without loss of generality,
let x1 b be colored by red. Then C(x1, A)⊆ {red, green} for avoiding a rainbow
triangle. Likewise if x2 b is colored by red, then C(x2, A)⊆ {red, green} holds
once again. But then G contains a 3-connected subgraph using red and
green of order n, a contradiction. Thus x2 b cannot be colored by red, so
c(x2 b) is blue. In order to avoid a rainbow triangle, we also have C(x2, A)⊆
{blue, green}. Since G[A] is a Gallai-3-coloring of K|A|, there exists a color
which spans a connected subgraph by Corollary 5.13. If such a color is green
or red, then G− {x2} contains a 3-connected subgraph of order n− 1 using
green and red, a contradiction. Thus this color is blue, but then G − {x1}
contains a 3-connected subgraph using blue and green of order n − 1, a
contradiction. This completes the proof of Lemma 6.26.

Next, we construct a counterexample to show that Question 6.3 has a
negative answer when k = 4t.

Proposition 6.27. For any positive integer t and sufficiently large integer n, let
k = 4t. There exists a Gallai-3-coloring of Kn which contains no k-connected
2-colored subgraph of order at least n− b(k− 1)/2c.

Proof. Since k = 4t, we have b(k− 1)/2c= 2t − 1. Note that the edge set of
K4t can be partitioned into 4t − 1 perfect matchings. Using 2t − 1 of them
completely and half of an additional one, we obtain a graph F of order 4t with
degree sequence (d1, d2, . . . , d4t), where d1 = d2 = · · · = d2t = 2t and d2t+1 =
d2t+2 = · · · = d4t = 2t − 1. Let {v1, v2, . . . , v2t} and {v2t+1, v2t+2, . . . , v4t} be
the sets of vertices with degree 2t and 2t − 1 in F (i.e., degree 2t − 1 and 2t
in F), respectively.
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We color all the edges of F using color 1, and add an edge with color 2
between each pair of vertices that are non-adjacent in F . Let H denote the
resulting edge-colored K4t . Let G be a copy of Kn with V (G) = V1 ∪ V2 ∪ V3,
where |V1| = n− 6t, |V2| = 4t and |V3| = 2t. We color the edges of G such
that G[V2] = H, c({v1, v2, . . . , v2t}, V1) = 1, c({v2t+1, v2t+2, . . . , v4t}, V1) = 2,
and all the remaining edges are colored by color 3 (see Figure 6.4 for an
illustration of the case t = 1).

1
V

1
v 2

v
3
v

4
v

3
V

Figure 6.4: A Gallai-3-coloring of Kn without 4-connected 2-
colored subgraphs of order n− 1.

We first show that G is a Gallai-coloring. Suppose that there is a rainbow
triangle with vertex set W . Note that for any vertex v ∈ V3, we have c(v, V (G)\
{v}) = 3. Thus W ∩ V3 = ;. Since |C(V1)| = 1 and |C(V2)| = 2, we have
|W ∩ V1| ≤ 2 and |W ∩ V2| ≤ 2. Moreover, since |C(V2 ∪ {u})| = 2 for any
vertex u ∈ V1, we have |W ∩V1| = 2 and |W ∩V2| = 1. On the other hand, since
for any v ∈ V2, |C(v, V1)|= 1, we also have |W ∩ V2|= 2 and |W ∩ V1|= 1, a
contradiction. Thus G is a Gallai-coloring.

Suppose that G contains a k-connected 2-colored subgraph S such that
|V (S)| ≥ n−b(k−1)/2c = n−2t+1. Since c(V3, V1∪V2) = 3 and |V3| = 2t, we
have 3 ∈ C(S). If C(S) = {1,3}, then v2t+1, v2t+2, . . . , v4t /∈ V (S) since there
are exactly 4t − 1 edges using color 1 or color 3 between x and V (G) \ {x}
for every x ∈ {v2t+1, v2t+2, . . . , v4t}. But then |V (S)| ≤ n− 2t < n− 2t + 1, a
contradiction. If C(S) = {2,3}, then we can also derive a contradiction in a
similar way. Thus G contains no k-connected 2-colored subgraph of order at
least n− b(k− 1)/2c.
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Although Question 6.3 has a negative answer when k = 4t, we still believe
that the following conjecture is true.

Conjecture 6.2. For any integer k ≥ 1 and sufficiently large integer n, if
k 6= 4t for any positive integer t, then every Gallai-3-coloring of Kn contains
a k-connected 2-colored subgraph of order at least n− b(k − 1)/2c, and if
k = 4t for some positive integer t, then every Gallai-3-coloring of Kn contains
a k-connected 2-colored subgraph of order at least n− k/2.

From the above argument, Conjecture 6.2 is true in the special case
1≤ k ≤ 3. We can also verify this conjecture in the case k = 4.

Proposition 6.28. For any integer n ≥ 11, every Gallai-3-coloring of Kn con-
tains a 4-connected 2-colored subgraph of order at least n− 2.

Proof. Let G be a Gallai-3-coloring of Kn, say using red, blue and green.
Suppose that G contains no 4-connected 2-colored subgraph of order at least
n − 2. By Lemma 6.26, G contains a 3-connected 2-colored (say red and
blue) subgraph H of order at least n− 1. Note that H is not 4-connected;
otherwise H would be the desired subgraph. So we may further assume
that X = {x1, x2, x3} is a vertex cut of H. Note that H − X has at least two
components. Let A be the union of vertices in some components of H − X and
let B be the union of vertices in the remaining components of H − X such that
|A| ≥ |B|> 0. Then all the edges between A and B are colored by green.

For every i ∈ [3], if {red} ⊆ C(x i , B) (resp., {blue} ⊆ C(x i , B)), then
C(x i , A) ⊆ {red, green} (resp., C(x i , A) ⊆ {blue, green}) for avoiding a
rainbow triangle. Moreover, C(x i , A) ∩ {red, blue} 6= ; and C(x i , B) ∩ {red,
blue} 6= ;; otherwise H is not 3-connected. By the Pigeonhole Principle,
we may assume that {red} ⊆ C(x1, B) and {red} ⊆ C(x2, B) without loss of
generality. Thus C(x1, A)⊆ {red, green} and C(x2, A)⊆ {red, green}.

Note that |A| ≥ d(n− 4)/2e ≥ 4. If |B| ≥ 2, then |B ∪ {x1, x2}| ≥ 4. Thus
G[A∪ B ∪ {x1, x2}] contains a 4-connected 2-colored (using red and green)
subgraph K|A|,|B|+2, a contradiction. Hence, |B| = 1. Let B = {b}. Now
c({x1, x2}, b) is red and C({x1, x2}, A) ⊆ {red, green}. We claim that c(x3 b)
is blue. Indeed, if c(x3 b) is red, then C(x3, A) ⊆ {red, green}. This implies
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that G contains a 4-connected 2-colored (using red and green) subgraph K4,|A|,
a contradiction. Thus c(x3 b) is blue, so C(x3, A)⊆ {blue, green}.

By Corollary 5.13, G[A] contains a connected monochromatic spanning
subgraph F . If C(F) is red or green, then G[A∪ B ∪ {x1, x2}] contains a
4-connected 2-colored (using red and green) subgraph of order at least n− 2,
a contradiction. Thus C(F) is blue. Recall that {red} ⊆ C({x1, x2}, A)⊆ {red,
green}. In order to avoid a rainbow triangle, we have that c({x1, x2}, A) is
red.

We first suppose |V (H)|= n− 1. Let {v}= V (G) \ V (H). Then |C(v, A)∩
{red, green}| ≤ 1 for avoiding a rainbow triangle. Thus C(v, A) ⊆ {red,
blue} or C(v, A) ⊆ {blue, green}. In the former case, G − {x3, b} contains
a 4-connected 2-colored (using red and blue) subgraph of order n − 2, a
contradiction. In the latter case, G−{x1, x2} contains a 4-connected 2-colored
(using blue and green) subgraph of order n− 2, a contradiction.

Thus |V (H)| = n. Note that |A| = n − 4 ≥ 7. By Lemma 6.25, G[A]
contains a 2-connected 2-colored spanning subgraph F ′. If F ′ is colored by red
and blue (resp., red and green), then G[A∪ {x1, x2}] contains a 4-connected
2-colored subgraph of order n−2 using red and blue (resp., red and green), a
contradiction. If F ′ is colored by blue and green, then G[A∪ {x3, b}] contains
a 4-connected 2-colored subgraph of order n− 2 using blue and green, a
contradiction. This completes the proof of Proposition 6.28.

6.6 Concluding remarks

In this chapter, we mainly focussed on forcing large k-connected monochro-
matic subgraphs. Instead of forcing a k-connected monochromatic subgraph,
it is interesting to consider conditions that guarantee a long monochromatic
path or cycle in an edge-colored complete graph. Using a result of Erdős and
Gallai [60] that every graph G on n vertices with average degree greater than
k− 2 contains a path Pk in G, we can prove the following result.

Proposition 6.29. Let G be an m-edge-coloring of Kn. For any non-negative
integers a1, a2, . . . , am with

∑m
i=1 ai ≤ n+2m−2, G contains a monochromatic

copy of Pai
in color i for some i ∈ [m].
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Proof. If min1≤i≤m{a1, a2, . . . , am} ≤ 2, then G contains a monochromatic P2

clearly. Thus we may assume that min1≤i≤m{a1, a2, . . . , am} ≥ 3. For v ∈ V (G)
and i ∈ [m], let di(v) denote the number of edges incident with v using color
i. Then for any v ∈ V (G), we have

∑m
i=1 di(v) = n− 1 ≥

∑m
i=1 ai − 2m+ 1.

Let d i(G) =
1
n

∑

v∈V (G) di(v) for 1≤ i ≤ m. Then

m
∑

i=1

d i(G) =
m
∑

i=1

�

1

n

∑

v∈V (G)

di(v)

�

=
1

n

∑

v∈V (G)

 

m
∑

i=1

di(v)

!

≥
1

n

∑

v∈V (G)

 

m
∑

i=1

ai − 2m+ 1

!

=
m
∑

i=1

ai − 2m+ 1,

and thus there exists an i ∈ [m] such that d i(G) > ai − 2. By Erdős and
Gallai’s result mentioned above, G contains a monochromatic copy of Pai

in
color i.

By setting a1 = a2 = · · · = am =
�

n+2m−2
m

�

in Proposition 6.29, there
is a monochromatic copy of Pt with t ≥

�

n+2m−2
m

�

=
�

n−2
m

�

+ 2 in any m-
edge-coloring of Kn. For monochromatic cycles, Kano and Li [104] showed
that there is a monochromatic cycle of length at least

 

n
m

£

in any m-edge-
coloring of Kn. It is natural to consider the problem which forbidden rainbow
subgraphs force long monochromatic paths or cycles in edge-colorings of Kn.
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Integer colorings with no
rainbow 3-term arithmetic
progression

In this chapter, we study the rainbow Erdős-Rothschild problem with respect
to 3-term arithmetic progressions. We obtain the asymptotic number of r-
colorings of [n] without rainbow 3-term arithmetic progressions, and we
show that the typical colorings with this property are 2-colorings. We also
prove that [n] attains the maximum number of rainbow 3-term arithmetic
progression-free r-colorings among all subsets of [n]. Moreover, the exact
number of rainbow 3-term arithmetic progression-free r-colorings of Zp is
obtained, where p is any prime and Zp is the cyclic group of order p.

7.1 Introduction

Two fundamental topics in extremal combinatorics are counting the number
of discrete structures that have certain properties and analyzing the typical
properties of those structures. One of the major problems in this area, initiated
by Erdős, Kleitman and Rothschild [65], is to determine the number of H-
free graphs on n vertices and characterize their typical structure. We refer

127
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to [11,16,115,143] and the references therein for related results.

In the setting of integers, analogous problems were raised by Cameron and
Erdős [32], who studied the number of subsets of positive integers satisfying
certain constraints. We refer to [13, 14, 129] for results on the number of
sum-free subsets, to [12] for results on the number of subsets with no k-term
arithmetic progression, and to [126] for results on multiplicative Sidon sets.

In the context of colored discrete structures, Erdős and Rothschild [57]
asked which graph on n vertices admits the maximum number of r-edge-
colorings without a monochromatic subgraph H. This Erdős-Rothschild prob-
lem was extended to edge-colorings of graphs with other forbidden coloring
patterns. For example, the number of rainbow triangle-free r-edge-colorings
of complete graphs and their typical structure were determined in [10,17].
This problem can also be generalized to other discrete structures. Hoppen,
Kohayakawa and Lefmann [99] studied the Erdős-Rothschild extension of the
celebrated Erdős-Ko-Rado Theorem on hypergraphs. Liu, Sharifzadeh and
Staden [130] and Hàn and Jiménez [94] determined the maximum number
of monochromatic sum-free colorings in integers and in finite abelian groups,
respectively. Very recently, motivated by these results, Cheng et al. [35] stud-
ied the number of rainbow sum-free colorings of integers and their typical
structure.

In this chapter, we focus on colorings of [n] without rainbow k-term
arithmetic progressions. Before we continue, we recall some of the crucial
definitions.

Given a subset A⊆ [n], a k-term arithmetic progression (k-AP) of A is a
sequence in A of the form a, a+ d, a+ 2d, . . . , a+ (k− 1)d, where d ∈ [n].
For an integer r ≥ 1 and a subset A⊆ [n], let c : A→ [r] be an r-coloring of A.
Given an r-coloring c of A, a k-AP of A is called rainbow if c(a+ id) 6= c(a+ jd)
for every 0≤ i < j ≤ k− 1. An r-coloring of A is called rainbow k-AP-free if it
does not contain a rainbow k-AP.

In 1927, Van der Waerden [169] proved that for any positive integers
k and r, if n is sufficiently large, then every r-coloring of [n] contains a
monochromatic k-AP; see Theorem 1.2. A strengthening was conjectured by
Erdős and Turán [69], and proved by Szemerédi [167] in 1975.
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Theorem 7.1 (Szemerédi’s Theorem [167]). Let k be a positive integer and
let δ > 0. Then there exists a positive integer sz(k,δ) such that for all n ≥
sz(k,δ), every subset C ⊆ [n] with |C |> δn contains a k-AP.

In [61], Erdős and Graham proved a canonical version of Van der Waer-
den’s Theorem, that is, for any integer k ≥ 3, if n is sufficiently large, then
every coloring (with any number of colors) of [n] contains either a rainbow
k-AP or a monochromatic k-AP. For more results related to rainbow arithmetic
progressions, see [4,19,29,103,131,150].

For any A⊆ [n] and r ≥ 3, we use gr(A, [n]) (or simply gr(A)) to denote
the number of rainbow 3-AP-free r-colorings of A. By choosing two of the
r colors and coloring the elements of A arbitrarily with these two colors, a
lower bound on gr(A) is

gr(A)≥
�

r

2

�

(2|A|− 2) + r =
�

r

2

�

2|A|− r2+ 2r. (7.1)

For the upper bound, we shall prove the following result in Section 7.3.

Theorem 7.2. For all integers r ≥ 3 and any real number ξ with 0 < ξ ≤
3

5+8 log2 r
, there exists n0 ∈ N such that for all n ≥ n0 the following holds. If

A⊆ [n] and |A| ≥ (1−ξ)n, then the number of rainbow 3-AP-free r-colorings of
A is at most

�

r

2

�

2|A|+ 2
− n

36 log2 n 2n.

In view of inequality (7.1), the upper bound given by Theorem 7.2 is
asymptotically tight for A= [n], and the description of the typical structure
follows immediately.

Corollary 7.3. For every integer r ≥ 3, there exists n0 ∈ N such that for all
n ≥ n0 we have gr([n]) =

�

�r
2

�

+ o(1)
�

2n. Moreover, almost all rainbow
3-AP-free r-colorings of [n] are 2-colorings.

Next, we answer the question which subset(s) of [n] admit the maximum
number of rainbow 3-AP-free r-colorings, among all subsets of [n]. Using
Szemerédi’s Theorem and Theorem 7.2, we shall prove the following result in
Section 7.3.
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Theorem 7.4. For all integers r ≥ 3, there exists n1 ∈ N such that for all n≥ n1

and all subset A⊂ [n], we have gr(A)< gr([n]). Thus [n] is the unique subset
admitting the maximum number of rainbow 3-AP-free r-colorings among all
subsets of [n].

Let Zn be the cyclic group of order n formed by the set {0,1, . . . , n− 1}
with the operation of addition modulo n. A 3-AP in Zn is a sequence a, b, c
such that a+ c ≡ 2b (mod n). For any A⊆ Zn and r ≥ 3, we use gr(A,Zn)
to denote the number of rainbow 3-AP-free r-colorings of A, and we use the
shorthand gr(Zn) for gr(Zn,Zn). For any A ⊆ [n], if we also view A as a
subset of Zn, then gr(A,Zn)≤ gr(A, [n]) clearly. Moreover, the lower bound
gr(A,Zn) ≥

�r
2

�

2|A| − r2 + 2r also holds. Furthermore, it follows from the
proof of Theorem 7.4 (see Section 7.3) that gr(A, [n])<

�r
2

�

2n− r2+ 2r for
every A⊂ [n]. Hence, we have the following corollary.

Corollary 7.5. For every integer r ≥ 3, there exists n0 ∈ N such that for all
n≥ n0 we have

�

r

2

�

2n− r2+ 2r ≤ gr(Zn)≤
�

r

2

�

2n+ 2
− n

36 log2 n 2n,

and thus almost all rainbow 3-AP-free r-colorings of Zn are 2-colorings. Moreover,
we have gr(A,Zn)< gr(Zn) for any A⊂ Zn.

Given two positive integers n and k, the anti-van der Waerden number
aw([n], k) (resp., aw(Zn, k)) is the smallest r such that every exact r-coloring
of [n] (resp., Zn) contains a rainbow k-AP, where an exact r-coloring is a
coloring using all the r colors. For an integer n, if aw(Zn, 3) = 3, then all
the rainbow 3-AP-free r-colorings of Zn are 2-colorings, so gr(Zn) =

�r
2

�

2n−
r2+ 2r. In [103], Jungić et al. gave a characterization of integers n such that
aw(Zn, 3) = 3. Moreover, Butler et al. [29] proved that 3≤ aw(Zp, 3)≤ 4 for
any prime p. Let Z×n be the multiplicative group of integers modulo n, and let
ordn(2) be the order of 2 in Z×n . In Section 7.4, we shall determine the exact
value of gr(Zp) for any odd prime.
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Theorem 7.6. For any prime p ≥ 3 and integer r ≥ 3, we have

gr(Zp) =
�

r

2

�

2p − r2+ 2r + r
�

r − 1

2

�

p
�

2
p−1

c·ordp(2) − 2
�

,

where c = 1 if ordp(2) is even, and c = 2 otherwise.

7.2 Additional notation and preliminaries

We will prove Theorem 7.2 using the Hypergraph Container Method developed
by Balogh-Morris-Samotij [15] and Saxton-Thomason [160] independently.
We first introduce some additional notation.

LetH be a k-uniform hypergraph. Let d(H ) be the average degree ofH .
For a subset U ⊆ V (H ), letH [U] be the subhypergraph ofH induced by U ,
and let d(U) := |{e ∈ E(H ): U ⊆ e}| be the co-degree of U . For 2≤ j ≤ k, the
jth maximum co-degree of H is ∆ j(H ) :=max{d(U): U ⊆ V (H ), |U | = j}.
When the underlying hypergraph is clear, we simply write d(H ) and ∆ j(H )
as d and ∆ j, respectively. For 0< τ < 1, the co-degree function is defined to
be

∆(H ,τ) := 2(
k
2)−1

k
∑

j=2

2−(
j−1
2 )
∆ j

dτ j−1 .

We will use the following form of hypergraph container theorem.

Theorem 7.7 (Hypergraph container theorem, see [10, 35, 160]). Let H
be a k-uniform hypergraph on vertex set [N]. Let 0 < ε,τ < 1/2. Suppose
that τ < 1/(200k!2k) and ∆(H ,τ)≤ ε/(12k!). Then there exists c = c(k)≤
1000k!3k and a collection C of vertex subsets such that

(1) every independent set inH is a subset of some C ∈ C ;

(2) for every C ∈ C , |E(H [C])| ≤ ε · |E(H )|;

(3) log2 |C | ≤ cNτ log2(1/ε) log2(1/τ).

A key concept in applying the hypergraph container method to colored
structures is the template, which was first introduced in [71].
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Definition 7.1. (Template, palette, subtemplate, rainbow 3-AP)

(1) An r-template of order n is a function P : [n]→ 2[r], associating with
each integer x in [n] a list of colors P(x) ⊆ [r]. We refer to this set
P(x) as the palette available at x .

(2) Let P1, P2 be two r-templates of order n. We say that P1 is a subtemplate
of P2 (written as P1 ⊆ P2) if P1(x)⊆ P2(x) for every integer x ∈ [n].

(3) For an r-template P of order n, we say that P is a rainbow 3-AP if there
exist three integers a, b, c in [n] with a + c = 2b such that |P(a)| =
|P(b)| = |P(c)| = 1, |P(x)| = 0 for each x ∈ [n] \ {a, b, c}, and P(a),
P(b), P(c) are pairwise distinct.

(4) For an r-template P, we say that P is rainbow 3-AP-free if there is no
subtemplate that is a rainbow 3-AP.

Note that for any A ⊆ [n], an r-coloring of A can be viewed as an r-
template P with |P(x)| = 1 for each x ∈ A and |P(x)| = 0 for each x ∈ [n] \A.
For an r-template P, let R(P) be the number of subtemplates of P that are
rainbow 3-APs. We should remark that we only consider nontrivial 3-APs,
that is, we do not consider the 3-APs with common difference 0. Let f (n)
be the number of 3-APs in [n]. Note that there is a bijection between all
the 3-APs and ordered pairs (a, b) ∈ [n]2 with a < b and a ≡ b (mod 2).
Thus f (n) =

�dn/2e
2

�

+
�bn/2c

2

�

=
�

n
2

�

·
�

n−1
2

�

. Throughout this chapter, we
will assume that n is large enough. Using Theorem 7.7, we can prove the
following container theorem for rainbow 3-AP-free colorings.

Theorem 7.8. For every integer r ≥ 3, there exists c = c(r) and a collection C
of r-templates of order n such that

(1) every rainbow 3-AP-free r-template of order n is a subtemplate of some
P ∈ C ;

(2) for every P ∈ C , R(P)≤ n−1/3 f (n);

(3) log2 |C | ≤ cn2/3 log2
2 n.
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Proof. Let H be a 3-uniform hypergraph with vertex set [n]× [r], whose
edges are all triples {(a, i), (b, j), (c,`)} such that a, b, c form a 3-AP in [n]
and i, j,` are three pairwise distinct colors in [r]. In other words, every
hyperedge inH corresponds to a rainbow 3-AP in [n]. Note that every vertex
subset ofH corresponds to an r-template of order n, and every independent
set in H corresponds to a rainbow 3-AP-free r-template of order n. Hence,
it suffices to show that for appropriate ε and τ, there exists a collection C
of vertex subsets satisfying Theorem 7.7 (1)-(3). To achieve this, we need to
check that ∆(H ,τ)≤ ε/(12 · 3!).

Since there are exactly r(r − 1)(r − 2) ways to rainbow color a 3-AP with
r colors, the average degree d ofH satisfies

d =
3|E(H )|
|V (H )|

=
3r(r − 1)(r − 2) f (n)

nr
≥

3(r − 1)(r − 2)n
5

.

Note that we have ∆2 = 3(r −2) and ∆3 = 1. Let ε = n−1/3/(r(r −1)(r −2))
and τ= (48 · 3! · r)1/2n−1/3. Then

∆(H ,τ) =
4∆2

dτ
+

2∆3

dτ2 ≤
20

(r − 1)nτ
+

10

3(r − 1)(r − 2)nτ2

≤
11

3(r − 1)(r − 2)nτ2 ≤
ε

12 · 3!
.

The result follows.

Definition 7.2. (Good r-template) For any A⊆ [n], an r-template P of order
n is a good r-template of A if it satisfies the following properties:

(1) |P(x)| ≥ 1 for every x ∈ A;

(2) R(P)≤ n−1/3 f (n).

For a collection P of r-templates of order n and A⊆ [n], we use G(P , A)
to denote the set of rainbow 3-AP-free r-colorings of A that is a subtemplate
of some P ∈ P . Let g(P , A) = |G(P , A)|. If P = {P}, then we simply write
G(P , A) and g(P , A) as G(P, A) and g(P, A), respectively.
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7.3 Colorings of integer sets with no rainbow 3-AP

We first state and prove some propositions and lemmas.

Proposition 7.9. Let I ⊆ A ⊆ [n]. There are at most |I |
2

4
+ |I |(n−|A|)

2
ordered

pairs (a, b) ∈ I2 with a < b such that {a, b} is not contained in any 3-AP of A.

Proof. For any ordered pair (a, b) ∈ I2 with (a + b)/2 ∈ A, we have that
{a, (a + b)/2, b} forms a 3-AP of A. Thus if {a, b} is not contained in any
3-AP of A, then either a and b have different parities, or (a+ b)/2 ∈ [n] \ A.
Let α be the number of odd integers in I . Then the number of ordered pairs
(a, b) ∈ I2 with a < b such that a and b have different parities is at most
α(|I |−α)≤ |I |2/4. For any i ∈ [n]\A, the number of ordered pairs (a, b) ∈ I2

with a < b and (a+ b)/2 = i is at most min{|[i−1]∩ I |, |([n]\[i])∩ I |}. Thus
the number of ordered pairs (a, b) ∈ I2 with a < b and (a+ b)/2 ∈ [n] \ A is
at most |I |(n− |A|)/2. The result follows.

Proposition 7.10. Let I ⊆ A⊆ [n] with |I | ≥ 73
74

n, and let I1, I2 be a bipartition

of I with |I1| ≤ |I2|. There are at least |I1||I2|
9
− 3|I1|(n− |A|) pairs (a, b) with

a ∈ I1 and b ∈ I2 such that {a, b} is contained in some 3-AP of A.

Proof. Since |I1| ≤ |I2|, we have |I1| ≤ |I |/2 ≤ n/2 and |I2| ≥ |I |/2 ≥
73n/148. We first consider the pairs (a, b) with a ∈ I1 and b ∈ I2 such that
{a, b} is contained in some 3-AP of [n]. For any pair (i, j) with 1≤ i < j ≤ n,
if {i, j} is not contained in any 3-AP of [n], then 2i − j ≤ 0, 2 j − i ≥ n+ 1,
and i, j have different parities. So i ≤ j/2≤ n/2, j ≥ 2i and j ≥ (n+1+ i)/2.

For each i ∈ [n], the number of integers j ∈ [n] with j > i such that
{i, j} is not contained in any 3-AP of [n] is at most

l

1
2

�

n−max
n

min{2i −

1, n}, n+1+i
2
− 1
o�m

≤ α(i), where α(i) := 1
2

�

n−max
¦

2i− 1, n−1+i
2

©

+ 1
�

if
1 ≤ i ≤ bn/2c, and α(i) := 0 if bn/2c+ 1 ≤ i ≤ n. Note that α(1) ≥ α(2) ≥
· · · ≥ α(bn/2c) ≥ α(bn/2c+ 1) = · · · = α(n) = 0. Similarly, for each j ∈ [n],
the number of integers i ∈ [n] with i < j such that {i, j} is not contained in
any 3-AP of [n] is at most α(n+1− j). Let β( j) := α(n+1− j) for each j ∈ [n].
Note that β(n)≥ β(n−1)≥ · · · ≥ β(dn/2e+1)≥ β(dn/2e) = · · · = β(1) = 0.
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Thus the number pairs of (a, b) with a ∈ I1 and b ∈ I2 such that {a, b} is
contained in some 3-AP of [n] is at least

|I1||I2| −
∑

a∈I1

(α(a) + β(a)) = |I1||I2| −
∑

a∈I1

max{α(a),β(a)}

≥ |I1||I2| − (α(1) +α(2) + · · ·+α(d|I1|/2e)

+ β(n) + β(n− 1) + · · ·+ β(n+ 1− b|I1|/2c))

≥ |I1||I2| − 2
d|I1|/2e
∑

i=1

α(i) = |I1||I2| − 2
d|I1|/2e
∑

i=1

1

2

�

n−
n− 1+ i

2
+ 1
�

≥ |I1||I2| −
|I1|+ 1

2
·

1

2
·
�

n+ 2

2
+

n− |I1|/2+ 3

2

�

= |I1||I2| −
(|I1|+ 1)(2n− |I1|/2+ 5)

8

≥
|I1|
4

�

4|I2| − 2n+
|I1|
2
− 5
�

=
|I1|
4

�

4

9
|I2|+

37

18
|I2|+

3

2
|I2|+

|I1|
2
− 2n− 5

�

≥
|I1|
4

�

4

9
|I2|+

37

36
|I |+ |I | − 2n− 5

�

≥
|I1|
4

�

4

9
|I2|+

73

36
·

73

74
n− 2n− 5

�

≥
|I1||I2|

9
.

Next, we consider the pairs (a, b) with a ∈ I1 and b ∈ I2 such that {a, b}
is contained in some 3-AP of [n] but {a, b} is not contained in any 3-AP of
A, and we use γ to denote the number of such pairs. In this case, at least
one of the following holds: (i) 2a− b ∈ [n] \ A, (ii) (a+ b)/2 ∈ [n] \ A, (iii)
2b− a ∈ [n] \ A. Thus γ≤ 3|I1|(n− |A|). The result follows.

Lemma 7.11. Let r ≥ 3, δ = 1
34 log2 n

, 0 ≤ ξ ≤ 3
5+8 log2 r

and A ⊆ [n] with

|A| = (1− ξ)n. If there exists a good r-template P of A with g(P, A) > 2(1−δ)n,
then ξ < (log2 r − 1)n−1/3 log2 n+ δ and the number of integers x ∈ A with
|P(x)| ≥ 3 is at most n2/3 log2 n.

Proof. Let X1 := {x ∈ A: |P(x)| = 1}, X2 := {x ∈ A: |P(x)| = 2} and X3 :=
{x ∈ A: |P(x)| ≥ 3}. For 1 ≤ i ≤ 3, let x i := |X i|. Since g(P, A)> 2(1−δ)n, we
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have 1x1 · 2x2 · r x3 > 2(1−δ)n. Thus

x3 >
(ξ−δ)n+ x1

log2 r − 1
. (7.2)

We claim that x2 ≥ n/4+ξn+n/ log2 n+1. Otherwise, we have x1+ x3 >

3n/4−2ξn−n/ log2 n−1, so x3 > (9−13ξ)n/(12 log2 r) by inequality (7.2).
Note that if (a, b) ∈ X 2

3 and {a, b, c} forms a 3-AP for some c ∈ A, then P
contains a subtemplate P ′ such that P ′ is a rainbow 3-AP with |P ′(a)| =
|P ′(b)|= |P ′(c)|= 1. By Proposition 7.9, we have

R(P)≥
1

3

�

�

x3

2

�

−
x2

3

4
−

x3ξn

2

�

=
1

3

�

x2
3

4
−

x3ξn

2
−

x3

2

�

>
1

3

�

(9− 13ξ)2n2

576 log2
2 r

−
(9− 13ξ)ξn2

24 log2 r
−
(9− 13ξ)n
24 log2 r

�

=
1

3

�

(9− 13ξ)n2

576 log2
2 r

�

9− 13ξ− 24ξ log2 r
�

−
(9− 13ξ)n
24 log2 r

�

≥
1

3

�

(9− 13ξ)n2

576 log2
2 r

�

9−
3(13+ 24 log2 r)

5+ 8 log2 r

�

−
(9− 13ξ)n
24 log2 r

�

=
1

3

�

6(9− 13ξ)n2

576(5+ 8 log2 r) log2
2 r
−
(9− 13ξ)n
24 log2 r

�

= Θ(n2),

contradicting the assumption that P is a good r-template.

For any a ∈ X3, let Ya := {b ∈ X2 : {a, b} is contained in some 3-AP of A}.
For any b ∈ X2 \ Ya, we have 2a− b /∈ A, 2b− a /∈ A and (a+ b)/2 /∈ A. Then
|X2 \ Ya| ≤ dn/4e+ ξn ≤ n/4+ ξn+ 1. Thus |Ya| ≥ x2 − n/4− ξn− 1 ≥
n/ log2 n. Note that if a ∈ X3, b ∈ X2 and {a, b, c} forms a 3-AP for some
c ∈ A, then P contains a subtemplate P ′ such that P ′ is a rainbow 3-AP with
|P ′(a)| = |P ′(b)| = |P ′(c)| = 1. Thus R(P) ≥ x3n/(2 log2 n). Since P is a
good r-template, we have n−1/3 f (n)≥ x3n/(2 log2 n). Thus x3 ≤ n2/3 log2 n.
Moreover, by inequality (7.2), we have ξ < (log2 r − 1)n−1/3 log2 n+δ.

Lemma 7.12. Let r ≥ 3, δ = 1
34 log2 n

, 0 ≤ ξ < (log2 r − 1)n−1/3 log2 n+ δ
and A ⊆ [n] with |A| = (1− ξ)n. Suppose P is a good r-template of A with
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g(P, A)> 2(1−δ)n. Then there exist two colors i, j ∈ [r] such that the number of
integers x ∈ A with P(x) = {i, j} is at least (1− 2δ)n.

Proof. Let X i and x i (1≤ i ≤ 3) be the sets and values as given in the proof of
Lemma 7.11. By Lemma 7.11 and inequality (7.2), we have x3 ≤ n2/3 log2 n
and x1 + x3 < x3 log2 r − (ξ− δ)n. Thus x2 > (1− δ)n− x3 log2 r ≥ (1−
δ− n−1/3 log2 n log2 r)n. For 1≤ i < j ≤ r, let Yi, j := {a ∈ X2 : P(a) = {i, j}}.
Without loss of generality, let |Y1,2| ≥ x2/

�r
2

�

. Let Y ′ = X2 \ Y1,2. Note that
if a ∈ Y1,2, b ∈ Y ′ and {a, b, c} forms a 3-AP for some c ∈ A, then P contains
a subtemplate P ′ such that P ′ is a rainbow 3-AP with |P ′(a)| = |P ′(b)| =
|P ′(c)| = 1. By Proposition 7.10 and since P is a good r-template, we have
n−1/3n2/4≥ R(P)≥ (|Y1,2||Y ′|/9− 3ξn ·min{|Y1,2|, |Y ′|})/2.

If |Y1,2| ≤ |Y ′|, then

|Y ′| ≤
9n5/3

2|Y1,2|
+ 27ξn≤

9n5/3�r
2

�

2x2
+ 27ξn

<
9n2/3�r

2

�

2(1−δ− n−1/3 log2 n log2 r)
+ 27ξn= o(n).

On the other hand, |Y ′| ≥ x2/2 > (1− δ− n−1/3 log2 n log2 r)n/2 = Θ(n), a
contradiction. If |Y1,2| ≥ |Y ′|, then

|Y ′| ≤
n5/3

2(|Y1,2|/9− 3ξn)
≤

n5/3

x2/9− 6ξn

<
n2/3

(1−δ− n−1/3 log2 n log2 r)/9− 6ξ
.

Thus |Y1,2| ≥ x2− |Y ′| ≥ (1− 2δ)n.

Lemma 7.13. Let r ≥ 3, δ = 1
34 log2 n

, 0≤ ξ < (log2 r−1)n−1/3 log2 n+δ and
A⊆ [n] with |A|= (1− ξ)n. For any two colors i, j ∈ [r], let Pi, j be the set of
good r-templates of A, in which there are at least (1−2δ)n integers with palette
{i, j}. Then g(Pi, j , A)≤ 2|A|(1+ 2−n/240).
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Proof. For any rainbow 3-AP-free r-coloring σ ∈ G(Pi, j , A), let Iσ := {x ∈
A: σ(x) /∈ {i, j}}. Then |Iσ| ≤ 2δn. Let G0 := {σ ∈ G(Pi, j , A): |Iσ|= 0} and
G1 := {σ ∈ G(Pi, j , A): |Iσ| ≥ 1}. Then g(Pi, j , A) = |G0|+ |G1| ≤ 2|A|+ |G1|.

Next, we consider the number of colorings in G1. We first choose a subset
I0 ⊆ A with 1 ≤ |I0| ≤ 2δn. The number of options is at most

∑

1≤`≤2δn

�n
`

�

.
We then use colors in [r]\{i, j} to color a fixed I0. The number of colorings is
at most (r − 2)2δn. Now we consider the number of ways to color A\ I0 using
color i or j. For any fixed x ∈ I0, let d(x) be the number of ordered pairs
(a, b) ∈ (A \ I0)2 with a < b such that {a, b, x} forms a 3-AP. We claim that
d(x) ≥ n/5. In fact, if we let d1 :=

�

�

�

(a, b) ∈ A2 : x < a < b, x + b = 2a
	

�

�,
d2 :=

�

�

�

(a, b) ∈ A2 : a < x < b, a+ b = 2x
	

�

� and d3 :=
�

�

�

(a, b) ∈ A2 : a <
b < x , a + x = 2b

	

�

�, then d(x) ≥ di − 2|I0| ≥ di − 4δn for i ∈ {1,3},
and d(x) ≥ d2 − |I0| ≥ d2 − 2δn. Note that d1 ≥ b(n+ x)/2c − x − 2ξn,
d2 ≥min{x−1, n− x}−ξn and d3 ≥ x−d(1+ x)/2e−2ξn. If 1≤ x ≤ 2n/5,
then d(x)≥ d1−4δn≥ (n− x−1)/2−2ξn−4δn≥ n/5. If 2n/5< x ≤ 3n/5,
then d(x) ≥ d2 − 2δn ≥ b2n/5c − ξn− 2δn ≥ n/5. If 3n/5 < x ≤ n, then
d(x)≥ d3−4δn≥ (x−2)/2−2ξn−4δn≥ n/5. Hence, d(x)≥ n/5. Note that
if (a, b) ∈ (A\ I0)2 and {a, b, x} forms a 3-AP, then σ(a) ∈ {i, j}, σ(b) ∈ {i, j}
and σ(x) ∈ [r]\{i, j}, so σ(a) = σ(b) in order to avoid a rainbow 3-AP. Thus
the number of ways to color A\ I0 is at most 2|A|−|I0|−d(x)/3 ≤ 2|A|−n/15.

Thus

g(Pi, j , A)≤ 2|A|+ |G1| ≤ 2|A|+
∑

1≤`≤2δn

�

n

`

�

(r − 2)2δn2|A|−n/15

≤ 2|A|+ 2δn
n2δn

(2δn)!
r2δn2|A|−n/15

≤ 2|A|+ 22δn log2 n22δn log2 r2|A|−n/15

≤ 2|A|+ 2n/17+(n log2 r)/(17 log2 n)+|A|−n/15 ≤ 2|A|+ 2|A|−n/240.

The result follows.

Now we have all the ingredients to present our proof of Theorem 7.2.

Proof of Theorem 7.2. Let C be the collection of r-templates given by Theo-
rem 7.8. Let δ = (34 log2 n)−1, and let C1 := {P ∈ C : g(P, A)≤ 2(1−δ)n} and
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C2 := {P ∈ C : g(P, A) > 2(1−δ)n}. For each P ∈ C2, we have |P(x)| ≥ 1 for
every x ∈ A; otherwise g(P, A) = 0. Moreover, we have R(P)≤ n−1/3 f (n) by
Theorem 7.8 (2). Thus every element P ∈ C2 is a good r-template of A. By
Lemmas 7.11, 7.12 and 7.13, we have

g(C2, A)≤
∑

1≤i< j≤r

2|A|
�

1+ 2−n/240
�

≤
�

r

2

�

2|A|
�

1+ 2−n/240
�

.

By Theorem 7.8 (3), we have

g(C1, A)≤ |C1|2(1−δ)n ≤ |C |2(1−δ)n

≤ 2cn2/3 log2
2 n+(1−1/(34 log2 n))n < 2(1−1/(35 log2 n))n.

Combining the above with Theorem 7.8 (1), the number of rainbow
3-AP-free r-colorings of A is at most

g(C1, A) + g(C2, A)≤ 2(1−1/(35 log2 n))n+
�

r

2

�

2|A|
�

1+ 2−n/240
�

≤
�

r

2

�

2|A|+ 2
− n

36 log2 n 2n.

This completes the proof of Theorem 7.2.

Next, we present our proof of Theorem 7.4.

Proof of Theorem 7.4. For any subset A⊂ [n] with (2+8 log2 r)n/(5+8 log2 r)
≤ |A| < n, by Theorem 7.2, we have gr(A) ≤

�r
2

�

2n−1 + 2−n/(36 log2 n)2n ≤
(r(r − 1)/4+ o(1))2n <

�r
2

�

2n − r2 + 2r ≤ gr([n]). For any subset A⊂ [n]
with |A| ≤ n/ log2 r, we have gr(A) ≤ r |A| ≤ 2|A| log2 r ≤ 2n < gr([n]). In the
following, we may assume that |A| = αn with 1/ log2 r < α < (2+8 log2 r)/(5+
8 log2 r).

Let k := n0, where n0 is obtained by Theorem 7.2. Let δ = 1/(15 log2
2 r)

and n≥ n1 = sz(k,δ). By Szemerédi’s Theorem, there are at least (α−δ)n/k
pairwise disjoint k-APs in A. For any k-AP F = {x , x + y, . . . , x + (k− 1)y},
let ϕ be a mapping between [k] and F such that ϕ(i) = x + (i − 1)y for
every i ∈ [k]. Then there is a bijection φ between all the 3-APs in [k] and all
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the 3-APs in F : φ({a, b, c}) = {ϕ(a),ϕ(b),ϕ(c)} for any 3-AP {a, b, c} in [k].
Therefore, there is a bijection between all the rainbow 3-AP-free r-colorings
of [k] and those of F , and thus gr(F) = gr([k]). By the choice of k, we have
gr(F) = gr([k])≤

�r
2

�

2k + 2−k/(36 log2 k)2k ≤ 2k+2 log2 r . Then

gr(A)≤ rδn
�

2k+2 log2 r
�
(α−δ)n

k = 2δn log2 r2(α−δ)n+
2(α−δ)n log2 r

k

< 2αn+δn log2 r+ 2αn log2 r
k < 2

(2+8 log2 r)n
5+8 log2 r +

n
15 log2 r+

2αn log2 r
n0

< 2
(2+8 log2 r)n

5+8 log2 r +
n

14 log2 r < 2n < gr([n]).

This completes the proof of Theorem 7.4.

7.4 Colorings of Zn with no rainbow 3-AP

We start by recalling the following known results.

Lemma 7.14 (Jungić et al. [103]). Let n be a positive integer. Then aw(Zn,
3) = 3 if and only if one of the following holds:

(1) n is a power of 2;

(2) n is prime and 2 is a generator of Z×n ;

(3) n is prime, ordn(2) =
n−1

2
, and n−1

2
is odd.

Lemma 7.15 (Butler et al. [29]). For any prime p, we have 3≤ aw(Zp, 3)≤ 4,
and aw(Zp, 3) = 4 implies that every rainbow 3-AP-free coloring of Zp using
exactly three colors contains a color which is used exactly once.

Now we have all the ingredients to present our proof of Theorem 7.6.

Proof of Theorem 7.6. If aw(Zp, 3) = 3, then it suffices to show that c ·ordp(2)
= p− 1. By Lemma 7.14, either ordp(2) = p− 1, or ordp(2) = (p− 1)/2 and
(p− 1)/2 is odd. In both cases, we have c · ordp(2) = p− 1.

If aw(Zp, 3) = 4, then by Lemma 7.15, every rainbow 3-AP-free coloring of
Zp using exactly three colors contains a color which is used exactly once. Let c
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be a rainbow 3-AP-free coloring of Zp using exactly three colors. Without loss
of generality, we may assume that c(0) = 1 and c(i) ∈ {2, 3} for all i ∈ Zp\{0}.
In order to avoid a rainbow 3-AP, we have c(i) = c(−i) and c(i) = c(2i) for
each i ∈ Zp \ {0}.

For every integer ` with 1 ≤ ` ≤ p−1
2

, let Q` := {(` · 2i)mod p : i ∈
Z+} ∪ {−(` · 2i)mod p : i ∈ Z+}. For every integer j with 1 ≤ j ≤ p−1

2
, let

I1 := {1}, I j := { j} if j ≥ 2 and j /∈
⋃

`∈
⋃ j−1

m=1 Im
Q`, and I j := ; otherwise.

Then for every 1 ≤ ` ≤ p−1
2

, all the elements in Q` should be colored with

the same color. For any j with 2 ≤ j ≤ p−1
2

, if I j = ;, then j ∈ Q` for some `
with `≤ j − 1 and I` 6= ;, which implies that Q j ⊆Q`. Thus we only need to
consider the sets Q j and I j with I j 6= ;. Moreover, for any j1 6= j2 with I j1 6= ;
and I j2 6= ;, we have Q j1 ∩Q j2 = ;. Note that

⋃

`∈
⋃(p−1)/2

j=1 I j
Q` = Zp \ {0}.

Furthermore, for any ` with I` 6= ;, we have |Q`|= ordp(2) if ordp(2) is even,
and |Q`|= 2 · ordp(2) if ordp(2) is odd.

Next, we show that if {0, a, b} forms a 3-AP in Zp, then a, b is contained
in the same Q j for some j with 1 ≤ j ≤ p−1

2
and I j 6= ;. For a contradiction,

suppose that a ∈ Q j1 and b ∈ Q j2 with Q j1 ∩Q j2 = ;. Then 2a (mod p) ∈
Q j1 , 2b (mod p) ∈ Q j2 and −b (mod p) ∈ Q j2 . Since {0, a, b} forms a 3-AP,
we have 2a ≡ b (mod p), a ≡ 2b (mod p) or a ≡ −b (mod p), which is
impossible.

Therefore, we have

gr(Zp) =
�

r

2

�

2p − r2+ 2r + r
�

r − 1

2

�

p
�

2
∑(p−1)/2

j=1 |I j |− 2
�

=
�

r

2

�

2p − r2+ 2r + r
�

r − 1

2

�

p
�

2
p−1

c·ordp(2) − 2
�

.

This completes the proof of Theorem 7.6.

By Lemma 7.14 (1), if n is a power of 2, then gr(Zn) =
�r

2

�

2n − r2+ 2r.
Note that every integer n (≥ 3) can be decomposed into prime factors. Using
Theorem 7.6, we can derive the following recurrence inequality.
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Corollary 7.16. For any positive integers n ≥ 1, r ≥ 3 and prime p ≥ 3, we
have

gr(Znp)≥
�

r

2

�

2np − r2+ 2r + pr(gr(Zn)− (r − 1)2n+ r − 2)

+
�

r

2

�

p
�

2
p−1

c·ordp(2) − 2
�

(gr(Zn)− 2n),

where c = 1 if ordp(2) is even, and c = 2 otherwise.

Proof. Note that there are exactly
�r

2

�

2np − r2 + 2r 2-colorings of Znp. In
the following, we will construct colorings using at least three colors. Let
R0, R1, . . . , Rp−1 be the residue classes modulo p in Znp.

We choose an arbitrary integer q ∈ {0, 1, . . . , p− 1} and an arbitrary color
` ∈ [r]. Let cn be a rainbow 3-AP-free r-coloring of Zn which contains at least
two colors in [r]\{`}. Let cnp be a coloring of Znp such that cnp(ip+q) = cn(i)
for i ∈ {0,1, . . . , n − 1}, and cnp(u) = ` for any u ∈ Znp \ Rq. Note that
if {x , y, z} forms a 3-AP in Znp with x , y ∈ Rq, then z ∈ Rq since p is a
prime. Thus cnp is a rainbow 3-AP-free r-coloring of Znp. The number of such
colorings cnp is pr(gr(Zn)−r−(r−1)(2n−2)) = pr(gr(Zn)−(r−1)2n+r−2).

If aw(Zp, 3) = 4, then we can further construct another family of colorings.
By Lemma 7.15, every rainbow 3-AP-free coloring of Zp using exactly three
colors contains a color which is used exactly once. We call the color used
exactly once the special color, and the other two colors non-special. Let
cp be a rainbow 3-AP-free coloring of Zp using exactly three colors, and
assume that the special color is used on q. Let cn be a rainbow 3-AP-free
r-coloring of Zn such that cn contains at least one color which is not one
of the two non-special colors in cp. Let cnp be a coloring of Znp such that
cnp(ip + q) = cn(i) for i ∈ {0,1, . . . , n − 1}, and cnp(u) = cp( j) for u ∈ R j

and j ∈ {0,1, . . . , p− 1} \ {q}. Note that if {x , y, z} forms a 3-AP in Znp with
x , y ∈ Ri for some i ∈ {0,1, . . . , p− 1}, then z ∈ Ri since p is a prime. Thus
there is no 3-AP in Znp such that the three elements are contained in exactly
two different residue classes.

If {x , y, z} forms a 3-AP in Znp such that x , y, z are contained in the same
residue class, then this 3-AP is not rainbow since cn is rainbow 3-AP-free. If
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{x , y, z} forms a 3-AP in Znp such that x , y, z are contained in three different
residue classes, then we may assume that x = i1p+ j1, y = i2p+ j2, z = i3p+ j3
and i1p+ j1 + i3p+ j3 ≡ 2(i2p+ j2) (mod np), where 0 ≤ i1, i2, i3 ≤ n− 1,
0 ≤ j1, j2, j3 ≤ p − 1, and j1, j2, j3 are pairwise distinct. We may further
assume that i1p+ j1+ i3p+ j3 = 2(i2p+ j2) + knp for some integer k. Thus
j1+ j3− 2 j2 = (2i2− i1− i3+ kn)p, which implies that j1+ j3 ≡ 2 j2 (mod p)
and thus { j1, j2, j3} forms 3-AP in Zp. Then {x , y, z} cannot form a rainbow
3-AP in Znp since cp is rainbow 3-AP-free with cp(q) being the special color.
Thus cnp is a rainbow 3-AP-free r-coloring of Znp. By Theorem 7.6, the

number of such colorings cnp is 1
r−2

r
�r−1

2

�

p
�

2
p−1

c·ordp(2) − 2
�

(gr(Zn)− 2n) =
�r

2

�

p
�

2
p−1

c·ordp(2) − 2
�

(gr(Zn)− 2n). The result follows.

Furthermore, we can prove the following result, using Corollary 7.16.

Corollary 7.17. For any integers s ≥ 0, m ≥ 1, r ≥ 3 and primes p1 ≥ p2 ≥
· · · ≥ pm ≥ 3, let N = 2s

∏m
i=1 pi . Then gr(ZN ) is at least

max
σ

��

r

2

�

22s
∏m

i=1 qi − r2+ 2r

+
m
∑

i=1

� m
∏

j=i

(q j r + D j)

�

��

r

2

�

22s
∏i−1
`=1 q` − r2+ 2r

�

+
m
∑

i=1

� m
∏

j=i+1

(q j r + D j)

�

�

−(qi r(r − 1) + Di)2
2s
∏i−1
`=1 q` + qi r(r − 2)

�

�

,

where the maximum is taken over all permutations σ of {p1, p2, . . . , pm}, for
every j ∈ [m], q j = σ(p j), D j =

�r
2

�

q j(2
(q j−1)/(c j ·ordq j

(2))−2), c j = 1 if ordq j
(2)

is even, c j = 2 if ordq j
(2) is odd, and define

∏0
`=1 q` =

∏m
j=m+1(q j r + D j) = 1.

In particular, if aw(Zpi
, 3) = 3 for all i ∈ [m], then the maximum is attained

when σ is the identity permutation, and we have

gr(ZN )≥
�

r

2

�

22s
∏m

i=1 pi− r2+2r+
�

r − 1

2

� m
∑

i=1

� m
∏

j=i

p j r

�

�

22s
∏i−1
`=1 p` − 2

�

.
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Proof. The proof follows from Theorem 7.6, Lemma 7.14 (1), Corollary 7.16,
and by induction on m. We omit the details.



Summary

This thesis contains a number of new contributions to the area in discrete
mathematics that is commonly known as Gallai-Ramsey theory, as well as
some new results related to this research area, in particular dealing with
the Erdős-Gyárfás function with respect to Gallai-colorings, and the rainbow
Erdős-Rothschild problem with respect to 3-term arithmetic progressions.

One fundamental problem in the research of edge-colored graphs is to
study the existence of nice substructures in an edge-colored host graph. In
this thesis, the nice substructure we consider is either a rainbow subgraph
or a monochromatic subgraph, and the host graph is a complete graph. The
Gallai-Ramsey number grk(G : H) is the minimum integer n such that every
k-edge-coloring of Kn contains either a rainbow copy of G or a monochromatic
copy of H. This concept can be considered as a generalization of the classical
Ramsey number.

In the study of Gallai-Ramsey numbers, most of the previous works focus
on the case that G is a triangle. An edge-coloring of a complete graph without
rainbow triangles is called a Gallai-coloring, named after Tibor Gallai who
proved his now well-known Gallai partition theorem for rainbow triangle-free
colorings. In Chapters 2 and 3, we determine the exact values of the Gallai-
Ramsey number grk(K3 : H) for several choices of the graph H. These choices
include the graph K4 + e and all members of the class of connected graphs
with five vertices and at most six edges. There are in total thirteen connected
5-vertex graphs with at most six edges. The Gallai-Ramsey numbers for eight
of these graphs have been determined in several papers by others, and our
results cover all the remaining five graphs. We also obtain some exact values
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and bounds for the Ramsey numbers and Gallai-Ramsey numbers of a class of
unicyclic graphs.

In Chapter 4, we consider two types of extremal problems related to Gallai-
colorings. The first type of problem is to determine the maximum number of
edges that are not contained in any rainbow triangle or monochromatic copy
of H in a k-edge-coloring of Kn. Using Szemerédi’s Regularity Lemma and
a variant of the Gallai-Ramsey number, we obtain upper and lower bounds
for the maximum number of edges that are not contained in any rainbow
triangle or monochromatic triangle in a k-edge-coloring of Kn. The second
type of problem is the Gallai-Ramsey multiplicity problem. For n≥ grk(K3 :
K3), we determine upper and lower bounds for the minimum number of
monochromatic triangles in a Gallai-k-coloring of Kn. We also obtain exact
values of this number for some values of k and n.

The Erdős-Gyárfás function f (n, p, q) is defined as the minimum number
of colors in an edge-coloring of Kn such that every Kp receives at least q colors.
This function was first introduced by Erdős and Shelah [58, 59] about 45
years ago, but Erdős and Gyárfás [62] were the first to study it in depth. In
Chapter 5, combining the Erdős-Gyárfás function with Gallai-colorings, we
consider the function g(n, p, q), that is the minimum number of colors in a
Gallai-coloring of Kn such that every Kp receives at least q colors. Using the
anti-Ramsey number for K3, we show that g(n, p, q) is nontrivial only for
2≤ q ≤ p− 1. We give a general lower bound for this function. We also study
how this function falls off from being equal to n−1 when q = p−1 and p ≥ 4
to being Θ(log n) when q = 2.

Let n, k, m be positive integers with n� m� k, and let G be the set of
connected graphs G such that there is a k-connected monochromatic subgraph
of order at least n− f (G, k, m) in every rainbow G-free m-edge-coloring of Kn,
where f (G, k, m) does not depend on n. Fujita and Magnant [81] proved that
G consists of precisely K3, P6, P+4 and their connected subgraphs. LetH be
the set of disconnected graphs satisfying the above property. In Chapter 6, we
show that G ∪H consists of precisely P6, P3 ∪ P4, K2 ∪ P5, K2 ∪ 2P3, 2K2 ∪ K3,
2K2∪P+4 , 3K2∪K1,3 and their subgraphs. We also present a forbidden rainbow
subgraph condition for an edge-colored complete bipartite graph to have a
highly-connected monochromatic subgraph.
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The rainbow Erdős-Rothschild problem asks which graph on n vertices
admits the maximum number of r-edge-colorings without rainbow copies
of H. In Chapter 7, we deal with the rainbow Erdős-Rothschild problem
with respect to 3-term arithmetic progressions. We prove that [n] attains the
maximum number of rainbow 3-term arithmetic progression-free r-colorings
among all subsets of [n]. Moreover, the asymptotic number of r-colorings
of [n] without rainbow 3-term arithmetic progressions is obtained, and we
show that the typical colorings with this property are 2-colorings. We also
obtain the exact number of rainbow 3-term arithmetic progression-free r-
colorings of Zp, where p is any prime and Zp is the cyclic group of order p.
The proof technique we used in this final chapter is based on the Hypergraph
Container Method which was developed by Balogh-Morris-Samotij [15] and
Saxton-Thomason [160], independently.

Throughout this thesis, we present several open problems and conjectures
that remain unsolved. In particular, a driving problem is to determine the
Gallai-Ramsey numbers for complete graphs (see Conjecture 1.1). This prob-
lem is related to the classical 2-colored Ramsey numbers for complete graphs,
and also has a close relationship with the multicolor Erdős-Hajnal conjecture.
Another important problem is to study how does the additional constraint
on rainbow triangles influence the classical extremal problems, such as the
multicolor Ramsey number and the Erdős-Gyárfás function. Although we
have provided some comparisons and analyses in Sections 3.4 and 5.9, further
explorations in this direction could be fruitful.





Samenvatting

Dit proefschrift bevat een aantal nieuwe bijdragen op het deelgebied van
de discrete wiskunde dat bekend staat als Gallai-Ramsey theorie, alsmede
een aantal nieuwe resultaten op gerelateerde deelgebieden, bijvoorbeeld met
betrekking tot de Erdős-Gyárfás functie toegepast op Gallai-kleuringen, en het
regenboog Erdős-Rothschild probleem toegepast op arithmetische progressies
met drie termen.

Een van de fundamentele problemen in het onderzoek aan grafen met
een lijnkleuring richt zich op de existentie van mooie deelstructuren in een
lijngekleurde waardgraaf. De mooie deelstructuren waar we ons in dit proef-
schrift op richten zijn ofwel regenboog deelgrafen, ofwel monochromatische
deelgrafen, terwijl de waardgraaf in dit geval een volledige graaf is. Het
Gallai-Ramsey getal grk(G : H) is het kleinste gehele getal n waarvoor geldt
dat elke k-lijnkleuring van Kn ofwel een regenboog kopie van G bevat, ofwel
een monochromatische kopie van H. Dit concept kan opgevat worden als een
generalisatie van het klassieke Ramsey getal.

Eerder onderzoek aan Gallai-Ramsey getallen heeft zich hoofdzakelijk
gericht op het geval dat G een driehoek is. Een lijnkleuring van een volledige
graaf zonder regenboog driehoeken wordt wel een Gallai-kleuring genoemd,
als hommage aan Tibor Gallai voor zijn bewijs van een nu welbekend resultaat
over Gallai-partities van regenboog driehoekvrije kleuringen. In Hoofdstuk 2
en Hoofdstuk 3 bepalen we de exacte waarde van het Gallai-Ramsey getal
grk(K3 : H) voor verschillende keuzes van H, met name voor de graaf K4+ e
en alle samenhangende grafen op 5 punten en hooguit 6 lijnen. Er bestaan in
totaal 13 van die grafen. Voor 8 van die grafen zijn de Gallai-Ramsey getallen

149



150 Samenvatting

in eerder werk van anderen bepaald. In dit proefschrift worden de resterende
5 gevallen behandeld. Tevens leiden we exacte waarden en grenzen af voor
de Ramsey getallen en Gallai-Ramsey getallen voor een klasse van grafen met
een unieke cykel.

In Hoofdstuk 4 richten we ons op twee typen van extremaalproblemen
met betrekking tot Gallai-kleuringen. Het eerste type probleem draait om het
bepalen van het maximale aantal lijnen dat niet in een regenboog driehoek
of monochromatische kopie van H bevat is in een k-lijnkleuring van Kn. We
bepalen onder – en bovengrenzen voor dit aantal, met gebruikmaking van het
Regulariteitslemma van Szemerédi en een variant van het Gallai-Ramsey getal.
Het tweede type probleem staat bekend als het Gallai-Ramsey multipliciteits-
probleem. Voor n≥ grk(K3 : K3) bepalen we onder – en bovengrenzen voor
het minimale aantal monochromatische driehoeken in een Gallai-k-kleuring
van Kn. Tevens leiden we een aantal exacte waarden voor dit aantal af voor
specifieke waarden van k en n.

De Erdős-Gyárfás functie f (n, p, q) is gedefinieerd als het minimale aantal
kleuren in een lijnkleuring van Kn waarin elke Kp minstens q kleuren heeft.
Deze functie is ongeveer 45 jaar geleden ingevoerd door Erdős en Shelah
[58, 59], maar pas veel later echt tot zekere diepte bestudeerd door Erdős
and Gyárfás [62]. In Hoofdstuk 5 koppelen we de Erdős-Gyárfás functie
aan Gallai-kleuringen, en richten we ons op de functie g(n, p, q), te weten
het minimale aantal kleuren in een Gallai-kleuring van Kn waarin elke Kp

minstens q kleuren heeft. Met gebruikmaking van het anti-Ramsey getal van
K3 laten we zien dat g(n, p, q) alleen zinvol is voor 2≤ q ≤ p− 1. We leiden
een ondergrens af voor deze functie, en we bestuderen het verloop van deze
functie die gelijk is aan n− 1 als q = p− 1 en p ≥ 4, maar slechts Θ(log n) als
q = 2.

Laat n, k, m positieve getallen zijn met n� m� k, en laat G bestaan uit
de samenhangende grafen G waarvoor geldt dat er een k-samenhangende
monochromatische deelgraaf met tenminste n− f (G, k, m) punten bestaat in
elke regenboog G-vrije m-lijnkleuring van Kn, waarbij f (G, k, m) niet afhangt
van n. Fujita and Magnant [81] hebben bewezen dat G precies bestaat uit K3,
P6, P+4 en hun samenhangende deelgrafen. LaatH bestaan uit alle onsamen-
hangende grafen met de bovengenoemde eigenschap. In Hoofdstuk 6 laten
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we zien dat G ∪H precies bestaat uit P6, P3 ∪ P4, K2 ∪ P5, K2 ∪ 2P3, 2K2 ∪ K3,
2K2 ∪ P+4 , 3K2 ∪ K1,3 en al hun deelgrafen. We presenteren ook een voor-
waarde in termen van een verboden regenboog deelgraaf die impliceert dat
een lijngekleurde volledige bipartiete graaf een monochromatische deelgraaf
met een hoge samenhang heeft.

De regenboogvariant van het Erdős-Rothschild probleem houdt in welke
graaf op n punten het maximale aantal r-lijnkleuringen zonder een regenboog
kopie van H heeft. In Hoofdstuk 7 richten we ons op dit regenboog Erdős-
Rothschild probleem met betrekking tot arithmetische progressies met 3
termen. We bewijzen dat van alle deelverzamelingen van [n], [n] zelf het
maximale aantal r-kleuringen bevat die vrij zijn van regenboog arithmeti-
sche progressies met 3 termen. Tevens bepalen we het asymptotische aantal
van dergelijke r-kleuringen, en we laten zien dat de typische kleuringen
2-kleuringen zijn. Tot slot bepalen we het exacte aantal van dergelijke r-
kleuringen voor Zp, de cyclische groep van orde p waarbij p een priemgetal
is. We gebruiken in dit laatste hoofdstuk een bewijstechniek die gebaseerd is
op de Hypergraaf Containermethode die onafhankelijk door Balogh-Morris-
Samotij [15] en Saxton-Thomason [160] ontwikkeld is.

Naast de bovengenoemde resultaten bevat dit proefschrift verscheidene
problemen en vermoedens die tot op heden onopgelost zijn gebleven. Eén
van de drijvende problemen in dit gebied is het bepalen van de Gallai-Ramsey
getallen van volledige grafen (zie Conjecture 1.1). Dit probleem is verwant
aan de klassieke Ramsey getallen voor 2-kleuringen van volledige grafen, en
tevens aan het vermoeden van Erdős-Hajnal voor meerdere kleuren. Een
ander belangrijk probleem betreft het bepalen in welke mate klassieke ex-
tremaalproblemen worden beïnvloed door de bijkomende voorwaarde op
regenboog driehoeken, bijvoorbeeld in het geval van het veelkleurige Ramsey
getal en de Erdős-Gyárfás functie. Hoewel we in Sectie 3.4 en Sectie 5.9 van
het proefschrift enkele vergelijkingen en analyses op dit gebied verschaffen,
zou een dieper onderzoek wellicht zijn vruchten kunnen afwerpen.
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[105] R. Katić, C. Magnant and P.S. Nowbandegani, Forbidden properly edge-
colored subgraphs that force large highly connected monochromatic
subgraphs, Graphs Combin. 33 (2017), 969–979.

[106] G.O.H. Katona, C. Magnant, Y.P. Mao and Z. Wang, Gallai Ramsey
number for double stars, arXiv:2001.02789v1, (2020).

[107] P. Keevash and B. Sudakov, On the number of edges not covered by
monochromatic copies of a fixed graph, J. Combin. Theory Ser. B 90
(2004), 41–53.

[108] J. Komlós and M. Simonovits, Szemerédi’s Regularity Lemma and its
applications in graph theory, in: Combinatorics, Paul Erdős is Eighty, Vol.
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