1,317 research outputs found

    On Geometric Spanners of Euclidean and Unit Disk Graphs

    Get PDF
    We consider the problem of constructing bounded-degree planar geometric spanners of Euclidean and unit-disk graphs. It is well known that the Delaunay subgraph is a planar geometric spanner with stretch factor C_{del\approx 2.42; however, its degree may not be bounded. Our first result is a very simple linear time algorithm for constructing a subgraph of the Delaunay graph with stretch factor \rho =1+2\pi(k\cos{\frac{\pi{k)^{-1 and degree bounded by kk, for any integer parameter k14k\geq 14. This result immediately implies an algorithm for constructing a planar geometric spanner of a Euclidean graph with stretch factor \rho \cdot C_{del and degree bounded by kk, for any integer parameter k14k\geq 14. Moreover, the resulting spanner contains a Euclidean Minimum Spanning Tree (EMST) as a subgraph. Our second contribution lies in developing the structural results necessary to transfer our analysis and algorithm from Euclidean graphs to unit disk graphs, the usual model for wireless ad-hoc networks. We obtain a very simple distributed, {\em strictly-localized algorithm that, given a unit disk graph embedded in the plane, constructs a geometric spanner with the above stretch factor and degree bound, and also containing an EMST as a subgraph. The obtained results dramatically improve the previous results in all aspects, as shown in the paper

    Light Spanners

    Full text link
    A tt-spanner of a weighted undirected graph G=(V,E)G=(V,E), is a subgraph HH such that dH(u,v)tdG(u,v)d_H(u,v)\le t\cdot d_G(u,v) for all u,vVu,v\in V. The sparseness of the spanner can be measured by its size (the number of edges) and weight (the sum of all edge weights), both being important measures of the spanner's quality -- in this work we focus on the latter. Specifically, it is shown that for any parameters k1k\ge 1 and ϵ>0\epsilon>0, any weighted graph GG on nn vertices admits a (2k1)(1+ϵ)(2k-1)\cdot(1+\epsilon)-stretch spanner of weight at most w(MST(G))Oϵ(kn1/k/logk)w(MST(G))\cdot O_\epsilon(kn^{1/k}/\log k), where w(MST(G))w(MST(G)) is the weight of a minimum spanning tree of GG. Our result is obtained via a novel analysis of the classic greedy algorithm, and improves previous work by a factor of O(logk)O(\log k).Comment: 10 pages, 1 figure, to appear in ICALP 201

    On a family of strong geometric spanners that admit local routing strategies

    Full text link
    We introduce a family of directed geometric graphs, denoted \paz, that depend on two parameters λ\lambda and θ\theta. For 0θ<π20\leq \theta<\frac{\pi}{2} and 1/2<λ<1{1/2} < \lambda < 1, the \paz graph is a strong tt-spanner, with t=1(1λ)cosθt=\frac{1}{(1-\lambda)\cos\theta}. The out-degree of a node in the \paz graph is at most 2π/min(θ,arccos12λ)\lfloor2\pi/\min(\theta, \arccos\frac{1}{2\lambda})\rfloor. Moreover, we show that routing can be achieved locally on \paz. Next, we show that all strong tt-spanners are also tt-spanners of the unit disk graph. Simulations for various values of the parameters λ\lambda and θ\theta indicate that for random point sets, the spanning ratio of \paz is better than the proven theoretical bounds

    There are Plane Spanners of Maximum Degree 4

    Full text link
    Let E be the complete Euclidean graph on a set of points embedded in the plane. Given a constant t >= 1, a spanning subgraph G of E is said to be a t-spanner, or simply a spanner, if for any pair of vertices u,v in E the distance between u and v in G is at most t times their distance in E. A spanner is plane if its edges do not cross. This paper considers the question: "What is the smallest maximum degree that can always be achieved for a plane spanner of E?" Without the planarity constraint, it is known that the answer is 3 which is thus the best known lower bound on the degree of any plane spanner. With the planarity requirement, the best known upper bound on the maximum degree is 6, the last in a long sequence of results improving the upper bound. In this paper we show that the complete Euclidean graph always contains a plane spanner of maximum degree at most 4 and make a big step toward closing the question. Our construction leads to an efficient algorithm for obtaining the spanner from Chew's L1-Delaunay triangulation
    corecore