

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 46, No. 1, pp. 58–79

RUMOR SPREADING WITH NO DEPENDENCE
ON CONDUCTANCE∗

KEREN CENSOR-HILLEL† , BERNHARD HAEUPLER‡ , JONATHAN KELNER§ , AND

PETAR MAYMOUNKOV¶

Abstract. In this paper, we study how a collection of interconnected nodes can efficiently
perform a global computation in the GOSSIP model of communication. In this model nodes do not
know the global topology of the network and may only initiate contact with a single neighbor in each
round. This contrasts with the much less restrictive LOCAL model, where a node may simultaneously
communicate with all of its neighbors in a single round. A basic question in this setting is how many
rounds of communication are required for the information dissemination problem, in which each node
has some piece of information and is required to collect all others. In the LOCAL model this is quite
simple: each node broadcasts all of its information in each round, and the number of rounds required
will be equal to the diameter of the underlying communication graph. In the GOSSIP model, each
node must independently choose a single neighbor to contact, and the lack of global information
makes it difficult to make any sort of principled choice. As such, researchers have focused on the
uniform gossip algorithm, in which each node independently selects a neighbor uniformly at random.
When the graph is well-connected, this works quite well. In a string of beautiful papers, researchers
proved a sequence of successively stronger bounds on the number of rounds required in terms of the
conductance φ and graph size n, culminating in a bound of Θ(φ−1 logn). In this paper, we give the
first protocol that works efficiently on any topology. In particular we give an algorithm that solves
the information dissemination problem in at most O(D+polylog(n)) rounds in a network of diameter
D, with no dependence on the conductance. This is at most an additive polylogarithmic factor from
the trivial lower bound of D. In fact, we prove that something stronger is true: any algorithm
that requires T rounds in the LOCAL model can be simulated in O(T + polylog(n)) rounds in the
GOSSIP model. We thus prove that these two models of distributed computation are equivalent up
to an additive polylogarithmic term.

Key words. gossip model, local model, conductance decomposition, sparse spanners, informa-
tion spreading

AMS subject classification. 68W15

DOI. 10.1137/14099992X

1. Introduction. Many distributed applications require nodes of a network to
perform a global task using only local knowledge. Typically a node initially only
knows the identity of its neighbors and gets to know a wider local neighborhood in
the underlying communication graph by repeatedly communicating with its neigh-
bors. Among the most important questions in distributed computing is how certain
global computation problems, e.g., computing a maximal independent set or a graph
coloring, can be performed with such local constraints.

∗Received by the editors December 15, 2014; accepted for publication (in revised form) November
2, 2016; published electronically January 31, 2017. A preliminary version of this paper appeared in
Proceedings of the 44th Symposium on Theory of Computing, 2012.

http://www.siam.org/journals/sicomp/46-1/99992.html
Funding: The first author was partially supported by ISF grant 1696/14 and BSF grant 2015803.

Part of this work done while the first author was at MIT and supported by the Simons Postdoctoral
Fellows Program and NSF award CCF-0939370. The second author was partially supported by NSF
award CCF-1527110 and CCF-1618280. The third author was partially supported by NSF grant
CCF-0843915.
†Department of Computer Science, Technion, Haifa 32000, Israel (ckeren@cs.technion.ac.il).
‡Department of Computer Science, CMU, Pittsburgh, PA 15213 (haeupler@cs.cmu.edu).
§School of Engineering, MIT, Cambridge, MA 02138 (kelner@mit.edu).
¶The Go Circuit Project, 49 Kademlia st, Sofia 1505, Bulgaria (p@gocircuit.org).

58

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/85123508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/sicomp/46-1/99992.html
mailto:ckeren@cs.technion.ac.il
mailto:haeupler@cs.cmu.edu
mailto:kelner@mit.edu
mailto:p@gocircuit.org

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 59

Many upper and lower bounds for distributed tasks are given for the well-known
LOCALmodel [35, Chapter 2], which operates in synchronized rounds and allows each
node in each round to exchange messages of unbounded size with all of its neighbors. It
is fair to say that the LOCALmodel is essentially the established minimal requirement
for a distributed algorithm. Indeed, whenever a distributed algorithm is said to have
running time T it is implied that, at the least, there exists a T -round algorithm in
the LOCAL model.

In many settings, practical system design or physical constraints do not allow a
node to contact all of its (potentially very large number of) neighbors at once. In this
paper we focus on this case and consider the GOSSIP model, which restricts each
node to initiate at most one bidirectional communication with one of its neighbors per
round. Notice that although each node can initiate communication over at most one
connection in a round, it may communicate with several nodes, via communications
initiated by those nodes. As in the LOCAL model and additional standard models of
distributed computing, the complexity measure is the amount of communication an
algorithm requires, while computation within each node is negligible. However, in con-
trast to computations in the LOCAL model, algorithms for the GOSSIP model have
to decide which neighbor to contact in each round. This is particularly challenging
when the network topology is unknown.

Algorithms with such gossip constraints have been intensively studied for the
so-called Rumor problem (also known as the rumor spreading or information dis-
semination problem), in which each node has some initial input and is required to
collect the information of all other nodes. Most previous papers analyzed the sim-
ple UniformGossip algorithm, which chooses a random neighbor to contact in each
round. One important property of this algorithm is its inherent robustness against
failures. Moreover, the uniform gossip mixes well on well-connected graphs, and good
bounds for its convergence in terms of the graph conductance and vertex expansion
have been given [7, 23, 25, 34, 40]. In general, however, uniform gossip has a tendency
to repeatedly communicate between well-connected neighbors while not transmitting
information across bottlenecks. In fact, the expansion assumptions of all prior works
are needed to guarantee that the network topology contains no bottlenecks on which
the distributed gossip protocol would get stuck. Only recently have algorithms been
designed that try to efficiently deal with bottlenecks in the topology and avoid this
behavior [6]. Still, up to the conference version of this work all running time bounds
of algorithms depended crucially on notions of expansion of the underlying graph. In
fact, for all known gossip algorithms there exist many topologies with small, e.g., say,
logarithmic, diameter on which a trivial Ω(n) number of rounds are needed for the
gossip algorithm to complete the information dissemination.

1.1. Our results. This paper significantly improves the state of the art by pro-
viding the first information spreading algorithm for the GOSSIP model that effi-
ciently deals with any bottleneck and is fast for all graphs, with no dependence on
their conductance. Our algorithm requires at most O(D + polylog(n)) rounds in a
network of size n and diameter D. This is at most an additive polylogarithmic factor
from the trivial lower bound of Ω(D) rounds even for the LOCAL model.

In addition, our results apply more generally to any algorithm in the LOCAL
model. We show how any algorithm that takes T time in the LOCAL model can be
simulated in the GOSSIP model in O(T + polylog(n)) time, thus incurring only an
additional cost which is polylogarithmic in the size of the network n. Our main result
that leads to this simulation is an algorithm for the GOSSIP model in which each

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

60 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

node exchanges information (perhaps indirectly) with each of its neighbors within a
polylogarithmic number of rounds. This holds for every graph, despite the possibility
of large degrees. A key ingredient in this algorithm is a recursive decomposition of
graphs into clusters of sufficiently large conductance, allowing fast (possibly indirect)
exchange of information between nodes inside clusters. The decomposition guarantees
that the number of edges between pairs of nodes that did not exchange information
decreases by a constant fraction. To convert the multiplicative polylogarithmic over-
head for each simulated round into the additive overhead in our final simulation result
we show connections between sparse graph spanners and algorithms in the GOSSIP
model. This allows us to simulate known constructions of nearly additive sparse span-
ners [38], which then in turn can be used in our simulations for even more efficient
communication. Instead of making expansion assumptions which define away hard to
deal with bottlenecks this work provides the first algorithm which implicitly identifies
and successfully overcomes any bottleneck in the communication graph topology.

1.2. Our techniques. The key step in our approach is to devise a distributed
subroutine in the GOSSIP model to efficiently simulate one round of the LOCAL
model by a small number of GOSSIP rounds. In particular, the goal is to deliver
each node’s current messages to all of its neighbors, which we refer to as the Neigh-
borExchange problem. Indeed, we exhibit such an algorithm, called Superstep,
which requires at most O(log3 n) rounds in the GOSSIP model for all graphs:

Theorem 1.1. The Superstep algorithm solves NeighborExchange in the
GOSSIP model in O(log3 n) rounds, with high probability.

Our design for the Superstep algorithm was inspired by ideas from [6] and started
with an attempt to analyze the following very natural algorithm for the NeighborEx-
change problem: In each round each node contacts a random neighbor whose message
is not yet known to it. While this algorithm works well on some graphs, there exist
graphs on which it requires a long time to complete due to asymmetric propagation
of messages. We give an explicit example and discuss this issue in section 6.

The Superstep algorithm is simple and operates by repeatedly performing
O(log3 n) rounds of the UniformGossip algorithm while eliminating some edges after
each round. It is divided in to O(log n) iterations, during which UniformGossip

has each node choose a random neighbor to contact and exchange messages for
O(log2 n) rounds, followed by a reversal of the message exchanges to maintain sym-
metry. From [7, 23] it is known that all pairs of vertices (and in particular all pairs of
neighbors) that lie inside a high-conductance subset of the underlying graph exchange
each other’s messages within a single iteration. An existential graph decomposition
result, given in Corollary 3.4, shows that for any graph there is a decomposition into
high-conductance clusters with at least a constant fraction of intracluster edges. This
implies that the number of remaining message exchanges required decreases by a con-
stant factor in each iteration, which results in a logarithmic number of iterations until
NeighborExchange is solved.

This gives a simple algorithm for solving the Rumor problem, which requires all
nodes to receive the messages of all other nodes: By iterating Superstep D times,
where D is the diameter of the network, one obtains an O(D · log3 n) round algorithm.
This is at most an O(log3 n)-factor slower than the trivial diameter lower bound and
is a drastic improvement compared to prior upper bounds [6, 7, 23, 34], which can be
of order O(n) even for networks with constant or logarithmic diameter D.

Beyond the Rumor problem, it is immediate that the NeighborExchange

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 61

problem bridges the gap between the LOCAL and GOSSIP models in general. In-
deed, we can simply translate a single round of a LOCAL algorithm into the GOSSIP
model by first using any algorithm for NeighborExchange to achieve the local
broadcast and then performing the same local computations. We call this a simu-
lation and more generally define an (α(G), β(G))-simulator as a transformation that
takes any algorithm in the LOCAL model that runs in T (G) rounds if the underlying
topology is G, and outputs an equivalent algorithm in the GOSSIP model that runs
in O(α(G)) · T (G) +O(β(G)) rounds. Thus, the simulation based on the Superstep

algorithm gives a (log3 n, 0)-simulator.
However, we show that we can even obtain a (1,polylog(n))-simulator. This

implies an O(D + polylog(n))-round rumor spreading algorithm (i.e., with only a
linear dependence on D). First, we argue that in many natural graph classes, like
graphs with bounded genus or excluded minors, one can do better. Indeed we give
a simple argument that on any (sparse) graph with hereditary density1 δ there is a
schedule of direct message exchanges such that NeighborExchange is achieved in
2δ rounds. Furthermore, a schedule with O(δ) direct exchanges can be computed
in δ log n rounds of the GOSSIP model even if δ is not known. This leads to a
(δ, δ log n)-simulator. We call this algorithm DirectExchange.

Theorem 1.2. For any ε > 0, the deterministic algorithm Direct Exchange

solves the NeighborExchange problem in the GOSSIP model using O(δ logn
ε2)

rounds, where δ is the hereditary density of the underlying topology. During the algo-
rithm, each node initiates at most 2(1 + ε)2δ exchanges.

Another way to look at this is that communicating over any hereditary sparse
graph remains fast in the GOSSIP model. Thus, for a general graph, if one knows a
sparse subgraph that has short paths from any node to its neighbors, one can solve
the NeighborExchange problem by communicating via these paths. Such graphs
have been intensely studied and are known as spanners [36, 37].

Indeed, we show interesting connections between simulators and spanners. For
one, any fast algorithm for the NeighborExchange problem induces a sparse low-
stretch spanner. The Superstep algorithm can thus be seen as a new spanner con-
struction in the GOSSIP model with the interesting property that the total number of
messages used is at most O(n log3 n). To our knowledge this is the first such construc-
tion. The fact that any fast algorithm for the NeighborExchange problem induces
a sparse low-stretch spanner, together with a known lower bound on the stretch of
sparse spanners [36], also implies that, in general, NeighborExchange requires a
logarithmic number of rounds (up to log log n factors perhaps) in the GOSSIP model.

Considering in the other direction, we show that any fast spanner construction in
the LOCAL model can be used to further decrease the multiplicative overhead of our
(log3 n, 0)-simulator. Applying this insight to several known spanner constructions [9,
16, 38, 39] leads to our third main theorem.

Theorem 1.3. Every algorithm in the LOCAL model which completes with high
probability in T = T (G) rounds when run on the topology G can be simulated in the
GOSSIP model in

1The hereditary density of a graph G is the minimal integer δ such that for every subset of nodes
S the subgraph induced by S has at most δ|S| edges.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

62 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

O(1) ·min
{

T · log3 n,

T · 2log∗ n log n + log4 n,

T · log n + 2log∗ n log4 n,

T + logO(1) n,
T · δ + δ log n,

T · ∆
}

rounds with high probability, where n is the number of nodes, ∆ the maximum degree
and δ the hereditary density of G.

When we apply this result to the greedy algorithm for the Rumor problem, where
T = D, we obtain an algorithm whose O(D + polylog(n)) rounds are optimal up to
the additive polylogarithmic term, essentially closing the gap to the known trivial
lower bound of Ω(D).

Corollary 1.4. There is a GOSSIP algorithm which for any network solves the
information dissemination problem in O(D+ polylog(n)) rounds with high probability,
where D and n are the diameter and number of nodes of the underlying topology,
respectively.

We now give a rough description of how we obtain the O(D+polylog(n)) complex-
ity of rumor spreading. First, we use our O(log3 n) NeighborExchange algorithm
to simulate a spanner construction from the LOCAL model. This takes O(polylog(n))
rounds. The particular spanner we use stretches distances by a constant multiplicative
factor plus a polylogarithmic additive factor. In addition, it has a constant hereditary
density. Once we have this spanner, we show how to orient its edges in a logarithmic
number of rounds, such that the out-degree of every node is constant. This means
that over this spanner we can solve NeighborExchange in a constant number of
rounds, using the DirectExchange algorithm. Because this is a spanner with a small
stretch, it holds that the real neighbors in the original graph are not too far away, and
hence this in turn implies that we can quickly communicate with them by repeatedly
communicating over the oriented spanner. This allows us to simulate any T -round
algorithm in the LOCAL model in O(T + polylog(n)) rounds in the GOSSIP model,
giving the claimed result for rumor spreading.

We give preliminaries in section 2, and in section 3 we show how to solve the
NeighborExchange problem in O(log3 n) rounds. Addressing graphs with small
hereditary density is done in section 4, and in section 5 we show how to simulate a
spanner construction and use it for simulating arbitrary algorithms even faster. We
conclude in sections 6 and 7 with a discussion and a summary of this work.

1.3. Related work. The problem of spreading information in a distributed sys-
tem was introduced by Demers et al. [8] for the purpose of replicated database main-
tenance, and it has been extensively studied thereafter.

One fundamental property of the distributed system that affects the number of
rounds required for information spreading is the communication model. The random
phone call model was introduced by Karp et al. [29], allowing every node to contact one
other node in each round. In our setting, this corresponds to the complete graph. This
model alone received much attention, such as in bounding the number of calls [11],
bounding the number of random bits used [26, 27], bounding the total number of
bits [20], and more.

The number of rounds it takes to spread information for the randomized algorithm
UniformGossip, in which every node chooses its communication partner for the next

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 63

round uniformly at random from its set of neighbors, was analyzed in terms of the
conductance of the underlying graph by Mosk-Aoyama and Shah [34], by Chierichetti,
Lattanzi, and panconesi [7], and later by Giakkoupis [23], whose work showed the
optimal bound in terms of conductance, of O(logn

Φ(G)) rounds, with high probability.

We mention that the uniform randomized algorithm, also referred to as PUSH-
PULL in the literature, enjoys two properties that our algorithm does not. The first
is that it is naturally robust against failures and the second is that it does not require
any memory other than the list of neighbors. Obtaining these properties with the
almost optimal complexity of our algorithm is an open problem.

The relationship between the time required for randomized information spreading
and the vertex expansion of the underlying graph was studied in [24, 25, 40]. Feige
et al. [17] showed in their important paper a bound of O(∆(D + log n)) rounds for
UniformGossip to spread a rumor in a graph of diameter D and maximum degree ∆.
Compared with our results, this is efficient for relatively small values of ∆.

Apart from the uniform randomized algorithm, additional algorithms were sug-
gested for spreading information. We give an overview of some of these approaches.
Doerr, Friedrich, and Saverwald [14] introduce quasi-random rumor spreading, in
which a node chooses its next communication partner by deterministically going over
its list of neighbors, but the starting point of the list is chosen at random. Results
are O(log n) rounds for a complete graph and the hypercube, as well as improved
complexities for other families of graphs compared to the randomized rumor spread-
ing algorithm with uniform distribution over neighbors. This was followed by further
analysis of the quasi-random algorithm [15, 18]. A hybrid algorithm, alternating
between deterministic and randomized choices [6], was shown to achieve information
spreading in the O(c(logn

Φc(G) +c)) round, with high probability, where Φc(G) is the weak

conductance of the graph, a measure of connectivity of subsets in the graph. Distance-
based bounds were given for nodes placed with uniform density in Rd [30, 31], which
also address gossip-based solutions to specific problems such as resource location and
minimum spanning tree. Doerr, Fouz, and Friedrich [12, 13] have recently presented
algorithms for fast information spreading in preferential attachment graphs, which
model social networks. Spreading in social networks was also analyzed in [19].

Interesting algorithms for spreading information in asynchronous systems were
also studied, e.g., by Georgiou et al. [22], and in [3, 43]. Such systems either are
semi synchronous, have bounds on the delay of different components, or assume some
stochastic behavior of relative processor speeds.

The LOCAL model of communication, where each node communicates with each
of its neighbors in every round, was formalized by Peleg [35]. Information spreading
in this model requires a number of rounds which is equal to the diameter of the
communication graph. Many other distributed tasks have been studied in this model.

Graph spanners were first introduced in [36, 37] and have been extensively studied
since. Distributed constructions were also studied, e.g., in [1, 2, 10, 39]. We are
unaware of previous constructions that try to bound the number of messages required
for computing sparse spanners, as is implied by our results.

Since publication in [5] the abstractions and ideas developed in this paper have al-
ready been used by [28] to give a more robust, deterministic, O(log2 n)-round Neigh-
borExchange algorithm. This primitive alone does not achieve the optimal linear
dependence on D provided by the main result of this paper. Instead, information dis-
semination based on [28] alone requires O(D log n+log2 n) rounds to complete. Com-
bining the faster NeighborExchange of [28] with the the spanner and simulator

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

64 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

machinery from section 5 does not lead to a faster O(D + polylog(n)) information
dissemination protocol as the dominating additive cost comes from the unspecified
polylogarithmic additive stretch in a spanner construction of [38]. However, it does
improve robustness. On the other hand, the derandomization of [28] does not carry
over to a O(D + polylog(n)) running time when combined with the techniques of
this paper as the spanner construction of [38] is randomized and no deterministic
alternative is known.

2. Preliminaries and definitions.

2.1. The UniformGossip algorithm. The UniformGossip algorithm is a com-
mon algorithm for Rumor. (It is also known as the PUSH-PULL algorithm in some
papers, such as [23].) Initially, each vertex u has some message Mu. At each step,
vertex u chooses a random incident edge (u, v) at which point u and v exchange all
messages currently known to them. The process stops when all vertices know every-
one’s initial messages. In order to treat this process formally, for any fixed vertex v
and its message Mv, we treat the set of vertices that know Mv as a set that evolves
probabilistically over time, as we explain next.

We begin by fixing an ambient graph G = (V,E), which is connected, unweighted,
and undirected. The UniformGossip process is a Markov chain over 2V , the set of
vertex subsets of G. Given a current state S ⊆ V , one transition is defined as follows.
Every vertex u picks an incident outgoing edge au = (u,w) ∈ E uniformly at random
from all such candidates. Let us call the set of all chosen edges A = {au : u ∈ V } an
activated set. Further let A◦ = {(u,w) : (u,w) ∈ A or (w, u) ∈ A} be the symmetric
closure of A. The new state of the chain is given by S∪B, where by definition a vertex
v is in the boundary set B if and only if there exists u ∈ S such that (u, v) ∈ A◦.
Note that V is the unique absorbing state, assuming a nonempty start set.

We say that an edge (u,w) is activated if (u,w) ∈ A◦. If we let S model the
set of nodes in possession of the message Mv of some fixed vertex v and we assume
bidirectional message exchange along activated edges, the new state S ∪ B (of the
Markov process) actually describes the set of nodes in possession of the message Mv

after one distributed step of the UniformGossip algorithm.
Consider a τ -step Markov process K, whose activated sets at each step are respec-

tively A1, . . . , Aτ . Let the reverse of K, written Krev, be the τ -step process defined
by the activated sets Aτ , . . . , A1, in this order. For a process K, let K(S) denote the
end state when started from S.

Without loss of generality, for our analysis we will assume that only a single
“starting” vertex s has an initial message Ms. We will be interested in analyzing
the number of rounds of UniformGossip that ensure that all other vertices learn Ms,
which we call the broadcast time. Clearly, when more than one vertex has an initial
message, the broadcast time is the same since all messages are exchanged in parallel.

Lemma 2.1 (reversal lemma). If u ∈ K({w}), then w ∈ Krev({u}).
Proof. The condition u ∈ K({w}) holds if and only if there exists a sequence of

edges (ei1 , . . . , eir) such that eij ∈ A◦ij for all j, the indices are increasing in that
i1 < · · · < ir, and the sequence forms a path from w to u. The presence of the
reversed sequence in Krev implies w ∈ Krev({u}).

In communication terms, the lemma says that if u receives a message originating
at w after τ rounds determined by K, then w will receive a message originating at u
after τ rounds determined by Krev. Notice that the reversal lemma is deterministic,

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 65

in the sense that if u receives the message of w after τ rounds determined by K
then we are guaranteed that w receives the message of u after τ rounds determined
by Krev. This is a stronger guarantee than the property given in Lemma 3 in [7],
which states that the probability of a node u receiving the message of w in t rounds of
UniformGossip is equal to the probability of w receiving the message of u in t rounds.
The fact that the reversal lemma promises symmetry will be crucial for the iterative
behavior of our algorithm, in which we make sure that reversed paths are used.

2.2. Conductance. The notion of graph conductance was introduced by Sin-
clair [41]. We require a more general version, which we introduce here. We begin
with the requisite notation on edge-weighted graphs. We assume that each edge (u, v)
has a weight wuv ∈ [0, 1]. For an unweighted graph G = (V,E) and any u, v ∈ V ,
we define wuv = 1 if (u, v) ∈ E and wuv = 0 otherwise. Now, for S, T ⊆ V we set
w(S, T) =

∑
u∈S,v∈T wuv. Note that in this definition it need not be the case that

S∩T = ∅, so, e.g., w(S, S), when applied to an unweighted graph, counts every edge in
S twice. The volume of a set S ⊆ V with respect to V is written as vol(S) = w(S, V).
Sometimes we will have different graphs defined over the same vertex set. In such
cases, we will write the identity of the graph as a subscript, as in volG(S), in order
to clarify which is the ambient graph (and hence the ambient edge set). Further, we
allow self-loops at the vertices. A single loop at v of weight α is modeled by setting
wvv = 2α, because both ends of the edge contribute α.

For a graph G = (V,E) and a cut (S, T) where S, T ⊆ V and S ∩ T = ∅ (but
where T ∪ S does not necessarily equal all of V), the cut conductance is given by

(1) ϕ(S, T) =
w(S, T)

min
{

volG(S), volG(T)
} .

For a subset U ⊆ V we need to define the conductance of U (embedded) in V . We
will use this quantity to measure how quickly the UniformGossip algorithm proceeds
in U , while accounting for the fact that edges in (U, V \U) may slow down the process.
The conductance of U in G is defined by

Φ(U) = min
S⊆U

ϕ(S,U \ S).(2)

Note that the classical notion of conductance of G (according to Sinclair [41]) equals
Φ(V) in our notation. When we want to emphasize the ambient graph G within which
U resides, we will write ΦG(U).

A few arguments in this paper will benefit from the notion of a “strongly induced”
subgraph of a vertex subset of an ambient graph G.

Definition 2.2. Let U ⊆ V be a vertex subset of G. The strongly induced sub-
graph of U in G is a (new) graph H with vertex set U , whose edge weight function
h : U × U → R is defined by

huv =

{
wuv if u 6= v,

wuu +
∑
x∈V \U wux if u = v.

Note that by construction we have ΦH(U) = ΦG(U). The significance of this
notion is the fact that the Markov process, describing the vertex set in possession
of some message Ms for a starting vertex s ∈ U in the UniformGossip algorithm
executed on the strongly induced subgraph H, behaves identically to the respective

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

66 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

process in G observed only on U . In particular, this definition allows us to use
Theorem 1 of [23] in the following form.

Lemma 2.3. For any graph G = (V,E), a vertex subset U ⊆ V and any start ver-
tex in U , the broadcast time of the UniformGossip algorithm on the strongly induced
subgraph of U is O(ΦG(U)−1 log n) rounds, with high probability.

3. NEIGHBOREXCHANGE in log3 n rounds. The idea behind our algorithm
for solving the NeighborExchange problem is as follows. For every graph
there exists a partition into clusters whose conductance is high, and therefore the
UniformGossip algorithm allows information to spread quickly in each cluster. The
latter further implies that pairs of neighbors inside a cluster exchange their messages
quickly (perhaps indirectly). What remains is to exchange messages across inter-
cluster edges. This is done recursively. In the following subsection we describe the
conductance decomposition and then in subsection 3.2 we give the details for the
algorithm together with the proof of correctness.

3.1. Conductance decomposition of a graph. As described, our first goal is
to partition the graph into clusters with large conductance while limiting the number
of intercluster edges (otherwise, having each node in a separate cluster would be a
trivial solution). We are going to achieve this in the following lemma, whose proof
is very similar to that of Theorem 7.1 in [42]. Note that for our eventual algorithm,
we are only going to need an existential proof of this clustering and not an actual
algorithm for finding it.

Lemma 3.1. Let S ⊆ V be of maximum volume such that vol(S) ≤ vol(V)/2
and ϕ(S, V \ S) ≤ ξ, for a fixed parameter ξ ≥ Φ(G). If vol(S) ≤ vol(V)/4, then
Φ(V \ S) ≥ ξ/3.

Proof. Assume, toward a contradiction, that Φ(V \ S) < ξ/3. Then, there exists
a cut (P,Q) of V \ S with ϕ(P,Q) < ξ/3 and specifically

(3) max

{
w(P,Q)

vol(P)
,
w(P,Q)

vol(Q)

}
≤ ξ

3
.

Henceforth, let Q be the smaller of the two, that is, vol(Q) ≤ vol(V \ S)/2.
We are going to show that ϕ(S ∪ Q,P) ≤ ξ and either S ∪ Q or P should have

been chosen instead of S.
Consider the case vol(S ∪Q) ≤ vol(V)/2. In this case,

ϕ(S ∪Q,P) =
w(S, P) + w(Q,P)

vol(S ∪Q)
=
w(S, P) + w(Q,P)

vol(S) + vol(Q)

≤ max

{
w(S, P)

vol(S)
,
w(Q,P)

vol(Q)

}

≤ max

{
w(S, P) + w(S,Q)

vol(S)
,
w(Q,P)

vol(Q)

}
≤ max

{
ξ, ξ/3

}
= ξ.

This establishes a contradiction to the maximality of the set S, because ϕ(S∪Q,P) ≤
ξ and vol(S) < vol(S ∪Q) ≤ vol(V)/2.

Now we consider the case vol(S∪Q) > vol(V)/2. We argue that vol(S∪Q) cannot
be too large. We use that vol(Q) ≤ 1

2 vol(V \ S) = 1
2 (vol(V)− vol(S)) and get that

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 67

vol(S ∪Q) = vol(S) + vol(Q) ≤ vol(S) +
vol(V)− vol(S)

2

=
vol(V) + vol(S)

2
≤ 5

8
vol(V).

Hence, vol(P) ≥ 3
8 vol(V). In addition, for the cut size, we have

w(S ∪Q,P) = w(S, P) + w(Q,P)

≤ ξ vol(S) +
ξ

3
vol(Q)

≤ ξ vol(S) +
ξ

3

vol(V)− vol(S)

2

=
5

6
ξ vol(S) +

1

6
ξ vol(V)

≤ 3

8
ξ vol(V).

This allows us to bound the cut conductance by

(4) ϕ(S ∪Q,P) =
w(S ∪Q,P)

vol(P)
≤

3
8ξ vol(V)
3
8 vol(V)

= ξ.

This establishes the desired contradiction because ϕ(S ∪ Q,P) ≤ ξ while vol(S) ≤
1
4 vol(V) < 3

8 vol(V) ≤ vol(P) ≤ 1
2 vol(V).

Lemma 3.1 says that if a graph has no sparse balanced cuts, then it has a large
subgraph which has no sparse cuts. The following corollary establishes that Lemma 3.1
holds even in the case when the ambient graph is itself a subgraph of a larger graph.

Corollary 3.2. Let U ⊆ V and let S ⊆ U be of maximum volume such that
vol(S) ≤ vol(U)/2 and ϕ(S,U \ S) ≤ ξ, for a fixed parameter ξ ≥ Φ(U). If vol(S) ≤
vol(U)/4, then Φ(U \ S) ≥ ξ/3.

Proof. Observe that the proof of Lemma 3.1 holds when the graph has loops, that
is, wuu 6= 0 for some u’s. Let H be the strongly induced graph of U . It follows from
the definition that for any two disjoint sets A,B ⊆ U we have volG(A) = volH(A)
and w(A,B) = h(A,B). We can therefore apply Lemma 3.1 to H and deduce that
the statement holds for the respective sets in G.

We are now ready to state and analyze our clustering construction. We emphasize
that this construction is neither efficient nor distributed but serves merely as a proof
of existence of the partition.

The clustering algorithm for a graph G = (V,E) is simply a call to
Cluster(G,V ,ξ) where Cluster is the following recursive subroutine:

Cluster(G,U,ξ):
The inputs are a graph G = (V,E), a subset U ⊆ V and a
parameter 0 < ξ < 1.

1. Find a subset S ⊆ U of maximum volume such that vol(S) ≤
vol(U)/2 and ϕ(S,U \ S) ≤ ξ.

2. If no such S exists, then stop and output a single cluster {U}.
Otherwise,

3a. If vol(S) ≤ vol(U)/4, output {U \ S} ∪ Cluster(G,S,ξ).
3b. If vol(S) > vol(U)/4, output Cluster(G,S,ξ) ∪

Cluster(G,U \ S,ξ).

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

68 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

Lemma 3.3. For every 0 < ζ < 1, every graph G = (V,E) with edge weights
wuv ∈ {0} ∪ [1,+∞) has a partition V = V1 ∪ · · · ∪ Vk such that Φ(Vi) ≥ ζ

log4/3 vol(V)

for all i, and
∑
i<j w(Vi, Vj) ≤ 3ζ

2 vol(V).

Proof. The depth K of the recursion in Cluster is, by construction, at most
log4/3 vol(V) assuming that the smallest nonzero weight is 1. Let Ri ⊆ 2V be a
collection of the U -parameters of invocations of Cluster at depth 0 ≤ i ≤ K of the
recursion. (So, for example, R0 = {V }.) Clearly if |U | = 1, the algorithm terminates.
For a set U let S(U) be the small side of the cut produced by Cluster(G,U,ξ), or
∅ if no eligible cut was found. We can then bound the total weight of cut edges as∑

0≤i≤K

∑
U∈Ri

w
(
S(U), U \ S(U)

)
≤

∑
0≤i≤K

∑
U∈Ri

ξ vol
(
S(U)

)
≤

∑
0≤i≤K

∑
U∈Ri

ξ

2
vol(U) ≤ ξ

2

∑
0≤i≤K

∑
U∈Ri

vol(U)

≤ ξ

2

∑
0≤i≤K

vol(V) ≤
ξ log4/3 vol(V)

2
vol(V),

where we use the convention w(∅, S) = 0. If we set ξ = 3ζ
log4/3 vol(V) , for some 0 < ζ < 1,

then Corollary 3.2 establishes the lemma.

In this paper, we are going to use the following specialization of this lemma,
obtained by plugging in ζ = 1/6.

Corollary 3.4. Every unweighted graph on m edges has a clustering that cuts
at most m

2 edges and each cluster has conductance at least 1
6 log4/3 2m .

3.2. The superstep algorithm for the NEIGHBOREXCHANGE problem.
In this section, we will describe the Superstep algorithm, which solves the Neigh-
borExchange problem. Recall that for this problem, all vertices v are assumed to
possess an initial message Mv, and the goal is for every pair of neighbors to know
each other’s initial messages.

We now describe our communication protocol, which specifies a local, per-vertex
rule that tells a node which edge to choose for communication at any given round.
It is assumed that the node will greedily transmit all messages known to it whenever
an edge is chosen for communication. The protocol described here will employ some
auxiliary messages, which are needed exclusively for its internal workings.

The Superstep subroutine described in Figure 1 is designed to ensure that, after
a single invocation, all neighbors (u,w) in an undirected graph G have exchanged each
other’s initial messages. Clearly then, D invocations of Superstep, where D is the
diameter of G, ensure that a message starting at vertex v reaches all u ∈ V , and this
holds for all messages. D invocations of Superstep thus resolve the Rumor problem.

The Superstep subroutine receives as input an undirected, unweighted graph G
and a parameter τ which is the number of rounds for which the vertices will choose
random neighbors to contact in each iteration (therefore the length of each iteration

is 2τ). If E is a set of undirected edges, let ~E = {(u,w) : {u,w} ∈ E} be the
corresponding directed graph. Note that initially F0 is symmetric as it includes all
directed edges of E. A crucial aspect of the Superstep subroutine is that every Fi is
symmetric as well.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 69

Superstep(G,τ):
The parameter G = (V,E) is an unweighted, undirected graph, and
τ is a positive integer.
Set F0 := ~E and i := 0. While Fi 6= ∅, repeat:

1. (First half)
1a. Initialize every vertex v with a new auxiliary message a(v),

unique to v. (This message is added to the set of initial
messages that v happens to know currently.)

1b. Perform the UniformGossip algorithm with respect to Fi
for τ rounds. And denote the outcome of the random acti-
vated edge choices by Ki

1c. For every vertex u and neighbor w, let Xuw be the indicator
that u received a(w)

2. (Second half)
2a. Initialize every vertex v with a new auxiliary message b(v),

unique to v
2b. Perform Krev

i , the reverse process of the one realized in Step
1b

2c. For every vertex u and neighbor w, let Yuw be the indicator
that u received b(w)

3. (Pruning) Compute the set of pruned directed edges Pi ={
(u,w) : Xuw + Yuw > 0

}
4. Set Fi+1 := Fi \ Pi and i := i+ 1

Fig. 1. Code for Superstep algorithm. It is easily verified that the above algorithm can be
implemented in the GOSSIP model of communication.

Lemma 3.5. Let G = (V,E) be an undirected, unweighted graph with |V | = n and
|E| = m. Then, after one invocation of Superstep(G,τ), where τ = Θ

(
log2m

)
, the

following hold with probability 1− 1/nΩ(1):
(i) Every pair of neighbors {u,w} ∈ E receives each other’s messages.

(ii) The algorithm performs Θ
(

log3m
)

rounds of communication.

Finally, our main result, Theorem 1.1, follows as a corollary of Lemma 3.5.
Our proof of Lemma 3.5 is structured as follows. Recall that if E is a set of

undirected edges, then ~E = {(u,w) : {u,w} ∈ E} is the corresponding directed graph.

Let ~E = F0, . . . , Fd = ∅ be the respective edge sets of each iteration in Superstep.
We are going to show that, with probability 1− 1/nΩ(1), the following invariants are
maintained at each iteration:

(a) The directed edge set Fi is symmetric in the sense that (u,w) ∈ Fi ⇒ (w, u) ∈
Fi.

(b) The size of Fi reduces by a constant factor at each iteration. Formally,
|Fi+1| ≤ 1

2 |Fi|.
(c) After the ith iteration, for every (u,w) ∈ ~E \ Fi+1, vertex u has received the

message of vertex w and vice-versa.
In fact, invariants (a) and (c) will be shown to hold always. Since Fd = ∅, claim

(c) implies part (i) of Lemma 3.5. Claim (b) implies that the maximum number
of iterations is log 2m. Noting that every iteration entails 2τ distributed rounds
establishes part (ii) of Lemma 3.5.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

70 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

Proof of claim (a). Initially, F0 is symmetric by construction. Inductively,
assume that Fi is symmetric. The reversal lemma applied to Ki and Krev

i implies
Xuw = Ywu for all u,w ∈ V . This in turn implies that Xuw+Yuw = Xwu+Ywu, so Pi
is symmetric. Since Fi is symmetric by hypothesis, we can conclude that Fi+1 = Fi\Pi
is symmetric as well.

Proof of claim (b). Consider the graph Gi = (V, Fi) on the edge set Fi. Since Fi
is symmetric, by claim (a), we can treat Gi as undirected for the purposes of analyzing
the UniformGossip algorithm. Let V1∪ · · · ∪Vk be the decomposition of Gi promised
by Corollary 3.4. (Note that the corollary holds for disconnected graphs, which may
arise.) We thus have Φ(Vj) ≥ 1

6 log4/3 2m for all 1 ≤ j ≤ k.

The choice τ = O
(
6 log4/3 2m · logm

)
ensures, via Lemma 2.3, that the first

UniformGossip execution in every iteration mixes on all Vj with probability 1 −
1/nΩ(1). Mixing in Vj means that for every internal edge (u,w), where u,w ∈ Vj and
(u,w) ∈ Fi, the vertices (u,w) receive each other’s auxiliary messages. The latter is
summarized as Xuw = Xwu = 1. In order to argue that the graphs are undirected
we need to ensure symmetry. Applying the reversal lemma to the second execution
of the UniformGossip algorithm, we deduce that Yuw = Ywu = 1 as well.

Since the set of pruned edges Pi contains directed edges, we need to guarantee
that if the direction (u, v) of an edge is pruned then so is the direction (v, u). The two
equalities Xuw = Xwu = 1 and Yuw = Ywu = 1 imply, by the definition of Pi, that
Pi is a superset of the edges not cut by the decomposition V1 ∪ · · · ∪Vk. Equivalently,
Fi+1 is a subset of the cut edges. Corollary 3.4, however, bounds the volume of the
cut edges by 1

2 vol(Fi), which concludes the proof of claim (b).

Proof of claim (c). Initially, ~E \ F0 = ∅ and so the claim holds trivially. By

induction, the claim holds for edges in ~E \ Fi. And so it suffices to establish that u
and v exchange their respective payload messages for all (u,w) ∈ Pi. However, this
is equivalent to the conditions Xuw + Yuw > 0, which are enforced by the definition
of Pi.

4. Solving NEIGHBOREXCHANGE in hereditary sparse graphs. Next, we
ask what can be achieved if instead of exchanging information indirectly as done in
the Superstep algorithm, we exchange information only directly between neighbors.
We will show in this section that this results in very simple deterministic algorithms
for an important class of graphs that includes bounded genus graphs and all graphs
that can be characterized by excluded minors [32, 33]. The results here will be used
for the more general simulators in section 5.

As before we will focus on solving the NeighborExchange problem. One trivial
way to solve this problem is for each node to contact its neighbors directly, e.g., by
using a simple round robin method. This takes at most ∆ time, where ∆ is the
maximum-degree of the network. However, in some cases direct message exchanges
work better. One graph that exemplifies this is the star graph on n nodes. While it
takes ∆ = n time to complete a round robin in the center, after just a single round of
message exchanges each leaf has initiated a bidirectional link to the center and thus
exchanged its messages. On the other hand, scheduling edges cannot be fast on dense
graphs with many more edges than nodes. We use the following notion to measure
the density of a graph.

Definition 4.1. The hereditary density of a graph G is the minimal integer δ
such that for every subset of nodes S the subgraph induced by S has at most density
δ, that is, at most δ|S| edges.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 71

The following lemma shows that the hereditary density captures how efficient
direct message exchanges can be on a given graph.

Lemma 4.2. The following holds for a graph G with hereditary density δ:
1. Any schedule of direct message exchanges that solves the NeighborEx-

change problem on G takes at least δ rounds.
2. There exists a schedule of the edges of G such that each node needs only 2δ

direct message exchanges to solve the NeighborExchange problem.

Proof. Since the hereditary density of G is δ, there is a subset of nodes S ⊆ V
with at least δ|S| edges between nodes in S. In each round, each of the |S| nodes is
allowed to schedule at most one message exchange, so a simple pigeonhole principle
argument shows that at least one node needs to initiate at least δ message exchanges.

For the second claim, we are going to show that for any ε > 0 there is an
O(ε−1 log n)-time deterministic distributed algorithm in the LOCAL model that as-
signs the edges of G to nodes such that each node is assigned at most 2(1 + ε)δ edges.
Then setting ε < (3n2)−1 makes the algorithm inefficient but finishes the existential
proof since every node is assigned at most b2δ + 1/2nc = b2δc edges.

The algorithm runs in phases in which, iteratively, a node takes responsibility for
some of the remaining edges connected to it. All edges that are assigned are then
eliminated and so are nodes that have no unassigned incident edges. In each phase,
every node of degree at most 2(1 + ε)δ takes responsibility for all of its incident edges
(breaking ties arbitrarily). At least a 1/(1 + 1

ε) fraction of the remaining nodes falls
under this category in every phase. This is because otherwise, the number of edges in
the subgraph would be more than

(
|S|−|S|/(1+ 1

ε)
)(

2(1+ε)δ
)
/2 = |S|δ, which would

contradict the fact that the hereditary density of the graph equals δ. What remains
after each phase is an induced subgraph which, by definition of the hereditary density,
continues to have hereditary density at most δ. The number of remaining nodes thus
decreases by a factor of 1− 1/(1 + 1

ε) in every phase and it takes at most O(log1+ε n)
phases until no more nodes remain, at which point all edges have been assigned to a
node.

We note that the lower bound of Lemma 4.2 is tight in all graphs, that is, the
upper bound of 2δ can be improved to δ. Graphs with hereditary density δ, also
known as (0, δ)-sparse graphs, are thus exactly the graphs in which δ is the minimum
number such that the edges can be oriented to form a directed graph with outdegree
at most δ. This in turn is equivalent to the pseudoarboricity of the graph, that is, the
minimum number of pseudoforests needed to cover the graph, which can be computed
in polynomial time [21]. For our purposes the (nondistributed) algorithms to compute
these optimal direct message exchange schedule are too slow. Instead, we present a
simple and fast algorithm, based on the LOCAL algorithm in Lemma 4.2, which
computes a schedule that is within a factor of 2(1 + ε)2 of the optimal. We note
that the DirectExchange algorithm presented here works in the GOSSIP model
and furthermore does not require the hereditary density δ to be known a priori. The
algorithm for an individual node v is given in Figure 2. Its properties are stated in
Theorem 1.2.

Theorem 4.3 (repeated). For any ε > 0, the deterministic algorithm Direct

Exchange solves the NeighborExchange problem in the GOSSIP model using
O(δ logn

ε2) rounds, where δ is the hereditary density of the underlying topology. During
the algorithm, each node initiates at most 2(1 + ε)2δ exchanges.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

72 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

Set δ′ = 1 and H = ∅. H is the subset of neighbors in Γ(v) that node v
has exchanged messages with. Repeat:

δ′ = (1 + ε)δ′

for O(1
ε
· logn) times do

if |Γ(v) \H| ≤ δ′
in the next δ′ rounds exchange messages with all neighbors
in Γ(v) \H
terminate

else
wait for δ′ rounds

update H

Fig. 2. Code for DirectExchange algorithm.

Proof. Let δ be the hereditary density of the underlying topology. Exactly as in
the proof of Lemma 4.2, it holds that the algorithm terminates during the for-loop if
δ′ is at least 2(1+ ε)δ. This is because for this value of δ′, at least a 1/(1+ 1

ε) fraction
of the remaining nodes terminate at each iteration of the inner loop, as otherwise the
number of edges in the current set of nodes S exceeds δ|S|, contradicting δ being the
hereditary density. Thus, when the algorithm terminates, δ′ is at most 2(1 + ε)2δ,
which is also an upper bound on the number of neighbors contacted by any node. In
the (i+1)th-to-last iteration of the outer loop, δ′ is at most 2(1+ε)2δ/(1+ε)i, and the
running time for this phase is thus at most 2(1+ε)2δ/(1+ε)i ·O(1

ε log n). Summing up
over these powers of 1/(1+ ε) results in a total of at most δ/((1+ ε)−1) ·O(1

ε log n) =

O(δ logn
ε2) rounds.

5. Simulators and graph spanners. In this section we generalize our results
to arbitrary simulations of LOCAL algorithms in the GOSSIP model and point out
connections to graph spanners, another well-studied subject.

Recall that we defined the NeighborExchange problem exactly in such a way
that it simulates in the GOSSIP model what is done in one round of the LOCAL
model. With our solutions, an O(δ log n)-round algorithm and an O(log3 n)-round
algorithm for the NeighborExchange problem in the GOSSIP model, it is obvious
that we can now easily convert any T -round algorithm for the LOCAL model to an
algorithm in the GOSSIP model, e.g., by T times applying the Superstep algorithm.
In the case of the DirectExchange algorithm we can do even better. While it takes
O(δ log n) rounds to compute a good scheduling, once it is known it can be reused and
each node can simply exchange messages with the same O(δ) nodes without incurring
an additional overhead. Thus, simulating the second and any further rounds can be
easily done in O(δ) rounds in the GOSSIP model. This means that any algorithm
that takes O(T) rounds to complete in the LOCAL model can be converted to an
algorithm that takes O(δT + δ log n) rounds in the GOSSIP model. We call this a
simulation and define simulators formally as follows.

Definition 5.1. An (α, β)-simulator is a way to transform any algorithm A in
the LOCAL model to an algorithm A′ in the GOSSIP model such that A′ computes
the same output as A and if A takes O(T) rounds then with high probability A′ takes
at most O(αT + β) rounds.

Phrasing our results from sections 3.2 and 4 in terms of simulators we get the
following corollary.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 73

Corollary 5.2. For a graph G of n nodes, hereditary density δ, and maxi-
mum degree ∆, the following hold: (a) there is a randomized (log3 n, 0)-simulator;
(b) there is a deterministic (∆, 0)-simulator; (c) there is a deterministic (2(1 +
ε)2δ,O(δε−2 log n))-simulator for any ε > 0 or, simply, there is a (δ, δ log n)-simulator.

Note that for computations that require many rounds in the LOCAL model, the
(2(1 + ε)2δ,O(δε−2 log n))-simulator is a log n-factor faster than repeatedly applying
the DirectExchange algorithm. This raises the question of whether we can similarly
improve our (log3 n, 0)-simulator to obtain a smaller multiplicative overhead for the
simulation.

What we would need for this is to compute, e.g., using the Superstep algorithm,
a schedule that can then be repeated to exchange messages between every node and
its neighbors. What we are essentially asking for is a short sequence of neighbors for
each node over which each node can indirectly get in contact with all its neighbors.
Note that any such schedule of length t must at least fulfill the property that the union
of all edges used by any node is connected (if the original graph G is connected) and
even more that each node is connected to all its neighbors via a path of length at
most t. Subgraphs with this property are called spanners. Spanners are well-studied
objects, due to their extremely useful property that they approximately preserve
distances while potentially being much sparser than the original graph. The quality
of a spanner is described by two parameters, its number of edges and its stretch, which
measures how well it preserves distances.

Definition 5.3 (spanners). A subgraph S = (V,E′) of a graph G = (V,E) is
called an (α, β)-stretch spanner if any two nodes u, v with distance d in G have dis-
tance at most αd+ β in S.

From the discussion above it is also clear that any solution to the NeighborEx-
change problem in the GOSSIP model also computes a spanner as a byproduct.

Lemma 5.4. If A is an algorithm in the GOSSIP model that solves the Neigh-
borExchange problem in any graph G in T rounds, then this algorithm can be used
to compute a (T, 0)-stretch spanner with hereditary density T in O(T) rounds in the
GOSSIP model.

While there are spanners with better properties than the (log3 n, 0)-stretch and
log3 n-density implied by Lemmas 5.4 and 3.5, our construction has the interesting
property that the number of messages exchanged during the algorithm is at most
O(n log3 n), whereas all prior algorithms rely on the broadcast nature of the LOCAL
model and therefore use already O(n2) messages in one round on a dense graph.
Lemma 5.4 furthermore implies a nearly logarithmic lower bound on the time that
is needed in the GOSSIP model to solve the NeighborExchange problem since
a significantly sub logarithmic simulator would imply the existence of a too good
spanner.

Corollary 5.5. For any algorithm in the GOSSIP model that solves the
NeighborExchange problem there is a graph G on n nodes on which this algorithm
takes at least Ω(logn

log logn) rounds.

Proof. Assume an algorithm takes at most T (n) rounds on any graph with n
nodes. The edges used by the algorithm form a T (n)-stretch spanner with density
T (n), as stated in Lemma 5.4. For values of T (n) which are too small it is known
that such spanners do not exist [36]. More specifically it is known that there are
graphs with n nodes, density at least 1/4n1/r, and girth r, that is, the length of

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

74 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

the smallest cycle is r. In such a graph any (r − 2)-stretch spanner has to be the
original graph itself, since removing a single edge causes its end-points to have distance
at least r − 1, and thus the spanner also has density 1/4n1/r. Therefore T (n) ≥
maxr{min(r − 2, 1/4n1/r)} = Ω(logn

log logn).

Interestingly, it is not only the case that efficient simulators imply good spanners
but the next theorem shows as a converse that good existing spanner constructions
for the LOCAL model can be used to improve the performance of simulators.

Theorem 5.6. If there is an algorithm that computes an (α, β)-stretch spanner
with hereditary density δ in O(T) rounds in the LOCAL model, then this can be used
along with an (α′, β′)-simulator to construct an (αδ, Tα′+β′+δ log n+δβ)-simulator.

Proof. For simplicity we first assume that β = 0, that is, the spanner S computed
by the algorithm in the LOCAL model has purely multiplicative stretch α and heredi-
tary density δ. Our strategy is simple: We are first going to compute the good spanner
by simulating the spanner creation algorithm from the LOCAL model using the given
simulator. This takes O(Tα′+ β′) rounds in the GOSSIP model. Once this spanner
S is computed we are only going to communicate via the edges in this spanner. Note
that for any node there is a path of length at most α to any of its neighbors. Thus
if we perform α rounds of LOCAL-flooding rounds in which each node forwards all
messages it knows of to all its neighbors in S each node obtains the messages of all
its neighbors in G. This corresponds exactly to a NeighborExchange in G. There-
fore if we want to simulate T ′ rounds of an algorithm A in the LOCAL model on G
we can alternatively perform αT ′ LOCAL computation rounds on S while doing the
LOCAL computations of A every α rounds. This is a computation in the LOCAL
model but on a sparse graph. We are therefore going to use the (δ, δ log n)-simulator
from Corollary 5.2 to simulate this computation which takes O(δαT ′+δ log n) rounds
in the GOSSIP model. Putting this together with the O(Tα′+β′) rounds it takes to
compute the spanner S we end up with O(δαT ′ + δ log n+ Tα′ + β′) rounds in total.

In general (for example, for β > α) it is not possible (see, e.g., Corollary 5.5) to
simulate the LOCAL algorithm step by step. Instead we rely on the fact that any
LOCAL computation over T rounds can be performed by each node first gathering
information of all nodes in a T -neighborhood and then doing LOCAL computations
to determine the output. For this all nodes simply include all their initial knowledge
(and for a randomized algorithm all the random bits they might use throughout
the algorithm) in a message and flood this in T rounds to all nodes in their T -
neighborhood. Because a node now knows all information that can influence its output
over a T -round computation it can now locally simulate the algorithm for itself and its
neighbors to the extent that its output can be determined. Having this we simulate
the transformed algorithm as before: We first precompute S in O(Tα′+β′) time and
then simulate the T ′ rounds of flooding in G by performing αT ′+β rounds of LOCAL-
flooding in S. Using the (δ, δ log n)-simulator this takes O(δ(αT ′+β)+δ log n) rounds
in the GOSSIP model.

Corollary 5.7. There is a (2log∗ n log n, log4 n)-simulator, a (log n, 2log∗ n

log4 n)-simulator, and a (O(1), polylog(n))-simulator.

Proof. We are going to construct the simulators with increasingly better mul-
tiplicative overhead by applying Theorem 5.6 to existing spanner constructions [9,
16, 38, 39] for the LOCAL model. We first construct a (log2 n, log4 n)-simulator by
combining our new (log3 n, 0)-simulator with the deterministic spanner construction
in [9]. The construction in [9] takes O(log n) rounds in the LOCAL model and adds at

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 75

most one edge to each node per round. Using α = T = δ = O(log n), α′ = log3 n, and
β = β′ = 0 in Theorem 5.6 gives the desired (log2 n, log4 n)-simulator. Having this
simulator, we can use [39] to improve the multiplicative overhead while keeping the
additive simulation overhead the same. In [39] an α = (2log∗ n log n)-stretch spanner
with constant hereditary density δ = O(1) is constructed in T = O(2log∗ n log n)-time
in the LOCAL model. Using these parameters and the (log2 n, log4 n)-simulator in
Theorem 5.6 leads to the strictly better (2log∗ n log n, log4 n)-simulator claimed here.
Having this simulator, we can use it with the randomized spanner construction in [16].
There, an α-stretch spanner, with α = O(log n), is constructed in T = O(log3 n)-time
in the LOCAL model by extracting a subgraph with Ω(log n) girth. Such a graph has
constant hereditary density δ = O(1), as argued in [36]. Using these parameters and
the (2log∗ n log n, log4 n)-simulator in Theorem 5.6 leads to the (log n, 2log∗ n log4 n)-
simulator. Finally, we can use any of these simulators together with the nearly ad-
ditive (5 + ε,polylog(n))-spanner construction from [38] to obtain our last simulator.
It is easy to verify that the randomized construction named ADlog logn in [38] can be
computed in a distributed fashion in the LOCAL model in polylog(n) time and has
hereditary density δ = O(1). This together with any of the previous simulators and
Theorem 5.6 results in a (O(1),polylog(n))-simulator.

With these various simulators it is possible to simulate a computation in the
LOCAL model with very little (polylogarithmic) multiplicative or additive overhead
in the GOSSIP model. Note that while the complexity of the presented simulators is
incomparable, one can interleave their executions (or the executions of the simulated
algorithms) and thus get the best runtime for any instance. This, together with
Corollaries 5.7 and 5.2, proves our main result of Theorem 1.3, as follows.

Theorem 5.8 (repeated). Every algorithm in the LOCAL model which completes
with high probability in T = T (G) rounds when run on the topology G can be simulated
in the GOSSIP model in

O(1) ·min
{

T · log3 n,

T · 2log∗ n log n + log4 n,

T · log n + 2log∗ n log4 n,

T + logO(1) n,
T · δ + δ log n,

T · ∆
}

rounds with high probability, where n is the number of nodes, ∆ the maximum degree,
and δ the hereditary density of G.

Proof of Theorem 1.3. We can simulate in the GOSSIP model any algorithm
which completes in T = T (G) rounds in the LOCAL model with the following com-
plexities. The direct approach of simulating each LOCAL round by ∆ rounds in the
GOSSIP model, where ∆ is the maximum degree in G, gives an O(T · ∆)-round
algorithm. By Theorem 1.1, we obtain a simulation with a multiplicative factor of
O(log3 n) by running the NeighborExchange algorithm T times. Corollary 5.2
gives a simulation which requires O(Tδ + δ · log n) rounds when δ is the hereditary
density of G. Finally, Corollary 5.7 gives the remaining three simulators, with running
times of O(T ·2log∗ n log n+log4 n), O(T · log n+2log∗ n log4 n) and O(T,+polylog(n)),
respectively.

Interleaving all of the above simulations gives the claimed complexity.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

76 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

… … …

v

w u1

uO(n) CO(n)

C1

z1

zO(logn)

w u1 C1

Fig. 3. An example illustrating the problematic behavior of the natural NeighborExchange
algorithm, which repeatedly has each node choose a random neighbor whose information is still
unknown. Ci stands for a clique of size O(1) in which every node is also connected to the node ui.

6. Discussion: A counterexample to a simpler NEIGHBOREXCHANGE

algorithm, synchronization, and fault-tolerance issues. We first discuss a
counterexample to the simpler NeighborExchange algorithm proposed in sec-
tion 1.2 and then briefly discuss the related issues of synchronization and fault-
tolerance.

As mentioned in section 1.2 a simpler and maybe more natural candidate for a
NeighborExchange algorithm would be for each node to choose a neighbor uni-
formly at random only from among those it has not yet heard from (directly or indi-
rectly). The counterexample given in Figure 3 demonstrates the subtle complications
which can make this algorithm fail miserably.

In this example, it takes two rounds for the node w to hear about the node v
(through nodes in {z1, . . . , zO(logn)}). During these rounds there is a high probability
that a constant fraction of the nodes in {u1, . . . , uO(n)} did not yet hear from either
v or w. With high probability, a constant fraction of these will contact w before
contacting v, after which they will not contact v anymore because they will have
heard from it through w. This leaves O(n) nodes which v has to contact directly (since
nodes in {z1, . . . , zO(logn)} are no longer active since they already heard from both
of their neighbors), resulting in a linear number of rounds for NeighborExchange.
While this specific example can still be solved quickly by requiring nodes that have
heard from all their neighbors to continue the algorithm with random choices, it is
pretty clear that generally no such strategy can succeed.

In fact, what our counterexample demonstrates is how crucial it is to maintain (a
certain level of) symmetry and undirectedness in the underlying network to not end
up with directed stars in which the centers have to contact each leaf one by one. In
the Superstep algorithm perfect symmetry is maintained via the reversal step.

While the strong symmetry guarantee provided by the reversal step is tremen-
dously useful its importance for the working of our algorithm is also problematic.
This can be seen in two interesting further considerations. The first one is porting
our algorithm to a less synchronized setting. Maintaining the guarantees of the very
time sensitive reversal step in such a setting requires heavy-handed synchronization
approaches that are not desirable in general. The second consideration is fault toler-
ance. Here we note that just a single transmission being dropped or received out of
order can lead to the reversal step breaking symmetry and thus to the introduction
of directed edges. In directed graphs the conductance decomposition from section 3.1
fails to hold. Even worse, not only does the analysis fail to go through, but an example
similar to the one given in Figure 3 shows that a single dropped message can result in
the completion time of the NeighborExchangegoing from O(log3 n) to a worst-case
time of Ω(n).

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 77

To alleviate this problem it is would be great to get rid of the reversal step
altogether. This has been done successfully in [4]: The basic idea is to do away
with the hard decisions to “remove” edges once a message from a neighbor has been
received, and instead to multiplicatively decrease the weight of such edges for the next
round. This approach would introduce a slight asymmetry in each edge’s weight in
both directions. In order to analyze such an algorithm, it is needed to understand
the behavior of UniformGossip in an asymmetric setting. In this setting, each vertex
uses its own distribution over outgoing links when choosing a communication partner
at each step. Another alternative is the deterministic approach of [28] which requires
only weak symmetry requirements that are restricted to very short time-periods and
are thus easily enforced asynchronously and in a fault-tolerant way.

7. Conclusion. This paper presents a more efficient alternative to the
UniformGossip algorithm that allows fast rumor spreading on all graphs, with no
dependence on their conductance. We then show how this leads to fast simulation in
the GOSSIP model of any algorithm designed for the LOCAL model by constructing
sparse spanners and conversely also to a new interesting spanner construction with low
message complexity. While it is known how to obtain robust NeighborExchange,
an intriguing remaining challenge is to design fault-tolerant simulators.

Acknowledgment. We thank the reviewers for many comments and suggestions
that helped us to improve the paper.

REFERENCES

[1] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie, Additive spanners and (α, β)-
spanners, ACM Trans. Algorithms, 7 (2010), pp. 5:1–5:26, https://doi.org/10.1145/
1868237.1868242.

[2] S. Baswana, S. Khurana, and S. Sarkar, Fully dynamic randomized algorithms for graph
spanners, ACM Trans. Algorithms, 8 (2012), pp. 35:1–35:51, https://doi.org/10.1145/
2344422.2344425.

[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE/ACM
Trans. Netw., 14 (2006), pp. 2508–2530, https://doi.org/10.1109/TIT.2006.874516.

[4] K. Censor-Hillel and G. Giakkoupis, Fast and Robust Information Spreading, manuscript,
2013.

[5] K. Censor-Hillel, B. Haeupler, J. Kelner, and P. Maymounkov, Global computation in
a poorly connected world: Fast rumor spreading with no dependence on conductance, in
Proceedings of the 44th Symposium on Theory of Computing, 2012, pp. 961–970.

[6] K. Censor-Hillel and H. Shachnai, Fast information spreading in graphs with large weak
conductance, in Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms,
2011, pp. 440–448.

[7] F. Chierichetti, S. Lattanzi, and A. Panconesi, Almost tight bounds for rumour spreading
with conductance., in Proceedings of the 42nd ACM Symposium on Theory of Computing,
2010, pp. 399–408.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-
hart, and D. Terry, Epidemic algorithms for replicated database maintenance, in Pro-
ceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing,
1987, pp. 1–12, https://doi.org/http://doi.acm.org/10.1145/41840.41841.

[9] B. Derbel, C. Gavoille, D. Peleg, and L. Viennot, On the locality of distributed sparse
spanner construction, in Proceedings of the 27th ACM Symposium on Principles of Dis-
tributed Computing, New York, 2008, pp. 273–282, https://doi.org/10.1145/1400751.
1400788.

[10] B. Derbel, M. Mosbah, and A. Zemmari, Fast distributed graph partition and application,
in Proceedings of the 20th International Parallel and Distributed Processing Symposium,
2006, https://doi.org/10.1109/IPDPS.2006.1639362.

[11] B. Doerr and M. Fouz, Asymptotically optimal randomized rumor spreading, in Proceedings
of the 38th International Conference on Automata, Languages and Programming, Springer-
Verlag, Berlin, 2011, pp. 502–513, http://dl.acm.org/citation.cfm?id=2027223.2027274.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1145/1868237.1868242
https://doi.org/10.1145/1868237.1868242
https://doi.org/10.1145/2344422.2344425
https://doi.org/10.1145/2344422.2344425
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/http://doi.acm.org/10.1145/41840.41841
https://doi.org/10.1145/1400751.1400788
https://doi.org/10.1145/1400751.1400788
https://doi.org/10.1109/IPDPS.2006.1639362
http://dl.acm.org/citation.cfm?id=2027223.2027274

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

78 CENSOR-HILLEL, HAEUPLER, KELNER, AND MAYMOUNKOV

[12] B. Doerr, M. Fouz, and T. Friedrich, Social networks spread rumors in sublogarithmic
time, in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, 2011,
pp. 21–30.

[13] B. Doerr, M. Fouz, and T. Friedrich, Asynchronous rumor spreading in preferential at-
tachment graphs, in Proceedings of SWAT, 2012, pp. 307–315.

[14] B. Doerr, T. Friedrich, and T. Sauerwald, Quasirandom rumor spreading, in Proceedings
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 2008,
pp. 773–781.

[15] B. Doerr, T. Friedrich, and T. Sauerwald, Quasirandom rumor spreading: Expanders,
push vs. pull, and robustness, in Proceedings of the 36th International Colloquium on
Automata, Languages and Programming, 2009, pp. 366–377.

[16] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan, Fast distributed
algorithms for (weakly) connected dominating sets and linear-size skeletons, J. Comput.
System Sci., 71 (2005), pp. 467–479, https://doi.org/http://dx.doi.org/10.1016/j.jcss.2005.
04.002.

[17] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, Randomized broadcast in networks,
Random Structures Algorithms, 1 (1990), pp. 447–460, https://doi.org/10.1002/rsa.
3240010406.

[18] N. Fountoulakis and A. Huber, Quasi-random rumor spreading on the complete graph is as
fast as randomized rumor spreading, SIAM J. Discrete Math., 23 (2009), pp. 1964–1991.

[19] N. Fountoulakis, K. Panagiotou, and T. Sauerwald, Ultra-fast rumor spreading in social
networks, in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 2012, pp. 1642–1660, https://dl.acm.org/citation.cfm?id=2095116.2095246.

[20] P. Fraigniaud and G. Giakkoupis, On the bit communication complexity of randomized
rumor spreading, in Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures, New York, 2010, pp. 134–143, https://doi.org/http://doi.acm.org/10.
1145/1810479.1810505.

[21] H. N. Gabow and H. H. Westermann, Forests, frames, and games: Algorithms for ma-
troid sums and applications, Algorithmica, 7 (1992), pp. 465–497, https://doi.org/10.1007/
BF01758774.

[22] C. Georgiou, S. Gilbert, R. Guerraoui, and D. R. Kowalski, Asynchronous gossip,
J. ACM, 60 (2013), pp. 11:1–11:42, https://doi.org/10.1145/2450142.2450147.

[23] G. Giakkoupis, Tight bounds for rumor spreading in graphs of a given conductance, in Pro-
ceedings of the 28th International Symposium on Theoretical Aspects of Computer Science,
Dagstuhl, Germany, 2011, pp. 57–68, https://doi.org/http://dx.doi.org/10.4230/LIPIcs.
STACS.2011.57.

[24] G. Giakkoupis, Tight bounds for rumor spreading with vertex expansion, in Proceedings of
SODA, 2014, pp. 801–815.

[25] G. Giakkoupis and T. Sauerwald, Rumor spreading and vertex expansion, in Pro-
ceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, 2012,
pp. 1623–1641.

[26] G. Giakkoupis, T. Sauerwald, H. Sun, and P. Woelfel, Low randomness rumor spreading
via hashing, in Proceedings of STACS, 2012, pp. 314–325.

[27] G. Giakkoupis and P. Woelfel, On the randomness requirements of rumor spreading, in
Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms, 2011, pp. 449–
461.

[28] B. Haeupler, Simple, fast and deterministic gossip and rumor spreading, in Proceedings of
the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, 2013, pp. 705–716.

[29] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, Randomized rumor spreading, in
Proceedings of the 41st Annual Symposium on Foundations of Computer Science, IEEE,
Washington, DC, 2000.

[30] D. Kempe, J. Kleinberg, and A. Demers, Spatial gossip and resource location protocols, in
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, New York,
2001, pp. 163–172, https://doi.org/http://doi.acm.org/10.1145/380752.380796.

[31] D. Kempe and J. M. Kleinberg, Protocols and impossibility results for gossip-based commu-
nication mechanisms, in Proceedings of the 43rd Symposium on Foundations of Computer
Science, IEEE, Washington, DC, 2002, pp. 471–480, https://portal.acm.org/citation.cfm?
id=645413.652161.

[32] A. Kostochka, Lower bound of the hadwiger number of graphs by their average de-
gree, Combinatorica, 4 (1984), pp. 307–316, https://dx.doi.org/10.1007/BF02579141.
10.1007/BF02579141.

[33] W. Mader, Homomorphieeigenschaften und mittlere kantendichte von graphen, Math. Ann.,
174 (1967), pp. 265–268, https://dx.doi.org/10.1007/BF01364272. 10.1007/BF01364272.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/http://dx.doi.org/10.1016/j.jcss.2005.04.002
https://doi.org/http://dx.doi.org/10.1016/j.jcss.2005.04.002
https://doi.org/10.1002/rsa.3240010406
https://doi.org/10.1002/rsa.3240010406
https://dl.acm.org/citation.cfm?id=2095116.2095246
https://doi.org/http://doi.acm.org/10.1145/1810479.1810505
https://doi.org/http://doi.acm.org/10.1145/1810479.1810505
https://doi.org/10.1007/BF01758774
https://doi.org/10.1007/BF01758774
https://doi.org/10.1145/2450142.2450147
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.STACS.2011.57
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.STACS.2011.57
https://doi.org/http://doi.acm.org/10.1145/380752.380796
https://portal.acm.org/citation.cfm?id=645413.652161
https://portal.acm.org/citation.cfm?id=645413.652161
https://dx.doi.org/10.1007/BF02579141
https://dx.doi.org/10.1007/BF01364272

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RUMOR SPREADING WITH NO DEPENDENCE ON CONDUCTANCE 79

[34] D. Mosk-Aoyama and D. Shah, Computing separable functions via gossip, in Proceedings of
the 25th Annual ACM Symposium on Principles of Distributed Computing, New York,
2006, pp. 113–122, https://doi.org/http://doi.acm.org/10.1145/1146381.1146401.

[35] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia, 2000.
[36] D. Peleg and A. A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[37] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, SIAM J. Comput.,

18 (1989), pp. 740–747.
[38] S. Pettie, Low distortion spanners, ACM Trans. Algorithms, 6 (2009), pp. 7:1–7:22.
[39] S. Pettie, Distributed algorithms for ultrasparse spanners and linear size skeletons, Dis-

tributed Comput., 22 (2010), pp. 147–166.
[40] T. Sauerwald and A. Stauffer, Rumor spreading and vertex expansion on regular graphs,

in Proceedings of SODA, 2011, pp. 462–475.
[41] A. Sinclair, Algorithms for Random Generation and Counting: A Markov Chain Approach,

Birkhauser Verlag, Basel, Switzerland, 1993.
[42] D. A. Spielman and S. Teng, Spectral sparsification of graphs, SIAM J. Comput., 40 (2011),

pp. 981–1025, https://doi.org/10.1137/08074489X.
[43] S. Verma and W. T. Ooi, Controlling gossip protocol infection pattern using adaptive fanout,

in Proceedings of the 25th IEEE International Conference on Distributed Computing Sys-
tems, 2005, pp. 665–674, https://doi.org/10.1109/ICDCS.2005.20.

D
ow

nl
oa

de
d

06
/1

9/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/http://doi.acm.org/10.1145/1146381.1146401
https://doi.org/10.1137/08074489X
https://doi.org/10.1109/ICDCS.2005.20

	Introduction
	Our results
	Our techniques
	Related work

	Preliminaries and definitions
	The UniformGossip algorithm
	Conductance

	NEIGHBOREXCHANGE in log3 n rounds
	Conductance decomposition of a graph
	The superstep algorithm for the NEIGHBOREXCHANGE problem

	Solving NEIGHBOREXCHANGE in hereditary sparse graphs
	Simulators and graph spanners
	Discussion: A counterexample to a simpler NEIGHBOREXCHANGEalgorithm, synchronization, and fault-tolerance issues
	Conclusion
	References

