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Abstract
Bounded expansion and nowhere dense graph classes, introduced by Nešetřil and Ossona de
Mendez [26, 27], form a large variety of classes of uniformly sparse graphs which includes the class
of planar graphs, actually all classes with excluded minors, and also bounded degree graphs. Since
their initial definition it was shown that these graph classes can be defined in many equivalent
ways: by generalised colouring numbers, neighbourhood complexity, sparse neighbourhood covers,
a game known as the splitter game, and many more.

We study the corresponding concepts for directed graphs. We show that the densities of
bounded depth directed minors and bounded depth topological minors relate in a similar way as
in the undirected case. We provide a characterisation of bounded expansion classes by a directed
version of the generalised colouring numbers. As an application we show how to construct sparse
directed neighbourhood covers and how to approximate directed distance-r dominating sets on
classes of bounded expansion. On the other hand, we show that linear neighbourhood complexity
does not characterise directed classes of bounded expansion.
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1 Introduction

Structural graph theory provides a wealth of tools and concepts that have proved to be
very powerful in the study of approximation, parameterized or classical polynomial time
algorithms for common NP-hard graph problems. The algorithmic properties of classes of
graphs of bounded tree width, of bounded genus – especially planar graphs – or which exclude
a fixed (topological) minor have been very well studied in the literature and powerful and

∗ Stephan Kreutzer, Roman Rabinovich and Sebastian Siebertz’s research has been supported by the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (ERC Consolidator Grant DISTRUCT, grant agreement No 648527).

© Stephan Kreutzer, Roman Rabinovich, Sebastian Siebertz, and Grischa Weberstädt;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 48; pp. 48:1–48:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.48
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


48:2 Structural Properties of Sparse Directed Graphs

very general algorithmic techniques for solving NP-hard problems on any of these classes of
graphs have emerged.

Initially, many graph theoretical concepts studied in this area were based on topological
aspects of graphs, such as tree width or excluded minors. In [26], Nešetřil and Ossona de
Mendez introduced the concept of classes of bounded expansion which properly generalise
classes of graphs excluding a fixed minor. Bounded expansion classes are defined in terms of
edge densities of bounded depth minors. Since their initial definition in [26] it was shown that
the concept of graph classes of bounded expansion as well as their generalisation to nowhere
dense classes of graphs can equivalently be defined in many other ways: by generalised
colouring numbers [38], low tree depth colourings [26], bounded neighbourhood complexity [33],
sparse neighbourhood covers [15, 16, 28] and a game known as the splitter game [16]. This
indicates that bounded expansion is a natural concept appearing frequently in different
contexts. This intuition is supported for instance by [32] where it was shown that many
types of real-world networks indeed are of bounded expansion.

One important consequence of the large number of different characterisations of bounded
expansion classes is that every new characterisation developed in the literature also provides
a different set of algorihmic techniques that can be used for different types of problems.
This has led to a growing number of algorithmic results on bounded expansion classes for
parameterized algorithms [8, 12, 16, 29], approximation algorithms [11], kernelization [9, 13]
and others.

Starting with Johnson, Robertson, Seymour and Thomas’ introduction of directed tree
width [17], several attempts have been made to generalise the successful theory of algorithmic
graph structure theory to the world of directed graphs. Most of these proposals were again
based on generalising topological properties, especially bounded tree width, to directed graphs
[1, 3, 4, 5, 25, 30, 34]. However, it was subsequently shown that many NP- or W[1]-hard
computational problems for directed graphs remain intractable on classes of bounded directed
tree width [21, 24]. In fact, it was even claimed in the literature that there cannot be any
algorithmically useful digraph width measure [14]. One important reason for these hardness
results is that these problems remain intractable even on acyclic or nearly acyclic digraphs
and most of proposed width measures have small width on acyclic digraphs.

To overcome these problems, Kreutzer and Tazari [23] initiated the study of generalisations
of bounded expansion and nowhere dense classes of graphs to the directed setting. In [23]
they studied a concept called nowhere crownful classes of digraphs, proved an equivalent
characterisation of these classes by uniformly quasi-wideness and showed that a variant
of the directed dominating set problem becomes fixed-parameter tractable on nowhere
crownful classes of digraphs. In the same paper, they defined the concept of directed bounded
expansion, but did not study it any further. The main and decisive difference between these
new approaches and the previous proposals of directed width measures is that nowhere
crownful and bounded expansion classes of digraphs do not contain the class of acyclic
digraphs as “low width” classes. Quite the contrary, they were specifically designed to
distinguish between “easy” instances of acyclic digraphs and computationally hard ones.

Contributions of this paper. The focus of this paper is to study in depth classes of digraphs
of bounded expansion. Intuitively, a class of digraphs has bounded expansion if there is
a function f :N → N such that for all G ∈ C and all r ≥ 1, every depth-r minor H of G
has edge densitiy |E(H)|

|V (H)| ≤ f(r). While there is a clear and generally accepted concept of
undirected minor, there are various definitions of directed minors that have been studied
in the literature, among them butterfly minors [17] but also directed minors as used in [23]
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to define nowhere crownful classes. In Section 3 we show that the concept of bounded
expansion of digraphs is irrespective of the notion of directed minor used. In particular, a
class has bounded expansion with respect to the directed minors in [23] if, and only if, it
has bounded expansion with respect to topological minors, i.e. subdivisions. As subdivisions
are a canonical notion even in the directed setting, this yields a natural and undisputed
definition of bounded expansion.

We show next that classes of bounded expansion can also be characterised by generalised
colouring numbers (see Section 4). Generalised colouring numbers have proved to be an
extremely fruitful concept on undirected graphs, both structurally and algorithmically. The
characterisation of directed bounded expansion by colouring numbers allows us to employ
similar algorithmic techniques now also in the directed setting. We show in Section 6
that bounded expansion classes admit constant step winning strategies in a splitter game
(see Section 6) and also admit sparse neighbourhood covers (see Section 7).

The dominating set problem is one of the best studied NP-hard graph problems in the
literature and has served as benchmark for many different algorithmic techniques. It remains
NP-complete on many classes of graphs and is notoriously hard to approximate. In fact, Raz
and Safra [31] showed that approximating the domination number within any factor better
than O(logn) is already NP-hard. Computing dominating sets, or the distance-r variant of
it, is a graph theoretical abstraction of many real-life problems such as distributing facilities
such as routers or distribution centres to cover a given area or many other similar problems.
One of the main applications of dominating sets is to choose a small number of positions in
a graph or network so that every vertex in the graph can communicate with a member of
the dominating set. The radius r thereby determines the range that can be covered by a
single element of the dominating set.

Motivated by the application above where we want to choose vertices so that every vertex
of the network can communicate with an element of the dominating set within distance r,
we study the strong distance-r dominating set problem. Here we are asked to find a minimal
set X of vertices in a digraph G such that every vertex v ∈ V (G) is contained together with
some element of X on a closed directed walk of length at most 2r.1 We show in Section 8
that for every r ≥ 1 there is a constant factor approximation algorithm for the strong r
dominating set problem on any class of digraphs of bounded expansion.

2 Background from graph theory

In this section we fix our notation. We refer to [2] for background on digraph theory.

Digraphs, walks and neighbourhoods. A digraph G consists of a set V (G) of vertices and
a set E(G) ⊆ V (G)×V (G) of arcs. We assume that a digraph G has no loops, i.e. no edges of
the form (v, v) for v ∈ V (G). A walk of length k in a digraph G is a sequence W = v0, . . . , vk

of vertices of G such that for each 0 ≤ i < k there is an edge (vi, vi+1) ∈ E(G). A walk is
closed if v0 = vk, and open otherwise. If W is open, then vertex v0 is the initial vertex of W ,

1 A different, perhaps more natural variant would be to require that for every vertex v ∈ V (G) there is
an x ∈ X such that G contains a directed path of length at most r from x to v and a directed path of
length at most r from v to x. We have opted for our notion of strong domination as it fits more nicely
with the concept of strong neighbourhoods in Section 2. But the same algorithmic techniques we use
in Section 8 could also be used to design a constant factor approximation algorithm for this different
definition of strong domination.

STACS 2017



48:4 Structural Properties of Sparse Directed Graphs

vertex vk is its terminal vertex, and v0 and vk are end-vertices of W . If all vertices of W are
distinct, then W is a path from v0 to vk.

Let G be a digraph, let v ∈ V (G) and let r ≥ 0. The r-out-neighbourhood of v, denoted
by N+

G,r(v), or just N+
r (v) if G is understood, is defined as the set of vertices u in G such

that G contains a path of length at most r from v to u. We write N+(v) for N+
1 (v) \ {v}.

The r-in-neighbourhood of v, denoted by N−G,r(v), or just N−r (v) if G is understood, is
defined as the set of vertices u in G such that G contains a path of length at most r from u

to v. We write N−(v) for N−1 (v) \ {v}.
The r-strong-neighbourhood of v, denoted by ÑG,r(v), or just Ñr(v) if G is understood,

is defined as the set of vertices u in G such that G contains a closed walk of length at most
2r containing u and v.

The out-degree of a vertex v ∈ V (G) is d+(v) := |N+(v)|, its in-degree is d−(v) := |N−(v)|
and its degree is d(v) := |N+(v)| + |N−(v)|. The minimum out-degree of G is defined as
δ+(G) := min{d+(v) : v ∈ V (G)}, minimum in-degree and minimum degree are defined
analogously.

If the edge relation of a digraph G is symmetric, i.e. if (u, v) ∈ E(G) implies (v, u) ∈ E(G),
then we speak of an undirected graph. If G is a digraph, we write Ḡ for the underlying
undirected graph of G, which has the same vertices as G and for each arc (u, v) ∈ E(G) it
holds that (u, v) ∈ E(Ḡ) and (v, u) ∈ E(Ḡ). Note that |E(G)| ≤

∣∣E(Ḡ)
∣∣ ≤ 2 |E(G)|.

Directed shallow minors. The theory of directed minors is by far not as established as its
undirected counterpart, in particular, there are several competing notions of directed minors.

I Definition 2.1. A butterfly contraction is the operation of contracting an edge e = (u, v)
where either u has out-degree 1 or v has in-degree 1. A graph H is said to be a butterfly
minor of a graph G, written H 4b G, if it can be obtained from G by a series of vertex and
edge deletions and butterfly contractions.

For undirected graphs, the notion of minors that are obtained by series of vertex and
edge deletions and edge contractions can equivalently be defined in terms of minor models.
In the directed setting these two notions are different (every butterfly minor is also a directed
minor but not vice versa) [23].

I Definition 2.2. A digraph H has a directed model in a digraph G if there is a function δ
mapping vertices v ∈ V (H) of H to sub-graphs δ(v) ⊆ G and edges e ∈ E(H) to edges
δ(e) ∈ E(G) such that

if v 6= u then δ(v) ∩ δ(u) = ∅;
if e = (u, v) and δ(e) = (u′, v′) then u′ ∈ δ(u) and v′ ∈ δ(v).

For v ∈ V (H) let in(δ(v)) := V (δ(v)) ∩
⋃

e=(u,v)∈E(H) V (δ(e)) and out(δ(v)) := V (δ(v)) ∩⋃
e=(v,w)∈E(H) V (δ(e)).
We furthermore require that for every v ∈ V (H)
there is a directed path in δ(v) from any u ∈ in(δ(v)) to every u′ ∈ out(δ(v));
there is at least one source vertex sv ∈ δ(v) that reaches every element of out(δ(v));
there is at least one sink vertex tv ∈ δ(v) that can be reached from every element of
in(δ(v)).

We write H 4d G if H has a directed model in G and call H a directed minor of G. We call
the sets δ(v) for v ∈ V (H) the branch-sets of the model.

I Definition 2.3. For r ≥ 0, a digraph H is a depth-r minor of a digraph G, denoted as
H 4d

r G, if there exists a directed model of H in G in which the length of all the paths in
the branch-sets of the model are bounded by r.
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Finally, we consider the notion of directed topological minors.

I Definition 2.4. A digraph H is a topological minor of a digraph G if there is a function δ
mapping vertices v ∈ V (H) to vertices of V (G) and edges e ∈ E(H) to directed paths in G
such that δ(v) 6= δ(u) for all distinct u, v ∈ V (H), and if e = (u, v) ∈ E(H), then δ(e) is a
path from δ(u) to δ(v) in G which is internally vertex disjoint from all δ(e′) with e′ ∈ E(H),
e′ 6= e. For r ≥ 0, H is a topological depth-r minor of G, written H 4t

r G, if it is a topological
minor and all paths δ(e) have length at most 2r.

I Lemma 2.5. For all digraphs H,G and r ≥ 0 it holds that H 4t
r G implies H 4d

r G.

The key to relating the edge density of depth-r minors and depth-r topological minors in
the directed setting is based on a special requirement on directed bipartite graphs.

I Definition 2.6. A directed bipartite graph is a directed graph G = (A∪̇B,E) whose vertex
set is partitioned into two sets A and B and E ⊆ A×B.

The reason is that the branch sets of directed bipartite graphs can be chosen to have a
particularly simple form.

I Definition 2.7. An in-branching is an orientation of a rooted tree with all edges oriented
towards the root, an out-branching is defined analogously as a tree with all edges oriented
away from the root.

I Lemma 2.8 (see [23]). If H is a directed bipartite graph with H 4d G, we can choose the
branch-sets of the model of H in G to be in- or out-branchings. In this case H 4d G⇔ H 4b

G.

3 Classes of bounded expansion

Following [26] (see [23] for the directed case), we define classes of digraphs of bounded
expansion by bounding the density of bounded depth minors.

I Definition 3.1. Let G be a digraph and let r ≥ 0. The greatest reduced average degree of
rank r (short grad) of G, denoted ∇r(G) is

∇r(G) := max
{
|E(H)|
|V (H)| : H 4d

r G

}
and its topological greatest average degree of rank r (short top-grad) is

∇̃r(G) := max
{
|E(H)|
|V (H)| : H 4t

r G

}
.

I Definition 3.2. A class C of digraphs has bounded expansion if there is a function f : N→ N
such that for all r ≥ 0 it holds that ∇r(G) ≤ f(r) for all G ∈ C.

I Example 3.3. Every class of digraphs of bounded expansion has bounded edge density,
hence not every class of acyclic digraphs has bounded expansion. The class of subdivided
cliques with all edges oriented away from the subdivision vertices has bounded expansion.
The only directed (topological) minors of a graph G from this class are the subgraphs of G,
and hence it holds that ∇r(G) ≤ 2 for all r ≥ 0. The underlying undirected class is not even
nowhere dense in the undirected setting.

STACS 2017



48:6 Structural Properties of Sparse Directed Graphs

In the undirected case, we can give an equivalent definition of bounded expansion classes
in terms of densities of topological depth-r minors, due to the following theorem proved by
Dvořák [10].

I Theorem (Theorem 3.9 of [10]). Let r, d ≥ 1 and let p = 4(4d)(r+1)2 . Let G be an
undirected graph. If ∇r(G) ≥ p, then ∇̃r(G) ≥ d.

A slightly worse bound can be given in the directed case, the only reason that we do
not achieve the same bounds is that we may loose more edges when going to a bipartite
subgraph than in the undirected case.

I Lemma 3.4. Every digraph G contains a bipartite subgraph H with d(v) ≥ 1
8∇0(G), for

all v ∈ V (H).

We can now follow the lines of Dvořák’s proof to obtain the following theorem.

I Theorem 3.5. Let r, d ≥ 1 and let p = 32 · (4d)(r+1)2 . Let G be a digraph. If ∇r(G) ≥ p,
then ∇̃r(G) ≥ d.

I Corollary 3.6. A class C of digraphs has bounded expansion if and only if there is a function
f : N→ N such that for all r ∈ N it holds that ∇̃r(G) ≤ f(r) for all G ∈ C.

4 Generalised colouring numbers

The colouring number col(G) of an undirected graph G is the minimum integer k such that
there is a linear order <L of the vertices of G for which each vertex v has back-degree at
most k − 1, i.e. at most k − 1 neighbours u with u <L v. It is well-known that for any graph
G, the chromatic number χ(G) satisfies χ(G) ≤ col(G).

Some generalisations of the colouring number of a graph have been studied in the literature.
These include the arrangeability [6] used in the study of Ramsey numbers of graphs, the
admissibility [19], and the rank [18] used in the study of the game chromatic number of graphs.
Three natural generalisation of the colouring number are the series admr, colr and wcolr
of generalised colouring numbers introduced by Kierstead and Yang [20] (see Dvořák [11]
for the general definition of admr) in the context of colouring games and marking games
on graphs. As proved by Zhu [38], these invariants can be used to characterise bounded
expansion classes of graphs.

In this section, we define directed versions of the above invariants and show that also
directed classes of bounded expansion can be characterised by bounds on the generalised
colouring numbers.

I Definition 4.1. Let G be a digraph. By Π(G) we denote the set of all linear orders of
V (G). For L ∈ Π(G), we write u <L v if u is smaller than v with respect to L, and u ≤L v

if u <L v or u = v. Let u, v ∈ V (G). For a r ≥ 0, we say that u is weakly r-reachable
from v with respect to L, if there is a path P of length `, 0 ≤ ` ≤ r, connecting u and v (in
either direction) such that u is minimum among the vertices of P (with respect to L). By
WReachr[G,L, v] we denote the set of vertices that are weakly r-reachable from v w.r.t. L.

Vertex u is strongly r-reachable from v with respect to L, if there is a path P of length `,
0 ≤ ` ≤ r, connecting u and v (in either direction) such that u ≤L v and such that all internal
vertices w of P satisfy v <L w. Let SReachr[G,L, v] be the set of vertices that are strongly
r-reachable from v w.r.t. L. Note that we have v ∈ SReachr[G,L, v] ⊆WReachr[G,L, v].
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I Definition 4.2. For a non-negative integer r, we define the weak r-colouring number
wcolr(G) of G and the r-colouring number colr(G) of G respectively as

wcolr(G) := min
L∈Π(G)

max
v∈V (G)

∣∣WReachr[G,L, v]
∣∣,

colr(G) := min
L∈Π(G)

max
v∈V (G)

∣∣SReachr[G,L, v]
∣∣.

I Definition 4.3. For a non-negative integer r, the r-admissibility admr[G,L, v] of v w.r.t. L
is the maximum size k of a family {P1, . . . , Pk} of paths of length at most r with one end v,
and the other end at a vertex w with w ≤L v, and satisfy V (Pi) ∩ V (Pj) = {v} for all
1 ≤ i < j ≤ k. As for r > 0 we can always let the paths end in the first vertex smaller
than v, we can assume that the internal vertices of the paths are larger than v. Note that
admr[G,L, v] is an integer, whereas WReachr[G,L, v] and SReachr[G,L, v] are vertex sets.
The r-admissibility admr(G) of G is

admr(G) = min
L∈Π(G)

max
v∈V (G)

admr[G,L, v].

As in the undirected setting, we can show that these measures are strongly related.

I Theorem 4.4. Let G be a digraph and let r ≥ 1. Then

colr(G) ≤ 2 · (admr(G)− 1)r + 1 and wcolr(G) ≤ 2 · admr(G)r.

In the following, we will prove that the above invariants can also be used to characterise
bounded expansion classes of digraphs.

I Definition 4.5. Let G be a digraph, X ⊆ V (G), u ∈ V (G)\X and r ∈ N. The r-projection
of u onto X is the set MG

r (u,X) of all vertices v ∈ X such that there is a directed path
between u and v in G (in either direction) of length at most r with all internal vertices in
V (G) \X.

The next lemma is proved as in the undirected case, compare e.g. to Lemma 2.9 of [9].

I Lemma 4.6. Let G be a digraph, r ≥ 0 and X ⊆ V (G). There exists a set clr(X) ⊆ V (G),
called an r-closure of X with the following properties. Let ξ := d2∇r−1(G)e.
1. X ∩ clr(X) = ∅;
2. |clr(X)| ≤ (r − 1)ξ · |X|; and
3. |MG−clr(X)

r (u,X)| ≤ ξ for all u ∈ V (G) \ (X ∪ clr(X)).

Just as in the undirected case, we know how to find an optimal order for the r-admissibility
of a digraph (see [11], Algorithm 2, for a proof). For a set S ⊆ V (G) and v ∈ S, let br(S, v)
be the maximum number of directed paths from v of length at most r intersecting only in v
whose internal vertices belong to V (G) \ S and whose end-vertices belong to S.

I Lemma 4.7 (see [11]). Let G be a digraph and let L be the order of V (G) obtained
iteratively as follows. Let S := V (G). For i = n, n − 1, . . . , 1, choose vi ∈ S minimising
pi = br(S, vi) and set S := S \ {vi}. Then L is optimal for admr(G).

Clearly, the admr-value of the computed linear order is max1≤i≤n pi. Hence, according to
the lemma, if admr(G) = c, then we can find a set S ⊆ V (G) such that every v ∈ S satisfies
br(v, S) ≥ c. Based on this obstruction for small admissibility, we are going to relate the
grad of G to its admissibility (compare with Lemma 3.4 of [38] and Theorem 3.1 of [15] for
the undirected case).

STACS 2017
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I Theorem 4.8. For every digraph G and every r ∈ N it holds that admr(G) < 16r2∇r−1(G)4.

Proof. Let ξ := 2∇r−1(G) and assume admr(G) ≥ c := r2ξ4. According to Lemma 4.7,
there exists a set S ⊆ V (G) such that every v ∈ S satisfies br(v, S) ≥ c. We construct clr(S)
according to Lemma 4.6, which has size at most (r − 1)ξ · |S|. We now iteratively contract
short paths leading from S to clr(S). Define P0 as the set of paths between v ∈ S and
w ∈ clr(S) ∪ S of length at most r with all internal vertices in V (G) \ (clr(S) ∪ S) (if two
paths have the same initial and terminal vertex, we add only one of them). We hence have
|P0| ≥ c

2 · |S| by assumption.
As long as there exists P ∈ Pi, contract P to an edge and remove from Pi all paths which

intersect P to obtain Pi+1. As every internal vertex u of P satisfies |MG−clr(S)
r (u, S)| ≤ ξ

by assumption, P can intersect with at most rξ2 many other paths P ′ ∈ Pi. Hence, hence
after i+ 1 contractions, we have |Pi+1| ≥ c

2 |S| − (i+ 1)rξ2. Note that we are constructing a
graph H 4d

r−1 G with vertex set S ∪ clr(S), that is, with at most ((r− 1)ξ + 1) · |S| vertices,
which by assumption on ∇r−1(G) can have at most ξ/2 · ((r− 1)ξ+ 1) · |S| many edges. This
gives a contradiction for c > 2rξ2((r − 1)ξ + 1) · ξ/2, e.g. for c = r2ξ4 = 16r2∇r−1(G)4. J

To complete the characterisation, we show the following.

I Theorem 4.9. For every digraph G and every r ∈ N it holds that ∇̃r(G) ≤ 16(adm2r(G) +
1).

Proof. Let c := adm2r(G) + 1. Assume towards a contradiction that there is H 4t
r G of

edge density 16c. Let H ′ ⊆ H be a bipartite graph with minimum degree at least 2c, which
exists by Lemma 3.4. Let L be an order of V (G) witnessing that adm2r(G) = c. Let v
be a principal vertex of H ′ and let {P1, . . . , Pt} be the set of paths corresponding to the
edges connecting v with its neighbours in H ′. At most c paths among P1, . . . , Pt contain an
internal vertex that is smaller than v with respect to L, as otherwise, adm2r(G) ≥ c. Remove
all edges e from H ′ that correspond to a path Pe in G such that the principal vertex is larger
than some internal vertex of Pe to obtain a graph H ′′. By the above argument, H ′′ has
minimum degree at least c. Hence every vertex v reaches in G at least c vertices by paths
that are internally vertex disjoint and contain no vertex smaller than c. Considering the
largest vertex of H ′′ in G with respect to L, this is a contradiction to our assumption. J

I Corollary 4.10. A class C of digraphs has bounded expansion if, and only if, there is a
function f :N→ N such that wcolr(G) ≤ f(r) for all G ∈ C and all r ≥ 1.

Finally, let us note that we can efficiently compute for every graph G from a bounded
expansion class C an order L of V (G) witnessing that the r-admissibility is small. The
following lemma, which follows from a simple colour coding argument (see [7, Chapter 5.2
and 5.6]), shows that we can efficiently compute the number br(S, v) for every S ⊆ V (G) and
every v ∈ V (G) if this number, or decide that the vertex will not be the next in the order.

I Lemma 4.11. There is an algorithm which, given a digraph G, a set S ⊆ V (G), a vertex
v ∈ S and numbers r, k, decides whether there are k disjoint paths from v to vertices in S
which are internally disjoint from S in time 2k+r · nO(1).

I Corollary 4.12. Let C be a class of digraphs of bounded expansion. There is a function g
such that for all r ≥ 0 and all G ∈ C we can compute an optimal order for admr(G) in time
g(r) · nO(1).
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5 Neighbourhood Complexity

Recently, a measure called distance-r neighbourhood complexity was used to characterise
classes of undirected bounded expansion [33]. Similar measures can be defined in the directed
setting.

I Definition 5.1. Let G be a digraph, let X ⊆ V (G) and let r ≥ 1. The distance-r
out-neighbourhood complexity of X in G, denoted ν+(G), is defined by

ν+(G,X) = max
H⊆G,X⊆V (H)

∣∣{N+
r (v) ∩X : v ∈ V (H)}

∣∣ .
Analogously, one can define the distance-r in-neighbourhood complexity when using N−r (v)

and the distance-r mixed neighbourhood complexity when using (N+
r (v) ∪ N−r (v)) in the

above definition.
Closure under subgraphs in the above definition is required to characterise sparse graph

classes. Classically, this closure is not part of the definition, when it is e.g. used to define
classes of bounded VC-dimension [35, 36, 37].

It was proved in [33] that a class C of undirected graphs has bounded expansion if and
only if for every r ≥ 1 there is a constant cr such that for all G ∈ C and all X ⊆ V (G) it
holds that ν(G,X) ≤ cr · |X|. The analogous statement for classes of directed graphs does
not hold, not even for r = 1, due to the simple fact that a directed bipartite graph does not
contain directed minors other than its subgraphs.

I Theorem 5.2. For every k ≥ 1 there exists a class Ck of digraphs such that for all G ∈ Ck

and all r ≥ 0 it holds that ∇r(G) ≤ k (hence Ck has bounded expansion) and for each G ∈ Ck

there exists X ⊆ V (G) such that ν+
1 (G,X) = |X|k.

For every bounded expansion class of digraphs we do obtain polynomial bounds though.
To prove the following lemma, we use Lemma 4.6 to show that there are only few high degree
vertices in the r-neighbourhood of X ⊆ V (G).

I Theorem 5.3. Let C be a class of digraphs of bounded expansion. Then for all r ≥ 1 there
exists k ≥ 1 such that for all G ∈ C and X ⊆ V (G) we have ν+

r (G,X) ≤ |X|k. The same
statement holds for in-neighbourhood complexity and mixed neighbourhood complexity.

6 A Splitter Game for Classes of Digraphs of Bounded Expansion

In this section we establish a very useful property of bounded expansion classes of digraphs
based on a directed version of a game, known as the splitter game, originally introduced as a
characterisation of nowhere dense classes of undirected graphs in [16].

Let G be a digraph and let `,m, r ≥ 0. The (`,m, r)-strong directed splitter game
on G is played by two players, Connector and Splitter, as follows. Let G0 := G. In
round i + 1 of the game, Connector picks a vertex vi+1 ∈ V (Gi). Then Splitter chooses
a subset Wi+1 ⊆ V (Gi) with |Wi+1| ≤ m. Define Gi+1 as the induced subgraph of Gi

with V (Gi+1) = ÑGi,r(vi+1) \Wi+1. Splitter wins if V (Gi+1) = ∅. Otherwise the game
continues to the next round. If Splitter has not won after ` rounds, then Connector wins.

A strategy for Splitter is a function f associating to every partial play (v1,W1, . . . , vs,Ws)
with associated sequence G0, . . . , Gs and every move vs+1 ∈ As by Connector a moveWs+1 ⊆
V (Gs) with |Ws+1| ≤ m for Splitter. A strategy f is a winning strategy for Splitter if she
wins every play in which she follows the strategy f . If such a winning strategy exists, we say
that Splitter wins the (`,m, r)-directed splitter game on G.
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For undirected graphs the splitter game can be used to characterise nowhere dense classes
of graphs. This is not the case for directed graphs, however, short winning strategies can be
provided for bounded expansion classes (compare to [22]).

I Theorem 6.1. Let G be a graph, let r ∈ N and let ` = wcol4r(G). Then splitter wins the
(`, 1, r)-strong splitter game.

Proof. Let L be a linear order that witnesses wcol4r(G) = `. First note the following.
Let v ∈ V (G) and let m ∈ Ñr(v) be the L-minimal element of Ñr(v). Then for every
w ∈ Ñr(v), G[Ñr(v)] contains a directed path from w to m of length at most 4r. Hence,
m ∈WReach(G,L,w) for every w ∈ Ñr(v).

We now describe a winning strategy for splitter in the (`, 1, r)-splitter game. Suppose in
round i+ 1 ≤ `, connector chooses a vertex vi+1 ∈ V (Gi). Let Wi+1 (splitter’s choice) be
the minimum vertex of ÑGi,r(vi+1) with respect to L. Then for each u ∈ NGi,r(vi+1) there
is a path between u and wi+1 of length at most 4r that uses only vertices of NGi

r (vi+1). As
wi is L-minimal in NGi

r (vi+1), wi+1 is weakly 4r-reachable from each u ∈ NGi
r (vi+1). Now

let Gi+1 := Gi[NGi
r (vi+1) \ {wi+1}]. As wi+1 is not part of Gi+1, in the next round splitter

will choose another vertex which is weakly 4r-reachable from every vertex of the remaining
r-neighbourhood. As wcol4r(G) = `, the game must stop after at most ` rounds. J

Note that unlike the undirected case of nowhere dense classes of graphs, the strong
splitter game is not a characterisation of bounded expansion classes, as splitter wins the
(1, 1, 1)-strong splitter game on every acyclic digraph, but the class of acyclic digraphs does
not have bounded expansion.

7 Neighbourhood Covers

Neighbourhood covers of small radius and small size play a key role in the design of many
data structures for distributed systems. There is also a deep connection between sparse
neighbourhood covers of small radius and sparse graph spanners of low stretch. In this
section we will show that classes of digraphs of bounded expansion admit sparse strong
neighbourhood covers that can be computed by a fixed-parameter algorithm.

I Definition 7.1. Let r ∈ N. A strong r-neighbourhood cover X of a graph G is a mapping
X : V (G)→ 2V (G) such that G[X (v)] is strongly connected and Ñr(v) ⊆ X (v). We call each
G[X (v)] a cluster of X .

The radius of a cluster C := G[X (v)] is defined as the minimal r ∈ N for which there is a
vertex w ∈ V (C) and for every w ∈ V (C), the cluster C contains a directed path of length at
most r from w to v and a directed path of length at most r from v to w. The radius rad(X )
of a cover X is the maximum radius of any of its clusters.

The degree dX (v) of v in X is the number of clusters that contain v. The maximum
degree ∆(X ) of X is ∆(X ) = maxv∈V (G) d

X (v).

The main result of this section is the following theorem.

I Theorem 7.2. Let C be a class of digraphs of bounded expansion. There are func-
tions f, h :N → N such that for all r ∈ N and all graphs G ∈ C, there exists a strong
r-neighbourhood cover of radius at most 4r and maximum degree at most f(r) and this cover
can be computed in time h(r) · nO(1).

In the next lemma we use the weak colouring number to prove the existence of sparse
neighbourhood covers in bounded expansion classes of digraphs.
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I Definition 7.3. Let G be a digraph, let < be an ordering of V (G) and let r > 0.
For a vertex v ∈ V (G) we define Xr[G,<, v] as the set of vertices w ∈ V (G) such that
v ∈WReachr[G,<,w].

I Lemma 7.4. Let G be a graph such that wcol4r(G) ≤ s and let < be an order witnessing this.
For v ∈ V (G), let m(v) be the minimum of Ñr(v) with respect to <. Then X : V (G)→ 2V (G)

with X (v) = X4r[G,<,m(v)] is a strong r-neighbourhood cover of G with radius at most 4r
and maximum degree at most s.

Proof. Clearly, by construction of the sets X4r[G,<, v] the radius of each cluster is at most 4r.
Furthermore, for v ∈ V (G) we have Ñr(v) ⊆ X (v). To see this, let m(v) be the minimum
of Ñr(v) with respect to <. Then m(v) is weakly 4r-reachable from every w ∈ Nr(v)\{m(v)}.
There is a path from w to v of length at most 2r (on the closed walk containing both w

and v) and a path from v to m(v) of length at most 2r (again on a closed walk containing
the two). Now the concatenation of the two paths is a walk of length at most 4r which
contains as a sub-walk which is a path of length at most 4r. As this path uses only vertices
of Ñr(v) and m(v) is the minimum element, we conclude that Ñr(v) ⊆ X4r[G,<,m(v)].
Finally observe that for every v ∈ V (G),

dX (v) = |{u ∈ V (G) : v ∈ X4r[G,<, u]}|
= |{u ∈ V (G) : u ∈WReach4r[G<, v]}| = |WReach4r[G<, v]| ≤ s. J

Now to prove Theorem 7.2 it suffices to note that the clusters X4r[G,<, v] can be
computed in the desired time. According to Corollary 4.12, we can compute an order < which
is optimal for adm4r(G) in time g(4r) · nO(1). According to Theorem 4.4, this order also
satisfies |WReach4r[G,<, v]| ≤ f(r) for properly defined function f . We order the vertices of
G in order <. Now, to compute X4r[G,<, v] for a vertex v, we just have to perform the first
4r levels of a breadth-first search around v (where we follow paths either in the direction
of the edges or against the direction of the edges) which stops in every branch if a vertex
smaller than v is encountered. Defining g accordingly finishes the proof of the theorem.

8 Constant-Factor Approximation Algorithms for Strong Dominating
Sets

In this section we prove that strong dominating sets can be approximated up to a constant
factor on any class C of directed bounded expansion. Our approach is inspired by [11].

I Definition 8.1 (Strong r-Dominating Sets).
1. Let r ≥ 1 and let G be a digraph. A vertex v ∈ V (G) strongly-r-dominates a vertex

u ∈ V (G) if there is a closed walk of length at most 2r in G containing u and v.
2. A strong-r-dominating set is a set X ⊆ V (G) such that every vertex in G is strongly

dominated by a vertex in X.
3. The strong r-domination number of G, denoted sdomr(G), is the minimum size of a

strong r-dominating set of G.

I Theorem 8.2. Let C be a class of digraphs of directed bounded expansion. Let r ≥ 1. There
is a polynomial time constant factor approximation algorithm for strong r-dominating sets.
More precisely, for every value of r, there is an algorithm running in time g(r) · nO(1) for
some function g which, on input G ∈ C computes a strong-r-dominating set D ⊆ V (G) of
order at most wcol4r(G)2 · sdomr(G).
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In the remainder of this section we prove Theorem 8.2. Let r be given. An r-obstruction
set is a set X ⊆ V (G) such that for any distinct x, y ∈ X, there are no two closed directed
walks W1,W2 ⊆ V (G), each of length at most 2r, such that W1 ∩W2 6= ∅ and x ∈W1 and
y ∈W2. Note that we do not require W1 6= W2. We call a pair u, v of vertices which form an
r-obstruction set {u, v} r-separated. Otherwise, we call the pair u, v r-dependent.

For a set X ⊆ V (G), we define Sdomr(X) as the set of vertices v ∈ V (G) such that v is
strongly-r-dominated by a vertex in X.

As no two distinct vertices of an obstruction set lie on a closed walk of length at most 2r,
no two vertices from the set can be dominated strongly r-dominated by a single vertex.
Hence, if G contains an obstruction set of order k then sdomr(G) ≥ k.

I Lemma 8.3. There exists a polynomial time algorithm which, given a number r ≥ 1 and a
digraph G together with an ordering L witnessing wcol4r(G), computes an obstruction set
X ⊆ V (G) of order k, for some k, and an r-dominating set of order at most wcol4r(G)2 · k.

Proof. Let L be an ordering of G witnessing wcol4r(G). We greedily compute sets A,D, S ⊆
V (G) as follows. Start with A0 = D0 := ∅ and S0 := V (G). Now suppose Ai, Di, Si have
already been defined. If Si = ∅ then the construction stops here. Otherwise, let a be the
<L-minimal element of Si and define Ai+1 := Ai ∪ {a}, Di+1 := Di ∪WReach4r(G,L, a).
Finally, we define Si+1 := Si \ Sdomr(WReach4r(G,L, a)).

Now let i be minimal such that Si = ∅. Such an index i exists as we add a vertex to A –
and remove it from S – at each iteration.

Clearly, D := Di is a strong r-dominating set of G and |D| ≤ wcol4r(G) · |A|. We will
show next that G contains an r-obstruction set X ⊆ A of order 1

wcol4r(G) · |A|. Hence, D is a
factor (wcol4r(G))2 approximation of the strong r-domination number of G.

We construct a digraph H with vertex set A and edges (u, v) if u <L v and u and v are
r-dependent. We will show next that the maximal out-degree of H is < wcol4r(G). For
a ∈ A let a1, . . . , al be the elements of A which are L-smaller than a and such that a and ai

are r-dependent, for all 1 ≤ i ≤ l. We claim that l < wcol4r(G).
For every 1 ≤ i ≤ l let W1 := W1(i) and W2 := W2(i) be two closed directed walks in G

of length at most 2r which intersect each other and such that a ∈ V (W1) and ai ∈ V (W2).
Such walks exist as ai and a are r-dependent. Let z = z(i) be the L-minimal vertex in
V (W1 ∪W2). Note that z ∈WReach4r(G,L, a). For, W1 ∪W2 form a strongly connected
subgraph on at most 4r vertices containing z and a and hence there is a directed path from a

to z of length at most 4r. As z is the L-minimal element of W1 ∪W2, this implies that
z ∈WReach4r(G,L, a).

We claim first that z 6∈ V (W1). For otherwise, z would strongly r-dominate a and hence
in the i-th iteration of the algorithm, a would have been removed from Si, contradicting the
fact that a ∈ A. Thus, z(i) ∈W2(i) for all 1 ≤ i ≤ l.

Now suppose z(i) = z(j) for some 1 ≤ i < j ≤ s. But then again aj , which is contained
in W2(j), is strongly r-dominated by z(i) and hence aj would have been removed from Si at
step i. Hence, z(i) 6= z(j)for all 1 ≤ i 6= j ≤ s. It follows that l ≤ |WReach4r(G,L, a)| − 1 <
wcol4r(G).

This shows that the maximum outdegree of any vertex in H is < wcol4r(G). Hence, H
is wcol4r(G) − 1-degenerate and therefore wcol4r(G)-colourable. Thus, the colour class C
of maximal size contains at least 1

wcol4r(G) · |A| elements of A and forms an r-obstruction
set, witnessing that the strong r-domination number of G is at least 1

wcol4r(G)2 |A|. This
completes the proof of the lemma. J



S. Kreutzer, R. Rabinovich, S. Siebertz, and G. Weberstädt 48:13

Theorem 8.2 now follows immediately from the previous lemma together with Corol-
lary 4.12. Note, however, that our algorithm runs in polynomial time for any fixed r but it
depends exponentially on wcol4r(C). The reason is that we currently do not know how to
compute a good approximation of the wcol-ordering in polynomial time.
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