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Abstract

We examine the implications of various structural restrictions on the com-

putational complexity of three central problems of theoretical computer science

(colourability, independent set and satisfiability), and their relatives. All problems

we study are generally NP-hard and they remain NP-hard under various restrictions.

Finding the greatest possible restrictions under which a problem is computationally

difficult is important for a number of reasons. Firstly, this can make it easier to

establish the NP-hardness of new problems by allowing easier transformations. Sec-

ondly, this can help clarify the boundary between tractable and intractable instances

of the problem.

Typically an NP-hard graph problem admits an infinite sequence of narrow-

ing families of graphs for which the problem remains NP-hard. We obtain a num-

ber of such results; each of these implies necessary conditions for polynomial-time

solvability of the respective problem in restricted graph classes. We also identify

a number of classes for which these conditions are sufficient and describe explicit

algorithms that solve the problem in polynomial time in those classes. For the

satisfiability problem we use the language of graph theory to discover the very first

boundary property, i.e. a property that separates tractable and intractable instances

of the problem. Whether this property is unique remains a big open problem.
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Chapter 1

Introduction

In 1996, the American Mathematical Society published a volume of research papers

originally presented as part of the Second DIMACS1 Implementation Challenge. The

Challenge began in September 1992, and culminated in a three-day workshop held

at the DIMACS Center at Rutgers University in October, 1993. The volume con-

tains 28 of the papers presented at the workshop under the common title “Cliques,

coloring and satisfiability” [8]. These are three central problems of combinatorial

optimization and theoretical computer science that are of fundamental importance

from both a practical and theoretical point of view.

The practical importance of these problems is due to the fact that they

find numerous applications across various fields. For instance, graph colouring is

often used in scheduling algorithms. The problem of finding maximum cliques is at

the heart of any clustering algorithm and finds applications in bioinformatics [9],

computer vision and pattern recognition [10], while SAT-solvers are central tools in

artificial intelligence, software testing [11], etc.

Developing our understanding of these problems is also of great theoretical

importance. The universe of computational problems is a deep and beautiful one.

The class of NP-complete problems, to which each of the titular problems belongs, is

a vital part of our understanding of that universe. This class is sometimes thought of

as being “at least as difficult” as any problem in NP. Indeed, any problem in NP may

be reduced to an NP-complete problem, and thus knowledge about such problems

may lead to an answer to the most famous problem in theoretical computer science,

i.e. whether or not P and NP coincide. Each of the three main problems considered

in this thesis remains difficult under substantial restrictions on the input instance.

1DIMACS – The Center for Discrete Mathematics and Theoretical Computer Science – is a
collaboration between Rutgers University, Princeton University, and the research firms AT&T, Bell
Labs, Applied Communication Sciences , and NEC.
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On the other hand, for each of them there are restrictions under which the problem

becomes polynomial-time solvable. The goal of this thesis is to analyse how the

structure of the input instances influences the complexity of solving the problems.

In other words, the goal is to identify restrictions under which the problems either

remain NP-complete or can be solved in polynomial time.

For the graph theory problems we study restrictions given in the form of

forbidden induced subgraphs. For satisfiability, we develop a similar approach

by associating a graph with each instance of the problem.

A graph properties (or class of graphs) admits a description in terms of for-

bidden induced subgraphs if and only it is closed under vertex deletion. In other

words, every induced subgraph of a graph in the class is also in the class. These prop-

erties are known as hereditary properties. The world of hereditary properties is rich

and contains many classes of theoretical or practical importance, such as chordal,

bipartite, planar, perfect, interval, comparability graphs, etc. All these classes have

been defined in different terms, but all of them admit a uniform description in terms

of forbidden induced subgraphs.

The induced subgraph characterization is a useful tool for considering inclu-

sion relationships between hereditary classes of graphs. It is not difficult to see that

a hereditary class X contains a hereditary class Y if and only if every graph which

is forbidden for X contains an induced subgraph which is forbidden for Y . Showing

that, for example, a bipartite graph is a perfect graph is therefore a simple task.

Such results might otherwise be very difficult to obtain, and the tools used might

be clumsy and ad hoc. Indeed, in 1969, the Journal of Combinatorial Theory pub-

lished a paper entitled “An interval graph is a comparability graph” [12]. One year

later, the same journal published another paper entitled “An interval graph is not a

comparability graph” [13]. Both the interval graphs and the comparability graphs

form hereditary classes. Apparently, in 1969 the induced subgraph characterization

was not available for at least one of them. Nowadays, it is available for both classes.

This example shows that the problem of finding the set of minimal forbidden

induced subgraphs for a hereditary class X is an important task. However, this

problem is generally far from being trivial. For instance, for the class of perfect

graphs this problem was open for several decades [14].

The induced subgraph characterization is also important because it provides

a systematic way to study various problems on hereditary classes. When we look at a

particular problem from the NP-complete side, we want to identify the best possible

restrictions under which the problem remains NP-complete by extending the list of

forbidden induced subgraphs. In a sense, we want to identify “minimal difficult”
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classes. The role of such classes is as important as the role of minimal forbidden

induced subgraphs. The difficulty is that such classes may not exist and typically

an NP-complete problem admits an infinite narrowing sequence X1 ⊃ X2 ⊃ . . . of

hereditary classes each of which is difficult for the problem. This information is also

valuable, because it suggests that if we want to identify a polynomially solvable case

for the problem, we need to exclude (forbid) a graph from each class of the sequence

X1 ⊃ X2 ⊃ . . . Moreover, if we want to develop a polynomial-time algorithm in a

hereditary class Y defined by finitely many forbidden induced subgraphs, we need

to exclude a graph from the intersection of all classes in the sequence X1 ⊃ X2 ⊃ . . .
This intersection is called a limit class and a minimal limit class is called a boundary

class for the problem. The importance of this notion is due to the fact that an

NP-complete problem is polynomial-time solvable in a hereditary class Y defined

by finitely many forbidden induced subgraphs if and only if Y does not contain

any boundary class for the problem. However, identifying boundary classes is even

harder than identifying minimal forbidden induced subgraphs for a hereditary class.

Therefore, in some cases we restrict ourselves to the weaker task of identifying limit

classes. For a general discussion of boundary properties of graphs and a short survey

of related results, see [15]

We apply this approach to several NP-complete problems closely related to

cliques, colouring and satisfiability. We start by looking at two problems related to

vertex colouring in Part 1 of the dissertation. In particular, we identify several limit

classes and several polynomially solvable cases for vertex 3-colourability. In Part

2, we switch to independent sets, which is the notion complement to cliques. The

reason we study independent sets instead of cliques is that they provide a more con-

venient language to describe restrictions in terms of forbidden induced subgraphs.

In this part, we deal with the maximum independent set problem, some of its

generalizations (maximum sparse regular induced subgraphs), and minimum

maximal independent set (also known as independent domination). The

latter problem restricted to the class of so-called SAT-graphs is equivalent to sat-

isfiability. We switch to this problem in Part 3 of the dissertation, where we use

the language of graph theory in order to identify the first boundary property for the

satisfiability problem, and as a corollary, a boundary property for independent

domination.
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1.1 Definitions and Notation

Graph Theory

All graphs in this dissertation are finite, simple graphs. The vertex set of a graph

G is denoted V (G) and the edge set E(G).

If there is an edge between vertices u and v, we say they are adjacent or

neighbours, and non-adjacent or non-neighbours otherwise. The set of all vertices

adjacent to v is called the neighbourhood of v, denoted by N(v). The degree of a

vertex, d(v), is the size of its neighbourhood. The antineighbourhood of a v is the

set of vertices outside v which are non-adjacent to v, and is denoted A(v). For a

given set of vertices U , we define NU (v) and AU (v) to be the intersection of U with

the neighbourhood and antineighbourhood of v respectively. The neighbourhood of

U is the union of the neighbourhoods of its members, and its antineighbourhood is

the union of the antineighbourhoods of its members in V (G) \ U . If X,Y are sets

of vertices in a graph G, and every member of Y is in N(X), then X is said to

dominate Y .

A path between two vertices u, v in a graphG is a set of vertices {u, x1, x2, . . . ,

xk−1, v} such that E(G) includes the edges ux1, xi, xi+1, xk−1v. We sometimes refer

to such a path as a u − v path and we say it has length k. The distance from u to

v, denoted d(u, v), is the length of a shortest path between them and those vertices

at distance k from u are sometimes called the k-neighbourhood of u. If u and v are

adjacent, {u, v} is a u − v path and the distance between them is 1. The distance

between two sets of vertices U1, Y2 ⊆ V (G) is the minimum shortest u1 − u2 path

for u1 ∈ U1, u2 ∈ U2. If there is a path between any two vertices in G, we say that

G is connected.

Two graphs G1, G2 are said to be isomorphic if there is a bijection φ between

their vertex sets that preserves edges. In other words uv ∈ E(G1) if and only if

φ(u)φ(v) ∈ E(G2).

A subgraph of G is a subset of the vertices and edges of G, and is said to be

induced by a set of vertices U if it can be obtained from G by deleting the vertices

outside U and their incident edges. We denote such a subgraph by G[U ]. If G

contains no induced subgraphs isomorphic to a graph in a set M , we say that G is

M -free. The complement of G, denoted Ḡ, has the same vertex set as G and with

uv ∈ E(Ḡ) if and only if uv /∈ E(G).

If every pair of vertices in U is adjacent, we call U a clique of G. If no two

vertices in U are adjacent, then U is an independent set of G. A graph is bipartite

if it can be partitioned into two independent sets, and complete bipartite if every
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possible edge between those two parts is in the graph.

As usual, Pn, Cn and Kn stand, respectively, for a chordless path, a chordless

cycle and a complete graph on n vertices. Kn,m is the complete bipartite graph

with parts of size n and m. A wheel Wn is obtained from a cycle Cn by adding a

dominating vertex, i.e. a vertex adjacent to every vertex of the cycle. A forest is a

graph with no cycles and a tree is a connected forest.

The disjoint union of two graphs G1, G2 is the graph G with V (G) = V (G1)∪
V (G2) and E(G) = E(G1) ∪ E(G2), and is denoted G1 + G2. The disjoint union

of a graph G and itself is denoted 2G and this notation is extended to the disjoint

union of m copies of G, denoted mG.

For positive integers i, j, k, the graph Si,j,k is the tree with three leaves,

at distance i, j and k from the unique vertex of degree 3. For example, S1,1,1 is

isomorphic to K1,3 The value of i, j or k may be 0, in which case Si,j,k is just a

path. The class of graphs whose every connected component is of the form Si,j,k is

denoted S. This class is important and appears a number of times in this thesis.

For some particular graphs we use special names:

• a claw is K1,3;

• a triangle is a K3;

• a diamond is the graph obtained from K4 by removing one edge;

• a butterfly is two triangles sharing a vertex.

For positive integers i, j, k, the graph Si,j,k is the tree with three leaves, at

distance i, j and k from the unique vertex of degree 3. For example, S1,1,1 is a claw

or K1,3 The value of i, j or k may be 0, in which case Si,j,k is just a path. The class

of graphs whose every connected component is of the form Si,j,k is denoted S. This

class is important and appears a number of times in this thesis.

A vertex v is said to distinguish a set of vertices U if it has at least one

neighbour and one non-neighbour in U . A set of vertices M in G that is not

distinguished by any vertex in V (G) \M is called a module. Clearly a single vertex

is a module, as is the empty set and the set of all vertices in a graph. These are

called trivial modules, all other modules are said to be non-trivial. A graph whose

every module is trivial is a prime graph.

A graph every vertex of which has degree k is k-regular, the set of regular

graphs is the union of the k-regular graphs for all values of k. A 1-regular (induced)

subgraph is called an (induced) matching.
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A tree decomposition of a graph G = (V,E) is a pair (T,X ) consisting of a

tree T = (I, F ) and a collection of subsets of the graph’s vertex set X = {Xi : i ∈
I, Xi ⊆ V } such that

•
⋃
i∈I Xi = V ,

• for every e = {u, v} ∈ E, there exists an i ∈ I such that u, v ∈ Xi, and

• for every v ∈ V , the subgraph of T induced by {Xi ∈ X : v ∈ Xi} is a tree.

The width of a tree decomposition (T,X ) is w((T,X )) = max{|Xi| : i ∈ I}− 1. The

tree-width of a graph G, tw(G), is the minimum width of a tree decomposition of G.

Graphs of tree-width 0 are precisely the edgeless graphs, and graphs of tree-width

at most 1 are forests. We refer to [16] for an excellent tutorial on tree-width.

The clique-width of a graph G is the minimum number of labels needed to

construct G using the following four operations:

1. Creating a new vertex v with label i (denoted by i(v)).

2. Taking the disjoint union of two labelled graphs G and H (denoted by G⊕H).

3. Joining each vertex with label i to each vertex with label j for i 6= j (denoted

by ηi,j).

4. Renaming label i to j (denoted by ρi→j).

An intuitive understanding of the tree-width parameter is that it measures

how “tree-like” a graph is. This author knows no similar visualisation of clique-

width. However, a graph class where either parameter is bounded has a simple

structure in some sense. Often, restricting a problem to such graph classes yields

an efficient solution.

Algorithms and Complexity

Here, we briefly outline the basic definitions and concepts necessary to understand

the results of this thesis. For a full treatment of the topic see e.g. [17].

In this thesis, a problem is a mathematical question to be answered, along

with a description of the variables involved in the question (input), and a description

of the properties that the answer must have (output). Many of the problems we

consider in this thesis are decision problems, in other words the answer is either yes

or no. An instance of a problem is obtained by specifying values for the variables

of the problem. An algorithm is a set of instructions for solving a problem. An

6



algorithm is only said to solve a problem Π if it can be applied to any instance I of

Π and always produce a correct output or solution.

In general, we wish to find the “fastest” algorithm to solve a given problem.

We define the running time of an algorithm to be the number of elementary opera-

tions the algorithm makes as a function of the size of the input, usually denoted n.

We say an algorithm runs in polynomial time if its running time is bounded by a

polynomial in n. We say that a problem is polynomially solvable if an algorithm

exists which solves the problem in polynomial time. The class of polynomially solv-

able decision problems is usually denoted P. Informally, we think of problems that

are in P as “easy” to solve. In other words, an algorithm that runs in polynomial

time is considered “efficient”. If no such algorithm exists, we consider the problem

to be “hard”.

The other main class we consider in this thesis is denoted NP and is intuitively

thought of as the class of decision problems whose “yes” answers can be checked

efficiently. More formally, a decision problem Π is in NP if each instance I for which

the correct answer is “yes” admits a proof of this answer that can be verified in

polynomial time. For example, consider the problem whose input is a graph G and

whose output should be “yes” or “no” in answer to the question “does G contain an

independent set of size k”. This problem is in NP because, if the answer is “yes”,

specifying the independent set would constitute such a proof.

In order to compare the complexity of solving problems more formally, we

introduce the notion of reduction between problems. A polynomial time reduction

from a problem Π1 to a problem Π2 is an algorithm which solves Π1 in polynomial

time, given polynomially many uses of a hypothetical algorithm that solves Π2

called an oracle. If Π1 can be reduced to Π2, then any polynomial time algorithm

that solves Π2 can be converted to a polynomial time algorithm that solves Π1.

Informally, we think of Π2 as being “at least as hard” as Π1. A problem Π is hard

for a complexity class C if every problem in C may be reduced to Π in polynomial

time. The class of such problems is denoted C-hard. If Π is itself in C, it is said

to be complete for the class C, or C-complete. Many of the problems considered in

this thesis are NP-complete, and these problems are thought of as the “hardest”

problems in NP.

There is no known proof that NP contains any problem that is not in P. In

other words it may be the case that efficiently checkable problems are also efficiently

solvable problems. as we’ve mentioned, this is one of the most famous open problems

in computer science, sometimes called the P vs. NP problem.
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Part I

Colouring

and

Related Problems
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Introduction

Many graph problems fall into the broad category of colouring problems. The main

problem in this category is vertex colouring. We say that a colouring of the ver-

tices of a graph is proper if no two adjacent vertices have the same colour. Vertex

colouring is the problem of finding a proper colouring with the minimum number

of colours.

One may also consider colouring the edges of a graph in a similar manner.

A total colouring is a colouring of both the vertices and edges of the graph. Edge

and total colourings of a graph G are equivalent to colouring the vertices of special

graphs obtained from G. The line graph L(G) has a vertex for each edge of G and

an edge between two vertices if and only if the corresponding edges of G share an

endpoint. Clearly colouring the vertices of L(G) corresponds exactly to colouring

the edges of G. The total graph T (G) can be defined in a similar manner, i.e. for

each vertex or edge in G there is a vertex in T (G), with an edge in T (G) for each

vertex-vertex, edge-edge and edge-vertex adjacency in G. Famously, the faces of any

planar graph may be coloured with four colours so that two faces sharing an edge

have different colours. This is equivalent to colouring the vertices of the dual of a

plane graph G, whose vertex set is the faces of G, with an edge between two vertices

if the corresponding faces share an edge. One may also consider a list colouring,

that is a colouring of the vertices of a graph where each vertex is restricted to some

finite list of colours.

In this thesis we use the language of vertex colouring. The problem of decid-

ing whether there exists a proper colouring of G using at most k colours is known

as the k-colourability problem. It was one of Karp’s 21 NP-complete problems

given in [18], and was in fact the first to be mentioned in the introduction to that

seminal paper. It remains a difficult problem under a variety of substantial restric-

tions, and yet in some cases efficient solutions are known, i.e. a polynomial time

algorithm exists to solve the problem.

For example, 3-colourability is known to be NP-complete even for graphs

9



of vertex degree at most four, but for graphs of vertex degree at most 3, a polynomial

time solution exists (the complexity gap is made more precise in [19]). The problem

can also be solved efficiently for locally connected graphs [20].

Given the rich possibilities for research into such restrictions, it is hardly

surprising that colourability remains a central problem of graph theory and compu-

tational complexity theory. Indeed, a number of papers have recently investigated

restricting the problem to various classes of graphs defined by a set of forbidden

induced subgraphs, otherwise known as hereditary classes.

Maffray and Preissmann showed that, for k ≥ 4, k-colourability remains

NP-complete for triangle-free graphs, reducing from graphs of vertex degree at most

4 to triangle-free graphs of vertex degree at most 4, by replacing certain vertices

with a special gadget based on the Mycielski Graph [21].

A series of papers by Randerath gave a number of similarly framed results.

In [22], Randerath identified every pair of connected graphs A,B such that every

{A,B}-free graph is 3-colourable. Randerath, Schiermeyer and Tewes gave good

examples of different approaches to the problem of graph colouring in [23]. Firstly,

they gave structural analyses of certain hereditary classes of graphs. Then a struc-

tural analysis of only the non-perfect K4-free members of the considered graph class,

making use of Tucker’s polynomial solution for perfect K4-free graphs [24]. Finally,

they make use of a reformulation of 3-colourability in terms of propositional logic,

and also consider precolouring a special set and extending the colouring to the rest

of the graph.

In this part of the thesis, we study two problems related to vertex colouring.

One of them is 3-colourability. This problem is also closely related to a number of

partition problems. For example, the stable-Π partition problem asks if a graph

can be partitioned into an independent set and a graph in the class Π. If Π is the

class of all bipartite graphs, stable-Π partition coincides with 3-colourability, and

in that sense generalises the problem. In Chapter 3 we consider the dominating

induced matching problem, sometimes called efficient edge domination in

the literature. This problem can be formulated in a number of ways, for example one

might ask if a graph can be partitioned into an induced matching and an independent

set, and in this sense the problem is also a special case of stable-Π partition.

Alternatively, one could ask for a 3-colouring of the graph such that two colour

classes induce a matching, or a sort of 2-colouring in which every neighbour of a white

vertex is coloured black, and each black vertex has exactly one black neighbour.

10



Chapter 2

Vertex 3-Colourability in

Claw-free Graphs

2.1 Introduction

In an attempt to find the greatest restrictions under which colourability re-

mains NP-complete, we consider two types of restrictions. We restrict ourselves

to claw-free graphs, a class which has received considerable attention in the litera-

ture due to the many attractive properties of graphs in this class (see for example

[25, 26, 27, 28]). We also restrict ourselves to 3-colourability, which is minimal

in the sense that k-colourability is NP-complete for k ≥ 3, but there exists an

algorithm to solve 2-colourability which runs in polynomial time. The restriction

to claw-free graphs is also minimal in a certain sense. For any induced subgraph H

of a claw, 3-colourability can be solved in polynomial time in the class of H-free

graphs. On the other hand in the class of claw-free graphs, 3-colourability is

NP-complete. This is because the 3-colourability problem in claw-free graphs

includes, as a subproblem, edge 3-colourability of general graphs, i.e. the prob-

lem of determining whether the edges of a given graph can be assigned colours

from set {0, 1, 2} so that any two edges sharing a vertex receive different colours.

Indeed, by associating with a graph G its line graph L(G) (i.e. the graph with

V (L(G)) = E(G) and two vertices being adjacent in L(G) if and only if the re-

spective edges of G have a vertex in common), one can transform the question of

edge 3-colourability of G into the question of vertex 3-colourability of L(G). In

conjunction with the NP-completeness of edge 3-colourability [29], this implies

the NP-completeness of (vertex) 3-colourability of line graphs. It is known that

every line graph is claw-free. Moreover, the line graphs constitute a proper subclass
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of claw-free graphs, which can be characterized by 8 additional forbidden induced

subgraphs (see e.g. [30] for the complete list of minimal non-line graphs). In this

chapter we study the computational complexity of the problem in other subclasses

of claw-free graphs. First, we derive a necessary condition for the polynomial-time

solvability of the problem in such classes and then reveal several areas where this

condition becomes sufficient. In the remainder of this section we introduce and re-

call some notation, and define three operations on graphs with which we obtain our

results.
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Figure 2.1: The graphs T 1
i,j,k (left) and Φk (right)

By T 1
i,j,k and Φk we denote the graphs represented in Figure 2.1 on the left

and right, respectively. Note than each case the subscript values are non-negative,

for example T 1
0,0,0 is a triangle, and Φ0 is the so-called butterfly graph, obtained

from two triangles by joining them at a single vertex.

We can assume that every vertex has degree at least 3. Indeed, if v is a vertex

of G of degree less than three, then G has a 3-colouring if and only if the graph

obtained from G by deleting v has one. Moreover, whenever we deal with claw-free

graphs, we can restrict ourselves to graphs of vertex degree at most four. Indeed, it

is not difficult to verify that every graph with five vertices contains either a triangle

or its complement or a C5. Therefore, every graph with a vertex of degree five or

more contains either a K4 or a claw or W5. Since K4 and W5 are not 3-colourable,

we conclude that every claw-free graph, which is 3-colourable, has maximum vertex

degree at most 4.

Let us repeat that a diamond is the graph obtained from a K4 by deleting

an edge. Diamonds are of special interest in the vertex 3-colourability problem.

So we will introduce special terminology related to this graph. In a diamond, the

vertices of degree 3 will be called central and the vertices of degree 2 peripheral. If

a graph G contains a diamond D and if both central vertices of D have degree 3

in G (i.e. they do not have neighbours in G outside D), then we will call D a pure

12



diamond. If additionally both peripheral vertices of D have degree at most 3 in

G, then D will be called a perfect diamond. We also define two extensions of the

diamond, the gem and crystal, represented in Figure 2.2
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Figure 2.2: The diamond, gem and crystal graphs, left to right.

The importance of diamonds for the vertex 3-colourability problem is due

to the obvious fact that the peripheral vertices of any diamond have the same colour

in any 3-colouring of G, if G has any. This allows us to introduce the following three

operations.

The first of the operations is called diamond implantation and consists of

splitting the neighbourhood of a vertex v into two subsets, say A and B, replacing

v by two new vertices, say a and b, connecting a to each vertex in A, connecting b

to each vertex in B, and creating a diamond with peripheral vertices a and b (see

Figure 2.3 for an illustration). If we denote by G′ the graph obtained from G by

implanting a diamond, then clearly G′ is 3-colourable if and only if G is. Also, if G

is claw-free and both A and B are cliques, then G′ is claw-free too.
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Figure 2.3: Diamond implantation

The second operation is called pure diamond contraction and it is opposite to

diamond implantation. It consists of deleting the central vertices of a pure diamond

and identifying its peripheral vertices. In other words, this is the operation that

transforms the graph on the right of Figure 2.3 to the graph on the left. Again, it

is obvious that if G′ is the graph obtained from G by contracting a pure diamond,

then G′ is 3-colourable if and only if G is. Moreover, is is not difficult to see that if
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G is claw-free, then G′ also is claw-free.

The third operation is perfect diamond deletion. If a graph G contains a

perfect diamond D, then deletion of the vertices of D results in a graph which is

3-colourable if and only if G is, and which is claw-free if and only if G is.

Finally, we introduce one more useful transformation, which is shown in

Figure 2.4 and which is called triangle implantation. Clearly, if G′ is the graph

obtained from G by implanting a triangle into a triangle of G, then G′ is 3-colourable

if and only if G is.
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Figure 2.4: Triangle implantation

2.2 NP-completeness results

In this section we establish several results on the NP-completeness of the 3-colour-

ability problem in subclasses of claw-free graphs. We start by proving three lem-

mas. The first of them improves the following known fact: the 3-colourability

problem is NP-complete in the class of (claw,diamond)-free graphs of maximum

vertex degree at most four. Now we strengthen this result in the following way.

Denote

M1
k = {claw, diamond,K4, C4, C5, . . . , Ck}.

Lemma 1. For any natural k ≥ 4, the 3-colourability problem in the class of

M1
k -free graphs of maximum vertex degree at most four is NP-complete.

Proof. It is known that the edge 3-colourability problem is NP-complete in the

class of (C3, C4, C5, . . . , Ck)-free cubic graphs (i.e. graphs in which every vertex

has degree 3) for any natural k [31]. Colouring edges of a graph G is equivalent to

colouring vertices of L(G), the line graph of G. It is known that the line graph of

any graph is claw-free. Also, it is not difficult to see that if G is a C3-free cubic

graph, then L(G) is a (diamond,K4)-free regular graph of degree four. Finally, if G

is (C3, C4, C5, . . . , Ck)-free, then L(G) is (C4, C5, . . . , Ck)-free.

To prove our next two lemmas, we introduce the following notation. We

denote by Φ′k, Φ′′k, Φk,p the graphs represented in Figure 2.5.
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Figure 2.5: Graphs Φ′k, Φ′′k and Φk,p (from top to bottom)

Now we denote

M2
k = {claw, gem,K4, C4, C5, . . . , Ck,Φ

′
1,Φ

′
3, . . . ,Φ

′
2k+1,Φ

′′
0,Φ

′′
2, . . . ,Φ

′′
2k}.

Lemma 2. For any natural k ≥ 4, the 3-colourability problem is NP-complete

in the class of M2
k -free graphs of maximum vertex degree at most four.

Proof. We prove the lemma by a reduction from the same problem in the class

of (claw, gem, K4, C4, C5, . . . , Ck)-free graphs of maximum degree four, where the

problem is NP-complete by Lemma 1 (since Lemma 1 deals with a smaller class of

graphs).

Let G be a (claw, gem,K4, C4, C5, . . . , Ck)-free graph of maximum degree

four. It is not difficult to see that every diamond D in G is pure, i.e. the central

vertices of D have no neighbours in G outside D, since otherwise a claw, gem or K4

arises.

In polynomial time, we will transform G into an M2
k -free graph G∗ of degree

at most four, which is 3-colourable if and only if G is. Without loss of generality,

we will assume that G is connected and has no vertices of degree 1 or 2. We will

also assume that k is large enough, say k = 10. To describe the transformation, let

us introduce some terminology.

A triangle in G will be called branching if it is contained in an induced T 1
1,1,1

(see Figure 2.1 for the graph T 1
i,j,k). Taking into account the assumption that G has

no vertices of degree less than 3, it is not difficult to see that every triangle in G is
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either branching or is contained in a diamond, and that it is sufficient for a triangle

to be contained in an induced T 1
0,1,1 for it to be branching.

A vertex x of G will be called splittable if the neighbourhood of x can be

partitioned into two disjoint cliques with no edges between them. It is easy to see

that every vertex of a branching triangle is splittable, with one clique comprising of

the other vertices of the triangle.

Now we describe the transformation. Let T be a branching triangle and v a

vertex of T . We split the neighbourhood of v into two cliques A and B and apply

the diamond implantation k + 1 times, i.e. replace v with two new vertices a and

b, connect a to b by a chain of k + 1 diamonds, and connect a to every vertex in

A and connect b to every vertex in B. We apply this operation to every vertex

of every branching triangle of G and denote the resulting graph by G∗. It is not

difficult to see that G can be transformed into G∗ in polynomial time and that G∗

is 3-colourable if and only if G is.

Obviously, G∗ is (claw, gem,K4, C4, C5, . . . , Ck)-free, since diamond implan-

tation cannot create an induced claw, gem, or K4, and by applying diamond implan-

tation to a vertex v we increase the length of any cycle Cp with p ≥ 4 containing v.

Now let us show that G∗ is (Φ′′0,Φ
′′
1, . . . ,Φ

′′
2k)-free. Assume G∗ contains an in-

duced Φ′′t for some value of t. Clearly, both triangles in Φ′′t are branching. Therefore,

both of them belong to G, since during the transformation we did not introduce any

new branching triangle. Also, according to the transformation all triangles in the 2k-

neighbourhood of any branching triangle belong to implanted diamonds. Therefore,

the value of t must be strictly greater than 2k, i.e. G∗ is (Φ′′0,Φ
′′
1, . . . ,Φ

′′
2k)-free.

Similarly we show that G∗ is (Φ′1,Φ
′
3, . . . ,Φ

′
2k+1)-free. Indeed, let G∗ contain

an induced Φ′t and let T1 be the triangle of this Φ′t with a pendant edge and T0

the triangle without one. Clearly T1 is branching and therefore belongs to G. If

T0 is also branching, then the result follows as before. If T0 belongs to a diamond,

then its vertex meeting the path connecting it to T1 must be a peripheral vertex of

a diamond. On the other hand, we know that every vertex of an odd distance at

most 2k + 1 from T1 in G∗ is a central vertex of one of the implanted diamonds.

Therefore, G∗ cannot contain an induced Φ′t with an odd t ≤ 2k+1. This completes

the proof of the lemma.

Finally, we prove one more lemma for which we introduce one more notation:

M3
k = {claw, crystal,K4, C4, C5, . . . , Ck,Φ

′′
1,Φ

′′
2, . . . ,Φ

′′
k} ∪ {Φi,j : even i, j ≤ k}.
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Lemma 3. For any natural k ≥ 4, the 3-colourability problem is NP-complete

for M3
k -free graphs of maximum vertex degree at most four.

Proof. We reduce the problem from the class of M2
k -free graphs of degree at most

four. Let G be a graph in this class, and let G′ be obtained from G by im-

planting a triangle into each branching triangle. It is not difficult to see that

this operation does not create any of the following forbidden induced subgraphs:

{claw,K4, C4, C5, . . . , Ck}. It does create a gem, but not a crystal.

In order to see that G′ does not contain copies of Φ′′t for 1 ≤ t ≤ k, observe

that triangle implantation breaks every branching triangle into three new branching

triangles. We will call these three new branching triangles adjacent. Obviously, no

two adjacent branching triangles belong to the same induced Φ′′k, and the distance

between any two non-adjacent branching triangles is greater than k, since it was

greater than k in G. Therefore, G′ is (Φ′′1,Φ
′′
2, . . . ,Φ

′′
k)-free.

Finally, we show that G′ does not contain graphs in the set {Φi,j : i, j are

even and i, j ≤ k}. Let T be a branching triangle. Every vertex of T starts a branch

which we call an even branch if it contains a triangle which together with T create

a Φp-graph with an even p ≤ k. In G every branch of a branching triangle is even.

However, by implanting a triangle we change the parity of two branches. Therefore,

in G′ every branching triangle has only one even branch. Since the central triangle

in a Φi,j-graph is branching, we conclude that Φi,j-graphs with two even branches

are forbidden in G′.

To further strengthen the NP-completeness results, let us denote by

S1
k the class of M1

k -free graphs of maximum vertex degree at most four,

S2
k the class of M2

k -free graphs of maximum vertex degree at most four,

S3
k the class of M3

k -free graphs of maximum vertex degree at most four.

Also, with every graph G we associate the following three parameters: for i ∈
{1, 2, 3}, let κi(G) be the maximum k such that G ∈ Sik. If G belongs to no class

Sik, we define κi(G) to be 0, and if G belongs to all classes Sik, then κi(G) is defined

to be ∞. Also, for a set of graphs M , we define κi(M) = sup{κi(G) : G ∈M}.

Theorem 4. Let M be a set of graphs and X the class of M -free graphs of vertex

degree at most 4. If κi(M) < ∞ for any i ∈ {1, 2, 3}, then the 3-colourability

problem is NP-complete in the class X.
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Proof. Let i ∈ {1, 2, 3}. To prove the theorem, we will show that if κi(M) < ∞
then there is a k such that Sik ⊆ X. Denote k := κi(M) + 1 and let G belong to

Sik. Assume that G does not belong to X. Then G contains a graph A ∈ M as an

induced subgraph. From the choice of G we know that A belongs to Sik, but then

k ≤ κi(A) ≤ κi(M) < k, a contradiction. Therefore, G ∈ X and hence, Sik ⊆ X.

2.3 Polynomial-time results

We now proceed to polynomial-time results. Let M be a set of graphs. The results

of the previous section suggest that, unless P = NP , the 3-colourability problem

is polynomial-time solvable in the class of claw- and M -free graphs only if

κ1(M) is unbounded and κ2(M) is unbounded and κ3(M) is unbounded. (2.1)

In the present section, we identify several areas where condition 2.1 is sufficient for

polynomial-time solvability of the problem. First of all, let us reveal two major

ways to push the parameters κi(M) to infinity. In order to unbind κi(M) we need

to include in M a graph from the class Sik for each value of k. This is possible if

• either M contains infinitely many graphs, one for each value of k,

• or M includes a graph which belongs to classes Sik for all values of k, i.e. a

graph from the intersection
⋂
k≥4

Sik.

2.3.1 Infinitely many forbidden induced subgraphs

The chordality of a graph is the length of the largest chordless cycle. Therefore,

(Cp, Cp+1, . . .)-free graphs have chordality at most p − 1. It is not difficult to see

that for each value of p the set {Cp, Cp+1, . . .} satisfies the necessary condition 2.1

for polynomial-time solvability of the 3-colourability problem in subclasses of

claw-free graphs. Now let us show that boundedness of the chordality is also a

sufficient condition.

Theorem 5. For each value of p, the 3-colourability problem is polynomial-time

solvable in the class of claw-free graphs of chordality at most p.

Proof. Let G be a claw-free graph of chordality at most p. If the maximum vertex

degree of G is more than 4, then G is not 3-colourable. Therefore, we assume that the

vertex degree is bounded by 4 in G. It is known [32] that for each d and p there is a

number f(d, p) such that the tree-width of graphs of degree at most d and chordality
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at most p is at most f(d, p). Therefore, G is of bounded tree-width and hence is

of bounded clique-width. According to [33] for each fixed k, the k-colourability

problem is polynomial-time solvable for graphs of bounded clique-width.

One more way to satisfy condition 2.1 by infinitely many subgraphs is to in-

clude in the set M of forbidden graphs large graphs of the form Φk , i.e. Φk,Φk+1, . . .

for some value of k. Let us show that this way also leads to a polynomially-solvable

case.

Theorem 6. For each value of k, the 3-colourability problem is polynomial-time

solvable in the class of (claw,Φk,Φk+1, . . .)-free graphs.

Proof. Again we assume that a (claw,Φk,Φk+1, . . .)-free graph G is of degree at most

4, since otherwise it is not 3-colourable. We also assume without loss of generality

that G is connected. If G contains no triangle then the maximum vertex degree is at

most 2 since G is claw-free. In this case the problem is trivial (and G is of bounded

tree- and clique-width). Now assume G contains a triangle. Then the set of vertices

of G of distance at least k + 2 from the triangle must be K3-free, since otherwise a

Φt with t ≥ k arises (due to connectedness of G). Therefore, the set of vertices of

G of distance at least k + 2 from the triangle induces a graph of bounded tree- and

clique-width. As a result, we conclude that G is of bounded tree- and clique-width,

because there are only finitely many vertices of G of distance at most k + 1 from

the triangle (as the degree of G is bounded). Thus, the problem is polynomial-time

solvable for G.

2.3.2 Finitely many forbidden induced subgraphs

In the rest of this chapter we prove several polynomial-time results for subclasses of

claw-free graphs with special emphasis on subclasses defined by additionally forbid-

ding a single induced subgraph H, in which case H must belong to the intersection

of all three classes S1,S2 and S3, since otherwise the problem is NP-complete. The

structure of graphs in this intersection is characterized in the following theorem,

where by T∆
i,j,k we denote the graph represented in Figure 2.6 (left).

Theorem 7. A graph G is in the intersection S1 ∩ S2 ∩ S3 if and only if each of

its connected components is either a Φi with an odd i or a T∆
i,j,k with an even i or

an induced subgraph of one of these two graphs.

Proof. In order to prove this theorem let us recall the forbidden induced subgraphs

of S1,S2 and S3.
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Figure 2.6: The graph T∆
i,j,k (left) and the graph T 3∆

i,j,k

S1 ⊂ Free({claw,diamond,K4} ∪ {Ck : k ≥ 4})

S2 ⊂ Free({claw, gem,K4} ∪ {Ck : k ≥ 4} ∪ {Φ′i : odd i} ∪ {Φ′′i : even i})

S3 ⊂ Free({claw, crystal,K4} ∪ {Ck : k ≥ 4} ∪ {Φ′′i : i ≥ 0} ∪ {Φi,j : even i, j})

It is easy to check that the graphs Φi for odd i and T∆
i,j,k for even i do not

contain any of the graphs listed above as induced subgraphs. Therefore if every

connected component of a graph G is a Φi with an odd i or a T∆
i,j,k with an even

i or an induced subgraph of one of these two graphs, then G is in the intersection.

Now let us show the reverse inclusion.

Clearly, every graph in the intersection S1 ∩ S2 ∩ S3 is diamond-free, since

every graph in S1 is diamond-free. It is not difficult to see that every connected

diamond-free graph in S2 is of the form T 3∆
i,j,k represented in Figure 2.6 with all three

indices i, j, k being even or an induced subgraph of a graph of this form. Similarly,

every connected diamond-free graph in S3 is of the form T 3∆
i,j,k with at most one

index being even.

Let G be a connected diamond-free graph belonging both to S2 and to S3.

If G contains no induced Φi with an odd i, then clearly G is of the form T∆
i,j,k or an

induced subgraph of a graph of this form.

Now assume G contains an induced subgraph H isomorphic to Φi with an

odd i. Since G belongs to S2, it is of the form T 3∆
i,j,k with i, j, k even or an induced
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subgraph of a graph of this form. Therefore, neither of the triangles of H is the

central triangle of T 3∆
i,j,k. If G contains at least one more triangle (except those

contained in H), then it must contain an induced Φk,p with even k and p (see

Figure 2.5). But then G does not belong to S3. This contradiction shows that G

coincides with H = Φi.

According to this theorem and the results of the preceding section, the 3-

colourability problem in a class of (claw, H)-free graphs is solvable in polynomial

time only if H contains at most two triangles in each of its connected components.

The case of one triangle in each component of H is solved in polynomial time by

combining the following two facts:

• if H is a graph every connected component of which is of the form T 1
i,j,k, then

the clique-width of (claw, H)-free graphs of bounded vertex degree is bounded

by a constant [34],

• the k-colourability problem on graphs of bounded clique-width is solvable in

polynomial time [33].

In the case of two triangles in the same connected component of H there are only

two results available in the literature. One of them deals with the class of (claw, H)-

free graphs, where H = Φ0 = T∆
0,0,0. A polynomial-time solution for the problem

in this class was presented in [23]. Unfortunately, the authors of [23] did not claim

any time complexity for their solution. A linear-time algorithm for this class was

also presented in [35]. Moreover, in [35] the polynomial-time solvability of the

problem was extended from (claw, T∆
0,0,0)-free graphs to (claw, T∆

0,0,k)-free graph for

an arbitrary value of k. Below we extend this short list of polynomially solvable

cases by two new classes of (claw, H)-free graphs with H containing two triangles

in the same connected component.

2.3.2.1 (claw,Φ1)-free graphs

We start with the following two technical lemmas.

Lemma 8. If G is a (claw,Φ1)-free graph containing a pure diamond, then the graph

obtained from G by contracting the diamond is also (claw,Φ1)-free. Moreover, the

new graph is 3-colourable if and only if G is.

Proof. Let G contain a pure diamond D induced by vertices a, b, c, d with b and

c being the central vertices of D. The operation of contraction of D consists in
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deletion of vertices b and c and identification of vertices a and d. We denote the

vertex obtained by identifying a and d by ad and the resulting graph by G′.

If G′ contains an induced copy of one of the forbidden graphs claw or Φ1,

then vertex ad must belong to this copy. Moreover, it is not difficult to see that ad

must be a vertex of degree 3 in the copy. But then either a or d is a vertex of degree

3 in an induced copy of a claw or Φ1 in the graph G. This contradiction shows

that G′ is (claw,Φ1)-free. Since the peripheral vertices in any induced diamond

must have the same colour in any 3-colouring of the graph, we conclude that G′ is

3-colourable if and only if G is.

Lemma 9. Let G be a connected (claw,Φ1)-free graph such that

(1) G contains no K4,

(2) G contains no pure diamond,

(3) G contains a chordless cycle Ck with k > 10,

(4) 3 ≤ deg(v) ≤ 4 for every vertex v ∈ V (G),

then every vertex of G not in C which has a neighbour on C is adjacent to exactly

two consecutive vertices of the cycle.

Proof. Denote the vertices of C by u0, u1, . . . , uk−1. Let v be a vertex outside C with

a neighbour on C, say v is adjacent to u1. To avoid the claw induced by u0, u1, u2, v,

we conclude that v has a neighbour in {u0, u2}, say v is adjacent to u2. If v has no

other neighbours on C, we are done. So, assume v has more neighbours on C. We

split the analysis into two cases according to the number of neighbours of v on C.

Case 1: v has three neighbours on C. Denote the third neighbour by ui. If

neither i = 0 nor i = 3, then ui is the centre of the claw induced by ui−1, ui, ui+1, v,

a contradiction. Therefore, assume without loss of generality that i = 3. To avoid

a pure diamond induced by v, u1, u2, u3 we conclude without loss of generality that

u2 has a neighbour w, and to avoid the claw induced by w, u1, u2, u3 we conclude

without loss of generality that w is adjacent to u3. Since G is K4-free, vertex w

cannot be adjacent to v. Therefore, w is adjacent to u4, since otherwise the vertices

u3, u4, v, w induce a claw in G, and hence w is not adjacent to u0, since otherwise

the vertices w, u0, u2, u4 induce a claw in G.

Since deg(u0) > 2, we may consider a neighbour x of u0. Then x is different

from v, since v has only three neighbours on C by our assumption, and x is different

from w, since otherwise w, u0, u2, u4 induce a claw. We also know that x is not

adjacent to u2 or u3, since otherwise u2 or u3 have degree more than 4.
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Assume first that x is not adjacent to u1. Then x must be adjacent to uk−1

to avoid the claw induced by u0, uk−1, u1, x. But then G contains Φ1 induced either

by x, uk−1, u0, u1, u2, v (if x is not adjacent to v) or by uk−1, u0, x, v, u2, u3 (if x is

adjacent to v), which is a contradiction.

Assume now that x is adjacent to u1. If x is not adjacent to w, then vertices

x, u0, u1, u2, u3, w induce a Φ1, a contradiction. If x is adjacent to w, then it must

also be adjacent to u4 (to avoid the claw induced by w, x, u2, u4), and consequently,

x must be adjacent to u5 (to avoid the claw induced by u4, u3, u5, x), but then x has

degree more than 4. This final contradiction completes the proof of Case 1.

Case 2: v has four neighbours on C. It is not difficult to see that v must be

adjacent to two pairs of consecutive vertices of C, since otherwise a claw arises.

Case 2.1: Assume first that v is adjacent to two sets of two consecutive

vertices, separated by a single vertex, say u1, u2, u4, u5. Since deg(u6) > 2, we know

that u6 must have a third neighbour, say w.

Case 2.1.1: Assume w is not adjacent to u5. Then it must be adjacent to

u7 to avoid a claw centred at u6. Also, w must be adjacent to u4 (to avoid the Φ1

induced by v, u4, u5, u6, u7, w) and hence to u3 (to avoid a claw). Now we consider

the vertex u8 which also must have a third neighbour, say x. This neighbour must

be different from w, since w already has four neighbours.

Case 2.1.1.1: Assume x is not adjacent to u7. Then it must be adjacent to u9

(to avoid a claw), which implies it must be adjacent to u6 (to avoid the Φ1 induced

by w, u6, u7, u8, u9, x), and to u5 (again to avoid a claw). But now v, u4, u5, x, u8, u9

induce a Φ1, a contradiction.

Case 2.1.1.2: Suppose x is adjacent to u7. Since u4 is of degree 4, we conclude

that x is adjacent to u3 (to avoid the Φ1 induced by u3, u4, w, u7, u8, x) and hence

to u2 (to avoid a claw). But now v, u1, u2, x, u7, u8 induce a Φ1. This contradiction

completes the proof of Case 2.1.1

Case 2.1.2: Assume w is adjacent to u5. To avoid the Φ1 induced by

u1, u2, v, u5, u6, w, we conclude that w has a neighbour in {u1, u2}. Since w must

have four neighbours on C which are two pairs of consecutive vertices of C, we know

that w has no neighbours outside the cycle and that w is not adjacent to u7. There-

fore, any third neighbour x of u7 is different from w. Then x is adjacent to u6, since

otherwise x must be adjacent to u8 (to avoid a claw) in which case w, u5, u6, u7, u8, x

induce a Φ1. Now we conclude that x is adjacent to u4 (to avoid a Φ1 induced by

v, u4, u5, u6, u7, x) and hence to u3 (to avoid a claw).
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We know that w must have two consecutive neighbours on C one of which is

from {u1, u2}. If the second of these two neighbours is different from u3, then these

neighbours together with w, u6, u7, x induce a Φ1. Therefore, we must conclude that

w is adjacent to u2, u3.

To complete the proof of this case, we consider a third neighbour z of u0,

which is clearly different from v, w, x since all of them have degree 4. By analogy

with Case 2.1.1 (i.e. by symmetry with vertex w) we conclude that z is adjacent to

u1. Also, since u4 and u5 have degree 4 already, we know that z is not adjacent to

u4 and u5. But then z, u0, u1, v, u4, u5 induced a Φ1. This contradiction completes

the proof of Case 2.1.2, and hence of Case 2.1.

Case 2.2: Assume now that v is adjacent to two sets of two consecutive

vertices, say u1, u2, uj , uj+1, such that C contains at least two vertices between u2

and uj and at least two vertices between uj+1 and u1. Without loss of generality we

will assume that the path connecting u2 to uj is not shorter than the path connecting

uj+1 to u1 on the cycle. This implies in particular that j ≥ 7. Now consider the

vertex u3, which must have some neighbour not on the cycle, say w.

Case 2.2.1: Assume w is not adjacent to u2. Then it must be adjacent

to u4 to avoid a claw. Therefore, it is adjacent to u1 (to avoid a Φ1 induced by

v, u1, u2, u3, u4, w) and hence to u0 (again to avoid a claw). But now the neighbour-

hood of w satisfies conditions of Case 2.1, which is impossible.

Case 2.2.2: Suppose w is adjacent to u2. In order to avoid the Φ1 induced

by w, u3, u2, v, uj , uj+1, we conclude that vertex w must have two more consecu-

tive neighbours on C at least one of which must belong to {uj , uj+1}. This implies

in particular that any third neighbour x of u0 must be different from w. Also by

symmetry with w we conclude that x is adjacent to u1 and has two more consec-

utive neighbours on C at least one of which must belong to {uj , uj+1}. But then

x, u0, u1, u2, u3, w induce a Φ1 in G. This contradiction completes the proof of Case

2.2.2, and hence of Case 2.2.

Case 2.3: Assume that all four neighbours of v are consecutive on the cycle,

say v is adjacent to u1, u2, u3, u4. Since deg(u5) > 2, vertex u5 must have some

other neighbour outside the cycle, say w.

Case 2.3.1: Assume w is not adjacent to u4. Then it must be adjacent to u6

to avoid a claw. This implies that w is adjacent to u3, since otherwise the vertices

v, u3, u4, u5, u6, w induce a Φ1, and therefore w is adjacent to u2, since otherwise

u3, u2, u4, w induce a claw. But now the vertices v, u1, u2, w, u5, u6 induce a Φ1 in

G, a contradiction.
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Case 2.3.2: Suppose now that w is adjacent to u4. If w is adjacent to u1, then

it must also be adjacent to u2 or u3 to avoid a claw, in which case the neighbourhood

of vertex w satisfies conditions either of Case 2.1 or of Case 2.2, which is impossible.

Therefore w is not adjacent to u1. Then it must be adjacent to u2 (to avoid the Φ1

induced by u1, u2, v, u4, u5, w) and hence it must also be adjacent to u3 (to avoid

the claw induced by u1, u2, u3, w). Since deg(u0) > 2, we may consider a neighbour

x of u0. This neighbour must be different from w and not adjacent to w, since w

already has four neighbours, and similarly it is not adjacent to u2, u3. By analogy

with Case 2.3.1, x must be adjacent to u1. But then x, u9, u1, u2, u3, w induce a

Φ1.

Theorem 10. The 3-colourability problem can be solved in the class of (claw,Φ1)-

free graphs in polynomial time.

Proof. If a (claw,Φ1)-free graph contains a K4 or a vertex of degree more than 4, it

is not 3-colourable. Therefore, we assume that the maximum vertex degree of the

input graph is 4 and it is K4-free (which can obviously be verified in polynomial

time). We also contract any pure diamond if the graph has any. Finally, we delete

vertices of low degree (1 or 2). This leaves us with a (possibly disconnected) graph

satisfying conditions (1), (2) and (4) of Lemma 9 and we deal with each connected

component G separately.

First we verify if G contains a chordless cycle of length at least 10. This

can be done in polynomial time as follows. Determine if G contains an induced

path P of length 9. If not, then G has no chordless cycle of length at least 10.

Otherwise, delete all internal vertices of P and all their neighbours (which are not

in P ). Then check if the end vertices of P belong to the same connected component

of the resulting graph. Checking this for each copy of an induced P9 gives an answer

to the question.

If G has no chordless cycle of length at least 10, then we apply a solution

of Theorem 5. Otherwise, let C = (u0, u1, . . . , uk) (k ≥ 10) be such a cycle. From

Lemma 9 every vertex of G which has a neighbour on C is adjacent to exactly two

consecutive vertices of C. Since G has no vertices of degree less than three, each

vertex of C has a neighbour outside C.

Let T be a triangle formed by a vertex v outside C and two consecutive

vertices ui, ui+1 of C. We will call v the top vertex of T and ui, ui+1 its base.

Clearly no two triangles can have the same base, since otherwise either a claw or

a K4 arises. Two triangles will be called adjacent if they share of vertex of C,

neighbouring if they are separated by exactly one edge of the cycle, and distant if
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they are separated by more than one edge of the cycle.

First we observe that there is no edge connecting the top vertices of two dis-

tant triangles, since otherwise an induced Φ1 arises. Then we notice that no triangle

T can have two neighbouring triangles, since otherwise the top vertex of T must

be adjacent to the top vertices of both neighbouring triangles (to avoid an induced

Φ1), in which case an induced claw arises. Therefore, the set of triangles consists of

pairs of adjacent triangles, i.e. for every triangle there is a unique adjacent triangle

and a unique neighbouring triangle. The top vertices of neighbouring triangles are

necessarily adjacent (to avoid an induced Φ1) and hence the top vertices of adja-

cent triangles are necessarily non-adjacent (since otherwise a claw arises). Thus the

degree of each top vertex is at least 3. To conclude the proof, let us show that the

degree of each top vertex is exactly 3. Let us denote by Ti the triangle with base

ui, ui+1 and by vi its top vertex. Suppose Ti−1 is an adjacent triangle and Ti+2 is

a neighbouring triangle for Ti. Assume vi has a fourth neighbour, say w. Then, to

avoid the claw induced by vi, vi+2, ui, w, vertex w must be adjacent to vi+2. Now,

to avoid Φ1 induced by vi−1, ui−1, ui, vi, vi+2, w, vertex w must be adjacent to vi−1.

This, in turn, implies that w is adjacent to vi−3 and hence to vi−3, and so on. As a

result, we conclude that w must be adjacent to all top vertices, which is impossible,

since the degree of w is at most 4. Therefore, we conclude that G consists of the

cycle C and |V (C)|/3 top vertices. It is not difficult to see that such a graph is

3-colourable.

2.3.2.2 (claw,Φ3)-free graphs

In the case of (claw,Φ3)-free graphs a polynomial-time solution is based on the

following technical lemma.

Lemma 11. Let G be a connected (claw,Φ3)-free graph such that

(1) G contains no K4,

(2) G contains no perfect diamond,

(3) G contains Φ0,

(4) 3 ≤ deg(v) ≤ 4 for every vertex v ∈ V (G),

(5) every diamond sequence consists of at most four diamonds,

then G has at most 13 · 213 vertices.
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Proof. LetG contain an induced Φ0 with two triangles v0v1u1 and v0x1y1. AssumeG

contains a vertex vk of distance k ≥ 14 from v0 and let P = (vk, vk−1, . . . , v2, v1, v0)

be a shortest path connecting vk to v0. We split the proof into two basic cases, each

of which leads to a contradiction.

Case 1: v2 is not adjacent to u1. Consider the vertex v4. Since deg(v4) ≥
3, this vertex must have at least one more neighbour, say z. Then z must be

adjacent to v3, since otherwise z is adjacent to v5 (to avoid a claw), in which case

v0, u1, v1, v2, v3, v4, v5, z induce a Φ3. Consequently, z must be adjacent to v2, since

otherwise x1, y1, v0, v1, v2, v3, v4, z induce a Φ3. This implies, in particular, that

deg(v4) = 3, since any other neighbour w of v4 must also be adjacent to v3 and v2

(for similar reasons), in which case either v2, v3, z, w induce a K4 (if z is adjacent

to w) or v1, v2, z, w induce a claw (if z is not adjacent to w). As a result, deg(v3) =

deg(z) = 3. Indeed, if v3 has a fourth neighbour, say w, then w is not adjacent to v4

(since deg(v4) = 3) and therefore w is adjacent to v2 (since otherwise G[v3, v4, v2, w]

is a claw), but then either v2, v3, z, w induce a K4 (if z is adjacent to w) or v1, v2, z, w

induce a claw (if z is not adjacent to w).

If the degree of v3 is also 3, then the diamond induced by v2, v3, v4, z is perfect,

which contradicts our assumption. Therefore, we may consider a vertex w adjacent

to v2. We know that w is not adjacent to v3 (since deg(v3) = 3) and therefore w is

adjacent to v1 (since otherwise G[v1, v2, v3, w] is a claw). Finally, since deg(v5) ≥ 3

we may consider a vertex s (different from v4 and v6) which is adjacent to v5. This

vertex is not adjacent to v4 (since deg(v4) = 3) and therefore it is adjacent to v6

(since otherwise G[v4, v5, v6, s] is a claw). But then w, v1, v2, v3, v4, v5, v6, s induce a

Φ3. This completes the proof that this case leads to a contradiction.

Case 2: v2 is adjacent to u1. Assume v1 has a fourth neighbour, say z. Then

z is not adjacent to v0 (since deg(v0) already has four neighbours) and therefore z

is adjacent to v2 (since otherwise G[v0, v1, v2, z] is a claw). We know that z is not

adjacent to u1 (since G is K4-free), which implies that z is adjacent to v3 (since

otherwise G[u1, v2, v3, z] is a claw). But then we can obtain from the path P a

new path satisfying the condition of Case 1 by replacing the vertex v2 by z. This

argument allows us to assume that deg(v1) = deg(u1) = 3, i.e. the diamond induced

by v0, v1, u1, v2 is pure.

Now we consider vertex v3 and a neighbour u3 of v3 different from v2 and v4

(since deg(v3) ≥ 3). We conclude that u3 is adjacent to v2, since otherwise u3 is adja-

cent to v4 (to avoid the claw G[v2, v3, v4, u3]) in which case x1, y1, v0, v1, v2, v3, v4, u3

induce a Φ3. This implies that u3 is adjacent to v4, since otherwise we fall in con-

ditions of Case 1 with respect to the graph Φ0 induced by vertices v1, u1, v2, v3, u3.
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If v3 would have one more neighbour, say w, then similarly w is adjacent to v4, in

which case either v3, u3, v4, w induce a K4 (if u3 is adjacent to w) or v5, v4, u3, w

induce a claw (if u3 is not adjacent to w). This argument shows that the diamond

induced by v2, v3, u4, v4 is pure.

Now we repeat the arguments of the last paragraph with respect to the vertex

v5 and conclude that G contains a pure diamond induced by vertices v4, v5, u5, v6.

Repeating the arguments once more we conclude that G contains a pure diamond

induced by vertices v6, v7, u7, v8. One more repetition leads to one more pure dia-

mond and therefore to a contradiction, since G cannot contain a sequence of five

pure diamonds according to our assumption. We conclude that this case also leads

to a contradiction.

The above analysis shows that every vertex of G is of distance at most 13

from v0. Now it is not difficult to show that G has at most 13 · 213 vertices.

Theorem 12. The 3-colourability problem can be solved in the class of (claw,Φ3)-

free graphs in polynomial time.

Proof. If a (claw,Φ3)-free graph contains a K4 or a vertex of degree more than 4, it is

not 3-colourable. Therefore, we assume that the maximum vertex degree of an input

graph is 4 and it is K4-free (which can obviously be verified in polynomial time).

We delete vertices of low degree (1 or 2) and delete any perfect diamond (if there is

any). This leaves us with a (possible disconnected) graph satisfying conditions (1),

(2) and (4) of Lemma 11 and we deal with each connected component G separately.

If G is Φ0-free, then we apply a known algorithm [23, 35] to solve the problem

for G in polynomial time. Now assume G contains a Φ0. As long as G has a sequence

of five pure diamonds, contract the middle diamond. It is not difficult to see that

this operation does not create a claw or a Φ3 in G. This preprocessing reduces G to

a graph satisfying all conditions of Lemma 11, in which case the problem becomes

trivial.

2.4 (claw,Φk,Φk+1)-free graphs

In this section, we show that the 3-colourability problem is polynomial-time

solvable in the class of (claw,Φk,Φk+1)-free graphs for any fixed value of k. On the

one hand, this result improves Theorem 6. On the other hand, these two results can

be viewed as incomparable, since Theorem 6 proves more than just polynomial-time

solvability of the problem in the class of (claw,Φk,Φk+1, . . .)-free graphs. It proves

that graphs of bounded degree in this class have bounded tree- and clique-width. For
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(claw,Φk,Φk+1)-free graphs, we prove polynomial-time solvability only. The proof

follows the same strategy as in the case of of (claw,Φ3)-free graphs. We start with

a technical lemma characterizing those (claw,Φk,Φk+1)-free graphs that contain a

Φ0.

Lemma 13. Let G be a connected (claw,Φk,Φk+1)-free graph for some fixed value

of k, such that

(1) G contains Φ0,

(2) 3 ≤ deg(v) ≤ 4 for every vertex v ∈ V (G),

(3) G contains no K4,

then G has at most 2k+4 + 1 vertices.

Proof. LetG contain an induced Φ0 with two triangles v0v1u1 and v0x1y1. AssumeG

contains a vertex vk+4 of distance k+4 from v0 and let P = (vk+4, vk+3, . . . , v2, v1, v0)

be a shortest path connecting vk+4 to v0. We observe that v2 is adjacent neither

to x1 nor to y1, since otherwise v3, v2, v1 together with x1 or y1 induce a claw. We

again split the proof by contradiction into two basic cases.

Case 1: v2 is not adjacent to u1. Consider the vertex vk+2. Since every

vertex has degree at least 3, vk+2 must have a neighbour z. Vertex z cannot be

adjacent to any vertex vi with i ≤ k − 1, since otherwise P is not a shortest path.

On the other hand, to avoid a claw, z must be adjacent to vk+1, since otherwise z

is adjacent to vk+3, in which case z, vk+3, vk+2, . . . , v1, v0, u1 induce a Φk+1. But

now either the vertices z, vk+2, vk+1, . . . , v1, v0, u1 induce a Φk (if z is not adjacent

to vk) or the vertices z, vk+1, vk, . . . , v1, v0, x1, y1 induce a Φk (if z is adjacent to vk).

Therefore, Case 1 is impossible.

Case 2: v2 is adjacent to u1. Consider the vertex vk+3. As before, vk+3

must have a neighbour z, and this neighbour cannot be adjacent to any vertex

vi with i ≤ k. To avoid a claw, z must be adjacent to vk+2, since otherwise z is

adjacent to vk+4, in which case z, vk+4, vk+3, . . . , v1, u1 induce a Φk+1. But now

either the vertices z, vk+3, vk+2, . . . , v1, u1 induce a Φk (if z is not adjacent to vk+1)

or the vertices z, vk+2, vk+1, . . . , v1, v0, x1, y1 induce a Φk+1 (if z is adjacent to vk+1).

Therefore, Case 2 is also impossible.

Therefore, there can be no vertex of distance more than k + 3 from v0. It

is not difficult to see that every vertex of distance i > 0 from v0 has at most 2

neighbours of distance i + 1, since otherwise a claw or a K4 arises. Since v0 has
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4 neighbours, simple induction shows that the total number of vertices is at most

2k+4 + 1 vertices.

Theorem 14. For any fixed value of k, the 3-colourability problem can be solved

in the class of (claw,Φk,Φk+1)-free graphs in polynomial time.

Proof. If a claw-free graph contains either a K4 or a vertex of degree more than 4,

then it is not 3-colourable. Therefore, we assume that the input graph is K4-free

and has no vertices of degree more than 4. We remove vertices of degree 1 or 2,

because they can easily be given colours different to their neighbours. If G is Φ0-free,

then we apply a known algorithm to solve the problem for G in polynomial time.

Otherwise, we find a Φ0 in G. This preprocessing reduces G to a graph satisfying

all conditions of Lemma 13, in which case the problem becomes trivial.

2.5 Conclusion

In this chapter we have identified three infinitely large sequences of graph classes,

for which 3-colourability is NP-complete, the intersection of which defines a so-

called limit class. Each of these sequences may be defined by forbidding induced

subgraphs from the instances of the problem, which implies a necessary condition for

a polynomial-time solution to 3-colourability in a subclass of claw-free graphs,

namely to forbid a graph from each class in the sequence, or indeed to forbid a graph

from the limit class itself.

We have found a number of cases where this condition is also sufficient. In

particular, we have shown that the 3-colourability problem has a polynomial-

time solution in the class of (claw,Φk)-free graphs for the cases k = 1, 3.

A number of open problems are immediately suggested by these results. The

complexity of 3-colourabilty in (claw,Φk)-free graphs for arbitrary values of k, and

in particular for k = 2, remains unknown. Whether the limit class is minimal, and

therefore also a boundary class, is also an interesting open problem.
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Chapter 3

Dominating Induced Matchings

in graphs without a skew star

3.1 Introduction

We now turn our attention to the problem of determining whether the vertices of

a graph can be partitioned into two subsets B and W so that B induces a graph

of vertex degree 1 (also known as an induced matching) and W induces a graph

of vertex degree 0 (i.e. an independent set). Throughout the chapter we call the

vertices of B black and the vertices of W white and say that a graph partitionable

into an induced matching and an independent set admits a black-white partition.

This problem appears in the literature under various names, such as efficient

edge domination [36, 37, 38, 39, 40] or dominating induced matching [41, 42,

43, 44], and finds applications in various fields, such as parallel resource allocation

of parallel processing systems [45] and encoding theory and network routing [38].

This problem also has relations to some other algorithmic graph problems, such

as 3-colourability and maximum induced matching. In particular, it is not

difficult to see that every graph admitting a black-white partition is 3-colourable.

Also, in [37] it was shown that if a graph admits a black-white partition, then the

black vertices form an induced matching of maximum size.

From an algorithmic point of view, the dominating induced matching

problem is difficult, i.e. it is NP-complete [38]. Moreover, it remains difficult under

substantial restrictions. For instance, in [46] it was shown that the problem is

NP-complete for cubic graphs, and in [37] this result was extended to d-regular

graphs for an arbitrary d ≥ 3. The problem was also shown to be NP-complete for

bipartite graphs [40] and planar bipartite graphs [39]. The NP-completeness results
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for bounded degree graphs and for bipartite graphs have been strengthened in [42]

as follows.

Denote by Sk the class of (C3, . . . , Ck, H1, . . . ,Hk)-free bipartite graphs of

vertex degree at most 3, where Ck is a chordless cycle on k vertices and Hk is the

graph represented in Figure 3.1. Associate with every graph G a parameter κ(G),

which is the maximum k such that G ∈ Sk. If G belongs to no class Sk, then κ(G)

is defined to be 0, and if G belongs to all classes Sk, then κ(G) is defined to be ∞.

Finally, for a set of graphs M , define κ(M) = sup{κ(G) : G ∈M}.

Theorem 15. [42] Let M be a set of graphs and X the class of M -free bipartite

graphs of vertex degree at most 3. If κ(M) < ∞, then the dominating induced

matching problem is NP-complete in the class X.
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Figure 3.1: Graphs Hi (left) and Si,j,k (right)

This theorem is reminiscent of the hardness results of the previous chapter,

and it motivates the work of this chapter in the following way. Unless P = NP ,

Theorem 15 provides a necessary condition for polynomial-time solvability of the

problem in classes of graphs defined by forbidden induced subgraphs. In particular,

given a set M of forbidden graphs, the problem is polynomial-time solvable in the

class of M -free graphs only if κ(M) =∞. Three basic ways to unbind the parameter

κ is to include in the set M of forbidden graphs

(1) arbitrarily large cycles,

(2) arbitrarily large graphs of the form Hk,

(3) a graph G with κ(G) =∞.

Nearly all polynomial-time results available in the literature deal with graph classes

of the first type. This includes bipartite permutation graphs [40], convex graphs

[44], chordal graphs [39] and hole-free graphs [36]. Nothing is known about the

complexity of the problem in classes of the second type, and only two results are

available for classes of the third type. By definition, κ(G) = ∞ if and only if G
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belongs to all classes Sk, i.e. G belongs to the intersection
⋂
Sk taken over all

possible values of k. Let us denote this intersection by S. Thus, according to

Theorem 30, if M is a finite set, then the problem is polynomial-time solvable in

the class of M -free graphs only if M contains a graph from S. We believe that the

converse is also true and formally state this as a conjecture.

Conjecture 16. Let M be a finite set of graphs. Unless P = NP , the dominat-

ing induced matching problem is polynomial-time solvable in the class of M -free

graphs if and only if M contains a graph from S.

Clearly, to prove the conjecture it is sufficient to consider finite sets M con-

sisting of a single graph G that belongs to S. It is not difficult to see that G ∈ S
if and only if every connected component of G is of the form Si,j,k (see Figure 3.1).

The smallest non-trivial graph of this form is a claw.

We have alluded to the attention that claw-free graphs have recently received

in the literature [25, 26, 27, 28]. In particular, in [28] Minty develops a polynomial-

time algorithm for the maximum independent set problem in claw-free graphs,

which extends the celebrated solution for the maximum matching problem due to

Edmonds [47]. Recently, this solution was further extended to the class of S1,1,2-free

graphs [48]. We will return to this problem in the next chapter.

The class of claw-free graphs is also easy for the dominating induced

matching problem [43], which is one of the two polynomially solvable cases of

type 3 for the problem. The second solvable case deals with P7-free graphs, as was

recently proved in [41] (note that P7 = S0,3,3). In the present chapter, we extend the

solution for claw-free graphs first to S1,2,2-free graphs and then to S1,2,3-free graphs.

Throughout the chapter we call S1,2,3 a skew star.

The organization of the chapter is as follows. In the next section we introduce

basic terminology, and begin to outline our solution strategy by describing a number

of useful reductions that help solve the problem. In Section 3.3 we solve the problem

for S1,2,2-free graphs. A solution in this class first appeared in [3], and here we

correct a mistake in the original proof and make further improvements to the proof.

In Section 3.4 this solution is extended to skew star-free graphs.

3.2 Preliminaries

We view the dominating induced matching problem as the problem of colouring

the vertices of a graph with two colours, black and white, so that no white vertex has

a white neighbour and every black vertex has exactly one black neighbour. Assigning
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one of the two possible colours to the vertices of G will be called colouring of G. A

colouring is partial if only part of the vertices of G are assigned colours, otherwise

it is total. In a partial colouring, a black vertex that has a black neighbour is called

matched. A partial colouring is valid if

• no two white vertices are adjacent,

• no black vertex has more than one black neighbour,

• every unmatched black vertex has at least one uncoloured neighbour.

A total colouring is valid if no two white vertices are adjacent and every black vertex

has exactly one black neighbour.

Our strategy in solving the problem is to incrementally extend a partial

valid colouring according to certain rules. This strategy suggests a more general

framework for the problem, in which the graph is given together with a partial valid

colouring. The question is to determine if the partial colouring can be extended to

a total valid colouring. We will refer to this more general version of the problem as

extension to dominating induced matching (edim for short).

Among the various rules used in our algorithm, the following three are obvi-

ous:

R1: each neighbour of a white vertex must be coloured black;

R2: each neighbour of a matched black vertex must be coloured white;

R3: each vertex that has two black neighbours must be coloured white.

Two other rules that will be used in the chapter are not so obvious but also

are simple:

R4: if a vertex v belongs to a triangle T and has a neighbour w outside T , then v

and w must be coloured differently;

R5: in any induced C4, any two adjacent vertices must be coloured differently.

Given a graph G and a partial colouring of its vertices, we can obviously

ignore those coloured vertices that have no neighbours among uncoloured ones.

We shall call such vertices irrelevant. Removing irrelevant vertices from the graph

can reduce the problem to a more specific instance. In particular, we recall that

the diamond and butterfly graphs are those depicted in Figure 3.2, and give the

following reduction which is valid for arbitrary graphs.
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Figure 3.2: A diamond (left) and a butterfly (right).

Lemma 17. The edim problem can be reduced in polynomial time from an arbitrary

graph G to an induced subgraph G′ of G such that G′ is (diamond, butterfly, K4)-free

and every vertex of G′ has at most one neighbour of degree 1.

Proof. Since K4 is not 3-colourable, no graph G containing a K4 has a black-white

partition. This immediately reduces the problem from general graphs to K4-free

graphs. Also, by direct inspection, the reader can easily check that the diamond

and butterfly have unique valid colouring represented in Figure 3.2. Therefore, if

a graph G contains a copy of an induced diamond or butterfly, the vertices of this

copy can be coloured and removed from the graph, since they become irrelevant

after colouring all their neighbours.

Finally, assume that G contains a vertex that has more than one neighbour

of degree 1. If G admits a black-white partition, then all these neighbours, except

possibly one, are white. Moreover, if one of these neighbours must be black, then

anyone of them can be assigned this colour. Therefore, all but one neighbour of

degree 1 can be coloured white and removed from the graph.

A useful characterisation of (diamond, butterfly, K4)-free graphs is provided

by the following lemma.

Lemma 18. Let G be a (diamond, butterfly, K4)-free graph and v a vertex of G.

Then the neighbourhood of v contains at most one edge.

Proof. Assume N(v) contains two edges e1 and e2. If these edges share a vertex,

then their endpoints together with v induce either a diamond or a K4. If neither

e1, e2 nor any other two edges in the neighbourhood of v share a vertex, then the

endpoints of e1 and e2 together with v induce a butterfly.
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3.3 Solution to the problem in the class of S1,2,2-free

graphs

The solution for S1,2,2-free graphs is based on a reduction of the problem to graphs

of bounded clique-width. The reduction consists of two steps. In the first step, we

reduce the problem from the entire class of S1,2,2-free graphs to graphs of bounded

vertex degree in this class. In the second step, we further reduce the problem to

graphs of bounded chordality, i.e. graphs without long induced cycles. Together,

bounded vertex degree and bounded chordality imply bounded clique-width. The

polynomial-time solvability of the problem on graphs of bounded clique-width is due

to the following lemma.

Lemma 19. The edim problem can be solved in polynomial time in any class of

graphs where clique-width is bounded by a constant.

Proof. In [33], it was shown that any decision problem expressible in MSOL(τ1, p)

can be solved in linear time in any class of graphs of bounded clique-width. MSOL(τ1)

is a Monadic Second-Order Logic with quantification over subsets of vertices, but not

of edges. MSOL(τ1, p) is the extension of MSOL(τ1) by unary predicates represent-

ing labels attached to vertices. It is known that dominating induced matching is

expressible in MSOL(τ1) [43], and therefore, extension to dominating induced

matching is expressible in MSOL(τ1, p).

3.3.1 Reduction to graphs of bounded vertex degree

In the first step of our solution, we reduce the problem from the entire class of

S1,2,2-free graphs to graphs of bounded vertex degree in this class. This step is valid

even for the larger class of S2,2,2-free graphs.

Lemma 20. The edim problem in the class of S2,2,2-free graphs can be reduced in

polynomial time to graphs of vertex degree of at most 6 in this class.

Proof. Let G be an S2,2,2-free graph. According to Lemma 17, we may assume

without loss of generality that G is (diamond, butterfly, K4)-free and every vertex

of G has at most one neighbour of degree 1. Suppose G has a vertex v of degree at

least 7.

Assume G admits a black-white partition in which v is coloured white. Then

every neighbour of v is coloured black. By Lemma 18, the neighbourhood of v

contains at most one edge. Therefore, v has at least 3 neighbours which are isolated

in the subgraph of G induced by N(v). Moreover, each of these three vertices
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must have its own black neighbour. But then G contains an induced S2,2,2. This

contradiction shows that in any black-white partition ofG (if there is any) all vertices

of degree at least 7 must be coloured black.

From now on we assume that v is coloured black. If two non-adjacent neigh-

bours of v, say x and y, have another common neighbour, say z, then v, x, y, and z

form an induced C4, in which case both x and y must be coloured white (Rule R5)

and can be removed from G. This reduces the problem to the case where no two

non-adjacent neighbours of v have another common neighbour.

If the neighbourhood of v contains an edge, say a, b, then every vertex of

N(v) \ {a, b} must be coloured white (Rule R4), which reduces the problem to the

case where the degree of v is 2.

Assume now that N(v) is an independent set, and since v has at most one

neighbour of degree 1, v has at least six neighbours each of which has a private

neighbour different from v. Let Q be a set of six private neighbours of six vertices

in N(v). By Ramsey’s Theorem, any set of six vertices contains either a triangle or

its complement. If Q contains the complement of a triangle, then clearly G contains

an induced S2,2,2, which is impossible. Therefore, Q must contain a triangle T . Let

T ′ be the set of three vertices of N(v) adjacent (pairwise privately) to the vertices

of T . If the graph admits a black-white partition, then exactly one vertex of T

must be coloured white, and therefore, exactly one vertex of T ′ must be coloured

black. Therefore, v cannot have black neighbours outside of T ′ and hence all vertices

outside of T ′ must be coloured white. This reduces the problem to the case where

the degree of v is at most 4.

The above discussion provides a reduction from general S2,2,2-free graphs to

graphs of maximum vertex degree at most 6 in this class. That this reduction can

be implemented in polynomial time is obvious.

3.3.2 Reduction to graphs of bounded chordality

The next lemma implements the second step in our solution.

Lemma 21. The edim problem in the class of S1,2,2-free graphs of vertex degree

at most 6 can be reduced in polynomial time to (C9, C10, C11, . . .)-free graphs in this

class.

Proof. Let G be a connected S1,2,2-free graph of vertex degree at most 6. By

Lemma 17, we also assume that G is (diamond, butterfly, K4)-free. Suppose G

contains a chordless cycle C = (1, 2, 3, . . . , k − 1, k) of length k ≥ 9. If G coin-

cides with C, then the problem is trivial. Otherwise, G contains a vertex v outside
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C which has at least one neighbour on C. Keeping in mind that the graph is

(diamond,butterfly)-free, we conclude that v has at most 3 neighbours on the cycle,

since otherwise v is the centre of an induced S1,2,2. Also if v has exactly one neigh-

bour on C, or two neighbours of minimum distance at least 3 along the cycle, or

three neighbours, then there is an induced S1,2,2 centred at a neighbour of v on C.

From the above discussion it follows that v has exactly two neighbours on C, either

i, i+ 2 or i, i+ 1. Let us show that

R6: if v is adjacent to i and i+ 2, then v and i+ 1 must be coloured white.

Indeed, since v, i, i + 1, i + 2 create a C4, vertices v and i + 1 must have the

same colour (Rule R5). Assume v and i+ 1 are coloured black, which implies

i, i + 2 are white and therefore i − 1, i + 3 are black. If the graph admits a

black-white partition, v has a black neighbour, say w. If w is adjacent neither

to i nor to i+ 2 then G[i− 1, i, i+ 2, i+ 3, v, w] = S1,2,2, and if w is adjacent

both to i and to i+2 then G[i, i+2, v, w] = diamond. Therefore, w has exactly

one neighbour in {i, i + 2}, say i. Observe that replacing i + 1 by v creates

another cycle C ′ of length k, and from the above discussion we know that w

cannot have more than two neighbours on C ′. Therefore, w is not adjacent

to i− 2. But then G[i− 2, i− 1, i, i+ 1, i+ 2, w] = S1,2,2. This contradiction

proves validity of Rule R6.

Applying Rule R6 as long as possible and removing irrelevant vertices from

the graph leaves us with the case when every vertex outside C that has a neighbour

on C is adjacent to exactly two consecutive vertices of C. Also, since the graph

is (K4, diamond, butterfly)-free, we conclude that every vertex of C that has a

neighbour outside C is adjacent to exactly one vertex outside C. Moreover, the

problem can be further reduced to the case when every vertex of C has a neighbour

outside C. This can be done according to the following rules. Assume i, i+1, . . . , i+

p, i+p+1 is a list of consecutive vertices on C such that i and i+p+1 have neighbours

outside C, while i+ 1, . . . , i+ p have no neighbours outside C.

R7: If p = 1, then i+ 1 must be coloured white.

Indeed, if i + 1 is black, then, by Rule R4, i and i + 2 are white. But then

black vertex i + 1 has no black neighbours in G. Therefore, i + 1 must be

coloured white.

R8: If p = 2, then i, i+ 3 must be coloured white and i+ 1, i+ 2 must be coloured

black.
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Indeed, if i + 1 is white, then i + 2 is black (Rule R1) and therefore i + 3 is

white (Rule R4). But then black vertex i + 2 has no black neighbours in G.

This contradiction shows that i + 1 must be coloured black. Symmetrically,

i+2 must be coloured black. This implies that i, i+3 must be coloured white.

R9: If p ≥ 3, then replacing the path i, i+ 1, i+ 2, i+ 3, i+ 4 by an edge (i, i+ 4)

transforms G into an S1,2,2-free graph G′ which has a black-white partition if

and only if G has.

To see this, assume first that G has a black-white partition. We know that

i is adjacent to a vertex outside C, while i + 1 is not, i.e. there is a triangle

containing i but not i+1. Therefore, by Rule R4, i and i+1 must be coloured

differently. Suppose i is black, then i + 1 is white, implying that i + 2 and

i+ 3 are black and i+ 4 is white. Therefore, by deleting from G the vertices

i + 1, i + 2, i + 3 and connecting i to i + 4 we obtain a graph G′ which also

has a black-white partition. If i is white, then i+ 1 and i+ 2 are black, i+ 3

is white and i + 4 is black, and again G′ has a black-white partition. The

converse statement (that a black-white partition of G′ implies a black-white

partition of G) can be shown by analogy.

We can safely apply this transformation if none of the vertices i+ 1, i+ 2, i+ 3

is pre-coloured black or if i+ 2 is the only vertex among these three which is

pre-coloured black. Let us show that we can always assume this. Indeed, if

i + 1 has been coloured black in a previous stage of the algorithm, then by

Rule R4 vertex i must be coloured white and hence can be removed from the

graph. Also, if i+ 3 is pre-coloured black, then i must also be coloured black

(else i + 1 is black by Rule R4 and i + 2 is white by Rule R3, in which case

i+ 1 cannot be matched) and hence i+ 1 is white (Rule R4) and i+ 2 is black

(Rule R1), in which case vertices i + 1, i + 2, i + 3 can be removed from the

graph.

Finally, let us show that G′ is S1,2,2-free. Indeed, G can be obtained from G′

by subdividing an edge. Therefore, if G contains an S1,2,2 then so does G,

which is impossible.

Applying rules R7, R8, R9 as long as possible and removing irrelevant vertices

from the graph reduces the problem to the case when every vertex outside C with

a neighbour on C is adjacent to exactly two consecutive vertices of C, and every

vertex of C has exactly one neighbour outside C, i.e. C is of even length. Moreover,

without loss of generality, every even edge belongs to a triangle and every odd edge
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does not belong to any triangle. By Rule R4, the endpoints of odd edges must be

coloured differently, which in turn implies that the endpoints of even edges must be

coloured differently. In other words, the colours of the vertices alternate along the

cycle, while all its neighbours outside the cycle are black. This means that we can

choose arbitrarily one of the two possible ways to colour the vertices of the cycle.

By colouring, for instance, the odd vertices of C white and removing them from the

graph, and repeating this procedure for each cycle of length at least 9, we reduce

the problem to graphs without long induced cycles.

Finding an induced cycle of length at least 9 can be done in O(n9) time. All

other operations of the reduction can also be implemented in polynomial time.

We now summarize the above discussion in the following conclusion.

Theorem 22. The (extension to) dominating induced matching problem

can be solved in the class of S1,2,2-free graphs in polynomial time.

Proof. By Lemmas 20 and 21, the edim problem can be reduced from S1,2,2-free

graphs to graphs of degree at most 6 and of chordality (the length of a longest

induced cycle) at most 8. It has been shown in [32] that if a graph has chordality at

most c and maximum degree at most k, then its tree-width is at most k (k − 1)c−3.

Also, in [49] it was shown that for any graph G, the clique-width of G does not exceed

3 · 2tw(G)−1, where tw(G) denotes the tree-width of G. Therefore, Lemmas 20 and

21 reduce the problem from S1,2,2-free graphs to graphs of bounded clique-width.

Together with Theorem 19 this implies a polynomial-time solution to the problem

in the class of S1,2,2-free graphs.

3.4 Solution to the problem in the class of S1,2,3-free

graphs

We solve the problem for S1,2,3-free graphs by reducing it to S1,2,2-free graphs. Let G

be an S1,2,3-free graph. We may also assume that G is (diamond, butterfly, K4)-free

by Lemma 17.

If G has no induced copy of S1,2,2, then the problem can be solved for G in

polynomial time by Theorem 22. If G contains an induced copy of S1,2,2, we want

to destroy it by colouring at least one of its vertices white (or two adjacent vertices

black, in which case a white vertex necessarily appear according to Rule R2).

Destroying a single copy of an S1,2,2 is a simple task, since there are only

finitely many ways to colour the vertices of this copy. The difficulty is that G may
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Figure 3.3: Two copies of an induced S1,2,2 with their labellings

have many copies of an S1,2,2. We will show that by colouring the vertices of one copy

of S1,2,2 and then by propagating the colours according to the rules of Section 6.2,

we either destroy all other copies of S1,2,2 or leave only one way to colour the vertices

of those copies that have survived. To this end, we fix an induced copy of S1,2,2 and

denote it by S. Assume that there is one more induced copy of S1,2,2. We denote

the second copy by S′ and we denote the vertices of S and S′ as shown in Figure 3.3.

First of all, let us show that S and S′ cannot be far from each other, since

otherwise an induced skew star arises.

Lemma 23. The distance between S and S′ is at most 2.

Proof. Assume to the contrary that the distance between S and S′ is at least 3.

Then the shortest path connecting S to S′ contains at least two vertices. We denote

by x the vertex of the path that has a neighbour in S′, by y the neighbour of x on

the path and by z the neighbour of y non-adjacent to x. Note that z may or may

not belong to S. But in either case, z must have a neighbour t non-adjacent both to

y and x, since otherwise a diamond arises. We split the proof into cases depending

on the number of neighbours of x in S′ and show that in all possible cases the graph

contains a skew star. Note that x can have at most four neighbours in S′, since

otherwise a diamond or a butterfly appears.

Case 1: x has one neighbour in S′. Up to symmetry, the following subcases are

possible.

1.1: If x is adjacent to u0, then u0, u1, u3, u4, x, y, z induce a skew star.

1.2: If x is adjacent to u1, then u0, u5, u3, u4, u1, x, y induce a skew star.

1.3: If x is adjacent to u2, then u0, u5, u3, u4, u1, u2, x induce a skew star.
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Case 2: x has two neighbours in S′. Up to symmetry, the following subcases are

possible.

2.1: If x is adjacent to u0, u1 or to u0, u2, then u0, u5, u3, u4, x, y, s induce a skew

star.

2.2: If x is adjacent to u0, u5, then u0, u1, u3, u4, x, y, s induce a skew star.

2.3: If x is adjacent to u1, u2, then u0, u5, u3, u4, u1, x, y induce a skew star.

2.4: If x is adjacent to u1, u3 or to u1, u4, then u1, u2, u0, u5, x, y, s induce a skew

star.

2.5: If x is adjacent to u1, u5, then u1, u2, u0, u3, x, y, s induce a skew star.

2.6: If x is adjacent to u2, u4, then x, u2, y, s, u4, u3, u0 induce a skew star.

2.7: If x is adjacent to u2, u5, then x, u2, y, s, u5, u0, u3 induce a skew star.

Case 3: x has three neighbours in S′. Note that x cannot have three consecutive

neighbours in S′, since otherwise an induced diamond appears. Up to symmetry,

the following subcases are possible.

3.1: If x is adjacent to u0, u1, u4 or to u0, u2, u4, then x, u4, u0, u5, y, s, t induce a

skew star.

3.2: If x is adjacent to u0, u2, u5, then u0, u1, u3, u4, x, y, s induce a skew star.

3.3: If x is adjacent to u1, u2, u3, then x, u2, y, s, u3, u0, u5 induce a skew star.

3.4: If x is adjacent to u1, u2, u4, then x, u2, y, s, u4, u3, u0 induce a skew star.

3.5: If x is adjacent to u1, u2, u5, then x, u2, y, s, u5, u0, u3 induce a skew star.

3.6: If x is adjacent to u1, u3, u5 or to u1, u4, u5, then x, u5, u1, u2, y, s, t induce a

skew star.

3.7: If x is adjacent to u2, u4, u5, then x, u5, u2, u1, y, s, t induce a skew star.

Case 4: x has four neighbours in S′. Note that x can have neither three consecutive

neighbours in S′ (else an induced diamond appears) nor two pairs of adjacent neigh-

bours (else an induced butterfly appears). Up to symmetry, the following subcases

are possible.
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4.1: If x is adjacent to u0, u2, u4, u5, then x, u2, u4, u3, y, s, t induce a skew star.

4.2: If x is adjacent to u1, u2, u3, u5 or to u1, u2, u4, u5, then x, u2, u5, u0, y, s, t

induce a skew star.

Now we fix a colouring of S and propagate it as long as possible. We want

to show that this operation either destroys S′ (i.e. leads to a white vertex or two

adjacent black vertices in S′) or forces the central vertex of S′ to be black.

Lemma 24. If the shortest distance between S and S′ is 2, then S′ is destroyed.

Proof. Let x be a vertex that has a neighbour v in S and a neighbour u in S′.

It is not difficult to see that x must have at least two neighbours in each copy of

S1,2,2, since otherwise an induced S1,2,3 can be easily found similarly to Case 1 of

Lemma 23. This tells us that we always know the colour of x.

If x has both a black neighbour and a white neighbour in S, then x must

be coloured black and its neighbour in S′ white, in which case we are done. If x is

adjacent to two vertices in S of the same colour, it must take the opposite colour.

Since the graph is diamond-free, there must exist three vertices a, b, c in S

such that x, a, b, c induce either a C4 or a P4 and three vertices a′, b′, c′ in S′ such

that x, a′, b′, c′ induce either a C4 or a P4. If x, a′, b′, c′ induce a C4, then at least

one of a′, b′, c′ must be white and we are done. So, assume x, a′, b′, c′ induce a P4.

Case 1: Suppose x, a, b, c induce a C4. Without loss of generality we may

assume that c has another neighbour, say d, in S. If x is not adjacent to d, then

x, a, c, d, a′, b′, c′ induce a skew star, and if x is adjacent to d, then x, d, a, b, a′, b′, c′

induce a skew star, a contradiction in both cases.

Case 2: Suppose x, a, b, c induce a P4, and let u be the second neighbour

of x in S. Then u is not adjacent to b, since otherwise x, a, b, u induce a C4 (Case

1). If, in addition, u is not adjacent to a, then x, u, a, b, a′, b′, c′ induce a skew star.

So, we assume that u is adjacent to a. Then either a or b has degree 3 in S. If

a has degree 3 with v being its third neighbour in S, then x is not adjacent to v

(else x, a, u, v induce a diamond) and hence a, v, b, c, a′, b′, c′ induce a skew star. Let

b have degree 3 in S, i.e. b = v0 and without loss of generality a = v1. Then x

is not adjacent to v5, else x, v1, v0, v5 induce a C4. Therefore, if x is not adjacent

to v4, then v0, v5, v3, v4, v1, x, a
′ induce a skew star, and if x is adjacent to v4, then

x, v2, v4, v3, v0, a
′, b′ induce a skew star. A contradiction in both cases completes the

proof.
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The above lemma reduces the analysis to the case when the distance between

S and S′ is at most one. To analyse this case, we distinguish between two types of

colourings of S which we call alternating and non-alternating.

Definition 25. A colouring of S is alternating if the even-indexed vertices are black

and the odd-indexed vertices are white or the even-indexed vertices are white and the

odd-indexed vertices are black.

Lemma 26. If the shortest distance between S and S′ is 1 and the colouring of S

is not alternating, then S′ is destroyed.

Proof. It is not difficult to see that if the colouring of S is not alternating, then it

must have two adjacent black vertices. We denote these vertices by x and y. We

may also assume that y has a white neighbour z ∈ S (non-adjacent to x).

If x or y has a neighbour in S′, then this neighbour must be white and we are

done. Therefore, in what follows we assume that neither x nor y has a neighbour

in S′.

Suppose z is adjacent to u1 ∈ S′. Then z must have at least one neighbour in

{u0, u2, u3}, since otherwise u1, u2, u0, u3, z, y, x induce a skew star. If z is adjacent

to u0 or u2, then either u0, u1 or u1, u2 are two adjacent black vertices in S′. If z is

adjacent neither to u0 nor to u2, but is adjacent to u3, then u0 must be white (since

z, u1, u0, u3 induce a C4). This proves the lemma in the case when z is adjacent to

u1. If z is adjacent to u0 or u3, the proof is similar.

Assume now that z has no neighbours in {u1, u0, u3} and suppose z is adja-

cent to u2. Then either the vertices u0, u5, u3, u4, u1, u2, z (if z has no neighbours

in {u4, u5}) or the vertices z, u2, y, x, a, u3, u0 (if z has a neighbour a ∈ {u4, u5})
induce a skew star. This contradiction shows that z cannot be adjacent to u2. By

symmetry it cannot be adjacent to u4. This also implies that z is not adjacent to

u5, since otherwise an induced S1,2,3 can be easily found.

The above analysis shows that if S has two adjacent black vertices, then

we may assume that neither these vertices nor any of its neighbours in S have

neighbours in S′. To complete the analysis, we distinguish between the following

two cases.

1. Assume first that v0 is black. Then, to avoid an alternating colouring of S, we

conclude that (up to symmetry) either v1 is black or v5 is black.

– If v1 is black, then according to the above assumption no vertex of S

except for v4 has a neighbour in S′. If v4 has a neighbour in S′, then this

neighbour together with the vertices of S induce a skew star, and if v4
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has no neighbour in S′, then the distance between S and S′ more than

1, contradicting the assumption.

– If v5 is black, then vertices v0, v1, v3, v5 have no neighbours in S′, and

vertices v2 and v4 are black. Without loss of generality suppose that v2

has a neighbour a in S′. Then a is also adjacent to v4, since otherwise

v0, v5, v3, v4, v1, v2, a induce a skew star. But then a is white, as being

adjacent to two black vertices v2 and v4.

2. Suppose now that v0 is white. Then v1, v3, v5 are black and, without loss of

generality, v2 is black (to avoid an alternating colouring of S). Therefore, we

assume that v0, v1, v2 have no neighbours in S′.

– If v3 and v5 have no neighbours in S′, then v4 must have a neighbour in

S′, in which case this neighbour together with the vertices of S induce a

skew star.

– Suppose now that v3 has a neighbour a in S′. We may also assume that a

has a neighbour b ∈ S′ non-adjacent to v3. If v4 is black, then a is white

and we are done. If v4 is white, then it must have a neighbour in {a, b},
since otherwise v3, v4, a, b, v0, v1, v2 induce a skew star. If v4 is adjacent

to a, then a is black and hence b is white, and if v4 is adjacent to b, then

v4, v3, a, b induce a C4 and hence a is white.

– If v3 has no neighbours in S′, while v5 has, we may assume, as before,

that v5 is adjacent to a vertex a ∈ S′ and non-adjacent to a neighbour

b ∈ S′ of a. Then v0, v3, v1, v2, v5, a, b induce a skew star.

Lemma 27. If the shortest distance between S and S′ is 1 and the colouring of S

is alternating, then either S′ is destroyed or u0 is coloured black.

Proof. Suppose, for a contradiction, that for an alternating colourings of S, neither

u0 is black nor S′ is destroyed. Under this assumption we can further assume that

a vertex v of S′

(1) has neighbours of at most one colour, since otherwise v is necessarily black, in

which case every neighbour of v in S′ is white and hence S′ is destroyed,

(2) has at most one black neighbour in S, since otherwise v is white and hence S′

is destroyed.

The following observation also will be helpful in the proof.
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(*) If a vertex v ∈ S has a neighbour in S′, then there are vertices a, b, c ∈ S′

inducing a path P3 such that v is adjacent to a and non-adjacent to b, c. Indeed,

if v has a neighbour in S′, then, assuming that the input graph is diamond-

free, we can always find a neighbour a ∈ S′ of v which can be extended to

an induced P3 = (a, b, c) such that v is not adjacent to b. Then v is also not

adjacent to c, since otherwise vertices v, a, b, c induce a C4, in which case the

colour of v completely defines the colours of a, b, c and at least one of these

three vertices is white (and hence S′ is destroyed).

Consider first the case that the even vertices of S are coloured black. Then v2

cannot have a neighbour a in S′, since otherwise, according to (1) and (2), vertices

v0, v5, v3, v4, v1, v2, a induce a skew star. Symmetrically, v4 can have no neighbours

in S′.

Suppose that v1 has a neighbour a in S′. Since v1 is white, we conclude that

a is black and hence a 6= u0, or else we are done. Since a is not the central vertex

of S′, there must exist vertices b, c, d such that a, b, c, d induce a P4. Moreover, we

can assume that

(3) b has no neighbours in S. Indeed, if b has a black neighbour x in S, then b

must be coloured white, as a vertex with two black neighbours x and a, in

which case S′ is destroyed, and if b has a white neighbour in S, then b must

be coloured black, in which case S is destroyed as well, as having two matched

black vertices a and b.

(4) c has no white neighbour in S, since otherwise c is black and hence b is white

(as a vertex with two black neighbours a and c), in which case S′ is destroyed.

This implies that

(5) a is adjacent to v3, since otherwise vertices v1, v2, a, b, v0, v3, v4 induce a skew

star (according to (1)),

(6) d has a neighbour in {v1, v3}, since otherwise both a, v1, v3, v4, b, c, d and

a, v3, v1, v2, b, c, d induce skew stars, and hence d is black,

(7) c has no neighbours in S by symmetry with b,

(8) a is adjacent to v5, since otherwise both v1, v2, v0, v5, a, b, c and v3, v4, v0, v5, a, b,

c induce skew stars.

(9) d is adjacent to all three vertices v1, v3, v5 by symmetry with a.
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Clearly, either b or c is the central vertex of S′, and hence one of them, say c,

has one more neighbour in S′, say e. Vertex e cannot have a white neighbour in

S, since otherwise e is black and hence c is white, which destroys S′. But then

vertices a, v5, v1, v2, b, c, e induce a skew star. This contradiction shows that v1 has

no neighbour in S′. By symmetry, v3 has no neighbour in S′.

Suppose now that v5 has a neighbour a in S′. According to the previous

discussion, v5 is the only neighbour of a in S. Consider a vertex b ∈ S′ adjacent to

a. By analogy with (3), vertex b has no neighbour in S. But now a skew star can

be easily found.

Finally for this colouring, suppose that v0 has a neighbour S′. Then, accord-

ing to (*), there are vertices a, b, c ∈ S′ inducing a path P3 such that v0 is adjacent

to a and non-adjacent to b, c. But then vertices v0, v1, v3, v4, a, b, c induce a skew

star. This contradiction shows that v0 has no neighbours in S′ and completes the

proof of the lemma for the alternating colouring of S when the even vertices of S

are coloured black.

We now consider the case that the even vertices of S are coloured white.

Suppose first that v1 has a neighbour S′. Then, according to (*), there are vertices

a, b, c ∈ S′ inducing a path P3 such that v1 is adjacent to a and non-adjacent to b, c.

By (1) and (2), v1 is the only neighbour of a in S. Also, b has no white neighbours

in S, since otherwise b is black and hence a is white (as a vertex with two black

neighbours v1 and b), in which case S′ is destroyed. Therefore, to avoid a skew star

induced by vertices v1, v2, a, b, v0, v3, v4, we conclude that b is adjacent to v3. Then

c has no white neighbours in S, since otherwise c is black and hence b is white. But

then a skew star arises induced either by v1, v2, v0, v5, a, b, c (if c is not adjacent to

v5) or by v3, v4, b, c, v0, v1, v2 (if c is adjacent to v5 and hence non-adjacent to v3 by

(2)). This contradiction shows that v1, and symmetrically v3, have no neighbours

in S′.

Assume v5 has a neighbour a in S′. Then by (*) we can assume that there

is a vertex b ∈ S′ adjacent to a and non-adjacent to v5. Similarly to the previous

case, v5 is the only neighbour of a in S, and b has no white neighbours in S. But

now vertices v0, v1, v3, v4, v5, a, b induce a skew star. This contradiction shows that

v5 has no neighbours in S′.

Suppose that v2 has a neighbour a in S′. Since a is black, it is not the central

vertex of S′ and hence a can be extended to an induced P4 = (a, b, c, d). We may

assume that b, c have no neighbours in S, because if b has a (white) neighbour, then

b is black and hence c is white (since a and b form a pair of black matched vertices),

and if c has a (white) neighbour, then c is black and hence b is white (as a vertex
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with two black neighbours a and c). Now we see that a must be adjacent to v4,

since otherwise a skew star arises induced either by v0, v5, v3, v4, v1, v2, a (if a is not

adjacent to v0) or by v0, v5, v3, v4, a, b, c (if a is adjacent to v0). Then d must have a

neighbour in {v2, v4} (since otherwise vertices a, v4, v2, v1, b, c, d induce a skew star)

and hence d is black. Clearly, either b or c is the central vertex of S′, and hence one

of them, say c, has one more neighbour in S′, say e. Vertex e cannot have a white

neighbour in S, since otherwise e is black and hence c is white (as a vertex with two

black neighbours e and d), which destroys S′. But then vertices a, v2, v4, v3, b, c, e

induced a skew star. This contradiction shows that v2, and symmetrically v4, have

no neighbours in S′.

Finally, suppose that v0 has a neighbour S′. Then, according to (*), there are

vertices a, b, c ∈ S′ inducing a path P3 such that v0 is adjacent to a and non-adjacent

to b, c. But then vertices v0, v1, v3, v4, a, b, c induce a skew star. This contradiction

shows that v0 has no neighbours in S′ and completes the proof of the lemma.

Lemma 28. If S and S′ share a vertex, then either S′ is destroyed or u0 is coloured

black, in which case the colouring of S is alternating.

Proof. Assume for a contradiction that S and S′ share at least one vertex, but

neither S′ is destroyed nor u0 is coloured black. Under this assumption, we conclude

that

(1) every vertex common for S and S′ is black.

(2) S and S′ do not share two adjacent vertices, since regardless of their colours

these two vertices necessarily destroy S′.

(3) S and S′ do not share two vertices that are of distance 2 in S′. Indeed, if

vertices x, y, z create a P3 in S′ and x, z belong to S, then x and z are black

by (1) and hence y is white, which destroys S′.

Let v be a vertex common for S and S′. Observe that v has a neighbour in S and

a neighbour in S′, but none of these neighbours is shared both by S and by S′

(according to (2)). We also claim that

(4) every neighbour z of v in S must be white, because if z is black, then every

neighbour of v in S′ is white (as a vertex adjacent to a matched black vertex),

in which case S′ is destroyed.

(5) every neighbour of v in S′ has no other neighbours in S. Indeed, if a neighbour

x ∈ S′ of v is adjacent to a white vertex of S, then x is black and the pair v, x
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of two black matched vertices destroys S′, and if x is adjacent to one more

black vertex of S, then x must be coloured white, which destroys S′ as well.

Assume first that v = v2 and x is a neighbour of v2 in S′. Then, taking into account

(5), vertices v0, v5, v3, v4, v1, v2, x induce a skew star. This contradiction shows that

S and S′ cannot share v2. By symmetry, they cannot share v4.

Assume next that v = v5. Then v5 is black, v0 is white (see (1) and (4)) and

hence v1, v3 are black. Clearly we can find two vertices x and y in S′ such that x is

a neighbour of v5 and y is a neighbour of x. By (2) and (3), neither x nor y belong

to S. Also, x has no other neighbours in S (by (5)), and y cannot be adjacent to a

white vertex of S, since otherwise y is black and hence x is white (as a vertex with

two black neighbours v and y), in which case S′ is destroyed. Therefore, we may

assume that y is adjacent neither to v2 nor to v4, since otherwise y must be white

(as a vertex adjacent to a black matched vertex), in which case S′ is destroyed. Now

• if y is adjacent neither to v1 nor to v3, then vertices v0, v3, v1, v2, v5, x, y induce

a skew star,

• if y is adjacent to both v1 and v3, then y must white (as a vertex with two

black neighbours), in which case S′ is destroyed,

• if y is adjacent to exactly one vertex in {v1, v3}, say y is adjacent to v1 but

not to v3, then vertices v1, v2, y, x, v0, v3, v4 induce a skew star.

Therefore, S and S′ cannot share v5.

Suppose now that v = v1. Then v1 is black, v0, v2 are white (see (1) and

(4)) and hence v3, v5 are black. Let x be a neighbour of v1 in S′, and y ∈ S′ a

neighbour of x. By (2) and (3), neither x nor y belong to S, and by (5), x has

no other neighbours in S. As before, y cannot be adjacent to a white vertex of S,

since otherwise y is black, x is white and S is destroyed. Therefore, y cannot be

adjacent to v4, because in this case v4 is a black matched vertex and hence y is

white, which destroys S′. As a result, y is adjacent to v3, since otherwise vertices

v1, v2, x, y, v0, v3, v4 induce a skew star, and non-adjacent to v5, since otherwise y is

white (as a vertex with two black neighbours v3 and v5) and hence S′ is destroyed.

This also implies that v4 is coloured white, since otherwise y must be coloured white

(as a vertex adjacent to a black matched vertex) and hence S′ is destroyed. Thus,

the colouring of S is alternating.

By the initial assumption, u0 is not black, and hence v1 6= u0. Therefore,

either x = u0 or y = u0. Suppose x = u0 and let z be the third neighbour of x in
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S′. Similarly to y, vertex z does not belong to S and is adjacent to v3. But now

vertices v3, y, x, z induce a C4, and hence x must be black and y, z must be white,

in which case S′ is destroyed.

Assume now that y = u0. We may consider a neighbour z of y in S′ which

does not belong to S, because y has exactly one neighbour in S and three neighbours

in S′. We conclude that z cannot be adjacent to a white vertex of S, since otherwise

z is black, y is white and S is destroyed. Therefore, z cannot be adjacent to v4,

because in this case v4 is a black matched vertex and hence z is white, which

destroys S′. Also, z cannot be adjacent to v1, since otherwise vertices v1, x, y, z

form an induced C4, in which case x and z are white and S′ is destroyed. This

implies that z is adjacent to v3, since otherwise vertices v3, v4, y, z, v0, v1, v2 induce

a skew star. Therefore, vertex v3 does not belong to S′ (else S′ contains a triangle)

and we may consider one more neighbour of y in S′, say e. Similarly to z vertex e

must be adjacent to v3. But now vertices v3, y, z, e induce a diamond and hence z, e

are white and S′ is destroyed. This contradiction shows that S and S′ cannot share

v1. By symmetry, they cannot share v3.

Finally, we assume that v = v0. Then v0 is black, v1, v3, v5 are white (see (1)

and (4)) and hence v2, v4 are black, i.e. the colouring of S is alternating. Since v0 is

coloured black, we cannot have v0 = u0 (by the initial assumption). By (5), x has

no other neighbours in S, and by (2) and (3), x and y do not belong to S. Let us

show that

• y has no neighbours in S. Indeed, y cannot be adjacent to a white vertex of S,

since otherwise y is black and hence x is white, which destroys S′. Also, y is

not adjacent to v0, or else v0, x, y is a triangle in S′. Assume y is adjacent to

v4. Then y is not adjacent to v2, since otherwise y is white (as a neighbour of

two black vertices v2 and v4), in which case S′ is destroyed. But now vertices

v0, v5, v1, v2, x, y, v4 induce a skew star. This contradiction shows that y is not

adjacent to v4, and by symmetry, y is not adjacent to v2.

Since y has no neighbours in S, vertex z cannot belong to S. Clearly, z is not

adjacent to v0, because v0, x, y, z induce a P4 in S′. Let us show that

• z is adjacent neither to v2 nor to v4. For a contradiction, let z be adjacent

to v2. Then we may assume that z is not adjacent to v4, since otherwise it

must be coloured white, which destroys S′. Also, we may assume that z is not

adjacent to a white vertex of S, since otherwise z is a black vertex matched

with v2 implying that y is white and hence S′ is destroyed. But now vertices
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v0, v1, v3, v4, x, y, z induce a skew star. This contradiction shows that z is not

adjacent to v2, and by symmetry, z is not adjacent to v4.

Since z is adjacent neither to v2 nor to v4, it must have at least two neighbours in

{v1, v3, v5}. Without loss of generality, let us assume that z is adjacent to v1 and

v3 (the other case is similar). Clearly, either x or y is the centre of S′.

Assume first that x is at the centre of S′, and let e be the third neighbour

of x in S′. Similarly to y, vertex e does not belong to S and has no neighbours in

S. But then vertices z, v1, v3, v4, y, x, e induced a skew star.

Now suppose y is the centre of S′, and again let denote the third neighbour

of y in S′ by e. Similarly to z, vertex e does not belong to S and has no black

neighbours in S. Also, z cannot have a neighbour in {v1, v3}, since otherwise this

neighbour together with e, y, z create an induced C4, in which case vertex y must be

coloured y destroying S′. But now vertices v0, v1, v3, v4, x, y, e induce a skew star.

This contradiction completes the proof of the lemma.

Theorem 29. The dominating induced matching problem can be solved for

S1,2,3-free graphs in polynomial time.

Proof. Let G be an S1,2,3-free graph with n vertices. In O(n6) time we check if

G contains an induced copy of S1,2,2. If not, the problem can be solved for G

in polynomial time. If G contains an induced copy of S1,2,2, we denote it by S

and consider all possible colourings of its vertices. There are finitely many such

colourings. With each of them we associate a subproblem. If the colouring of S is

not alternating, then in the respective subproblem all copies of S1,2,2 are destroyed

by Lemmas 26 and 28 and hence these subproblems can be solved in polynomial

time.

Now let us analyse subproblems corresponding to two alternating colourings

of S. We claim that each of them can also be solved in polynomial time. Consider

any of these two subproblems and denote it by Π and its input by H. If H has an

induced copy of S1,2,2, we know by Lemmas 27 and 28 that the central vertex of this

copy is coloured black. Therefore, this copy admits only one of the two alternating

colourings. Therefore, every subproblem of Π, except possibly one, can be solved in

polynomial time. Therefore, in polynomial time we reduce the problem from H to

a graph with strictly fewer vertices. Therefore, Π and hence the original problem

can solved in polynomial time.
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3.5 Conclusion

At the beginning of this chapter we conjectured that, unless P=NP, the hereditary

classes for which DIM is solvable in polynomial time are exactly the classes forbid-

ding a graph in S. To prove this conjecture, we need only concern ourselves with

classes defined by a single forbidden induced subgraph in S, the smallest non-trivial

case being the claw-free graphs, which has been shown to yield a polynomial solu-

tion. This solution has been extended to the so-called fork-free graphs, and in an

attempt to support the conjecture further, we extend this result first to S1,2,2-free

graphs and then to graphs without a skew star.

The conjecture remains open, but future work might well include examining

various classes defined by forbidding an Si,j,k. In particular, since a solution exists

for P7-free graphs and skew star-free graphs, the obvious next step is to examine

S1,3,3-free graphs. Of course, the ultimate aim of this work is to obtain a general

result for all i, j, k.

52



Part II

Independent Sets

and

Related Problems
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Introduction

There are many algorithmic graph problems associated with the notion of an inde-

pendent set, the central one being the maximum independent set problem (MIS

for short), which is the problem of finding in a graph an independent set of maxi-

mum cardinality. This problem is computationally difficult, i.e. it is NP-hard, and

it is closely related to several other problems of combinatorial optimization, such as

maximum clique or minimum vertex cover. Indeed, the independent sets of a

graph G are the cliques of the complement of G, and the vertex covers of G are ex-

actly the complements of its independent sets. At first glance, the close relationship

between the three problems suggests that it is only a matter of taste which problem

to study, because a solution to one of them immediately implies a solution to the

others. This is true, but only up to a certain point. For instance, the minimum

vertex cover problem admits fixed-parameter tractable algorithms, while max-

imum clique and maximum independent set do not. Also, when we study the

problems restricted to particular classes of graphs, the language of independent sets

seems to be more convenient than the language of cliques. For instance, it is known

that the maximum independent set problem can be solved in polynomial time in

the class of line graphs, which is equivalent to the maximum matching problem in

general graphs. Therefore, the maximum clique problem can be solved in polyno-

mial time for the complements of line graphs. However, describing this solution in

the terminology of cliques may be hard going. Since these results are equivalent, it

may just be a matter of taste in this case. However, many similar results are known

for classes defined by forbidding small connected graphs or their disjoint unions (see

e.g. [48], [50],[51],[52]). These graphs are easier to name (e.g. claw, fork, Ck...) and

this may explain our preference for independent sets over cliques.

A zetetic reader may ask what makes the maximum independent set prob-

lem simple in the class of line graphs. The answer to this question is “the absence of

a claw” and this answer comes from the result of Alekseev, who showed in [53] that

the problem is solvable in polynomial time in a class of graphs defined by finitely
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many forbidden induced subgraphs only if the set of forbidden subgraphs contains

a graph from the class S, i.e. a graph every connected component of which is of

the form Si,j,k. Again, obtaining and describing this result in the terminology of

cliques would be much harder and less natural. If we apply this result to the class

of line graphs (which is described by 9 minimal forbidden induced subgraphs), we

observe that the only forbidden graph which belongs to S is a claw (i.e. S1,1,1). The

fundamental importance of the claw for the maximum independent set problem

was confirmed by extending the solution from line graphs to claw-free graphs.

Recently, the result for claw-free graphs was generalized to graphs without

apples. In this dissertation, we go further and obtain in chapter 4 some polynomial-

time results for graphs without large apples.

The maximum independent set problem has several important general-

izations. One of them deals with finding in a graph maximum k-regular induced

subgraphs. For k = 0, this problem coincides with MIS, and for k = 1, it is known

as maximum induced matching. The latter problem is even harder then MIS,

because it is NP-hard already for claw-free graphs. In chapter 5, generalizing some

of the previously known results, we show that finding a maximum k-regular induced

subgraph in a 2P3-free graph can be solved in polynomial time for any value of k.

One more important problem concerning independent sets is independent

domination, also known as minimum maximal independent set. It is also more

difficult than maximum independent set, in the sense that it is NP-hard for claw-

free graphs. We study this problem in chapter 6, where we obtain polynomial-time

algorithms for graphs in some particular classes.
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Chapter 4

The Maximum Weight

Independent Set Problem in

Graphs Without Large Apples

4.1 Introduction

Given a graph G and an assignment of real-valued weights to its vertices, the max-

imum weight independent set (WIS) problem is that of finding in G an inde-

pendent set I of maximum total weight. This problem generalises the maximum

independent set (MIS) problem in the sense that WIS coincides with MIS if each

vertex has weight 1.

An apple Ak is the graph obtained from a chordless cycle Ck of length k ≥ 4

by adding a vertex that has exactly one neighbour on the cycle (see Figure 4.1).

A graph G is apple-free if it contains no Ak, for k ≥ 4, as an induced subgraph.

The class of apple-free graphs is a common generalization of claw-free graphs and

chordal graphs. Both these classes have been extensively studied in the literature

and both enjoy many attractive properties (see, e.g. [54, 55, 56, 57, 25, 58, 59]). In

particular, WIS, while NP-hard in general, admits polynomial-time solutions when

restricted to chordal graphs or graphs with no induced claw.

As we mentioned in the last chapter, the solution to the problem in the class

of claw-free graphs was proposed by Minty in 1980 [28]. The importance of this

solution is due to the fact that it generalizes the celebrated matching algorithm by

Edmonds [60], which is “one of the most involved of combinatorial algorithms” [61],

according to Lovász and Plummer.

For nearly three decades, the solution for claw-free graphs remained unim-
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Figure 4.1: Two smallest apples A4 and A5

proved. Recently, it was generalized in two different ways: first, Lozin and Milanič

[48] showed how to solve the WIS problem in the class of fork-free graphs (see also

[62] for a different solution to the unweighted version of the problem) and then

Brandstädt et al. proved that the problem is polynomially solvable for apple-free

graphs [50].

In this chapter, we study a further generalization of the class of apple-free

graphs called graphs without large apples: these are (Ak, Ak+1, . . .)-free graphs for

values of k strictly greater than 4.

Echoing the results of Chapter 2, and the motivation for the results of Chap-

ter 3, we recall the definition of the parameter κ(M), where M is a set of graphs,

in order to state a hardness result proved in [63].

For k ≥ 3, let Sk be the class of (C3, . . . , Ck, H1, . . . ,Hk)-free planar graphs

of vertex degree at most 3, where Ci denotes the cycle on i vertices and Hi is the

graph obtained from a path with i edges by attaching two new vertices of degree

one to each of the two endpoints of the path (see Figure 3.1). To every graph G

we associate the parameter κ(G), which is the maximum k such that G ∈ Sk. If G

belongs to no class Sk, then κ(G) is defined to be 0, and if G belongs to all classes

Sk, then κ(G) is defined to be ∞. Finally, for a set of graphs M , κ(M) is defined

as κ(M) = sup{κ(G) : G ∈M}.

Theorem 30. Let M be a set of graphs and X the class of M -free planar graphs

of maximum degree at most 3. If κ(M) < ∞, then the maximum independent set

problem is NP-hard in the class X.

Theorem 30 suggests that, unless P=NP, the maximum independent set prob-

lem is solvable in polynomial time in the class of M -free graphs only if the parameter

κ is unbounded in the set M . There are three basic ways to unbind this parameter

in M :

(1) include in M a graph G with κ(G) =∞;
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(2) include in M infinitely many cycles;

(3) include in M infinitely many graphs of the form Hi.

The literature contains only a few results dealing with classes of the third type (see,

e.g. [64]); most polynomial-time results refer to classes of the first two types. Ex-

amples of the first type include claw-free graphs [65, 28, 66, 67], fork-free graphs [48]

and mK2-free graphs [68, 69, 70], and examples of the second type include chordal

graphs [71], bipartite graphs and other subclasses of perfect graphs [72].

Observe that each of the mentioned results belongs to precisely one of the

three categories specified above. The importance of apple-free graphs is due to the

fact that it is the first class generalizing simultaneously graphs of two types: type

1 (claw-free graphs) and type 2 (chordal graphs). Graphs without large apples,

i.e. (Ak, Ak+1, . . .)-free graphs with k ≥ 5, additionally include fork-free graphs and

2K2-free graphs, which is not the case for k = 4. The complexity of the maximum

independent set problem for graphs without large apples is unknown even for

k = 5.

The key result of the present chapter is a sufficient condition for claw-freeness

of (Ak, Ak+1, . . .)-free graphs for any value of k. This result is based on a deep

combinatorial analysis of the structure of graphs without large apples. We show

that the condition is satisfied by graphs of bounded vertex degree of sufficiently large

tree-width. Together with polynomial-time solvability of the problem in graphs of

bounded tree-width, this leads to the conclusion that for any fixed k and ∆, the

WIS problem is solvable in polynomial time for (Ak, Ak+1, . . .)-free graphs of vertex

degree at most ∆. We also show that the condition is satisfied by apex-minor-free

graphs of sufficiently large tree-width, a class that will be defined later. This implies

an efficient solution to the problem in (Ak, Ak+1, . . .)-free graphs excluding a fixed

apex graph as a minor.

Graphs of tree-width at most k, also known as partial k-trees, generalize trees

and are very important from an algorithmic viewpoint, since many graph problems

that are NP-hard for general graphs are solvable in linear time when restricted to

graphs of tree-width at most k [73]. In particular, the WIS problem is solvable in

linear time (in the number of vertices) for graphs that belong to any class of bounded

tree-width.

Modules, clique separators, and a useful decomposition

Recall that a module M of a graph G is not distinguished by any vertex in G \M .

That is to say, no vertex outside M has both a neighbour and a non-neighbour in
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M . A module is trivial if it consists of the whole graph, a single vertex, or the empty

set and a graph is prime if all its modules are trivial. It is well-known that the WIS

problem can be reduced in polynomial time from any hereditary class X to prime

graphs in X (see e.g. [48]).

A clique separator in a connected graphG is a subsetK of vertices ofG, which

induces a complete graph, such that the graphG−K is disconnected. Whitesides [74]

and Tarjan [75] showed that WIS can be reduced in polynomial time to graphs

without clique separators. Moreover, Brandstädt and Hoàng recently combined

decomposition by clique separators with modular decomposition to obtain a more

general decomposition scheme:

Theorem 31 (Brandstädt and Hoàng [76]). Let X be a class of graphs. If the WIS

problem can be solved in polynomial time for those induced subgraphs of graphs in X

which are prime and have no clique separators, then WIS is solvable in polynomial

time for graphs in X.

Therefore, when developing a polynomial-time solution to the WIS problem

in a certain hereditary class, we can safely focus on graphs which are prime and

have no clique separators. Throughout the section we call such graphs atoms.

4.2 A Sufficient Condition for Claw-Freeness of

(Ak, Ak+1, . . .)-free Atoms

In this section, we state and prove a sufficient condition for claw-freeness

of (Ak, Ak+1, . . .)-free atoms, which generalizes a result from [77], and leads to the

solutions to the WIS problem in certain subclasses of graphs without large apples,

developed in Section 4.3. The result relies on the following notion.

Definition 32. Let C be a chordless cycle in a graph G. We say that C is r-invisible

if every vertex outside C has at least r consecutive non-neighbours in C.

For example, every chordless cycle in a graph is 0-invisible, every 3-cycle in a

K4-free graph is 1-invisible, and the only connected graphs containing an r-invisible

chordless cycle C such that |V (C)| = r are cycles themselves. Clearly, if a cycle is

r-invisible, then it is also r′-invisible, for every r′ ≤ r.
Why do we consider r-invisible cycles? If a graph contains a large induced

apple, then it necessarily contains an induced claw, as well as a long chordless

cycle. Of course, the converse of this statement does not hold; a graph containing

an induced claw and a long chordless cycle could contain no apples at all. So the
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following question arises: Can we define a property of cycles such that every graph

containing an induced claw and a chordless cycle satisfying the property contains a

large apple? For atoms, we show that this is indeed the case, and the right property

is that of high invisibility. As we show in the next lemma, the presence of an induced

claw and of a chordless cycle of sufficiently high invisibility in an atom forces the

presence of a large induced apple.

Lemma 33. Let k ≥ 4, and let G be an (Ak, Ak+1, . . .)-free atom that contains a

128k-invisible chordless cycle. Then G is claw-free.

Proof. Let G be an (Ak, Ak+1, . . .)-free atom that contains a 128k-invisible chord-

less cycle C; that is, every vertex in V (G)\C has at least 128k consecutive non-

neighbours on C.

Since G is prime, it is connected. Furthermore, we may assume that G is not

a cycle (or we are done); in particular, since C is 128k-invisible and there exists a

vertex outside C, this implies that |V (C)| ≥ 128k.

Let us now prove a few helpful statements valid for any (k − 1)-invisible

sufficiently long cycle in G, including the cycle C.

Claim 34. Let C ′ be an (l− 1)-invisible chordless cycle with |V (C ′)| ≥ 4l, and v a

vertex outside the cycle. If v is adjacent to at least one vertex of C ′, then

• v has at least two and at most four neighbours on C ′.

Moreover,

• if v has exactly two neighbours on C ′, then they are consecutive vertices of C ′,

• if v has exactly three neighbours on C ′, then they are consecutive vertices of

C ′,

• if v has four neighbours on C ′, then they create two pairs of consecutive vertices

of C ′,

• if v is adjacent to a vertex that has no neighbours on C ′, then v has two

neighbours on C ′.

In particular,

• v cannot have an isolated neighbour on C ′, i.e. if v has a neighbour i on C ′,

then v must also be adjacent to i− 1 or i+ 1.

In addition, if u is another vertex outside C ′ with at least one neighbour on C ′, then
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• if N(v) ∩ C ′ properly contains N(u) ∩ C ′, then u is adjacent to v, unless

N(v)∩C ′ = {i, i+ 1, i+ 2, i+ 3} and N(u)∩C ′ = {i+ 1, i+ 2}, in which case

u and v are non-adjacent,

• if one of u and v has exactly three neighbours on C ′ and N(v)∩N(u)∩C ′ = ∅,
then u and v are non-adjacent,

• if one of u and v has four neighbours on C ′ and |N(v)∩N(u)∩C ′| ≤ 1, then

u and v are non-adjacent.

All of the above statements can be checked by direct inspection, except for

the case when v is adjacent to vertices i− 1 and i+ 1 on C ′ (that is, to exactly two

vertices at distance 2 along the cycle). In order to prove that this is not possible, let

us consider the set A of all vertices of G adjacent to exactly two vertices of C ′−{i},
namely to i − 1 and to i + 1. In particular, i, v ∈ A. Let B be the connected

component of the complement of G[A] containing i and v, and let z be a vertex of G

distinguishing B. Without loss of generality, we may assume that z is adjacent to v

and non-adjacent to i (obviously, B contains two non-adjacent vertices distinguished

by z). To avoid a large induced apple, we must conclude that z is adjacent to i− 1

and i + 1 and to no other vertex of C ′. But then z belongs to A and consequently

to B, which contradicts the choice of z.

According to Claim 34, all vertices outside C can be partitioned into four

types according to the number of neighbours on the cycle (type j standing for the

vertices with exactly j neighbours on C). If the neighbours of a vertex v of type 4

are not consecutive on C, we will say that v is of type 4 with opposite neighbours.

To prove the lemma, we suppose for contradiction that G contains an induced

claw K = (a; b, c, d) with a being the centre. By Claim 34, K cannot have more than

two vertices on C. The rest of the proof is partitioned into several cases according

to the size of the intersection of K and C.

Case 1: K ∩ C = {a, d}. Let y be the other neighbour of a on C. To avoid

a claw with three vertices on C, we conclude that y is adjacent both to b and to c.

By Claim 34, N(b)∩C cannot properly contain N(c)∩C, and vice versa. To avoid

a large induced apple, we conclude that N(b) ∩ C = N(c) ∩ C.

Denote by A the set {v ∈ V : N(v) ∩ C = N(b) ∩ C} and by U the vertex

set of the connected component of the complement of G[A] which contains b and

c. Since G is prime, there must exist a vertex z that distinguishes U . Obviously,

z 6∈ A, i.e. N(z) ∩C 6= N(b) ∩C. Also, it is not difficult to see that z distinguishes

two vertices of U that are not adjacent in G. Without loss of generality we may
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assume that z is adjacent to b, but not to c. Since no vertex of C distinguishes A,

we know that z does not belong to C. Also,

• z has no neighbours on C, since otherwise a large induced apple arises. To see

this, assume z has at least one neighbour on C and let I = {ci, ci+1, . . . , cj−1, cj}
be a largest set of consecutive vertices of C in which ci and cj have neigh-

bours in {b, c, z} while the other vertices have no neighbours in {b, c, z}.
We observe that the set C − I contains at least one vertex, since otherwise

N(z) ∩ C = N(b) ∩ C = N(c) ∩ C = {ci, cj} contradicting the choice of z.

If one of ci and cj has a non-neighbour in {b, c, z}, then a large apple induced

by vertices from the set I ∪ {b, c, z} can be easily found.

Assume now that ci and cj are adjacent to each vertex of {b, c, z}. Then ci−1 is

adjacent to each vertex of {b, c, z}, since otherwise cj is an isolated neighbour

of a vertex in {b, c, z} (see Claim 34). Similarly, cj+1 is adjacent to each vertex

of {b, c, z}. But then N(z) ∩ C = N(b) ∩ C = N(c) ∩ C = {ci−1, ci, cj , cj+1}
(regardless of whether ci−1 = cj+1 or not), which contradicts the choice of z.

Therefore, z is of type 0 and hence b and c are of type 2, i.e. N(b)∩C = N(c)∩C =

{a, y}. Let K0 denote a maximal clique containing {a, y} in the subgraph of G

induced by {a, y}∪A. Since G has no clique separators, there must exist a (shortest)

path P = (v0, . . . , vr) connecting z = v0 to C and avoiding K0. Without loss of

generality we will assume that K and z are chosen so that the length of P is as

small as possible. In particular, no vertex of P , except z, distinguishes b and c.

Suppose first that P also avoids A. Then vertex vr is of type 2 and the

remaining vertices of P are of type 0. If b and c have no neighbours on P except z,

then an induced apple of order at least |V (C)|/2 can easily be found. Otherwise, let

vi be the common neighbour of b and c with maximum index. If i > 1, then vertex

z together with the cycle formed by vertices b, vi, . . . , vr and a large portion of C

create an induced apple of order at least |V (C)|/2. If i = 1, then vertex z together

with the cycle formed by vertices c, vi, . . . , vr and a large portion of C create an

induced apple of order at least |V (C)|/2.

Assume now that P intersects A and let i be the maximum index such that

vi ∈ A. Since K0 is a maximal clique and P avoids K0, there must exist a vertex

u ∈ K0∩A non-adjacent to vi. Also, it is clear that r > i. If any vertex vj of P with

j > i distinguishes u and vi, then we could replace z by vj and K by G[a, d, u, vi].

Therefore, vi+1 is adjacent both to vi and u and the vertices of P following vi+1

are not adjacent to vi and u. Now the vertices vi, vi+1, . . . , vr and a portion of C

of length at least |V (C)|/2 ≥ 64k create a cycle C ′ which is 32k-invisible, and such
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that vertex u has two non-consecutive neighbours on C ′. This is a contradiction to

Claim 34, which completes the proof of Case 1.

Ruling out Case 1 allows us to assume in what follows that

(A) if u and v are two non-adjacent vertices outside the cycle C each of which has

a neighbour on C, then N(u) ∩ C 6= N(v) ∩ C,

since otherwise a claw as in Case 1 arises.

Case 2: K ∩ C = {b, c}. Then a is of type 3 or 4, and hence d has a

neighbour on C. If a is of type 3, then N(a) ∩ C and N(d) ∩ C must be disjoint,

which is impossible by Claim 34. Therefore, a is of type 4 and by the same claim

we conclude that N(a) ∩ C and N(d) ∩ C must intersect in at least two vertices.

In fact, since |N(a) ∩ C| = 4 and b, c ∈ (N(a) ∩ C)\(N(d) ∩ C), we conclude that

N(a) ∩ C and N(d) ∩ C intersect in exactly two vertices. If d is of type 2, then

N(a)∩C = {i, i+ 1, i+ 2, i+ 3} and N(d)∩C = {i+ 1, i+ 2} (for some i ∈ V (C)),

which is not possible again by Claim 34. If d is of type 3, then K ∪ (C \ N(d))

induces a long apple. Thus, d is of type 4. Suppose that a has opposite neighbours,

say i, i+1, j, j+1. If {b, c} = {i, j}, then N(d)∩C = {i+1, i+2, j+1, j+2}, and a

long portion of C together with K form a large induced apple. If {b, c} = {i, j+ 1},
then N(d) ∩ C = {i + 1, i + 2, j − 1, j}, and a long portion of C together with a

and d form a large induced apple. Therefore, a has consecutive neighbours, say

i, i+ 1, i+ 2, i+ 3. But then {b, c} = {i, i+ 3} and N(d)∩C = {i+ 1, i+ 2, j, j + 1}
for some j 6∈ {i−1, . . . , i+3}, and a long portion of C together with K form a large

induced apple.

Case 3: K ∩C = {a}. Assume one of the vertices in {b, c, d} is of type 3, say

N(b) ∩ C = {i− 1, i, i+ 1}, and let C ′ be the cycle obtained from C by replacing i

with b. If N(c)∩C = {i− 2, i− 1, i} and N(d)∩C = {i, i+ 1, i+ 2} (or vice versa),

then a large apple arises. Otherwise, the neighbourhoods of c and d either do not

satisfy Claim 34 with respect to C or C ′, or they do not satisfy assumption (A) with

respect to C or C ′. By the same arguments we conclude that if none of b, c, d is of

type 3, then none of them is of type 2 or of type 4 with opposite neighbours.

Finally, let all three vertices b, c, d be of type 4 with consecutive neighbours

on C. Then the union of their neighbours forms an interval i < . . . < a < . . . < j on

C. Taking into account assumption (A), we may assume without loss of generality

that i ∈ N(b), j ∈ N(d), i, j 6∈ N(c). Then vertex c together with the cycle obtained

63



from C by replacing the vertices between i and a by b and by replacing the vertices

between a and j by d form a large apple.

Case 4: K ∩C = {d}. If a is of type 3 or 4, then either a new claw satisfying

one of the previously studied cases arises, or the neighbourhoods of b, c on C violate

Claim 34 or assumption (A). Therefore, we conclude that a is of type 2. If b or

c also have neighbours on C, then either the neighbourhoods of b, c on C violate

assumption (A) a large apple arises. Therefore, b and c are both of type 0.

Let y be the other neighbour of a on C. Since G has no clique separators,

there must exist a (shortest) path P connecting {b, c} to C and avoiding {a, d, y},
and since b and c are both of type 0, the vertex of P which has a neighbour on C is

of type 2 and the remaining vertices of P are of type 0. But then G has a cycle C ′

containing vertex a and a portion of C of length at least |V (C)|/2 ≥ 64k. It is not

difficult to see that C ′ is 32k-invisible. Without loss of generality, we may assume

that b ∈ V (C ′) and c 6∈ V (C ′), but then a is an isolated neighbour of c on C ′. This

is a contradiction to Claim 34.

Note that in Cases 1-4 a contradiction would also be reached under a weaker

assumption that C is 8k-invisible.

Case 5: K ∩ C = ∅ and a vertex of K has a neighbour on C. If K contains

a vertex of type 3 or 4, then this vertex together with a large portion of C create a

chordless cycle of length at least 64k intersecting K, which reduces the problem to

one of the previously studied cases. Therefore, each vertex of K is of type 2 or 0.

Assume a has neighbours on C, say i and i + 1. Then, to avoid an induced

claw intersecting C, we conclude that both i and i+ 1 have exactly two neighbours

among b, c, d. Without loss of generality we let i be adjacent to b and c. Then,

according to assumption (A), we may assume without loss of generality that i+ 1 is

adjacent to d and c. Since b and d are of type 2, we conclude, again by assumption

(A), that b is adjacent to i−1, while d is adjacent to i+2. But now (C−{i, i+1})∪K
is a large induced apple, a contradiction.

Suppose now that a is of type 0. If at least two vertices in {b, c, d} have

neighbours on C, then, taking into account assumption (A), it is easy to find a

large chordless cycle intersecting K. If exactly one vertex of K has neighbours on

C, say b is adjacent to x and y, we proceed similarly as in Case 4: since G has no

clique separators, there must exist a path connecting {a, c, d} to C and avoiding

{b, x, y}, but then G has a 32k-invisible chordless cycle (of length at least 64k) and

intersecting K.

Note that in Case 5 a contradiction would also be reached under a weaker
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assumption that C is 32k-invisible.

Case 6: K ∩ C = ∅ and no vertex of K has a neighbour on C. Let us call

a quasi-chord for C any chordless path P = (p1, . . . , pt) such that p1 and pt are of

type 2 with N(p1) ∩ C 6= N(pt) ∩ C and all the other vertices of the path are of

type 0. The neighbours of p1 and pt split C into two segments. The largest of these

segments together with P create a large chordless cycle. To prove the lemma, we

will show that there is a quasi-chord which intersects K or has a neighbour in K.

First, let us show that there is at least one quasi-chord for C which is strictly

closer to the claw than the cycle C itself.

Since G is connected, there must be a path connecting the claw to the cycle.

Let P ′ = (x1, . . . , xp) be a shortest path between K and C with x1 ∈ K and with

xp having a neighbour on C. By the choice of P ′, no vertex of this path has a

neighbour on C except xp. Also, to avoid a claw intersecting C, we conclude that

the neighbourhood of xp on C consists of two consecutive vertices of the cycle, say

i, i + 1. If the clique {xp, i, i + 1} can be extended to a larger clique by means of

vertices of type 2, we extend it as much as possible and denote the resulting clique

by Q.

Since G has no separating clique, there must exist a path connecting K to C

and avoiding Q. Let P ′′ = (y1, . . . , yt) be a chordless path of this type with y1 ∈ K
and with yt having a neighbour on C different from i, i+ 1. We may assume that no

vertex of P ′′ except yt has a neighbour on C. Indeed, if a vertex yj with j < t has a

neighbour on C different from i, i+ 1, we can replace yt by yj , making P ′′ shorter.

If yj has a neighbour in {i, i + 1}, it must be adjacent to both i and i + 1 (since

otherwise yj is of type 1 with respect to C). Since Q is not extendable to a larger

clique by means of vertices of type 2, yj must have a non-neighbour z ∈ Q of type

2. But then i − 1, i, z, yj induce a claw intersecting C. This proves that no vertex

of P ′′ except yt has a neighbour on C. To avoid a claw intersecting C, we conclude

that yt is of type 2.

Now any chordless path connecting xp to yt and consisting of vertices of P ′

and P ′′ (and possibly of K) forms a quasi-chord for C. Moreover, this path contains

vertex xp which is strictly closer to the claw than C.

Now we show that there is a quasi-chord for C which intersects K or has a

neighbour in K. To this end, let us denote by P = (p1, . . . , pt) a quasi-chord for

C which is as close to K as possible. Assume P neither intersects K nor has a

neighbour in K. Then we consider a shortest path P ′ = (x1, . . . , xp) connecting K

to P . By the choice of P and by the above discussion, P must be closer to K than
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C, which means no vertex of P ′ belongs to C or has a neighbour on C. Also, by

the choice of P ′ we know that no vertex of P ′ has a neighbour on P except xp, and

to avoid a claw intersecting a large cycle we conclude that the neighbourhood of

xp on P consists of two consecutive vertices of the path, say pi, pi+1. Similarly as

before, using the “no separating clique” argument, we find one more chordless path

P ′′ = (y1, . . . , yt), but this time P ′′ connects K to C∪P and avoids pi, pi+1. Finally,

as before, we assume that no vertex of P ′′ except yt has a neighbour in C ∪ P .

Let P ∗ be a chordless path connecting xp to yt and consisting of vertices of

P ′ and P ′′ (and possibly of K). If yt has no neighbours on C (i.e. the neighbours

of both xp and yt belong to P ), then part of P can be replaced by P ∗ creating

another quasi-chord for C, which is strictly closer to K than P , since it contains

vertex xp ∈ P ∗. This contradicts the choice of P .

Assume yt has neighbours on C. Then yt must be of type 2 with respect to

C (to avoid a claw intersecting C). Since N(p1) ∩ C 6= N(pt) ∩ C, we may assume

without loss of generality that N(yt) ∩ C 6= N(p1) ∩ C. Then {p1, . . . , pi} ∪ P ∗ is

a quasi-chord for C, which is strictly closer to K than P , since it contains vertex

xp ∈ P ∗. This final contradiction shows that P intersects K or has a neighbour in

K. Therefore, G contains a 32k-invisible cycle that intersects K or has a neighbour

in K.

4.3 Polynomial Results

The results of the previous section suggest the following sufficient condition for

polynomial-time solvability of the WIS problem for graphs without large apples.

Lemma 35. Let X be a hereditary class of graphs and let k ≥ 4 be an integer. Sup-

pose that the WIS problem can be solved in polynomial time for those (Ak, Ak+1, . . .)-

free atoms in X that contain no 128k-invisible chordless cycles. Then, the WIS

problem can be solved in polynomial time for (Ak, Ak+1, . . .)-free graphs in X.

Proof. Let G be an (Ak, Ak+1, . . .)-free graph from X. By Theorem 31, we may

assume that G is an atom. If G is claw-free, then an independent set of maximum

weight can be found in polynomial time [65, 28, 66, 67]. Assume now that G

contains an induced claw. Then, by Lemma 33, G does not contain any 128k-

invisible chordless cycles. In this case, we can solve the WIS problem in G in

polynomial time using an algorithm given by the hypothesis.

Below we identify two large families of graph classes that satisfy the condition

of Lemma 35.
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4.3.1 Graphs of Bounded Vertex Degree

The first family includes graph classes of bounded vertex degree. To verify the con-

dition of the lemma, we will show that every graph of bounded degree that contains

no chordless cycles of high invisibility is of bounded tree-width. We first recall a

theorem by Bodlaender and Thilikos stating that bounded degree in conjunction

with bounded chordality imply bounded tree-width. More formally:

Lemma 36 ([32]). For any two integers k ≥ 3 and ∆ ≥ 1 there is a number

f(k,∆) such that every (Ck, Ck+1, . . .)-free graph of maximum degree at most ∆ has

tree-width at most f(k,∆).

Corollary 37. For every two positive integers ∆, r ≥ 1 there is a number N such

that every graph of maximum degree at most ∆ and with no r-invisible chordless

cycles has tree-width at most N .

Proof. Let G be a graph of maximum degree at most ∆ and with no r-invisible

chordless cycles. We will show that the chordality of G is less than r(∆ + 1), and

the statement will follow from Lemma 36 by taking N = f(r(∆ + 1),∆). Suppose

that G contains a chordless cycle C of length at least r(∆ + 1). Since C is not

r-invisible, there exists a vertex v outside C that has at least one neighbour among

every r consecutive vertices of C. Hence, |N(v) ∩ C| ≥ b|V (C)|/rc ≥ ∆ + 1, which

implies that the degree of v exceeds ∆, a contradiction.

Since the WIS problem is polynomial-time solvable for graphs of bounded

tree-width (see, e.g. [73]), we conclude from Lemma 35 and Corollary 37 that

Theorem 38. For any two integers k ≥ 4 and ∆ ≥ 1, the WIS problem is solvable

in polynomial time in the class of (Ak, Ak+1, . . .)-free graphs of maximum degree at

most ∆.

4.3.2 Apex-Minor-Free Graphs

In what follows, we derive a similar conclusion for graphs that exclude a fixed apex

graph as a minor. A graph H is said to be a minor of a graph G if H can be

obtained from G by means of vertex deletions, edge deletions and edge contractions.

Contracting an edge uv in a graph G means replacing the edge uv together with

its two endpoints with a new vertex adjacent precisely to all neighbours of either u

or v in G. If H is not a minor of G, we say that G is H-minor-free and call H a

forbidden minor for G.
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A class of graphs is called minor closed if with every graph G it contains all

minors of G. One of the most famous examples of this type is the class of planar

graphs. It is well known that any minor-closed graph class can be described by a

unique finite set of minimal forbidden minors [78]. For instance, the class of planar

graphs is exactly the class of (K5,K3,3)-minor-free graphs.

An apex graph is a graph that contains a vertex the deletion of which leaves

a planar graph. For instance, both K5 and K3,3 are apex graphs. We call a class

of graphs apex-minor-free if it is defined by a single forbidden minor H, which is

a (non-planar) apex graph. Therefore, the planar graphs are contained in every

apex-minor-free class. Our goal is to show that any apex-minor-free class of graphs

satisfies the condition of Lemma 35. We will need the following result from [79],

analogous to Lemma 36.

Lemma 39 ([79]). For any integer k ≥ 3 and any apex graph H, there is a number

fH(k) such that every H-minor-free (Ck, Ck+1, . . .)-free graph has tree-width at most

fH(k).

We will also need a technical preparatory statement. An n × n grid Gn is

the graph with the vertex set {1, . . . , n} × {1, . . . , n} such that (i, j) and (k, l) are

adjacent if and only if |i−k|+|j−l| = 1. By a result of Robertson and Seymour [80],

graphs of large enough tree-width must contain a grid of a prescribed fixed size as a

minor. For apex-minor-free graph classes, even more is true. In the following lemma,

an augmented grid is a grid Gn augmented with additional edges (and no additional

vertices). Vertices (i, j) with {i, j} ∩ {1, n} 6= ∅ are boundary vertices of the grid;

the other ones are non-boundary. We say that a graph G can be contracted into a

graph R if there exists a collection of disjoint non-empty subsets of V (G) indexed by

vertices of R, say {Vr : r ∈ V (R)}, such that each Vr induces a connected subgraph

of G, the union of all Vr is equal to V (G), and there exists an edge in G connecting

a vertex in Vr with a vertex in Vr′ if and only if r and r′ are adjacent in R. If this

is the case, we also say that the set Vr gets contracted to vertex r.

Lemma 40 ([81]). Let H be an apex graph. Let r = 14|V (H)| − 22. For every

integer k there is an integer gH(k) such that every connected H-minor-free graph of

tree-width at least gH(k) can be contracted into an k′ × k′ augmented grid R such

that k′ ≥ k, and each vertex v ∈ V (R) is adjacent to less than (r+1)6 non-boundary

vertices of the grid.

With the help of Lemma 40 we now derive the following result.
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Lemma 41. For every apex graph H and every two integers k and l there is an

integer f(H, k, l) such that every connected H-minor-free graph G of tree-width at

least f(H, k, l) contains a k-invisible chordless cycle C of length at least l.

Proof. Let r = 14|V (H)| − 22, let fH be the function given by Lemma 39, and let

gH be the function given by Lemma 40. Furthermore, let

f(H, k, l) = gH
(
fH
(
max{l, (k + 1)(r + 1)6}

)
+ 2
)
.

We will show that the function f(H, k, l) satisfies the claimed property.

Let G be a connected H-minor-free graph of tree-width at least f(H, k, l).

By Lemma 40, G can be contracted into an k′ × k′ augmented grid R where k′ ≥
fH(max{l, (k + 1)(r + 1)6}) + 2 and such that each vertex v ∈ V (R) is adjacent

to less than (r + 1)6 non-boundary vertices of the grid. For i, j ∈ {1, . . . , k′}, let

V (i, j) denote the subset of V (G) that gets contracted to the vertex (i, j) of the

grid. Furthermore, let R0 denote the (k′−2)× (k′−2) augmented sub-grid, induced

by the non-boundary vertices of R. Since the tree-width of an n× n grid is n [82],

and the tree-width cannot decrease by adding edges, we conclude that the tree-

width of R0 is at least k′ − 2 ≥ fH(max{l, (k + 1)(r + 1)6}). Moreover, as R0 is

H-minor-free, Lemma 39 implies that R0 contains a chordless cycle C0 of length

at least max{l, (k + 1)(r + 1)6} ≥ l. By the above, every vertex v ∈ V (R) is

adjacent to less than (r + 1)6 vertices of R0. Therefore, the neighbours of v on C0

(if any) divide the cycle into less than (r + 1)6 disjoint paths, whose total length is

at least |V (C0)| − (r + 1)6. In particular, this implies that every vertex of V (R) is

non-adjacent to at least |V (C0)|−(r+1)6

(r+1)6
≥ k consecutive vertices of C0.

Let the cyclic order of vertices of R0 on C0 be given by ((i1, j1), (i2, j2), . . .,

(is, js)). To complete the proof, we have to lift the cycle C0 to a chordless cycle C

in G. Informally, we will replace each pair of incident edges (ip−1, jp−1)(ip, jp) and

(ip, jp)(ip+1, jp+1) in C0 with a shortest path in G connecting vertex (ip−1, jp−1) to

vertex (ip+1, jp+1), such that the internal vertices of the path all belong to Vip,jp .

Let us now describe the procedure formally. For each p = 0, 1, . . . , s, let Gp

denote the graph obtained from G by contracting each of the sets V (ip+1, jp+1),

V (ip+2, jp+2), . . . , V (is, js) into a single vertex. (In particular, Gs = G.) Starting

with C0, we shall define a sequence of s+ 1 cycles C0, C1, . . . , Cs such that:

1. For each p = 0, 1, . . . , s, the cycle Cp is a chordless cycle in Gp. (In particular,

Cs is a chordless cycle of G.)
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2. For each p = 0, 1, . . . , s, the cycle Cp is of the form

Cp = (v1, . . . , vtp , (ip+1, jp+1), . . . , (is, js))

for some v1, . . . , vtp ∈ V (Gp)∩V (G), with t0 = 0 and tp > tp−1 for p = 1, . . . , s.

3. For each p = 0, 1, . . . , s, every vertex v ∈ V (Gp) is non-adjacent to at least k

consecutive vertices of Cp.

A cycle C with the desired properties will then be given by the last cycle Cs of the

above sequence.

First, let us verify that we can start the sequence with C0. Properties 1 and

2 are easily seen to be true. For property 3, we need to show that every vertex

v ∈ V (G0) is non-adjacent to at least consecutive k vertices of C0. Let v be a vertex

of G0. We have

V (G0) = V (C0) ∪
⋃

(i,j)∈V (R)\V (C0)

V (i, j) .

If v ∈ V (C0), there is nothing to show, as in this case v ∈ V (R). (We know that

every vertex of V (R) is non-adjacent to at least k consecutive vertices of C0.) If

v ∈ V (G0)\V (C0), then v ∈ V (i, j) for some (i, j) ∈ V (R)\V (C). Note that if in

the grid R, the vertex (i, j) is non-adjacent to some (ip, jp) ∈ V (C0), then in G0,

no vertex of V (i, j) is adjacent to (ip, jp). In particular, since (i, j) is non-adjacent

in R to at least k consecutive vertices of C0, it follows that v is non-adjacent to at

least k consecutive vertices of C0 in this case too.

Suppose that the cycles C0, . . . , Cp satisfying the above properties have al-

ready been constructed. We now show how to construct the cycle Cp+1 from

Cp = (v1, . . . , vtp , (ip+1, jp+1), (ip+2, jp+2), . . . , (is, js)). Let us write

x =

{
vtp , if p > 0;

(is, js), otherwise

and

y =

{
(ip+2, jp+2), if p < s− 1;

v1, otherwise.

Let P = (x, vtp+1, . . . , vtp+1 , y) be a shortest x−y path in Gp+1 all the internal

vertices of which belong to V (ip+1, jp+1). The cycle Cp+1 is then obtained from Cp

by deleting the vertex (ip+1, jp+1) (together with the two edges incident to it) and
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joining the endpoints x and y of the so obtained path by P :

Cp+1 = (v1, . . . , vtp , vtp+1, . . . , vtp+1 , (ip+2, jp+2), . . . , (is, js)) .

We have to verify that the cycle Cp+1 satisfies the properties 1-3. Property 1

follows directly from the construction of Cp+1 (using the fact that Cp is a chordless

cycle in Gp). Property 2 is straightforward. Finally, property 3 for Cp+1 can be

easily derived from property 3 for Cp: every vertex of Gp+1 is either a vertex of

Gp, or it belongs to V (ip+1, jp+1). In either case, the fact that every vertex of Gp

is non-adjacent to at least k consecutive vertices of Cp implies that every vertex of

Gp+1 is non-adjacent to at least k consecutive vertices of Cp+1.

This completes the proof of the lemma.

Corollary 42. For every apex graph H and every integer k ≥ 4 there is a number

N such that every connected H-minor-free (Ak, Ak+1, . . .)-free graph with no 128k-

invisible chordless cycles has tree-width less than N .

Proof. Let N = f(H, k−3, 512k+1), where f(·) is the function given by Lemma 41.

Suppose for contradiction that there exists an H-minor-free (Ak, Ak+1, . . .)-free

graph G with no 128k-invisible chordless cycles, whose tree-width is at least N =

f(H, k − 3, 512k + 1). By Lemma 41, G contains a (k − 3)-invisible chordless cy-

cle C of length at least 512k + 1. To avoid induced apples of order at least k, we

conclude that every vertex in V − C has at most four neighbours on C. Since C is

not 128k-invisible, there exists a vertex v outside C that has at least one neighbour

among every 128k consecutive vertices of C. Hence, |V (C)| ≤ 4 × 128k = 512k, a

contradiction.

In conjunction with Lemma 35 and the fact the WIS problem is solvable in

polynomial time for graphs of tree-width at most N [73], this implies our final result.

Theorem 43. For every apex graph H and every integer k, there is a polynomial

time algorithm for the WIS problem in the class of H-minor-free (Ak, Ak+1, . . .)-free

graphs.

4.4 Conclusion

The polynomial-time solvability of the maximum weight independent set prob-

lem in the class of graphs without large apples generalises several results such as

algorithms for claw-free and chordal graphs. It would be interesting to find out if

similar generalisations can be made for related problems. Unfortunately this is not
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the case for independent domination and maximum induced matching since

both problems are already NP-complete for claw-free graphs.

Such a generalisation might yet be possible for the dominating induced

matching problem, since it has a polynomial solution on both chordal and claw-free

graphs. Finding an answer to this question is an interesting open problem.
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Chapter 5

Sparse Regular Induced

Subgraphs in 2P3-free Graphs

5.1 Introduction

Finding maximum regular induced subgraphs is a family of algorithmic graph prob-

lems containing several important representatives such as maximum independent

set, maximum clique, maximum induced matching. We call graphs of a fixed

degree k sparse regular graphs and their complements dense regular graphs. For in-

stance, the maximum independent set and maximum induced matching prob-

lems deal with finding sparse regular graphs (k = 0 and k = 1, respectively), while

the maximum clique problem deals with finding dense regular graphs (k = 0 in

the complement to the graph).

Finding maximum sparse and maximum dense regular graphs is generally

NP-hard for all non-negative integer values of k [83]. Moreover, this problem remains

NP-hard even for many restricted graph families. On the other hand, for some

specific values of k, in some particular graph classes the problem can be solved in

polynomial time.

We have noted that the maximum independent set problem (k = 0) has

a polynomial-time solution in the class of claw-free graphs [84, 66, 85]. We observe

that the maximum induced matching problem (k = 1) is NP-complete in claw-

free graphs [86], while both problems (k = 0 and k = 1) are solvable in polynomial

time for P4-free graphs. This is one of the very few classes defined by a single

forbidden induced subgraph (we call such classes monogenic) where the problems

are known to be polynomial-time solvable. Moreover, until recently, the class of

P4-free graphs was the only known monogenic class with polynomial-time solvable
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maximum induced matching problem. Only three such cases were known for the

maximum independent set problem1: fork-free graphs [48], claw+K2-free graphs

[87] and mK2-free graphs for any fixed value of m [69]. Recently, this restricted list

of monogenic classes where the two problems admit polynomial-time solutions was

extended by a new example, the class of 2P3-free graphs [88].

The class of 2P3-free graphs and some of its subclasses, such as 2K2-free

graphs, has received considerable attention both in the algorithmic community [89,

87, 88, 90, 91] and in the combinatorial community [92, 93]. In particular, finding

maximum regular induced subgraphs in 2P3-free graphs was studied in [88]. This

paper observed a fundamental difference between finding sparse and dense graphs

in this class and conjectured that finding a maximum regular induced subgraph H

in a 2P3-free graph G is polynomial if and only if H is sparse. The paper also

verified both parts of the conjecture (sparse and dense) for small values of k. In

particular, it proved that the maximum independent set (k = 0) and maximum

induced matching (k = 1) problems can be solved in the class of 2P3-free graphs

in polynomial time. Extending these results, in the present chapter we prove that

finding a maximum k-regular induced subgraph is polynomially solvable in the class

of 2P3-free graphs for each fixed value of k. In other words, we prove the “sparse”

part of the above conjecture. Moreover, our algorithm applies to totally weighted

graphs, i.e. graphs in which both the vertices and the edges are assigned weights,

and finds a solution of maximum total weight, if it exists. We emphasize that for

k > 0, a k-regular induced subgraph does not necessarily exist.

We separate the work into two sections. We present a solution, separately,

for maximum k-regular induced subgraphs containing a P3 (Section 5.2) and maxi-

mum k-regular induced subgraphs which are P3-free (Section 5.3). Throughout the

chapter we assume that k is a fixed constant.

5.2 Finding maximum k-regular graphs containing a P3

We start by characterizing the structure of k-regular 2P3-free graphs.

Lemma 44. In a k-regular 2P3-free graph H, at most one connected component is

not a clique with k + 1 vertices. Moreover, if H does contain a component which is

not a clique, then this component has at most 1 +
4∑
i=0

(k − 1)ik vertices.

1We exclude from our consideration trivial extensions of solvable cases obtained by adding
isolated vertices (if k = 0) or isolated edges (if k = 1) to the only forbidden induced subgraph.
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Proof. Obviously, every connected graph which is not a clique must contain an in-

duced P3. Therefore, if H is 2P3-free, then at most one of its connected components

is not a clique. Moreover, if H is k-regular, then every component of H which is a

clique must contain k + 1 vertices.

The second part of the lemma follows readily from the fact that a 2P3-free

graph is clearly P7-free and a connected Ps-free graph with maximum degree k has

at most 1 +
s−3∑
i=0

(k − 1)ik vertices.

This lemma suggests an easy way to find in a 2P3-free graph a maximum

k-regular induced subgraph containing a P3.

Theorem 45. Let G be a totally weighted 2P3-free graph. For each fixed k, the

problem of finding in G a k-regular induced subgraph containing a P3 of maximum

total weight can be solved in polynomial time.

Proof. Denote p := 1 +
4∑
i=0

(k−1)ik and n := |V (G)|. In the first step, by inspecting

each subset of size at most p in G we determine if G has a connected k-regular

induced subgraph containing a P3 and find all subgraphs of this form. The number

of such subgraphs and the time bound on this step of the algorithm is O(np). If a

connected k-regular induced subgraph containing a P3 is not found in G, then G has

no k-regular induced subgraph containing a P3.

Now for each connected k-regular induced subgraph H of G containing a P3

found in Step 1, we do the following. Delete from G the vertices of V (H) and of

NG(V (H)) and denote the resulting graph by G′. Since H contains a P3 and G is

2P3-free, the graph G′ is P3-free, i.e. every connected component of G′ is a clique.

Now by inspecting all subsets of size k + 1 in each connected component of G′ we

find in each of them a maximum k-regular induced subgraph (if there is any). This

can be done in O(nk+1) time. The union of such graphs together with H give a

maximum k-regular induced subgraph containing H. By comparing these graphs

for all graphs H found in Step 1, we find a maximum k-regular induced subgraph of

G containing a P3. Thus, the total complexity time of the algorithm is O(np+k+1),

which is a polynomial for a fixed k.

5.3 Finding maximum P3-free k-regular graphs

In this section, we show that for each fixed value of k the problem of finding a

maximum P3-free k-regular induced subgraph in a 2P3-free graph G can be solved
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in polynomial time. According to Lemma 44, in this case a solution (if one exists)

is a collection of disjoint cliques, each of size k + 1.

We solve the problem in two major steps. In the first step, we generate a

family S of vertex subsets of the input graph G. The generated family satisfies the

following properties:

• each inclusionwise maximal set of vertices inducing a k-regular P3-free sub-

graph in G is a subset of one of the members of the family S,

• the number of generated subsets is bounded by a polynomial in |V (G)| and

all of them can be found in polynomial time,

• the structure of each subset in S is simple, which allows to solve the problem

in each subset in polynomial time.

In the second step, an optimal solution in G is found by solving the problem in each

of the subsets of the generated family.

5.3.1 Step 1: generation of the family S

The first step is implemented in Algorithm FG (Family Generation) below. In the

description of the algorithm we refer to four specific types of graphs. For a natural

number k, we denote by

• ∆1
i (i = 1, . . . , k) the graph obtained from a clique C of size k + 1 by adding

a vertex with exactly i neighbours in the clique,

• ∆2
i (i = 1, . . . , k + 1) the graph obtained from two disjoint cliques C and C ′

of size k+ 1 by adding a vertex which dominates one clique and has exactly i

neighbours in the other,

• ∆3 the graph obtained from a clique C of size k + 1 by adding two adjacent

vertices, one of which dominates the clique and one of which has no neighbours

in the clique,

• ∆4 the graph obtained from a clique C of size k+1 by adding two non-adjacent

vertices, both of which dominate the clique.

Also, by Gi we denote the graph induced by the vertices v1, v2, . . . , vi.
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Algorithm FG

Input: a 2P3-free graph G with vertex set V (G) = {v1, v2, . . . , vn}.
Output: a family S of subsets of V (G).

S := {∅}
For i = 1, . . . , n, do

begin

1. [Extension of some members of S]

For each H ∈ S,

If there is a clique C ⊆ V (Gi) of size k + 1 containing vi such that

H ∪ C induces a P3-free graph,

then extend C to any maximal clique C ′ ⊆ V (Gi) such that

H ∪ C ′ induces a P3-free graph and add C ′ to H.

2. [Addition of new members to S]

2.1. For j = 1, . . . , k,

For each induced ∆1
j in Gi containing vertex vi in its clique C,

H := C ∪AGi(V (∆1
j )),

S := S ∪ {H}.
2.2. For j = 1, . . . , k + 1,

For each induced ∆2
j in Gi containing vertex vi in one of its cliques C,C ′,

H := C ∪ C ′ ∪AGi(V (∆2
j )),

S := S ∪ {H}.
2.3. For each induced ∆3 in Gi containing vertex vi in its clique C,

H := C ∪AGi(V (∆3)),

S := S ∪ {H}.
2.4. For each induced ∆4 in Gi containing vertex vi in its clique C,

H := C ∪AGi(V (∆4)),

S := S ∪ {H}.
end

Lemma 46. Let G be a 2P3-free graph and S the family of subsets of V (G) produced

by Algorithm FG Then:

(i) each member of S induces a P3-free subgraph of G,

(ii) each inclusionwise maximal P3-free k-regular induced subgraph of G is con-

tained in some member of S.

Proof. A member of S is created either in the initialization step as the empty set or

in Step 2 of some loop. Each member of S created in Step 2 is the union of a clique
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and the antineighbourhood set of an induced subgraph containing a P3. Since G is

2P3-free, this antineighbourhood set must be P3-free. Therefore, each member of S

created in Step 2 induces a P3-free graph. In Step 1, a member of S is extended only

if the extension preserves its P3-freeness. This proves the first part of the lemma.

To prove the second part, let us denote by Si the content of the family S

after i loops of the algorithm. We will show that any maximal P3-free k-regular

induced subgraph of Gi is contained in a member H of Si. The proof continues by

induction on i = 1, . . . , n. For i = 1, the statement is trivial. Now we assume the

statement holds for i− 1 and prove that it holds for i.

Let I be a maximal P3-free k-regular induced subgraph of Gi. If vi 6∈ I, then

by the induction assumption, I is contained in some member of Si−1, and thus of

Si, since each member of Si−1 is a (not necessarily proper) subset of a member of

Si.

From now on, we assume vi ∈ I. Let C be the connected component of I

containing vi. By the induction assumption, I \ C is contained in some member of

Si−1. The extension of that member produced in Step 1 of the algorithm will be

denoted by H (possibly H coincides with that member). By the first part of the

lemma, we know that H induces a P3-free graph in G. If all vertices of C belong to

H, then I is contained in H and we are done.

Therefore, we assume that at least one vertex of C does not belong to H.

This means that H ∪ C contains an induced P3 (since otherwise C must be added

to H according to Step 1). We split the rest of the proof into cases depending on

whether or not H and C have a common vertex.

Case 1: H ∩ C 6= ∅.

Let K be the connected component of H containing H ∩C. Since H induces

a P3-free graph, K is a clique.

1.1: C ∪ K is not a clique. Then let x be a vertex in K \ C which has a non-

neighbour in C. Denote by j the number of neighbours of x in X. Then j ≥ 1

(since K ∩C is not empty) and j < k+ 1 (since x has a non-neighbour in C).

Since C ∪ {x} induces a ∆1
j , we know that C ∪ AGi(C ∪ {x}) is a member of

Si produced in Step 2.1, and this subset of V (G) clearly contains I.

1.2: C ∪ K is a clique. Since H ∪ C is not P3-free, a vertex of C must have a

neighbour y in another clique (component) K ′ of H. Let j be the number of

neighbours of y in C. Note that y cannot dominate C, because K ∩ C is not

empty and y cannot be adjacent to a vertex in K. Thus, 1 ≤ j ≤ k.
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1.2.1: If |K ′ ∩ AGi(C)| ≥ k + 1, then there is at least one clique of size k + 1

contained in K ′ ∩ AGi(C). For each clique C ′ of this type, the set C ∪
C ′ ∪ {y} induces a ∆2

j . Therefore, for each clique C ′, the set C ∪ C ′ ∪
AGi(C ∪ C ′ ∪ {y}) is a member of Si produced in Step 2.2. Clearly, one

of these members contains I.

1.2.2: If |K ′ ∩ AGi(C)| ≤ k, then I is contained in C ∪ AGi(C ∪ {y}), which is

a member of Si, because C ∪ {y} induces a ∆1
j .

Case 2: H ∩ C = ∅.

Since H ∪ C induces a graph containing a P3, we know that a vertex of C

has a neighbour x ∈ H. Let K be the component (clique) of G[H] containing x,

and let j ≥ 1 be the number of neighbours of x in C.

2.1: If |K∩AGi(C)| ≥ k+1, then there is at least one clique of size k+1 contained

in K ∩ AGi(C). For each clique C ′ of this type, the set C ∪ C ′ ∪ {x} induces

a ∆2
j . Therefore, for each clique C ′, the set C ∪ C ′ ∪ AGi(C ∪ C ′ ∪ {x}) is a

member of Si produced in Step 2.2. Clearly, one of these members contains I.

2.2: If |K ∩AGi(C)| ≤ k, we further split the analysis into two subcases as follows.

2.2.1: K ∪ C is not a clique.

2.2.1.1: If all vertices of C have the same neighbourhood in K, then x domi-

nates C. On the other hand, since K ∪C is not a clique, there must

exist a vertex y ∈ K with no neighbours in C. Then C ∪ {x, y} in-

duces a ∆3, and hence the set C ∪AGi(C ∪{x, y}) is a member of Si

generated in Step 2.3 of the algorithm, and this set clearly contains I.

2.2.1.2: If not all vertices of C have the same neighbourhood in K, then

there must exist a vertex y ∈ K which has both a neighbour and

a non-neighbour in C. Then C ∪ {y} induces a ∆1
j , and hence the

set C ∪AGi(C ∪ {y}) is a member of Si generated in Step 2.1 of the

algorithm, and this set clearly contains I.

2.2.2: K ∪C is a clique. Since H ∪C induces a graph containing a P3, we know

that a vertex of C has a neighbour y ∈ H in a component (clique) K ′ of

G[H] different from K.

2.2.2.1: |K ′∩AGi(C)| ≥ k+1. This case can be settled similarly to Case 2.1.

2.2.2.2: |K ′ ∩AGi(C)| ≤ k. If y dominates C, then C ∪ {x, y} induces a ∆4.

In this case, the set C ∪AGi(C ∪{x, y}) is a member of Si generated
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in Step 2.4 of the algorithm, and this set contains I. If y does not

dominate C, then C ∪ {y} induces a ∆1
j (where j is the number of

neighbours of y in C), in which case the set C ∪ AGi(C ∪ {y}) is a

member of Si generated in Step 2.1 and containing I.

The lemma is proved.

Lemma 47. Let G be a 2P3-free graph with n vertices and m edges and let S be the

family of subsets of V (G) produced by Algorithm FG. Then S contains O(n2k+1)

subsets and this family can be computed in time max{O(n2k+2), O(mn2k+1)}, which

is also the time bound of Algorithm FG.

Proof. New members of the family S are created in Step 2 of the algorithm. This

step inspects subsets of vertices of size at most 2k + 1, and each of these subsets

can induce finitely many graphs analysed in Step 2. Therefore, S contains O(n2k+1)

members.

Each new member of S can be computed in Step 2 in O(n) time. Therefore,

the total complexity of Step 2 (i.e. complexity computed over all iterations of the

algorithm) is O(n2k+2). Steps 1, collectively, can be executed in O(m|S|) time,

i.e. in O(mn2k+1) time by the above. Therefore, S can be computed in time

max{O(n2k+2), O(mn2k+1)}, which is also the time bound of Algorithm Gamma.

5.3.2 Step 2: solving the problem

In step 2, we find a solution to the problem by solving it in each subset of the family

S found in the first step.

Algorithm ABC

Input: a totally weighted 2P3-free graph G.

Output: a k-regular P3-free induced subgraph of maximum total weight in G (if G

has any).

(A) Apply Algorithm FG to G to obtain a family S of subsets of V (G).

(B) For each H ∈ S, find a k-regular P3-free induced subgraph of maximum total

weight in G[H] by finding in each connected component of H a subset of k+ 1

vertices inducing a subgraph of maximum total weight.

(C) Among subgraphs found in Step (B), choose a subgraph of maximum total

weight.
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Theorem 48. Algorithm ABC finds in a totally weighted 2P3-free graph G with n

vertices and m edges a k-regular P3-free induced subgraph of maximum total weight

in time max{O(n3k+3), O(mn3k+2)}.

Proof. The correctness of Algorithm ABC follows from Lemma 46. Now let us

analyse its time complexity. From Lemma 47 we know that Step (A) can be executed

in time max{O(n2k+2), O(mn2k+1)}, which is also a bound on the number of subsets

in the family S produced in this step. By Lemma 46, each subset H ∈ S induces a

P3-free graph, i.e. H is a collection of disjoint cliques. Therefore, a k-regular P3-free

induced subgraph of maximum total weight in G[H] can be found in O(nk+1) time by

inspecting all subsets of size k+1 in each connected component of G[H]. As a result,

the total time complexity of the algorithm is max{O(n3k+3), O(mn3k+2)}.

5.4 Conclusion

In this chapter, we proved that the problem of finding maximum sparse k-regular

induced subgraphs can be solved in the class of 2P3-free graphs in polynomial time

for each fixed value of k. The complexity of finding maximum dense regular induced

subgraphs (i.e. subgraphs whose complement is k-regular for a fixed k) in 2P3-free

graphs remains an open question, apart from three cases k = 0, 1, 2. For these three

cases, the latter problem has been shown to be NP-complete in [88], where it was

also conjectured that this problem is NP-complete for all values of k. Proving or

disproving this conjecture is an interesting open problem.

It would also be interesting to find out whether the results of the present

chapter can be extended to a larger monogenic class. In other words, it would be

interesting to determine if there is an extension F of 2P3 such that the problem of

finding maximum sparse k-regular induced subgraphs in the class of F -free graphs

can be solved in polynomial time for each fixed value of k. However, no such

extension is known even for k = 0, i.e. for the maximum independent set problem.

Currently, there are four minimal monogenic classes for which the complexity of this

problem is unknown: P5-free graphs, P4 + P2-free graphs, P3 + 2P2-free graphs and

claw + P3-free graphs (we do not mention classes defined by a forbidden induced

subgraph F containing an isolated vertex v, because in this case the maximum

independent set problem can be easily reduced from F -free graphs to F − v-free

graphs). Determining the complexity of the problem in these classes of graphs is a

challenging research problem
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Chapter 6

Independent Domination in

Finitely Defined Classes of

Graphs

6.1 Introduction

The independent dominating set problem (or simply independent domina-

tion) is the problem of finding in a graph an independent dominating set of min-

imum cardinality. Clearly, an independent set is dominating if and only if it is

maximal, i.e. not contained in any larger independent set. That is why indepen-

dent domination is also known as minimum maximal independent set.

Computationally, this is a difficult problem, i.e. it is NP-hard. Moreover,

the problem remains NP-hard under substantial restrictions, for instance, for graphs

of bounded vertex degree, line graphs [94], bipartite graphs [95], etc. Of particular

interest in this list of classes where the problem is NP-hard is the class of so called

SAT-graphs. When restricted to the class of SAT-graphs, the problem becomes

equivalent to satisfiability, the central problem of theoretical computer science.

In other words, independent domination in the class of SAT-graphs can be viewed

as satisfiability described in graph-theoretic terms. We discuss the relationship

between the two problems in more detail in Section 6.2.

An important property of the class of SAT-graphs is that it can be char-

acterized by finitely many forbidden induced subgraphs. We call classes of graphs

possessing this property finitely defined. The family of finitely defined classes con-

tains many classes of theoretical or practical importance, such as graphs of degree

at most k (for a fixed k), line graphs, triangle-free graphs, cographs, split graphs,
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etc. In some classes of this family the independent dominating set problem is

NP-hard (which is the case, for instance, for graphs of degree at most k ≥ 3, line

graphs, triangle-free graphs), while in some others (such as cographs or split graphs)

the problem can be solved in polynomial time. Various conditions under which the

problem remains NP-hard in a finitely defined class have been revealed in [51]. We

survey these conditions in Section 6.2.

In the present chapter, we look at the problem from the polynomial side, i.e.

we study finitely defined classes for which the NP-hardness conditions revealed in

[51] fail and derive for some of these classes polynomial-time algorithms. Some of

our results deal with a more general version of the problem in which each vertex

is assigned a positive integer, the weight of the vertex, and the problem consists

in finding an independent dominating set of minimum total weight. We call it

weighted independent dominating set problem or simply weighted inde-

pendent domination. Let us observe that the complexity of the two versions

of the problem may differ for graphs in the same class. For instance, indepen-

dent domination for chordal graphs can be solved in polynomial time [96], while

weighted independent domination in this class is NP-hard [52].

6.2 Preliminaries

It is known that in the class of bipartite graphs independent domination is NP-

hard, while for split graphs the problem can be solved in polynomial time. Let

us observe that split graphs can also be defined as graphs whose vertices can be

partitioned into a clique and a graph of degree 0. Now let us consider an extension

of this class to the class P of graphs whose vertices can be partitioned into a clique

and a graph of degree at most one. The class P is of particular interest for the

independent dominating set problem because it contains so-called SAT-graphs.

A SAT-graph is a graph G representing an instance of the satisfiability

problem [91], whose vertices can be partitioned into a clique and a matching. The

vertices in the clique part of G represent clauses and the vertices in the other part

represent literals (i.e. variables and their negations). Each literal vertex x is con-

nected to its negation x and to the clauses containing it. It is not difficult to see that

every independent dominating set I in G contains exactly one vertex in each pair

x, x. If I dominates (satisfies) each clause, the formula is satisfiable. Determining

if G contains an independent dominating set satisfying all clauses is equivalent to

(coincides with) satisfiability. Therefore, independent domination is NP-hard

for graphs in the class P.
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Similarly to split graphs, the class P can be characterized by finitely many

forbidden induced subgraphs [91]. As we mentioned in the introduction, we call

classes of graphs possessing this property finitely defined. Several sufficient condi-

tions for the NP-hardness of independent domination in finitely defined classes

have been identified in [51]. To describe some of them, let us recall the class S,

which is the class of forests of degree at most 3, in which every connected compo-

nent contains at most one vertex of degree 3. Also, by T we denote the class of

line graphs of graphs in S. In other words, S is the class of graphs in which every

connected component has the form Si,j,k represented in Figure 6.1(left) and T is the

class of graphs in which every connected component has the form Ti,j,k represented

in Figure 6.1(right). Observe that, by the definition of S, i, j and k may take the

value 0 for both of these graphs. For example, S0,j,k is a path on j + k + 1 vertices

and its line graph, T0,j,k, is a path on j + k vertices.
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Figure 6.1: The graphs Si,j,k (a) and Ti,j,k (b)

Theorem 49. [51] Let M be a finite set. If M ∩ S = ∅ or M ∩ T = ∅, then

the independent dominating set problem is NP-hard in the the class of graphs

containing no graph in M as an induced subgraph.

In the family of finitely defined classes, of particular interest are monogenic

classes, i.e. classes defined by a single forbidden induced subgraph H. Under the

assumption that P6=NP, Theorem 49 implies that independent domination is

polynomial-time solvable in the class of H-free graphs only if H ∈ S ∩ T . It is

not difficult to see that the intersection S ∩ T consists of linear forests, i.e. graphs

every connected component of which is a path. Let us denote this class by L and

let us discuss the complexity of the problem in H-free graphs for some small graphs

H ∈ L.

For H = P3, the problem is trivial, since P3-free graphs are precisely the

graphs every connected component of which is a clique. In this class, the problem
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can be solved in linear time even for weighted graphs (by choosing a vertex of

minimum weight in each connected component).

The class of P4-free graphs is much richer but still simple enough to solve

the weighted independent dominating set problem. In particular, the clique-

width of P4-free graphs is at most 2, and hence the problem can be solved in the

class of P4-free graphs in linear time [33].

A polynomial-time solution to weighted independent domination in

the class of 2K2-free graphs follows from the fact that these graphs contain only

polynomially many maximal independent sets, which was proved by Farber in [97].

In the class of 2P3-free graphs the problem is NP-hard, because 2P3 does not

belong to the class P defined above. The only monogenic class between 2K2-free

and 2P3-free graphs is the class of P2 +P3-free graphs. The complexity status of the

problem in this class was open for a long time. In [87], Lozin and Mosca claimed

that graphs in this class admit a polynomial-time solution for the weighted version

of the problem. However, the proof contains a mistake which is crucial even for

unweighted graphs. In this section, we partly correct this mistake by showing that

the problem can be solved in polynomial time for unweighted P2 + P3-free graphs.

The complexity of weighted independent domination in the class of P2+P3-free

graphs remains an open problem.

In addition to the results mentioned above, let us also observe that in the case

of a single forbidden induced subgraph H we may assume without loss of generality

that H does not contain isolated vertices. Indeed, let G be an H-free graph. Clearly,

an optimal solution to the weighted independent dominating set problem in

G can be found by first solving the problem in the the antineighbourhood of each

vertex x ∈ V (G), then combining the result with x, and finally choosing a set of

minimum weight. If H contains an isolated vertex v, then the antineighbourhood

of each vertex in G induces an (H − v)-free graph. Therefore, the complexity of the

problem in the class of H-free graphs is polynomially equivalent to its complexity

in the class of (H − v)-free graphs.

This observation together with the above discussion show that the complexity

of independent domination in the class of H-free graphs is known for every

graph H with at most 5 vertices, except for H = P5. The exceptional role of

the P5-free graphs is also suggested by the fact that the situation is similar for

the closely related problem of finding an independent set of maximum size. The

complexity status of this problem in the class of P5-free graphs is unknown and

this question remains open in spite of multiple attempts to answer it. Recently,

it was shown in [98] that there is a sub-exponential algorithm to find a maximum
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independent set in a P5-free graph. Also, numerous results have been obtained

for the maximum independent set problem in subclasses of P5-free graphs (see e.g.

[99, 100, 101, 102, 103, 104]). These results exploit various techniques, such as

modular decomposition, augmenting graphs, generation of maximal independent

sets. In the present chapter, we employ or adapt these techniques to deal with the

independent dominating set problem in subclasses of P5-free graphs. The main

part consists of three subsections devoted to the three techniques mentioned above.

In the concluding subsection, we summarize the new results and list a number of

open problems.

6.3 Generation of maximal independent sets

In [97], Farber proved that 2K2-free graphs have polynomially many maximal inde-

pendent sets. Inspired by his proof, one can develop the following algorithm for the

generation of all maximal independent sets in a 2K2-free graph. In the description

of the algorithm we use the following notation. Given a graph G with vertex set

V (G) = {v1, v2, . . . , vn}, we denote by Gi the subgraph of G induced by vertices

v1, v2, . . . , vi.

Algorithm Generation-0

Input: a graph G with vertex set V (G) = {v1, v2, . . . , vn}.
Output: a family S of subsets of V (G).

S := {∅}
For i = 1, . . . , n, do

begin

1. [Extension of some members of S]

For each H ∈ S,

If NGi(vi) ∩H = ∅,
then H := H ∪ {vi}.

2. [Addition of new members to S]

For each u ∈ NGi(vi),

H := {vi} ∪AGi({vi, u})
S := S ∪ {H}.

end

From the description of Algorithm Generation-0 it follows that if G is a

2K2-free graph, then every member of the family S produced by the algorithm is a
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maximal independent set in G. Moreover, according to Farber’s argumentation, S

contains all maximal independent sets of G, which can be proved by induction on i.

Also, it is not difficult to see that the algorithm runs in O(n2) time, which is also

a bound on the number of maximal independent sets in a 2K2-free graph with n

vertices. Therefore, the weighted independent dominating set problem can be

solved for 2K2-free graphs in polynomial time. In the next three subsections, we use

the basic idea suggested by Algorithm Generation-0 to extend polynomial-time

solvability of the (weighted) independent dominating set problem to larger

classes of graphs.

6.3.1 Independent domination in P2 + P3-free graphs

The class of P2 +P3-free graphs is an extension of the class of 2K2-free graphs. The

structure of P2 + P3-free graphs is more complex than that of 2K2-free graphs. In

particular, P2 +P3-free graphs may have exponentially many maximal independent

sets. This makes the problem much harder and we solve it only for unweighted

graphs. Our solution is based on a tricky elaboration of Algorithm Generation-0.

This elaboration is presented as Algorithm Generation-1 below.

Similarly to Algorithm Generation-0, the new algorithm also generates a

family S of vertex subsets of the input graph. However, this time to each set H ∈ S
the algorithm also assigns a special vertex u(H) which does not belong to H. As

before, given a graph G with vertex set V (G) = {v1, v2, . . . , vn}, we denote by Gi

the subgraph of G induced by vertices v1, v2, . . . , vi. Also, for a subset U ⊂ V (G),

we denote by U0 the set of isolated vertices in G[U ]. Without loss of generality we

assume that the input graph G has no isolated vertices, because all these vertices

must belong to any optimal solution. We also assume that the vertices of G are

ordered so that v1 is adjacent to v2. In the beginning of the algorithm, the family S

includes only the set {v1} and the special vertex assigned to this set is u({v1}) = v2.

Algorithm Generation-1

Input: a graph G with vertex set V (G) = {v1, v2, . . . , vn}.
Output: a family S of subsets of V (G).

S := {{v1}} with u({v1}) = v2.

For i = 2, . . . , n, do

begin

1. [Extension of some members of S]

For each H ∈ S,
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If (NGi(vi) ∩H = ∅) OR ((NGi(vi) ∩H0 = ∅ AND (u(H), vi) 6∈ E(G)),

then H := H ∪ {vi}.
2. [Addition of new members to S]

2.1. For each pair of vertices vi, u inducing in Gi a P2,

H := {vi} ∪AGi({vi, u}), u(H) := u, S := S ∪ {H}.
2.2. For each triple of vertices vi, u, w inducing in Gi a P3 with u being the

center,

H := {vi, w} ∪AGi({vi, u, w}), u(H) := u, S := S ∪ {H}.
end

Lemma 50. Let G be a P2 + P3-free graph with vertex set V (G) = {v1, v2, . . . , vn}
and let S be the family of subsets of V (G) produced by Algorithm Generation-1.

Then

(i) for each H ∈ S, there is an edge vu of G such that H −H0 ⊆ AG({v, u}),

(ii) for each maximal independent set I in G, there is a set H ∈ S such that

I ⊆ H.

Proof. To prove (i), let us observe that when a set H is created in Step 2 of loop i,

it obviously satisfies the inclusion H −H0 ⊆ AG({v, u}) with v = vi and u = u(H).

After the creation, the set H can be extended in Step 1 of further loops by adding

new vertices, but we emphasize that once a vertex appears in H as an isolated

vertex, it always remains isolated since by definition of Step 1 no new vertex can

be adjacent to an isolated vertex of G[H]. In particular, v = vi is always isolated.

Therefore, when a new vertex x is added to H, it is either isolated (if x has no

neighbours in H) or belongs to the antineighbourhood of vu (if x has no neighbours

in H0 and x is not adjacent to u = u(H)).

To prove (ii), let us denote by Si the content of the family S at the end

of loop i. The proof will be given by induction on i = 2, . . . , n. For i = 2, the

proposition is trivial.

Let I be a maximal independent set in the subgraph Gi. If vi 6∈ I, then, by

the induction hypothesis, there is a set H ∈ Si−1 such that I ⊆ H. According to

the algorithm, Si contains either H or H ∪ {vi}. In either case, the proposition is

true.

Now let vi ∈ I and let I ′ denote I−{vi}. By the induction hypothesis, there

is a set H ∈ Si−1 such that I ′ ⊆ H. If vi has no neighbours in H, then H∪{vi} ∈ Si
(see Step 1 of the algorithm) and I ⊆ H ∪ {vi}.

Suppose now that vi has a neighbour u ∈ H. If u has no neighbours in I ′,
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then I is a subset of the set {vi}∪AGi({vi, u}) produced in Step 2.1 of the algorithm

at loop i. Assume now that u has a neighbour w in I ′. We claim that

(*) w is the only neighbour of u in I ′. To show this, let us observe that according

to the algorithm, vertex u(H) does not belong to H and has at least one

neighbour in H, say x. Moreover, every neighbour of u(H) in H, including

x, is an isolated vertex in the subgraph G[H]. Therefore, neither u(H) nor

x is adjacent to u or to any neighbour of u in H. This implies that if u has

two neighbours in I ′, then these two neighbours together with u, u(H) and x

create an induced P2 + P3 in G. Since this is impossible, we conclude that w

is the only neighbour of u in I ′.

According to this claim, I is a subset of the set {vi, w} ∪ AGi({vi, u, w}) produced

in Step 2.2 of the algorithm at loop i.

Lemma 51. For a graph G with n vertices, Algorithm Generation-1 runs in time

O(n5) and the family S produced by this algorithm contains O(n3) subsets of V (G).

Proof. Algorithm Generation-1 creates new members of S by inspecting vertex

subsets of G of size at most 3 and for each such a subset it adds at most one new

member to S. Therefore, |S| = O(n3).

Each new member of S can be computed in Step 2 in O(n) time. Therefore,

the total complexity of Step 2 (i.e. complexity computed over all iterations of the

algorithm) is O(n4). Steps 1, collectively, can be executed in O(m|S|) time, where

m is the number of edges of G. Therefore, the total time complexity of the algorithm

can be estimated as O(n5).

According to Lemma 50, if G is a P2 +P3-free graph, then every set H in the

family S induces a P3-free graph, i.e. a graph every connected component of which

is a clique. Also, for every maximal independent set I in G there is a set H ∈ S
containing I. Clearly, I must be maximal in G[H] as well. However, not every

independent set which is maximal in G[H] is also maximal in G. Theoretically, we

need to check all maximal independent sets in G[H] in order to identify those of them

which are maximal in G and then to choose a smallest one, but unfortunately this

task cannot be implemented in polynomial time even for P3-free graphs, because

these graphs can contain exponentially many maximal independent sets. On the

other hand, fortunately, all maximal independent sets in G[H] have the same size

which is equal to the number of connected components of G[H]. Therefore, to solve

the independent dominating set problem we need to find at most one maximal
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independent set in G[H] which is also maximal in G. The peculiar structure of the

generated sets in the family S allows us to implement this task in polynomial time.

Let us observe that the family S contains sets of two types. If a set H ∈ S
was created in Step 2.2, then H is an independent set both at the time of its creation

and throughout the algorithm (since no vertex adjacent to an isolated vertex of G[H]

can be added to H). Verifying if H is a maximal independent set in G is a trivial

task.

From now on, we assume that H was created in Step 2.1, i.e. it has the

form H := {v} ∪ AGi({v, u}) with v = vi and u = u(H). We repeat that by H0 we

denote the set of isolated vertices of H. Also, we introduce the following notation:

A = H − H0. Clearly, every vertex of H0, including v, belongs to every maximal

independent set in G[H], and by Lemma 50, A ⊆ AG({v, u}). Thus, every connected

component of G[A] is clique, and hence every maximal independent set in G[H]

contains exactly one vertex from each component of G[A]. Clearly, every maximal

independent set in G[H] dominates all vertices of G except possibly some neighbours

of u. We denote by U the set of neighbours of u each of which is dominated by every

maximal independent set in G[H], and by W the set of the remaining neighbours

of u. In other words, a neighbour x of u belongs to W if and only if x has no

neighbours in H0 and has a non-neighbour in each connected component of G[A].

The above discussion leads to the following conclusion.

Proposition 52. A set H created in Step 2.1 contains an independent set domi-

nating G if an only if A contains an independent set dominating W .

In what follows, we show that the problem of determining if A contains an

independent set dominating W can be solved in polynomial time. We start by

showing that any two adjacent vertices of A dominate W .

Lemma 53. If ab is an edge in G[A], then W ⊆ N(a) ∪N(b).

Proof. If a vertex x ∈W is adjacent neither to a nor to b, then a, b, x, u, v induce a

P2 + P3.

Lemma 53 shows that if Q = {q1, . . . , qp} is a component (clique) in G[A]

and Wi = W ∩ AG(qi), then {W1, . . . ,Wp} is a partition of W , i.e. a collection of

pairwise disjoint subsets of W the union of which coincides with W . We denote this

partition by P(Q).

Let us denote the components of G[A] by Q1, . . . , Qt. Then an element

of P(Q1) × · · · × P(Qt) is an ordered list (Y1, . . . , Yt) of subsets of W such that

Yi ∈ P(Qi).
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Lemma 54. The set A contains a maximal independent set dominating W if and

only if there is an element (Y1, . . . , Yt) ∈ P(Q1)× · · · × P(Qt) such that

Y1 ∩ . . . ∩ Yt = ∅.

Proof. Let I be a maximal independent set in G[A], and let Yi be the set of vertices

of W that are non-adjacent to the only vertex of I ∩ Qi. For an arbitrary subset

X ⊆W , we denote X = W \X. Then Y i is the set of vertices of W that are adjacent

to the only vertex of I∩Qi. Therefore, I dominatesW if and only if Y 1∪. . .∪Y t = W .

By De Morgan’s law, this holds if and only if Y1 ∩ . . . ∩ Yt = ∅.

Lemma 55. Given a set W of n elements and a number of partitions P1, . . . ,Pt
of W , one can check if there is an element (Y1, . . . , Yt) ∈ P1 × · · · × Pt such that

Y1 ∩ . . . ∩ Yt = ∅ in O(n2) time.

Proof. Let us describe the set W and the t partitions P1, . . . ,Pt of W as a rooted

tree T . Each node of T will represent a subset of W and we describe T inductively

as follows. The root of T represents W and the children of the root represent the

subsets in the partition P1. Now let v be a node of distance 0 < i < t from the root,

and let Pi+1 = {W1, . . . ,Wp}. If v represents the empty set, then it has no children.

If v represents a non-empty subset X of W , then v has p children representing the

sets X ∩W1, . . . , X ∩Wp.

From the definition of T it follows that if v is a node of distance i from the

root, then the unique path connecting v to the root corresponds to a unique list of

sets Y1 ∈ P1, . . . , Yi ∈ Pi such that Y1∩. . .∩Yi is the set represented by v. Therefore,

the following claim holds.

• There is an element (Y1, . . . , Yt) ∈ P1 × · · · × Pt such that Y1 ∩ . . . ∩ Yt = ∅ if

and only if T has a node representing the empty set.

From this claim it follows that the problem in question can be solved by

recursively constructing the tree T starting from the root and finishing as soon as a

node representing the empty set appears, or all t levels of the tree are constructed.

Now let us estimate the worst time complexity of this approach.

For i ≥ 1, let v be a node of T of distance i − 1 from the root and let pi

be the number of subsets in the partition Pi. Without loss of generality we may

assume that Pi is a non-trivial partition, i.e. pi ≥ 2, since otherwise it can be

omitted. Denote by X the subset of W represented by v. If X is non-empty, then

the children of v partition X into smaller subsets X1, . . . , Xpi . If none of them is

empty, then partitioning of X is equivalent to placing pi − 1 separators between
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the elements of X. Therefore, if no node of T represents the empty set, then the

total number of nodes in T is at most twice the number of separators that can be

placed between the elements of W , i.e. at most 2(n − 1). Thus, in the worst case

the algorithm generates O(n) subsets of W . Since each subset can be generated in

O(n) time, the algorithm can be executed in O(n2) time.

Theorem 56. Given a P2 + P3-free graph G with n vertices, one can find an inde-

pendent dominating set of minimum cardinality in G in O(n5) time.

Proof. By Lemma 51, in O(n5) time Algorithm Generation-1 generates a family

S of O(n3) subsets of V (G). By Lemma 50, for each maximal independent set I in

G there is a set H ∈ S containing I. By the same lemma, H ∈ S induces a P3-free

graph, and hence, all maximal independent sets in H have the same cardinality. By

Proposition 52, Lemma 54 and Lemma 55 the problem of determining if H ∈ S

contains a maximal independent set dominating G can be solved in O(n2) time.

Therefore, an independent dominating set of minimum cardinality in G can be

found in O(n5) time.

6.3.2 Weighted independent domination in (P5, 2P3)-free graphs

Similarly to P2 +P3-free graphs, the class of (P5, 2P3)-free graphs extends the class

of 2K2-free graphs. However, the structure of graphs in this extension is more

specific and allows us to solve the weighted version of the problem. Again, we

solve it by elaborating Algorithm Generation-0. This elaboration is presented

as Algorithm Generation-2 below. As before, given a graph G with vertex set

V (G) = {v1, v2, . . . , vn}, we denote by Gi the subgraph of G induced by vertices

v1, v2, . . . , vi.

Algorithm Generation-2

Input: a graph G with vertex set V (G) = {v1, v2, . . . , vn}. Output: a family S of

subsets of V (G).

S := {∅}
For i = 1, . . . , n, do

begin

1. [Extension of some members of S]

For each H ∈ S,

If H ∪ {vi} induces a P3-free graph,
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then H := H ∪ {vi}.
2. [Addition of new members to S]

2.1. For each triple vi, u, w of vertices inducing in Gi a P3 with edges viu, uw,

H := {vi, w} ∪AGi({vi, u, w}),
S := S ∪ {H}.

2.2. For each triple vi, u, w of vertices inducing in Gi a P3 with edges uvi, viw,

H := {vi} ∪AGi({vi, u, w}),
S := S ∪ {H}.

end

Lemma 57. Let G be a 2P3-free graph and S be the family of subsets of V (G)

produced by Algorithm Generation-2. Then:

(i) each member of S induces a P3-free subgraph of G;

(ii) each maximal independent set of G is contained in some member of S.

Proof. A member of S is created either by the initialization step as the empty set

or in Step 2 of some loop. By definition of Step 2, since G is 2P3-free, each member

created in Step 2 induces a P3-free subgraph of G. Then, by definition of Step 1, a

member of S is extended only if this extension preserves its P3-freeness. This proves

the first part of the lemma.

To prove the second part, let us denote by Si the content of the family S

after i loops of the algorithm. We will show that for any maximal independent set

I of Gi, there is a member H ∈ Si such that I ⊆ H. The proof is by induction

on i = 1, . . . , n. For i = 1, the family Si consists of the single set {v1}, and this is

obviously the only maximal independent set in the graph G1. Now let us assume

that the statement holds for i− 1 and prove that it holds for i.

Let I be a maximal independent set in Gi. If vi 6∈ I, then by the induction

assumption I is contained in some member of Si−1 and thus of Si, since each member

of Si−1 is contained (properly or not) in some member of Si.

Assume now that vi ∈ I. Then by the induction assumption I \ {vi} is

contained in some member H of Si−1. We know (by part (i) of the lemma) that H

induces a P3-free graph in G. We split the rest of the proof into two cases depending

whether or not H ∪ {vi} induces a P3-free graph.

Case 1: H ∪ {vi} induces a P3-free graph. Then I is contained in H ∪ {vi} which

is a member of Si obtained by extending the set H in Step 1 of the algorithm at

loop i.
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Case 2: H ∪{vi} does not induce a P3-free graph. Then an induced P3 can appear

in G[H ∪ {vi}] in one of the following two ways.

2.1: vi has a neighbour u in a component (clique) K of G[H] but does not dominate

K. Then, since G[H] is P3-free, I is contained in one of the subsets of the

family {{vi, w} ∪ AGi(vi, u, w) : w ∈ K \ N(vi)}. Each subset of this family

is generated in Step 2.1 of the algorithm at loop i and hence each of them

belongs to Si.

2.2: vi dominates at least two components (cliques) K,K ′ of G[H]. Then, since

G[H] is P3-free, I is contained in one of the subsets of the family {{vi} ∪
AGi(u, vi, w) : u ∈ K,w ∈ K ′}. Each subset of this family is generated in Step

2.2 of the algorithm at loop i and hence each of them belongs to Si.

The lemma is proved.

Lemma 58. Let G be a 2P3-free graph with n vertices and let S be the family of

subsets of V (G) produced by Algorithm Generation-2. Then S contains O(n3)

subsets and this family can be computed in time O(n5).

Proof. New members of the family S are created in Step 2 of the algorithm. This

step inspects triples of vertices, and each triple can create at most 3 different induced

P3’s. Therefore, S contains O(n3) members.

Each new member of S can be computed in Step 2 in O(n) time. Therefore,

the total complexity of Step 2 (i.e. complexity computed over all iterations of the

algorithm) is O(n4). Steps 1, collectively, can be executed in O(m|S|) time, where

m is the number of edges of G. Therefore, the total time complexity of the algorithm

can be estimated as O(n5).

We now proceed to the second phase of the procedure to solve the weighted

independent dominating set problem in the class of (P5, 2P3)-free graphs. In

this phase, we solve the problem separately for each member H of the family S

produced in Phase 1.

From Lemma 57 we know that for every maximal independent set I in G

there is a set H ∈ S containing I, and clearly, I is also maximal in G[H]. However,

the converse is not necessarily true, i.e. not every maximal independent set in

G[H] is also maximal in G. Since G[H] is P3-free, all maximal independent sets in

G[H] have the same cardinality and contain exactly one vertex in each connected

component of H. In what follows we show that the problem of determining if there

is a maximal independent set in G[H] dominating G can be solved for (P5, 2P3)-free

graphs in polynomial time.
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Lemma 59. Let G be a vertex-weighted (P5, 2P3)-free graph with n vertices and let

H be a member of the family S produced by Algorithm Generation-2. One can

determine if G[H] contains a maximal independent set dominating G in O(n2) time.

Moreover, if such a set exists, one can find a maximal independent set of minimum

weight in G[H] dominating G in the same time.

Proof. Let us partition the vertices outside H into three subsets as follows:

D is the set of vertices not in H each of which is dominated by any maximal

independent set in G[H]. Clearly, a vertex v 6∈ H belongs to D if and only if

there is a component (clique) in G[H] each vertex of which is adjacent to v.

Z is the set of vertices not in H none of which is dominated by any maximal

independent set in G[H]. Clearly, a vertex v 6∈ H belongs to Z if and only if

it has no neighbours in H.

T is the set of the remaining vertices of V (G) \H, i.e. T = V (G) \ (H ∪D ∪Z).

This partitioning can be implemented in O(n2) time in an obvious way. By defini-

tion, there is a maximal independent set in G[H] dominating G if and only if Z = ∅
and there is a maximal independent set in G[H] dominating T . So, we assume

Z = ∅. In order to determine whether there is a maximal independent set in G[H]

dominating T , we observe the following:

• every vertex of T has neighbours in exactly one connected component of G[H].

Indeed, if a vertex v ∈ T has a neighbour x in a component (clique) K of G[H],

then it also must have a non-neighbour y in K, since otherwise v belongs to

D. Therefore, if v has a neighbour x′ in one more component of G[H], then it

also has a non-neighbour y′ in that component, but then x, y, v, x′, y′ induced

a P5 in G.

According to this observation the set T can be partitioned into subsets T1, . . . , Tk,

each containing neighbours in exactly one component of G[H]. Let us denote the

component of G[H] containing neighbours of Ti by Qi. Then there is a maximal

independent set in G[H] dominating T if and only if there is a vertex in Qi domi-

nating Ti for each i = 1, . . . , k. Moreover, if such a vertex exists for each i, one can

choose a vertex of Qi of minimum weight dominating Ti in linear time.

Theorem 60. Let G be a vertex-weighted (P5, 2P3)-free graph with n vertices. One

can find a minimum weight independent dominating set in G in O(n5) time.
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Proof. By Lemma 58, in O(n5) time Algorithm Generation-2 generates a family

S of O(n3) subsets of V (G). By Lemma 57, for each maximal independent set I in

G there is a set H ∈ S containing I. By Lemma 59, for each H ∈ S, the problem

of determining if H contains a maximal independent set dominating G and finding

such a set minimum weight can be solved in O(n2) time. Therefore, a minimum

weight independent dominating set in G can be found in O(n5) time.

6.3.3 More subclasses P5-free graphs

Taking into account the exceptional role of P5-free graphs for the (weighted)

independent dominating set problem, in this subsection we develop a tool that

allows us to extend polynomial-time solvability of the problem from smaller classes

to larger ones.

Theorem 61. Let F be a graph and p a natural number. If the weighted inde-

pendent dominating set problem can be solved in polynomial time for (P5, F )-free

graphs, then it can also be solved in polynomial time for (P5, F + pK2)-free graphs.

Proof. We prove the theorem by induction on p. For p = 0, there is nothing to prove.

Therefore, we assume the problem is solvable in polynomial time for (P5, F + (p −
1)K2)-free graphs and consider a (P5, F + pK2)-free graph G with n vertices.

To solve the problem for G, we first apply to G Algorithm Generation-1

without Step 2.2. By analogy with Lemma 51, one can show that this simplification

of Algorithm Generation-1 runs in time O(n4) and produces a family S containing

O(n2) subsets of V (G). Also, by analogy with Lemma 50 we show that

(i) for each H ∈ S, there is an edge vu of G such that H −H0 ⊆ AG({v, u}),

(ii) for each maximal independent set I in G, there is a set H ∈ S such that

I ⊆ H.

Up to Claim (*), the proof is identical to that of Lemma 50, since up to this point

the proof does not assume any specific structure of the input graph. To prove the

rest, we assume that u has a neighbour w ∈ I ′. According to the algorithm, vertex

u(H) does not belong to H and has exactly one neighbour in H, say x, and this

neighbour is an isolated vertex in the subgraph G[H]. Therefore, x is different from

u and w, and neither u(H) nor x is adjacent to u or to w. We know that vi has

no neighbours among isolated vertices of G[H], including x, since otherwise I is a

subset of {vi}∪AGi({vi, x}) produced in Step 2.1 at loop i. Also, vi is not adjacent

to u(H), since otherwise vertices w, u, vi, u(H), x induce a P5 in G. But then the
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algorithm adds vi to H in Step 1, and hence I ⊂ H. This completes the proof of

the first stage of the procedure for solving the problem for G, i.e. of the stage that

generates a family S of subsets of V (G) satisfying (i) and (ii).

Now we turn to the second stage of the procedure. At this stage, we deter-

mine for each H ∈ S if H contains an independent set dominating G, and if so, find

such a set of minimum weight.

Let H be a member of S, let u = u(H) be the unique vertex associated with

H which does not belong to H, and let v be a neighbour of u in H0. If H does not

dominate G, then clearly no independent set in H dominates G. Now let us show

that

(**) if H dominates G, then any maximal independent set in G[H] dominates G.

Indeed, let I be a maximal independent set in G[H], and assume by contra-

diction that there is a vertex x 6∈ H which has no neighbours in I. Then x

has no neighbours in H0, since every isolated vertex of G[H] belongs to every

maximal independent set in G[H]. In particular, x is not adjacent to v and

hence x 6= u. Then x is adjacent to u, since otherwise x ∈ AG({v, u}), in

which case x must be a member of H. By assumption, H dominates G and

hence x has a neighbour y ∈ H. Let us denote by Y the connected component

of G[H] containing y and let z be any vertex of I ∩ Y (clearly any maximal

independent set in G[H] must have at least one vertex in any connected com-

ponent of G[H]). Since x is adjacent to y and is non-adjacent to z, then any

path connecting y to z in Y contains a pair of adjacent vertices exactly one

of which is adjacent to x. But then these two vertices together with x, u, v

induce a P5 in G.

This claim reduces the problem to G[H]. All non-isolated vertices of G[H] belong

to AG({v, u}) and this set must induce a (P5, F + (p − 1)K2)-free graph, since G

is (P5, F + pK2)-free. By inductive assumption, the problem is polynomial-time

solvable for (P5, F + (p− 1)K2)-free graphs. Therefore, it is solvable for each G[H]

in polynomial time. Since the number of sets in S is O(n2), we obtain a polynomial

bound on the total complexity time of the outlined procedure.

6.4 Modular Decomposition

The idea of modular decomposition has been first described in the 1960s by Gal-

lai [105], and also appeared in the literature under various other names such as

97



prime tree decomposition [106], X-join decomposition [107], or substitution decom-

position [108]. This technique allows one to reduce many graph problems from

arbitrary graphs to so-called prime graphs. In this section, we introduce termi-

nology related to this technique, state basic properties of modules in graphs, and

describe a procedure implementing the reduction to prime graphs for the weighted

independent dominating set problem. Then we apply modular decomposition

to solve the problem in some subclasses of P5-free graphs.

Let G = (V,E) be a graph, U a subset of its vertices and v a vertex of G

outside U . We say that v distinguishes U if v has both a neighbour and a non-

neighbour in U . If v does not distinguishes U , then v is adjacent either to each

vertex of U , in which case we say that v is complete to U , or to no vertex of U ,

in which case we say that v is anticomplete to U . Similarly, given two disjoint

subsets U ⊂ V (G) and W ⊂ V (G), we say that U is complete or anticomplete to

W depending on whether each vertex of U is complete or anticomplete to W .

A set of vertices U ⊆ V (G) is called a module of G if it is indistinguishable

by the vertices outside of U . Trivially, every vertex of a graph is a module and the

set of all vertices of the graph is a module. Not surprisingly such modules are called

trivial. A graph every module of which is trivial is called prime. A path Pk with at

least k ≥ 4 vertices is an example of a prime graph. Also, P1 and P2 are obviously

prime graphs. However, P3 is not prime, since the vertices of degree 1 in P3 form a

non-trivial module.

We say that a module is proper if it is different from the set of all vertices of

the graph. A maximal proper module is a proper module which is not contained in

any other proper module.

Modules enjoy many nice properties. We state the two most important ones

in the following lemma. To make the section self-contained we provide the lemma

with a short proof.

Lemma 62. Let G be a graph.

(1) Any two disjoint modules in G are either complete or anticomplete to each

other.

(2) If both G and G are connected, then the maximal proper modules of G are

pairwise disjoint.

Proof. To prove (1), consider two disjoint modules U and W , and let x ∈ U . By

definition, x is either complete or anticomplete to W . If x is complete to W , then

every vertex of W is complete to U (since it has a neighbour in U), in which case
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W and U are complete to each other. Similarly, if x is anticomplete to W , then W

and U are anticomplete to each other.

To prove (2), let U and W be two maximal proper modules in G. Assume

by contradiction they have a non-empty intersection.

Suppose there is a vertex x 6∈ U ∪W . Then by definition x must be either

complete or anticomplete to U . If x is anticomplete to U , then x is anticomplete to

the intersection U ∩W , and therefore to W , and hence to U ∪W . Similarly, if x is

complete to U , then it is complete U ∪W . Thus U ∪W is a proper module, which

contradicts the maximality of U and W . As a result we conclude that U∪W = V (G).

By the maximality of U and W we know that neither U −W nor W − U is

empty. Let x ∈ U −W and assume x is anticomplete to W . Then W − U must be

anticomplete to U , since otherwise any vertex of W − U which has a neighbour in

U distinguishes U . But then G is disconnected. Similarly, if x is complete to W ,

then G is disconnected. This contradiction shows that U and W are disjoint.

The properties of modules stated in Lemma 62 allow a reduction of the

weighted independent dominating set problem from general graphs to prime

graphs. Informally, the reduction can be described as follows. If the input graph

G is disconnected, then clearly an optimal solution in G is the union of optimal

solutions in the connected components of G. Similarly, if the complement of G is

disconnected, then solving the problem separately for each co-component of G (a

connected component of G) and taking a minimum solution we obtain an optimal

solution for G. If both G and G are connected, by Lemma 62 we partition G

into maximal proper modules M1, . . . ,Mk and assume inductively that an optimal

solution is available for each module. By contracting each module Mi to a single

vertex mi, we obtain a new graph G0 which must be prime due to the maximality

of the modules. To vertex mi of this graph we assign the weight ω(mi) equal to the

weight of an optimal solution in the subgraph of G induced by Mi. Then solving

the problem for G is equivalent to solving it for G0. A formal description of the

procedure is presented as Algorithm WID below.

Algorithm WID(G)

Input: a vertex-weighted graph G.

Output: an independent dominating set S of minimum weight in G.

1. If |V (G)| = 1, set S = V (G). Go to 7.
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2. If G is disconnected, partition it into connected components M1, . . . ,Mk.

3. If Ḡ is disconnected, partition G into co-components M1, . . . ,Mk.

4. If G and co-G are connected, partition G into maximal proper modules

M1, . . . ,Mk.

5. Construct a weighted graph G0 from G by contracting each Mj (j = 1, . . . , k)

to a single vertex mj and set ω(mj) := ω(WID(G[Mj ])).

6. Find in G0 an independent dominating set S0 of minimum weight and set

S =
⋃

mj∈S0

WID(G[Mj ])

.

7. Return S.

Theorem 63. Let G be a graph with n vertices and m edges. If weighted in-

dependent domination can be solved for prime induced subgraphs of G in time

O(nc) for a constant c ≥ 1, then the problem can be solved for G in time O(nc+m).

Proof. Let G be a graph with n vertices and m edges. The recursive decomposition

of G produced by algorithm WID can be implemented in time O(n + m) [109].

This decomposition associates with G a tree, T (G), whose leaves correspond to the

vertices of G, and whose internal nodes represent induced subgraphs of G of size at

least 2.

Consider an internal node U of T (G), corresponding to an induced subgraph

GU of G. Then the children of U correspond to the subgraphs G[M1], . . . , G[Mk],

where M1, . . . ,Mk are defined in steps 2-4 of the algorithm. If GU or GU is dis-

connected, then G0
U is empty (edgeless) or complete respectively, and the problem

can be trivially solved for G0
U in time O(|V (G0

U )|). If both are connected, then

G0
U is a prime induced subgraph of G and the problem can be solved for G0

U in

time O(|V (G0
U )|c) by assumption. Summing over all the internal nodes of T (G),

we find that the total time complexity of solving the problem for G is at most

O(
∑
U

|V (G0
U )|c).

It is easy to see that the total number of vertices in all graphs G0
U correspond-

ing to internal nodes is equal to the number of edges of T (G), i.e. |V (T (G))| − 1.

Since the number of leaves of T (G) is n and the number of internal nodes is at most
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n− 1, we conclude that∑
U

|V (G0
U )|c ≤

(∑
U

|V (G0
U )|
)c
≤ (2n− 2)c = O(nc).

Adding the term O(n+m) needed to obtain the decomposition tree, we obtain the

desired time complexity.
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Figure 6.2: The graphs bull, banner and A (listed from left to right).

Let us now apply Theorem 63 to some subclasses P5-free graphs. In the

description of the subclasses we introduce the bull, the banner and the graph A,

depicted in Figure 6.2.

Theorem 64. The weighted independent dominating set problem can be

solved in polynomial time for the following subclasses of P5-free graphs: (P5, A)-free

graphs, (P5, bull)-free graphs, (P5,K2,3)-free graphs, (P5, banner)-free graphs.

Proof. In [102], it was shown that a prime graph containing a P2 +P3 contains either

a P5 or the graph A. Therefore, every prime (P5, A)-free graph is (P2 + P3)-free.

From Theorem 60, we know that weighted independent domination is solvable

in polynomial time for (P5, P2 + P3)-free graphs. Therefore, by Theorem 63, the

problem is also solvable in polynomial time for (P5, A)-free graphs.

From a result proved in [110] it follows that a prime (P5, bull)-free graph is

either K3-free or K2 + 2K1-free. It is not difficult to see that (P5,K3)-free graphs

form a subclass of (P5, A)-free graphs, while (P5,K2 + 2K1)-free graphs form a

subclass of (P5, 2P3)-free graphs. We know that weighted independent domi-

nation is solvable in polynomial time for (P5, A)-free graphs and for (P5, 2P3)-free

graphs. Therefore, by Theorem 63, the problem is also solvable in polynomial time

for (P5, bull)-free graphs.

To solve the problem for (P5,K2,3)-free graphs, we use the following obvious

observation: if the problem is solvable for the antineighbourhood of each vertex of a

graph G in time T , then it is solvable for G in time nT , where n = |V (G)|. In [111],

it was shown that if G is a prime (P5,K2,3)-free graph, then the antineighbourhood

of each vertex of G induces a graph whose vertices can be partitioned into at most
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3 sets W1,W2,W3 in such a way that W1 and W2 are clique and G[W3] is P3-free

and no element of W1 ∪ W2 distinguishes any component of G[W3]. Let H be a

graph admitting such a partition, and n = |V (H)|. Let us show that weighted

independent domination is solvable in polynomial time for H. Clearly, any

solution to the problem contains at most one vertex in W1, at most one vertex in

W2, and at most one vertex in each component of G[W3]. In O(n2) time, one can

inspect all solutions containing exactly one vertex in each of W1 and W2. If a pair

of chosen vertices from W1 ∪ W2 does not dominate W3, what is left is choosing

a vertex of minimum weight (not dominated by the pair) in each component of

G[W3]. Also, in time O(n2) one can inspect all solutions containing at most one

vertex x in W1 ∪W2. Assume without loss of generality that x belongs to W1, and

let W ′2 and W ′3 be the vertices of W2 and W3 not dominated by x. If W ′2 contains a

vertex which is anticomplete to each component of G[W ′3], then clearly there is no

solution containing x. If each vertex of W ′2 is complete to at least one component of

G[W ′3], then an optimal solution containing x can be obtained by choosing a vertex

of minimum weight in each component of G[W ′3]. Similarly, an optimal solution

containing no vertex in W1 ∪W2 can be obtained by choosing a vertex of minimum

weight in each component of G[W3] and by checking if the chosen set dominates

W1 ∪W2.

Finally, in [112] it was shown that every prime banner-free graph is K2,3-free.

Together with the above discussion and Theorem 63 this implies polynomial-time

solvability of the problem for (P5, banner)-free graphs.
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Figure 6.3: The graphs P ∗3 (left) and P ∗4 (right)

Now we prove a result that allows further extensions of subclasses of P5-free

graphs with polynomial-time solvable weighted independent dominating set

problem. Given a graph F , we denote by F ∗ the graph obtained by adding to F

three new vertices inducing a P3 so that one of the endpoints of the P3 dominates

F . For instance, P ∗3 is the graph represented in Figure 6.3 (right).

Theorem 65. Let F be any connected graph. If weighted independent domi-

nation can be solved in polynomial time for (P5, F )-free graphs, then this problem

can also be solved in polynomial time for (P5, F
∗)-free graphs.
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Proof. To prove the theorem, we will show that prime (P5, F
∗)-free graphs are (K2+

F )-free, in which case the problem is solvable in polynomial time by Theorems 61

and 63.

Assume to the contrary that G is a prime (P5, F
∗)-free graph containing an

induced K2 +F Denote by a and b the vertices that induce K2 in the graph K2 +F .

Let P = (p0, p1, . . . , pk) be a shortest path with p0 ∈ {a, b} and pk ∈ V (F ) (such a

path must exist, since G is prime and hence is connected). Obviously k ≥ 2, and

because of P5-freeness of G, k ≤ 3.

Let k = 3. Then p1 dominates {a, b} and p2 dominates the V (F ), since

otherwise a P5 arises. But now a, p1, p2 together with the vertices of F induce an

F ∗ in G.

Let k = 2. Denote by X the subset of vertices of G that dominate {a, b} and

have a neighbour in F , and let Y be the component of G[V \X] containing a, b.

Claim 1. Y ∩ V (F ) = ∅ and no vertex of Y has a neighbour in V (F ).

Proof. By contradiction, assume that V (F ) and Y have a vertex in common

or a vertex of Y has a neighbour in V (F ). Then by definition of Y , all vertices

of V (F ) must belong to Y , since G[F ] is connected. Therefore, Y must contain a

path P ′ = (p′0, p
′
1, . . . , p

′
l) of length l = 2 from {a, b} to F (the case of l = 3 has

been analysed before). By definition, p′1 does not belong to X and therefore it has

exactly one neighbour in {a, b}, say a. To avoid an induced P5, we conclude that p′1
dominates V (F ). But now a, b, p′1 together with the vertices of F induce an F ∗ in

G. This contradiction completes the proof of Claim 1.

Claim 2. Each vertex of Y is adjacent to each vertex of X.

Proof. To the contrary, let Y 0 be the subset of vertices of Y that have a non-

neighbour in X and Y 1 = Y −Y 0. Denote by y a vertex in Y 0 of minimum distance

from {a, b} and let x ∈ X be a non-neighbour of y. Since G[Y ] is connected, y has

a neighbour y′ ∈ Y 1. From Claim 1 we know that vertices of Y have no neighbours

in F , and by definition x has a neighbour in F . Then either x dominates V (F ), in

which case y, y′, x together with the vertices of F induce an F ∗ in G, or x has a non-

neighbour in F . In the latter case, x must distinguish two adjacent vertices of F ,

since F is connected. But then y, y′, x and two adjacent vertices of F distinguished

by x induced a P5. This contradiction completes the proof of Claim 2.

From Claims 1 and 2 it follows that Y is a module, since no vertex outside

Y distinguishes it. Moreover, this is a non-trivial module, since it contains a, b and

does not contain any vertex of F . This contradicts the fact that G is prime and

shows that G contains a P5.
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6.5 Decreasing graphs

The idea of decreasing graphs is an adaptation of the augmenting graph technique

used to solve the maximum independent set problem in various classes of graphs.

In particular, this technique was used by Edmonds to solve the maximum matching

problem, which is equivalent to the maximum independent set problem in the class

of line graphs. See [113, 100, 114] for more applications of this technique. The

idea of augmenting graphs consists in step-by-step increasing a current solution

until a maximum independent set is obtained. In the case of the independent

dominating set problem we iteratively decrease a current solution. The main idea

of this approach can be described as follows.

Let G be a vertex-weighted graph and I an independent dominating set in

G. We denote the weight of a set U ⊆ V (G) by ω(U). If G contains a bipartite

induced subgraph B = (B1, B2, F ) such that

(i) B1 ∩ I = ∅ and B2 ⊆ I,

(ii) ω(B1) < ω(B2),

(iii) B1 ∪ (I \B2) is an independent dominating set,

then I is not a minimum weight independent dominating set in G, since B1∪(I \B2)

is an independent dominating set of smaller weight. On the other hand, if I is not

a minimum weight independent dominating set and if J is an arbitrary minimum

weight independent dominating set in G, then B1 := J \ I and B2 := I \ J induce

a bipartite graph satisfying (i), (ii), (iii). We call a bipartite graph B satisfying

(i), (ii), (iii) a decreasing graph for I, and we call the difference ω(B2) − ω(B1)

the decrement of B. Observe that by definition the decrement is a strictly positive

number. If there is a decreasing graph for I, we also say that I admits a decreasing

graph.

According to the above discussion, an independent dominating set in a graph

G is of minimum weight if and only if I admits no decreasing graph. Let us observe

that a decreasing graph may, in general, be disconnected. However, if we deal with

P5-free graphs, we may restrict ourselves to connected decreasing graphs, as we show

in the following lemma.

Lemma 66. Let G be a P5-free vertex-weighted graph and I an independent dom-

inating set in G. Then I is an independent dominating set of minimum weight if

and only if it admits no connected decreasing graph.
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Proof. If I is a minimum weight independent dominating set, then it admits no

decreasing graphs (including connected decreasing graphs), which proves the lemma

in one direction. To prove it in the other direction, assume I admits no connected

decreasing graph, and suppose by contradiction that I is not a minimum weight inde-

pendent dominating set. Then there must exist a decreasing graph B = (B1, B2, F )

with at least two connected components. Each component of B must contain at

least two vertices, since otherwise either I or B1 ∪ (I \B2) is not a dominating set.

Among the components of B there must exist at least one component with strictly

positive decrement. Let B′ = (B′1, B
′
2, F

′) be such a component. By assumption,

B′1 ∪ (I \B′2) is not a dominating set in G, since otherwise B′ would be a connected

decreasing graph. Therefore, there must exist a vertex u that does not belong to

B′1 ∪ (I \B′2) and has no neighbour in this set. We observe that

• u does not belong to the set B′2 (and hence to I), since every vertex of B′2 has

a neighbour in B′1 due to the connectedness of B′,

• u has a neighbour b′2 in B′2, since I is dominating,

• u does not belong to B1, since the only vertices of B1 that have neighbours in

B′2 are those in the set B′1, but u does not belong B′1,

• u has a neighbour b′′1 in B1 \B′1, since B1 ∪ (I \B2) is a dominating set.

Since each connected component of B has at least two vertices, b′2 must have a

neighbour b′1 ∈ B′1, while b′′1 must have a neighbour b′′2 ∈ B2 \B′2. But then vertices

b′1, b
′
2, b
′′
1, b
′′
2, u induce a P5 in G. This contradiction completes the proof of the

lemma.

Let us now apply Lemma 66 to solve weighted independent domination

in the class of (P5,K1,p)-free graphs for any fixed value of p. We emphasize that in

the current version the solution applies only to graphs of polynomial weight, i.e. we

assume that the total weight of the input graph is bounded by a polynomial in the

number of vertices.

Theorem 67. The weighted independent dominating set problem for (P5,K1,p)-

free graphs of polynomial weight can be solved in polynomial time for each fixed value

of p.

Proof. Let G be a (P5,K1,p)-free graph and I an arbitrary independent dominating

set in G. By Lemma 66, I is a minimum weight independent dominating set if and

only if it admits no connected decreasing graph. It is well-known (and not difficult
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to see) that a connected P5-free bipartite graph is 2K2-free. Therefore, the vertices

in each part of a connected P5-free bipartite graph can be ordered under inclusion

of their neighbourhoods, and hence any vertex with a maximal neighbourhood is

adjacent to all vertices in the opposite part. This implies that if a connected P5-free

bipartite graph is K1,p-free, then each part of the graph has at most p− 1 vertices.

Thus, I is a minimum weight independent dominating set if and only if it admits no

connected decreasing graph with at most 2p− 2 vertices. If such a graph exists for

I, we obtained an independent dominating set of smaller weight by exchanging the

parts of the graph. Since the weights of the vertices are bounded by a polynomial, in

polynomially many iterations we obtain an independent dominating set of minimum

weight. Each iteration can be done in O(n2p) time, and hence the overall complexity

of the procedure is bounded by a polynomial.

6.6 Conclusion

In this chapter we first gave an algorithm which generates maximal independent sets

in 2K2-free graphs, inspired by Farber’s proof that such graphs have only polynomi-

ally many maximal independent sets and went on to extend the algorithm to larger

classes of graphs. In particular, we solved the problem in the class of P2 + P3-free

graphs, correcting a mistake in [87], as well as in the class of (P5, 2P3)-free graphs.

We considered a number of subclasses of P5-free graphs obtained by forbidding one

additional induced subgraph, making use of modular decomposition and so-called

decreasing graphs to give a collection of polynomial time results. These results are

extended from solutions in (P5, F )-free graphs to (P5, F + pK2)-free graphs and

(P5, F
∗)-free graphs, where F ∗ is obtained from F by adding three vertices inducing

a P3 such that one end vertex dominates the vertices of F .

Notice that all results in this chapter deal with classes defined by finitely

many forbidden induced subgraphs. A useful tool to study complexity of algorithmic

problems on finitely defined classes is the notion of boundary properties of graphs.

This notion was introduced by Alekseev in [62] for the maximum independent set

problem and then was extended in [113, 115, 15] to other problems. The importance

of this notion is due to the fact that an NP-hard algorithmic graph problem Π can

be solved in polynomial time in a finitely defined class X if and only if X contains

none of the boundary classes for Π.

At present, only two boundary classes are known for independent dom-

ination: the class S and the class T of line graphs of graphs in S. Also, it is

known that the class of SAT-graphs is finitely defined and the problem is NP-hard
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in this class. Therefore, the class of SAT-graphs must contain a boundary class for

the problem. However, neither S nor T is a subclass of SAT-graphs, and hence,

there must exist at least one more boundary class for the problem. We discover

this class in the concluding part of the thesis by exploiting the relationship between

independent domination in SAT-graphs and satisfiability.
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Part III

Satisfiability

and

Related Problems
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Chapter 7

Boundary Properties of the

Satisfiability Problem

7.1 Introduction

Satisfiability (sat for short) is the central problem of theoretical computer sci-

ence, because it is the first problem which has been shown to be NP-complete.

Moreover, the problem remains NP-complete under substantial restrictions. For in-

stance, Cook [116] proved that 3-sat, i.e. the satisfiability problem restricted

to instances with at most three literals per clause, is NP-complete. This restriction

is tight in the sense that 2-sat is polynomial-time solvable [117, 118]. However, it

is not a tightest possible restriction in the sense that 3-sat remains NP-complete

even for instances where each variable appears in at most five clauses, as was shown

by Papadimitriou in [119]. This tightening allowed Papadimitriou to show that the

Euclidean travelling salesman problem is NP-complete.

Tovey [120] strengthened this line of restrictions further by showing that 3-

sat remains NP-complete for instances where each variable appears in at most three

clauses. Moreover, he also showed that this restriction is best possible in the sense

that 3-sat where each variable appears in at most two clauses is polynomial-time

solvable. However, this restriction is not best possible if we allow other types of

restrictions.

In order to introduce more restricted versions of the satisfiability problem,

let us associate with each instance F of the problem a bipartite graph GF one part

of which corresponds to the variables and the other part to the clauses. The edges

of GF connect variables to the clauses containing them. We call GF the formula

graph of F . See Figure 7.1 for an example of a formula graph.
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Figure 7.1: The formula graph of (x1 ∨ x̄3 ∨ x4) ∧ (x̄1 ∨ x2 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x4)

The notion of the formula graph was introduced in [121] by Lichtenstein.

He called a CNF formula planar if its formula graph is planar and proved that

3-sat is NP-complete even if restricted to planar formulas. The main motivation

for the introduction of this type of restriction was to simplify reductions in the

proof of NP-completeness of various problems. For instance, Lichtenstein [121] used

planar 3-sat to prove the NP-completeness of geometric connected dominating set

and Mansfield [122] used planar 3-sat to prove the NP-completeness of deciding

whether a graph has thickness two.

Kratochv́ıl [123] introduced more restrictions on planar 3-sat by requiring

the formula graph to be vertex 3-connected and each variable to appear in at most

four clauses. Again, this additional restriction was motivated by the study of specific

problems and allowed the author to prove their NP-completeness.

With a closer look at the Tovey’s transformation [120], one can easily see

that it also works in the planar case, and therefore planar 3-sat remains NP-

complete for instances where each variable appears in at most three clauses. Is this

an end of the story, i.e. is this restriction best possible? In the present chapter,

we answer this question negatively. Moreover, we identify an infinite sequence of

restricted NP-complete satisfiability problems converging to a particular version of

the problem.

Finding the strongest possible restrictions under which a problem remains

NP-complete is important for at least two reasons. First, this can make it easier to

establish the NP-completeness of new problems by allowing easier transformations,

as the above discussion shows. Second, this can help clarify the interesting boundary

between tractable and intractable instances of the problem. In the present chapter,

we address the second issue, i.e. our goal is to find an end to the story about

restricted versions of the satisfiability problem. In this endeavour, we use the

terminology and techniques of graph theory. To justify this approach, we observe

that not only planarity but also the other two types of restrictions mentioned above

can be described in terms of the formula graphs. Indeed, by bounding the number of
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variables per clause we bound the degree of the clause vertices in the formula graph

and by bounding the number of appearances of each variable we bound the degree of

the variable vertices. In the language of graph theory, the result of Tovey [120] can

be formulated as follows: the satisfiability problem restricted to formula graphs

of vertex degree at most 3 is NP-complete.

We also observe that several important results in the study of satisfiability

have been obtained with the help of graph theory. For instance, to show polynomial-

time solvability of 2-sat, the authors of [117] reduce the problem to identifying

strong components in a directed graph. In [120], it was proved that for each r,

every CNF formula with exactly r variables per clause and at most r occurrences

per variable is satisfiable by showing that in this case the formula graph necessarily

has a perfect matching. In [124], the authors proved that satisfiability restricted

to instances whose formula graphs are chordal bipartite can be solved in polynomial

time.

Let us observe that all classes of graphs mentioned so far (planar, bipartite,

chordal bipartite, graphs of bounded vertex degree) belong to the family of so called

hereditary properties. Hereditary classes allow a uniform description in terms of

forbidden induced subgraphs, which in turn leads to a systematic approach to study

computational complexity of various problems. Based on this approach, we identify

an infinite sequence of “difficult” classes of formula graphs converging to a particular

property. Following [115, 15] we call it a limit property. A minimal limit property

is called boundary. The main result of this chapter is the identification of the first

boundary property of formula graphs.

The organization of the chapter is as follows. In the rest of this section

we recall basic terminology of satisfiability and graph theory. In Section 7.2, we

introduce the notions of limit and boundary properties of graphs. In Section 7.3 we

identify the first limit property of formula graphs, and in Section 7.4, we prove its

minimality. In Section 7.5 we discuss the question whether this is a unique boundary

class.

An instance of the satisfiability problem is given by a Boolean formula in Con-

junctive Normal Form (CNF). A CNF formula consists of conjunctions of clauses,

each clause is the disjunction of literals and each literal is either a variable or its nega-

tion. We denote the set of clauses by C and the set of variable by X = {x1, . . . , xn}.
We say that a variable appears in a clause if the clause contains either the variable

itself or its negation. If we want to specify that the clause contains negation of

the variable, we say that the variable appears in the clause negatively, otherwise it

appears positively.
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A truth assignment is a mapping γ : X → {0, 1} which assigns to each

variable one of the two values 0 or 1. A truth assignment satisfies a clause C ∈ C if

C contains at least one literal whose value is 1.

A truth assignment satisfies a CNF formula if it satisfies each of its clauses.

Given a CNF formula F , the satisfiability problem asks to determine if there is

a truth assignment satisfying F .

7.2 Hereditary, limit and boundary properties of graphs

In order to give a formal definition of a boundary property, let us recall that a graph

property is hereditary if it is closed under taking induced subgraphs. In other words,

a class of graphs is hereditary if deletion of a vertex from a graph in the class results

in a graph in the same class. It is well-known and not difficult to see that a class

of graphs is hereditary if and only if it can be characterized in terms of forbidden

induced subgraphs. More formally, for a set M of graphs, we denote by Free(M)

the class of all graphs containing no induced subgraphs isomorphic to graphs in the

set M . Then a class Y of graphs is hereditary if and only if Y = Free(M) for a set

M . Moreover, for every hereditary class, the set of minimal (or the minimal set of)

forbidden induced subgraphs is unique.

The family of hereditary properties contains two important subfamilies: mono-

tone properties and minor-closed properties. A graph property is monotone if it is

closed under vertex deletions and edges deletions. A graph property is minor-closed

if it is closed under vertex deletions, edges deletions, and edge contractions. For

instance, graphs of degree at most k (for a fixed k) form a monotone, but not

minor-closed, property, since vertex and edge deletions cannot increase the degree,

while edge contractions can. In contrast, planarity is a minor-closed property.

Similarly to the description of hereditary properties by means of minimal

forbidden induced subgraphs, monotone properties can be described by minimal

forbidden subgraphs, not necessarily induced. We will denote the monotone property

containing no subgraphs from a set M by Freem(M).

To simplify our discussion, let us call any hereditary property of formula

graphs with polynomial-time solvable satisfiability problem good and all other

hereditary properties of formula graphs bad.

A hereditary property Z of formula graphs will be called a limit property if

there is a sequence Y1 ⊇ Y2 ⊇ . . . of bad classes such that Z =
⋂
i≥1 Yi. We will say

that the sequence {Yi}i≥1 converges to Z.
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A minimal limit property will be called a boundary property. A helpful min-

imality criterion is given in the following lemma.

Lemma 68. A limit class Y = Free(M) is minimal (i.e. boundary) if and only if

for every graph G ∈ Y there is a finite set T ⊆M such that Free({G}∪T ) is good.

Proof. Suppose Y is a boundary class, and assume for contradiction that there is a

graph G ∈ Y such that for every finite set T ⊆ M the class Free({G} ∪ T ) is bad.

Let M := {m1,m2, . . .} and Zi := Free(G,m1,m2, . . . ,mi). Then, according to our

assumption, Zi is bad for each i. Therefore, Z := ∩iZi is a limit class. It contains

no element from M and it does not contain G. Therefore, it is a proper subset of

Y , contradicting the minimality of Y .

Conversely, assume that for every graph G ∈ Y there is a finite set T ⊆ M

such that Free({G} ∪ T ) is good, and suppose for contradiction that there exists a

limit class Z which is properly contained in X. Since Z is a limit class, there exists

a sequence Z1 ⊇ Z2 ⊇ . . . of bad classes converging to Z. Pick any graph G ∈ Y \Z
and a finite set T ⊆ M such that Free({G} ∪ T ) is good. Then, since T is finite,

there must exist an n such that Zn is ({G} ∪ T )-free, in which case Zn must be

good. This contradiction finishes the proof.

7.3 A limit property of satisfiability

Let F be a CNF formula, x a variable and C a clause containing it. We denote the

literal of x contained in C by xα, where xα = x if α = 1, and xα = x if α = 0. Let

us denote by F (x,C) the formula obtained from F as follows: add a new variable

y, add a new clause xα ∨ y, replace xα by y in C. We make the following obvious

but useful observation:

Observation 69. Formula F is satisfiable if and only if F (x,C) is.

In terms of graphs, the transformation of F into F (x,C) is equivalent to

a double subdivision of an edge in the formula graph GF . This observation leads

to the following conclusion, where Hn denotes the graph represented on the left of

Figure 7.2.

Lemma 70. For any fixed k, the satisfiability problem restricted to instances

whose formula graphs belong to the class Free(K1,4, C3, C4, . . . , Ck, H1, H2, . . . ,Hk)

is NP-complete.
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Figure 7.2: Graphs Hn (left) and Si,j,k (right)

Proof. We know that sat is NP-complete when restricted to formula graphs of vertex

degree at most three [120]. Given a graph GF in this class, we subdivide each edge

of G twice and denote the resulting graph by GF ′ . Observe that by means of this

transformation we destroy all small induced copies of cycles and graphs of the from

Hi. According to Observation69, F is satisfiable if and only if F ′ is. Applying the

above transformation sufficiently many times, we can transform GF into a graph

GF ′′ in the class Free(C3, . . . , Ck, H1, . . . ,Hk). As before, F is satisfiable if and

only if F ′′ is, and for a fixed k, this transformation is obviously polynomial. Finally,

since GF is of degree at most 3, then so is GF ′′ . Therefore, GF ′′ is K1,4-free.

Let us denote the class Free(K1,4, C3, C4, . . . , Ck, H1, H2, . . . ,Hk) by Sk.

Clearly, S3 ⊃ S4 ⊃ S5 . . . and therefore, by Lemma 70, the intersection ∩kSk is

a limit class. This intersection contains no cycles. Therefore, it is a class of forests.

Since the intersection does not contain K1,4, it is a class of forest of vertex degree

at most 3. Finally, since the intersection contains no graphs of the form Hn, every

connected component of any graph in this class has at most one vertex of degree 3.

In other words, the intersection ∩kSk consists of graphs in which every connected

component has the form Si,j,k (with some values of i, j, k) represented on the right of

Figure 7.2. Throughout the chapter, we denote this class by S. The above discussion

leads to the following conclusion.

Theorem 71. S is a limit property of the satisfiability problem.

7.4 Minimality of the limit property

The proof of minimality of the property S is based on a number of auxiliary results

involving the notion of tree-width. The first of them can be found in [125].

Theorem 72. [125] The satisfiability problem restricted to any class of formula

graphs of bounded tree-width is polynomial-time solvable.
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The next two results deal with monotone classes, i.e. classes closed under

taking subgraphs, not necessarily induced.

Lemma 73. [126] For any fixed k, the class Freem({Cj | j ≥ k}) is of bounded

tree-width.

Theorem 74. Let Y be a monotone class of graphs. If at least one graph of S does

not belong to Y , then the tree-width of Y is bounded.

Proof. Let us denote by Ft,k the graph in S with exactly t connected components

each of which is of the form Sk,k,k. Clearly, every graph in S is an induced subgraph

of Ft,k for some fixed values of t and k. Therefore, it suffices to prove the theorem

for monotone classes excluding (i.e. not containing) Ft,k for some t and k. We prove

it by induction on t.

First, assume t = 1. We will show that graphs in Freem(Sk,k,k) have bounded

tree-width. Let G be a connected graph in this class. Consider a path P of length

2k− 2, and a cycle C of length at least 2k+ 1 in G. If G does not contain such P or

C, then the tree-width of G is bounded by Lemma 73. Assume P and C are vertex

disjoint. Since G is connected, there must be a path P ′ whose endpoints belong to

C and P , and the remaining vertices are outside C and P . Then the union of C, P

and P ′ contains a subgraph isomorphic to Sk,k,k. This contradiction shows that P

intersects every cycle of length at least 2k + 1. Therefore, by deleting from G the

vertices of P we obtain a graph with no cycles of length at least 2k+ 1, i.e. a graph

of bounded tree-width (Lemma 73). The deletion of P decreases the tree-width of

G by at most 2k − 2, therefore the tree-width of G is bounded as well.

Now let t > 1 and G be a graph in Freem(Ft,k). If G contains no Sk,k,k

as a subgraph (not necessarily induced), then the tree-width of G is bounded by

the previous paragraph (the basis of the induction). If G contains a copy of Sk,k,k,

then the deletion of this copy results in a graph in Freem(Ft−1,k). By the induction

hypothesis, this graph is of bounded tree-width. Therefore, the tree-width of G is

bounded too, since we deleted only constantly many vertices (namely, 3k + 1).

With the help of the above results we now prove the main result of this

chapter.

Theorem 75. S is a boundary property of the satisfiability problem.

Proof. We use Lemma 68. Let G be a graph from S. Without loss of generality,

we may assume that every connected component of G has the form Sk,k,k for some

finite value k, since every graph in S is an induced subgraph of a graph of this form.
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Consider the class Z := Free(G,K1,4, C3, . . . , C2k+1, H1, . . . ,H2k+1). By

definition, no graph in Z contains an induced copy of G. We can show even more:

no graph in Z contains G as a subgraph, not necessarily induced. Indeed, assume to

the contrary that a graph from Z contains a copy of G as a subgraph. We know that

this copy is not induced, therefore it must contain an edge which does not belong

to G. If this edge connects two vertices of the same connected component of G,

then a chordless cycle of length at most 2k+ 1 arises, which is impossible since such

cycles are forbidden. Similarly, a small chordless cycle can be found if two different

connected components of G are connected by at least 2 edges. Finally, if two different

connected components of G are connected by a single edge, then an induced copy

of a graph Hi with i ≤ 2k + 1 arises, which is also impossible. Therefore, no graph

in Z contains G as a subgraph. In other words, Z ⊆ Freem(G). By Theorem 74

this implies that the tree-width of graphs in Z is bounded. As a result, Z is a good

class (by Theorem 72) and hence S is a minimal limit class (by Lemma 68).

7.5 Is S a unique boundary property?

We conjecture that S is unique, i.e. that if a graph property P is a boundary

property for satisfiability then P is in fact S. The class S is a unique boundary

class if and only if for every graph G ∈ S the satisfiability problem is polynomial-

time solvable for instances whose formula graphs are G-free. For some small graphs

G in S answering this question is an easy task. For instance, if G = S1,1,1, then

the problem is polynomial-time solvable, because any S1,1,1-free bipartite graph is

of vertex degree at most 2, in which case we deal with an instance of 2-sat. Also, if

G = S0,1,2, then the problem is polynomial-time solvable again, because any S0,1,2-

free bipartite graph is chordal bipartite, in which case the problem is solvable due

to the result in [124]. Below we generalize both of these observations and show

that the problem is polynomial-time solvable for instances whose formula graphs

are S1,1,2-free. For larger graphs in S, determining the complexity status of the

problem remains a challenging open question.

Theorem 76. The satisfiability problem restricted to instances whose formula

graphs are S1,1,2-free is solvable in polynomial time.

Proof. First, we observe that every connected S1,1,2-free bipartite graph is either

of degree at most 2 or an almost complete bipartite graph, i.e. a bipartite graph

in which every vertex has at most one non-neighbour in the opposite part (see e.g.

[62]). For graphs of degree at most 2, the problem is simple. To solve the problem for
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almost complete bipartite graphs, we employ the notion of Davis-Putnam resolution

defined as follows.

For a formula F containing a variable x, let C,D be two clauses such that

one of them contains x positively, the other one negatively, and x is the only variable

on which C and D ‘disagree’. Then the clause C∪D\{x, x̄} is called the x-resolvent

of C and D. Let DPx(F ) be the formula obtained from F by adding all possible

x-resolvents and removing all clauses containing x. This operation is called Davis-

Putnam resolution. It is known [127] (and not difficult to see) that F is satisfiable

if and only if DPx(F ) is satisfiable.

Claim 77. If F is an instance whose formula graph is almost complete bipartite

and let x be an arbitrary variable, then the formula graph of DPx(F ) is complete

bipartite.

Proof. Let G be the almost complete bipartite graph representing F , and let G′ be

the graph representing DPx(F ). The graph G′ is obtained from G by deleting all

clauses containing x, introducing all x-resolvents and deleting x.

Let C be a vertex representing a clause in G′. Since x has at most one non-

neighbour in G, C is either an x-resolvent or the only non-neighbour of x in G. In

the latter case, C must be adjacent to all the vertices in the opposite part of G′,

since x has been deleted.

Assume now that C is an x-resolvent of two clauses D1, D2 ∈ F . By as-

sumption, every vertex y representing a variable in G is adjacent to at least one of

D1 and D2, since otherwise G is not almost complete bipartite. Therefore, y must

be adjacent to C in G′, since by definition C = D1 ∪ D2 \ {x, x̄}. As a result, C

is adjacent all the vertices in the opposite part of G′, and hence G′ is complete

bipartite.

As we mentioned earlier, complete bipartite graphs are chordal bipartite.

Therefore, the above claim together with the result in [124] which solves the problem

for instances representable by chordal bipartite graphs completes the proof of the

theorem.

7.6 Conclusion

In this chapter, we revealed the first boundary property for the satisfiability

problem. The relationship between this problem and independent domination

in SAT-graphs allows us to identify the respective boundary class for independent

domination.
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Let us repeat that a SAT-graph is a graph representing an instance of the

satisfiability problem. Its vertices can be partitioned into a clique and an induced

matching. The vertices in the clique part of the graph represent clauses and the

vertices in the other part represent literals (i.e. variables and their negations). Each

literal vertex x is connected to its negation x and to the clauses containing it.

Given a SAT-graph G, let us denote by G∗ the graph obtained from G by

deleting the edges from its clique part and by contracting the edges of the other part.

It is not difficult to see that if G represents an instance F of the satisfiability

problem, then G∗ coincides with GF , i.e. with the formula graph of F . Taking

into account this relationship between SAT-graphs and formula graphs and the fact

that S is a boundary class for satisfiability, the respective boundary class for

independent domination can be described as follows

Corollary 78. Let H-SAT be the hereditary closure of the set of all SAT-graphs,

i.e. the class containing all SAT-graphs and all their induced subgraphs, and let H-S
denote the subclass of H-SAT containing graphs G such that G∗ ∈ S. Then H-S is

a boundary class for the independent dominating set problem.
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[99] H. L. Bodlaender, A. Brandstädt, D. Kratsch, M. Rao, and J. Spinrad. On

algorithms for (P5, gem)-free graphs. Theoretical Computer Science, 349:2–21,

2005.

[100] R. Boliac and V. V. Lozin. An augmenting graph approach to the stable set

problem in P5-free graphs. Discrete Applied Mathematics, 131:567–575, 2003.

[101] M. U. Gerber, A. Hertz, and D. Schindl. P5-free augmenting graphs and the

maximum stable set problem. Discrete Applied Mathematics, 132:109–119,

2004.

[102] V. V. Lozin and R. Mosca. Maximum independent sets in subclasses of P5-free

graphs. Information Processing Letters, 109:319–324, 2009.

[103] F. Maffray. Stable sets in k-colourable P5-free graphs. Information Processing

Letters, 109:1235–1237, 2009.

[104] R. Mosca. Some results on maximum stable sets in certain P5-free graphs.

Discrete Applied Mathematics, 132:175–183, 2003.

[105] T. Gallai. Transitiv orientierbare graphen. Acta Mathematics, 18:25–66, 1967.

[106] A. Ehrenfeucht and G. Rozenberg. Primitivity is hereditary for 2-structures.

Theoretical Computer Science, 70:343–358, 1990.

[107] M. Habib and M. C. Maurer. On the X-join decomposition for undirected

graphs. Discrete Applied Mathematics, 1:201–207, 1979.
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