10 research outputs found

    Global Computation in a Poorly Connected World: Fast Rumor Spreading with No Dependence on Conductance

    Get PDF
    In this paper, we study the question of how efficiently a collection of interconnected nodes can perform a global computation in the widely studied GOSSIP model of communication. In this model, nodes do not know the global topology of the network, and they may only initiate contact with a single neighbor in each round. This model contrasts with the much less restrictive LOCAL model, where a node may simultaneously communicate with all of its neighbors in a single round. A basic question in this setting is how many rounds of communication are required for the information dissemination problem, in which each node has some piece of information and is required to collect all others. In this paper, we give an algorithm that solves the information dissemination problem in at most O(D+polylog(n))O(D+\text{polylog}{(n)}) rounds in a network of diameter DD, withno dependence on the conductance. This is at most an additive polylogarithmic factor from the trivial lower bound of DD, which applies even in the LOCAL model. In fact, we prove that something stronger is true: any algorithm that requires TT rounds in the LOCAL model can be simulated in O(T+polylog(n))O(T +\mathrm{polylog}(n)) rounds in the GOSSIP model. We thus prove that these two models of distributed computation are essentially equivalent

    Structural Properties and Constant Factor-Approximation of Strong Distance-r Dominating Sets in Sparse Directed Graphs

    Get PDF
    Bounded expansion and nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of uniformly sparse graphs which includes the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs. Since their initial definition it was shown that these graph classes can be defined in many equivalent ways: by generalised colouring numbers, neighbourhood complexity, sparse neighbourhood covers, a game known as the splitter game, and many more. We study the corresponding concepts for directed graphs. We show that the densities of bounded depth directed minors and bounded depth topological minors relate in a similar way as in the undirected case. We provide a characterisation of bounded expansion classes by a directed version of the generalised colouring numbers. As an application we show how to construct sparse directed neighbourhood covers and how to approximate directed distance-r dominating sets on classes of bounded expansion. On the other hand, we show that linear neighbourhood complexity does not characterise directed classes of bounded expansion

    A Fast Algorithm for Source-Wise Round-Trip Spanners

    Full text link
    In this paper, we study the problem of efficiently constructing source-wise round-trip spanners in weighted directed graphs. For a source vertex set SVS\subseteq V in a digraph G(V,E)G(V,E), an SS-source-wise round-trip spanner of GG of stretch kk is a subgraph HH of GG such that for every uS,vVu\in S,v\in V, the round-trip distance between uu and vv in HH is at most kk times of the original distance in GG. We show that, for a digraph G(V,E)G(V,E) with nn vertices, mm edges and nonnegative edge weights, an ss-sized source vertex set SVS\subseteq V and a positive integer kk, there exists an algorithm, in time O(ms1/klog5n)O(ms^{1/k}\log^5n), with high probability constructing an SS-source-wise round-trip spanner of stretch O(klogn)O(k\log n) and size O(ns1/klog2n)O(ns^{1/k}\log^2n). Compared with the state of the art for constructing source-wise round-trip spanners, our algorithm significantly improves their construction time Ω(min{ms,nω})\Omega(\min\{ms,n^\omega\}) (where ω[2,2.373)\omega \in [2,2.373) and 2.373 is the matrix multiplication exponent) to nearly linear O(ms1/klog5n)O(ms^{1/k}\log^5n), while still keeping a spanner stretch O(klogn)O(k\log n) and size O(ns1/klog2n)O(ns^{1/k}\log^2n), asymptotically similar to their stretch 2k+ϵ2k+\epsilon and size O((k2/ϵ)ns1/klog(nw))O((k^2/\epsilon)ns^{1/k}\log(nw)), respectively

    Rumor Spreading with No Dependence on Conductance

    Get PDF
    National Science Foundation (U.S.) (CCF-0843915

    Greedy routing and virtual coordinates for future networks

    Get PDF
    At the core of the Internet, routers are continuously struggling with ever-growing routing and forwarding tables. Although hardware advances do accommodate such a growth, we anticipate new requirements e.g. in data-oriented networking where each content piece has to be referenced instead of hosts, such that current approaches relying on global information will not be viable anymore, no matter the hardware progress. In this thesis, we investigate greedy routing methods that can achieve similar routing performance as today but use much less resources and which rely on local information only. To this end, we add specially crafted name spaces to the network in which virtual coordinates represent the addressable entities. Our scheme enables participating routers to make forwarding decisions using only neighbourhood information, as the overarching pseudo-geometric name space structure already organizes and incorporates "vicinity" at a global level. A first challenge to the application of greedy routing on virtual coordinates to future networks is that of "routing dead-ends" that are local minima due to the difficulty of consistent coordinates attribution. In this context, we propose a routing recovery scheme based on a multi-resolution embedding of the network in low-dimensional Euclidean spaces. The recovery is performed by routing greedily on a blurrier view of the network. The different network detail-levels are obtained though the embedding of clustering-levels of the graph. When compared with higher-dimensional embeddings of a given network, our method shows a significant diminution of routing failures for similar header and control-state sizes. A second challenge to the application of virtual coordinates and greedy routing to future networks is the support of "customer-provider" as well as "peering" relationships between participants, resulting in a differentiated services environment. Although an application of greedy routing within such a setting would combine two very common fields of today's networking literature, such a scenario has, surprisingly, not been studied so far. In this context we propose two approaches to address this scenario. In a first approach we implement a path-vector protocol similar to that of BGP on top of a greedy embedding of the network. This allows each node to build a spatial map associated with each of its neighbours indicating the accessible regions. Routing is then performed through the use of a decision-tree classifier taking the destination coordinates as input. When applied on a real-world dataset (the CAIDA 2004 AS graph) we demonstrate an up to 40% compression ratio of the routing control information at the network's core as well as a computationally efficient decision process comparable to methods such as binary trees and tries. In a second approach, we take inspiration from consensus-finding in social sciences and transform the three-dimensional distance data structure (where the third dimension encodes the service differentiation) into a two-dimensional matrix on which classical embedding tools can be used. This transformation is achieved by agreeing on a set of constraints on the inter-node distances guaranteeing an administratively-correct greedy routing. The computed distances are also enhanced to encode multipath support. We demonstrate a good greedy routing performance as well as an above 90% satisfaction of multipath constraints when relying on the non-embedded obtained distances on synthetic datasets. As various embeddings of the consensus distances do not fully exploit their multipath potential, the use of compression techniques such as transform coding to approximate the obtained distance allows for better routing performances

    Dynamics of spectral algorithms for distributed routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 109-117).In the past few decades distributed systems have evolved from man-made machines to organically changing social, economic and protein networks. This transition has been overwhelming in many ways at once. Dynamic, heterogeneous, irregular topologies have taken the place of static, homogeneous, regular ones. Asynchronous, ad hoc peer-to-peer networks have replaced carefully engineered super-computers, governed by globally synchronized clocks. Modern network scales have demanded distributed data structures in place of traditionally centralized ones. While the core problems of routing remain mostly unchanged, the sweeping changes of the computing environment invoke an altogether new science of algorithmic and analytic techniques. It is these techniques that are the focus of the present work. We address the re-design of routing algorithms in three classical domains: multi-commodity routing, broadcast routing and all-pairs route representation. Beyond their practical value, our results make pleasing contributions to Mathematics and Theoretical Computer Science. We exploit surprising connections to NP-hard approximation, and we introduce new techniques in metric embeddings and spectral graph theory. The distributed computability of "oblivious routes", a core combinatorial property of every graph and a key ingredient in route engineering, opens interesting questions in the natural and experimental sciences as well. Oblivious routes are "universal" communication pathways in networks which are essentially unique. They are magically robust as their quality degrades smoothly and gracefully with changes in topology or blemishes in the computational processes. While we have only recently learned how to find them algorithmically, their power begs the question whether naturally occurring networks from Biology to Sociology to Economics have their own mechanisms of finding and utilizing these pathways. Our discoveries constitute a significant progress towards the design of a self-organizing Internet, whose infrastructure is fueled entirely by its participants on an equal citizen basis. This grand engineering challenge is believed to be a potential technological solution to a long line of pressing social and human rights issues in the digital age. Some prominent examples include non-censorship, fair bandwidth allocation, privacy and ownership of social data, the right to copy information, non-discrimination based on identity, and many others.by Petar Maymounkov.Ph.D

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Additive spanners for k-chordal graphs

    No full text
    Abstract. In this paper we show that every chordal graph with n vertices and m edges admits an additive 4-spanner with at most 2n−2 edges and an additive 3-spanner with at most O(n · log n) edges. This significantly improves results of Peleg and Schäffer from [Graph Spanners, J. Graph Theory, 13(1989), 99-116]. Our spanners are additive and easier to construct. An additive 4-spanner can be constructed in linear time while an additive 3-spanner is constructable in O(m · log n) time. Furthermore, our method can be extended to graphs with largest induced cycles of length k. Any such graph admits an additive (k + 1)-spanner with at most 2n − 2 edges which is constructable in O(n · k + m) time. Classification: Algorithms, Sparse Graph Spanners
    corecore