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Abstract
For a positive integer t and a graph G, an additive t-spanner of G is a spanning subgraph in which
the distance between every pair of vertices is at most the original distance plus t. The Minimum
Additive t-Spanner Problem is to find an additive t-spanner with the minimum number of edges
in a given graph, which is known to be NP-hard. Since we need to care about global properties of
graphs when we deal with additive t-spanners, the Minimum Additive t-Spanner Problem is
hard to handle and hence only few results are known for it. In this paper, we study the Minimum
Additive t-Spanner Problem from the viewpoint of parameterized complexity. We formulate
a parameterized version of the problem in which the number of removed edges is regarded as a
parameter, and give a fixed-parameter algorithm for it. We also extend our result to the case with
both a multiplicative approximation factor α and an additive approximation parameter β, which we
call (α, β)-spanners.
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1 Introduction

1.1 Spanners
A spanner of a graph G is a spanning subgraph of G that approximately preserves the
distance between every pair of vertices in G. Spanners were introduced in [4, 40, 41] in
the context of synchronization in networks. Since then, spanners have been studied with
applications to several areas such as space efficient routing tables [19, 42], computation of
approximate shortest paths [17, 18, 26], distance oracles [6, 45], and so on.

A main topic on spanners is trade-offs between the sparsity (i.e., the number of edges)
of a spanner and its quality of approximation of the distance, and there are several ways
to measure the approximation quality. In the early studies, the approximation quality of
spanners was measured by a multiplicative factor, i.e., the ratio between the distance in the
spanner and the original distance. Formally, for a positive integer t and a graph G, a spanning
subgraph H of G is said to be a multiplicative t-spanner if distH(u, v) ≤ t · distG(u, v) holds
for any pair of vertices u and v. Here, distG(u, v) (resp. distH(u, v)) denotes the distance
between u and v in G (resp. in H). Note that we deal with only graphs with unit length
edges, and hence the distance is defined as the number of edges on a shortest path. A
well-known trade-off between the sparsity and the multiplicative factor is as follows: for any
positive integer t and any graph G, there exists a (2t− 1)-spanner with O(n1+1/t) edges [3],
where n denotes the number of vertices in G. This bound is conjectured to be tight based on
the popular Girth Conjecture of Erdős [30].

© Yusuke Kobayashi;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-9478-7307
mailto:yusuke@kurims.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.STACS.2020.11
https://arxiv.org/abs/1903.01047
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 An FPT Algorithm for Minimum Additive Spanner Problem

Another natural measure of the approximation quality is the difference between the
distance in the spanner and the original distance. For a positive integer t and a graph G, a
spanning subgraph H of G is said to be an additive t-spanner if distH(u, v) ≤ distG(u, v) + t

holds for any pair of vertices u and v. Since an additive spanner was introduced in [36, 37],
trade-offs between the sparsity and the additive term have been actively studied. It is shown
in [2, 25] that every graph has an additive 2-spanner with O(n3/2) edges. In addition, every
graph has an additive 4-spanner with O(n7/5poly(logn)) edges [14], and every graph has an
additive 6-spanner with O(n4/3) edges [7]. On the negative side, it is shown in [1] that these
bounds cannot be improved to O(n4/3−ε) for any ε > 0.

As a common generalization of these two concepts, (α, β)-spanners have also been studied
in the literature. For α ≥ 1, β ≥ 0, and a graph G, a spanning subgraph H of G is said to
be an (α, β)-spanner if distH(u, v) ≤ α · distG(u, v) + β holds for any pair of vertices u and
v. See [9, 27, 32, 43, 44, 46, 48, 49] for other results on trade-offs between the sparsity of a
spanner and its approximation quality.

In this paper, we consider a classical but natural and important problem that finds a
spanner of minimum size. In particular, we focus on additive t-spanners and consider the
following problem for a positive integer t.

Minimum Additive t-Spanner Problem
Instance. A graph G = (V,E).
Question. Find an additive t-spanner H = (V,EH) of G that minimizes |EH |.

The Minimum Multiplicative t-Spanner Problem and the Minimum (α, β)-Spanner
Problem are defined in the same way. Such a problem is sometimes called the Sparsest
Spanner Problem.

Although additive t-spanners have attracted attention as described above, there are only
few results on the Minimum Additive t-Spanner Problem. For any positive integer t, the
Minimum Additive t-Spanner Problem is shown to be NP-hard in [37]. It is shown by
Chlamtáč et al. [16] that there is no polynomial-time 2(log1−ε n)/t3 -approximation algorithm
for any ε > 0 under a standard complexity assumption. In [16], an O(n3/5+ε)-approximation
algorithm is proposed for any ε > 0 for a more general problem. We can obtain algorithms
for some special cases as consequences of known results. Every connected interval graph
has an additive 2-spanner that is a spanning tree [35], which implies that the Minimum
Additive t-Spanner Problem in interval graphs can be solved in polynomial time for
t ≥ 2. The same result holds for AT-free graphs [35]. It is shown in [15] that every chordal
graph has an additive 4-spanner with at most 2n− 2 edges, which implies that there exists a
2-approximation algorithm for the Minimum Additive 4-Spanner Problem in chordal
graphs. To the best of our knowledge, no other results exist for the Minimum Additive
t-Spanner Problem, which is in contrast to the fact that the Minimum Multiplicative
t-Spanner Problem has been actively studied from the viewpoints of graph classes and
approximation algorithms (see Section 1.3).

We make a remark on a difference between multiplicative t-spanners and additive t-
spanners. As in [13, 38, 33], multiplicative t-spanners can be characterized as follows: a
subgraphH = (V,EH) of G = (V,E) is a multiplicative t-spanner if and only if distH(u, v) ≤ t
holds for any uv ∈ E \ EH . This characterization means that if two edges in E \ EH are far
from each other, then they do not interfere with each other. Thus, we only need to care
about local properties of graphs when we deal with multiplicative t-spanners. In contrast,
for additive t-spanners, no such characterization exists, and hence we have to consider global
properties of graphs. In this sense, handling the Minimum Additive t-Spanner Problem
is much harder than the Minimum Multiplicative t-Spanner Problem, which might be
a reason why only few results exist for the Minimum Additive t-Spanner Problem.
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1.2 Our Results

In this paper, we consider the Minimum Additive t-Spanner Problem from the viewpoint
of fixed-parameter tractability and give the first fixed-parameter algorithm parameterized by
the number of deleted edges for it. A parameterized version of the Minimum Multiplicative
t-Spanner Problem is studied in [33]. Since an additive (or multiplicative) t-spanner of
a connected graph contains Ω(|V |) edges, the number of edges of a minimum additive (or
multiplicative) t-spanner is not an appropriate parameter. Therefore, as in [33], a parameter
is defined as the number of edges that are removed to obtain an additive (or multiplicative)
t-spanner. This parameterization has a meaning when we remove a small number of edges,
and such a situation might appear in a subroutine of other algorithms, e.g., in order to
obtain a small additive spanner, we can consider a heuristic algorithm that removes a small
number of edges repeatedly. Furthermore, the number of removed edges is a solution size in
a certain sense. For these reasons, it will be the most natural parameter when we deal with
spanners. Note that the same parameterization is also adopted in [5] for another network
design problem. Our problem is formulated as follows.

Parameterized Minimum Additive t-Spanner Problem
Instance. A graph G = (V,E).
Parameter. A positive integer k.
Question. Find an edge set E′ ⊆ E with |E′| ≥ k such that H = (V,E \ E′) is an additive

t-spanner of G or conclude that such E′ does not exist.

Note that if there exists a solution of size at least k, then its subset of size k is also a
solution, which means that we can replace the condition |E′| ≥ k with |E′| = k in the problem.
In this paper, we show that there exists a fixed-parameter algorithm for this problem, where
an algorithm is called a fixed-parameter algorithm (or an FPT algorithm) if its running time
is bounded by f(k)(|V |+ |E|)O(1) for some computable function f . See [20, 31, 39] for more
details.

Formally, our result is stated as follows.

I Theorem 1. For a positive integer t, there exists a fixed-parameter algorithm for the Pa-
rameterized Minimum Additive t-Spanner Problem that runs in (t+ 1)O(k2+tk)|V ||E|
time. In particular, the running time is 2O(k2)|V ||E| if t is fixed.

This result implies that there exists a fixed-parameter algorithm for the problem even
when t + k is the parameter. As described in Section 1.1, the Minimum Additive t-
Spanner Problem is a really hard problem and only few results were previously known
for it. Therefore, this result may be a starting point for further research on the problem.
A technical key ingredient of our algorithm is Lemma 5 that constructs a sequence of
edge-disjoint cycles satisfying a certain condition, which is of independent interest.

By using almost the same argument, we can show that a parameterized version of the
Minimum (α, β)-Spanner Problem is also fixed-parameter tractable. We define the Pa-
rameterized Minimum (α, β)-Spanner Problem in the same way as the Parameterized
Minimum Additive t-Spanner Problem.

I Theorem 2. For real numbers α ≥ 1 and β ≥ 0, there exists a fixed-parameter algo-
rithm for the Parameterized Minimum (α, β)-Spanner Problem that runs in (α +
β)O(k2+(α+β)k)|V ||E| time.

STACS 2020
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1.3 Related Work: Minimum Multiplicative Spanner Problem
As mentioned in Section 1.1, there are a lot of results on the Minimum Multiplicative
t-Spanner Problem, whereas only few results are known for the Minimum Additive
t-Spanner Problem.

The Minimum Multiplicative t-Spanner Problem is NP-hard for any t ≥ 2 in
general graphs [11, 40], and there are several results on the problem for some graph classes.
It is NP-hard even when the input graph is restricted to be planar [10, 33]. Cai and Keil [13]
showed that the Minimum Multiplicative 2-Spanner Problem can be solved in linear
time if the maximum degree of the input graph is at most 4, whereas this problem is NP-hard
even if the maximum degree is at most 9. Venkatesan et al. [47] revealed the complexity
of the Minimum Multiplicative t-Spanner Problem for several graph classes such as
chordal graphs, convex bipartite graphs, and split graphs. For the weighted version of the
problem in which each edge has a positive integer length, Cai and Corneil [12] showed the
NP-hardness of the Minimum Multiplicative t-Spanner Problem for t > 1.

Another direction of research is to design approximation algorithms for the Minimum
Multiplicative t-Spanner Problem. Kortsarz [34] gave an O(logn)-approximation
algorithm for t = 2, and Elkin and Peleg [28] gave an O(n2/(t+1))-approximation algorithm
for t > 2. The approximation ratio was improved to O(n1/3 logn) for t = 3 by Berman et
al. [8] and to O(n1/3poly(logn)) for t = 4 by Dinitz and Zhang [22]. On the negative side,
for any t ≥ 2, it is shown in [29] that no o(logn)-approximation algorithm exists unless
P = NP . This lower bound was improved to 2(log1−ε n)/k for any ε > 0 in [21] under a
standard complexity assumption. Dragan et al. [23] gave an EPTAS for the problem in
planar graphs. When the input graph is a 4-connected planar triangulation, a PTAS is
proposed for the Minimum Multiplicative 2-Spanner Problem in [24].

A parameterized version of the Minimum Multiplicative t-Spanner Problem is
introduced in [33], where the parameter is the number of deleted edges, and a fixed-parameter
algorithm for it is presented in the same paper.

1.4 Organization
The remainder of this paper is organized as follows. In Section 2, we give some preliminaries.
In Section 3, we give an FPT algorithm for the Parameterized Minimum Additive t-
Spanner Problem and prove Theorem 1. In Section 4, we extend the argument in Section 3
to the Parameterized Minimum (α, β)-Spanner Problem and prove Theorem 2. Finally,
in Section 5, we conclude the paper with a summary.

2 Preliminaries

In this paper, we deal with only undirected graphs with unit length edges. Since we can
remove all the parallel edges and self-loops when we consider spanners, we assume that all the
graphs in this paper are simple. Let G = (V,E) be a graph. For u, v ∈ V , an edge connecting
u and v is denoted by uv. For a subgraph H of G, the set of vertices and the set of edges in
H are denoted by V (H) and E(H), respectively. For an edge e ∈ E, let G− e denote the
subgraph G′ = (V,E \ {e}). We say that an edge set F ⊆ E contains a path P if E(P ) ⊆ F .
For a path P and for two vertices u, v ∈ V (P ), let P [u, v] denote the subpath of P between
u and v. For u, v ∈ V , let distG(u, v) denote the length of the shortest path between u and
v in G. Note that the length of a path is the number of edges in it. If G is clear from the
context, distG(u, v) is simply denoted by dist(u, v). For a positive integer t, a subgraph
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H = (V,EH) of G = (V,E) is said to be an additive t-spanner if distH(u, v) ≤ distG(u, v) + t

or distG(u, v) = +∞ holds for any u, v ∈ V . For real numbers α ≥ 1 and β ≥ 0, a subgraph
H = (V,EH) of G = (V,E) is said to be an (α, β)-spanner if distH(u, v) ≤ α · distG(u, v) + β

or distG(u, v) = +∞ holds for any u, v ∈ V . In what follows, we may assume that the input
graph G = (V,E) is connected and distG(u, v) is finite for any u, v ∈ V , since we can deal
with each connected component separately. For a positive integer p, let [p] := {1, . . . , p}.

3 Proof of Theorem 1

3.1 Outline
In this subsection, we show an outline of our proof of Theorem 1.

Define F ⊆ E as the set of all edges contained in cycles of length at most t + 2. In
other words, an edge e = uv ∈ E is in F if and only if G − e contains a u-v path of
length at most t+ 1. By definition, if H = (V,E \ E′) is an additive t-spanner of G, then
distG−e(u, v) ≤ distH(u, v) ≤ distG(u, v) + t = t + 1 holds for each e = uv ∈ E′, which
implies that E′ ⊆ F . Thus, if |F | is small, then we can solve the Parameterized Minimum
Additive t-Spanner Problem by checking whether H = (V,E\E′) is an additive t-spanner
of G or not for every subset E′ of F with |E′| = k.

If |F | is sufficiently large (as a function of t and k), then there exist many cycles of length
at most t+2. In what follows, we show that if G has many cycles of length at most t+2, then
there always exists E′ ⊆ E with |E′| = k such that H = (V,E \ E′) is an additive t-spanner
of G. To this end, we prove the following statements in Sections 3.2–3.4, respectively.

If there are many cycles of length at most t+2, then we can find either many edge-disjoint
cycles of length at most t+ 2 or a desired set E′ ⊆ E (Section 3.2).
If there are many edge-disjoint cycles of length at most t + 2, then we can construct
a sequence (C1, . . . , Cp) of edge-disjoint cycles with a certain condition (Section 3.3).
Roughly speaking, this condition means that if h < i < j, then removing edges in E(Cj)
does not affect the distance between Ch and Ci.
If we have a sequence of edge-disjoint cycles with the above condition, then we can
construct a desired set E′ ⊆ E (Section 3.4).

Finally, in Section 3.5, we put them together and describe our entire algorithm.

3.2 Finding Edge-disjoint Cycles
The objective of this subsection is to show that if there are many cycles of length at most
t+ 2, then we can find either many edge-disjoint cycles of length at most t+ 2 or a desired
set E′ ⊆ E. We first show the following lemma.

I Lemma 3. For positive integers r and `, there exists an integer f1(r, `) = (r`)O(`) satisfying
the following condition. For any pair of distinct vertices u, v ∈ V in a graph G = (V,E), if
there exists a set P of u-v paths of length at most ` with |P| ≥ f1(r, `), then G contains two
distinct vertices u′, v′ ∈ V and r edge-disjoint u′-v′ paths of length at most `− dist(u, u′)−
dist(v, v′).

Proof. We show that f1(r, `) := 2(r`3)`−1 satisfies the condition by induction on `. The
claim is obvious when ` = 1, because |P| ≤ 1 holds as G is simple and f1(r, 1) = 2. Thus, it
suffices to consider the case of ` ≥ 2. Let P be a set of u-v paths of length at most ` with
|P| ≥ f1(r, `). We consider the following two cases separately.

STACS 2020
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We first consider the case when |{P ∈ P | e ∈ E(P )}| < f1(r,`)
r` holds for every e ∈ E.

In this case, |{Q ∈ P | E(P ) ∩ E(Q) 6= ∅}| < f1(r,`)
r for every P ∈ P. This shows that we

can take r edge-disjoint u-v paths in P by a greedy algorithm (i.e., repeatedly taking a u-v
path P in P and removing all the paths sharing an edge with P ). They form a desired set of
paths in which u′ = u and v′ = v.

We next consider the case when there exists an edge e = xy ∈ E such that |{P ∈ P |
e ∈ E(P )}| ≥ f1(r,`)

r` = 2`2(r`3)`−2. Since {x, y} 6= {u, v}, by changing the roles of x and y
if necessary, we may assume that x 6∈ {u, v}. For i = 1, . . . , `− 1, let Piux be the set of all
u-x paths of length i and Pixv be the set of all x-v paths of length i. Then, since each path
P ∈ P containing e can be divided into a u-x path and an x-v path, we obtain∑

i+j≤`
|Piux| · |Pjxv| ≥ |{P ∈ P | e ∈ E(P )}| ≥ 2`2(r`3)`−2.

Since the number of pairs (i, j) with i+ j ≤ ` is at most `(`−1)
2 < `2

2 , there exist i, j ∈ [`− 1]
with i+ j ≤ ` such that

|Piux| · |Pjxv| ≥ 2`2(r`3)`−2 · 2
`2 ≥ 2(r`3)i−1 · 2(r`3)j−1 ≥ f1(r, i) · f1(r, j).

Then, we have either (i) |Piux| ≥ f1(r, i) and |Pjxv| ≥ 1, or (ii) |Pjxv| ≥ f1(r, j) and |Piux| ≥ 1.
Suppose that (i) holds. By induction hypothesis, |Piux| ≥ f1(r, i) implies that there exist
u′, v′ ∈ V and r edge-disjoint u′-v′ paths of length at most

i− dist(u, u′)− dist(x, v′)
≤ `− j − dist(u, u′)− dist(x, v′) (by i+ j ≤ `)
≤ `− dist(x, v)− dist(u, u′)− dist(x, v′) (by |Pjxv| ≥ 1)
≤ `− dist(u, u′)− dist(v, v′). (by the triangle inequality)

Thus, they form a desired set of paths. The same argument can be applied when (ii) holds. J

By using this lemma, we obtain the following proposition.

I Proposition 4. Let G = (V,E) be a graph and C be a set of cycles of length at most t+2. Let
N be a positive integer and f1 be a function as in Lemma 3. If |C| ≥ N(t+2)f1(k+t+1, t+1),
then we have one of the following.

There exist N edge-disjoint cycles in C.
There exists E′ ⊆

⋃
C∈C E(C) with |E′| = k such that H = (V,E \ E′) is an additive

t-spanner of G.

Proof. For each edge e ∈ E, let Ce := {C ∈ C | e ∈ E(C)}. We first consider the case when
|Ce| < f1(k + t + 1, t + 1) holds for every e ∈ E. In this case, |{C ′ ∈ C | E(C) ∩ E(C ′) 6=
∅}| < (t+ 2)f1(k+ t+ 1, t+ 1) for every C ∈ C. This shows that we can take N edge-disjoint
cycles in C by a greedy algorithm (i.e., repeatedly taking a cycle C in C and removing all the
cycles sharing an edge with C), because |C| ≥ N(t+ 2)f1(k + t+ 1, t+ 1).

We next consider the case when there exists an edge e = uv ∈ E such that |Ce| ≥
f1(k+ t+ 1, t+ 1). Since P := {C − e | C ∈ Ce} consists of u-v paths of length at most t+ 1,
by Lemma 3, G contains two vertices u′, v′ ∈ V and a set P ′ of k + t+ 1 edge-disjoint u′-v′
paths of length at most t′ := t+ 1− distG(u, u′)− distG(v, v′). Let Qu and Qv be a shortest
u-u′ path and a shortest v-v′ path, respectively. Since |E(Qu)|+|E(Qv)|+1 = t+2−t′ ≤ t+1,
there exists P ′′ ⊆ P ′ with |P ′′| = |P ′|−(t+1) = k such that each path in P ′′ does not contain
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u ve

Qu Qv

u' v'

P1

Pk

e1

ek

x1 y1

xk yk

Figure 1 Definition of e1, . . . , ek in Proposition 4.

edges in E(Qu) ∪ E(Qv) ∪ {e}. Let P1, . . . , Pk denote the paths in P ′′. For i = 1, . . . , k,
let ei be the middle edge of Pi (see Fig. 1). Formally, we take ei = xiyi so that Pi[u′, xi]
contains b |E(Pi)|−1

2 c ≤ b t
′−1
2 c edges and Pi[yi, v

′] contains d |E(Pi)|−1
2 e ≤ d t

′−1
2 e edges. Define

E′ := {e1, . . . , ek} and consider the graph H = (V,E \ E′). Then, for any i, j ∈ [k] we can
see that

distH(xi, xj) ≤ |E(Pi[u′, xi])|+ |E(Pj [u′, xj ])| ≤ t′ ≤ t+ 1, (1)
distH(yi, yj) ≤ |E(Pi[yi, v′])|+ |E(Pj [yj , v′])| ≤ t′ ≤ t+ 1, (2)
distH(xi, yj) ≤ |E(Pi[u′, xi])|+ |E(Qu) ∪ E(Qv) ∪ {e}|+ |E(Pj [yj , v′])|

≤
⌊
t′ − 1

2

⌋
+ (t+ 2− t′) +

⌈
t′ − 1

2

⌉
≤ t+ 1. (3)

We now show that H is an additive t-spanner of G. Let x and y be distinct vertices
in V and let P be a shortest x-y path in G. If E(P ) ∩ E′ = ∅, then it is obvious that
distH(x, y) = distG(x, y). If E(P ) ∩ E′ 6= ∅, then let P [z, z′] be the unique minimal subpath
of P that contains all edges in E(P ) ∩ E′, where x, z, z′, and y appear in this order along P .
Since z, z′ ∈ {x1, y1, . . . , xk, yk}, we have distH(z, z′) ≤ t+ 1 by (1)–(3). Therefore,

distH(x, y) ≤ distH(x, z) + distH(z, z′) + distH(z′, y) (by the triangle inequality)
≤ |E(P [x, z])|+ t+ 1 + |E(P [z′, y])| (by (1)–(3))
= |E(P )| − |E(P [z, z′])|+ t+ 1
≤ distG(x, y) + t, (by |E(P )| = distG(x, y))

which shows that H is an additive t-spanner of G. J

3.3 Finding a Good Sequence of Cycles
In this subsection, we construct a sequence of edge-disjoint cycles with a certain condition
when we are given many edge-disjoint cycles.

Let C be a set of edge-disjoint cycles of length at most t+ 2. For each cycle C ∈ C, we
apply the breadth-first search from V (C) and obtain a shortest path P (v, C) between V (C)
and each vertex v ∈ V . That is, |E(P (v, C))| = min{|E(P )| | u ∈ V (C), P is a u-v path}.
Then,

⋃
v∈V E(P (v, C)) forms a forest for each cycle C ∈ C. The objective of this subsection

is to find a sequence (C1, . . . , Cp) of distinct p cycles C1, . . . , Cp ∈ C satisfying the following
condition:

(?) For any h, i, j ∈ [p] with h < i < j and for any vertex v ∈ V (Ch), it holds that
E(P (v, Ci)) ∩ E(Cj) = ∅.

STACS 2020
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v e1 ep
x1

P(v,C*)

y1

e2

x2 y2

C*

xp yp

> 3t+1

Figure 2 Definition of e1, . . . , ep.

xh xi xj
ejeh ei

Ch

u
Ci Cj

w
P(u,Ci)

Figure 3 Definition of w.

Roughly speaking, this condition means that if h < i < j, then removing edges in E(Cj)
does not affect the distance between Ch and Ci.

I Lemma 5. For any positive integers t and p, there exists an integer f2(t, p) = O(t2p4)
satisfying the following condition. If C is a set of f2(t, p) edge-disjoint cycles of length at most
t+ 2, then there exists a sequence (C1, . . . , Cp) of distinct p cycles C1, . . . , Cp ∈ C satisfying
the condition (?).

Proof. We show that f2(t, p) := 27(t+ 2)(3t+ 1)p4 satisfies the condition in the lemma. Let
C be a set of f2(t, p) edge-disjoint cycles of length at most t+ 2. We consider the following
two cases separately.

Case 1. Suppose that there exist a vertex v ∈ V and a cycle C∗ ∈ C such that
|E(P (v, C∗)) ∩

⋃
C∈C E(C)| ≥ (3t + 1)p. In this case, we can take edges e1, . . . , ep in

E(P (v, C∗))∩
⋃
C∈C E(C) such that e1 = x1y1, e2 = x2y2, . . . , ep = xpyp appear in this order

along P (v, C∗) and the subpath of P (v, C∗) between xi and xi+1 contains at least 3t + 1
edges for i = 1, . . . , p− 1 (see Fig. 2). For i = 1, . . . , p, let Ci ∈ C be the cycle containing ei.
Note that Ci and Cj are distinct if i 6= j, since distG(xi, xj) ≥ 3t+ 1 > |E(Ci)|.

We now show that (C1, . . . , Cp) satisfies the condition (?). Assume to the contrary
that there exist indices h, i, j ∈ [p] with h < i < j and a vertex u ∈ V (Ch) such that
E(P (u,Ci))∩E(Cj) 6= ∅. Let w be the first vertex in V (Cj) when we traverse P (u,Ci) from
u to V (Ci) (see Fig. 3). Then, by using

dist(u, xh) ≤
⌊
|E(Ch)|

2

⌋
≤ t and dist(xj , w) ≤

⌊
|E(Cj)|

2

⌋
≤ t, (4)

we obtain

dist(xh, xi) + t

≥ dist(xh, xi) + dist(u, xh) (by (4))
≥ dist(u, xi) ≥ |E(P (u,Ci))| ≥ dist(u,w)
≥ dist(xh, xj)− dist(xh, u)− dist(w, xj) (by the triangle inequality)
≥ |E(P [xh, xj ])| − 2t (by (4) and dist(xh, xj) = |E(P [xh, xj ])|)
≥ (|E(P [xh, xi])|+ 3t+ 1)− 2t (by |E(P [xi, xj ])| ≥ 3t+ 1)
= dist(xh, xi) + t+ 1, (by dist(xh, xi) = |E(P [xh, xi])|)

which is a contradiction. Therefore, (C1, . . . , Cp) satisfies the condition (?).

Case 2. Suppose that |E(P (v, C∗)) ∩
⋃
C∈C E(C)| < (3t+ 1)p holds for every v ∈ V and

C∗ ∈ C, which implies that |{C ∈ C | E(P (v, C∗)) ∩ E(C) 6= ∅}| < (3t+ 1)p as C is a set of
edge-disjoint cycles. We define F3 ⊆ C3 by

F3 := {(Ch, Ci, Cj) | Ch, Ci, Cj ∈ C, E(P (v, Ci)) ∩ E(Cj) 6= ∅ for some v ∈ V (Ch)}.
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Then, it holds that

|F3| =
∑
Ch∈C

∑
Ci∈C

|{Cj ∈ C | E(P (v, Ci)) ∩ E(Cj) 6= ∅ for some v ∈ V (Ch)}|

≤
∑
Ch∈C

∑
Ci∈C

∑
v∈V (Ch)

|{Cj ∈ C | E(P (v, Ci)) ∩ E(Cj) 6= ∅}|

<
∑
Ch∈C

∑
Ci∈C

∑
v∈V (Ch)

(3t+ 1)p

≤ (t+ 2)(3t+ 1)p|C|2. (5)

We note that (C1, . . . , Cp) satisfies the condition (?) if and only if (Ch, Ci, Cj) 6∈ F3 holds
for any h, i, j ∈ [p] with h < i < j. That is, F3 represents the set of forbidden orderings of
three cycles. We define F2 ⊆ C2 and F1 ⊆ C by

F2 :=
{

(Ch, Ci) ∈ C2
∣∣∣∣ |{C ∈ C | (Ch, Ci, C) ∈ F3}| ≥

|C|
3p2

}
,

F1 :=
{
Ch ∈ C

∣∣∣∣ |{C ∈ C | (Ch, C) ∈ F2}| ≥
|C|
3p

}
.

By (5), we have

|F2| ≤ |F3| ·
3p2

|C|
< 3(t+ 2)(3t+ 1)p3|C|,

|F1| ≤ |F2| ·
3p
|C|

< 9(t+ 2)(3t+ 1)p4 ≤ |C|3 . (6)

In order to obtain (C1, . . . , Cp) satisfying the condition (?), we construct a sequence of
cycles satisfying additional conditions.

B Claim 6. For each q ∈ [p], there exists a sequence (C1, . . . , Cq) of q distinct cycles
C1, . . . , Cq ∈ C satisfying the following conditions:

Ch 6∈ F1 for any h ∈ [q],
(Ch, Ci) 6∈ F2 for any h, i ∈ [q] with h < i, and
(Ch, Ci, Cj) 6∈ F3 for any h, i, j ∈ [q] with h < i < j.

Proof. We show the claim by induction on q. When q = 1, we can choose C1 ∈ C \ F1
arbitrarily. Suppose that we have C1, . . . , Cq ∈ C satisfying the conditions in the claim,
where q ≤ p− 1. We evaluate the number of cycles that cannot be chosen as Cq+1. By the
definitions of F1 and F2, we have that

N2 := |{C ∈ C | (Ch, C) ∈ F2 for some h ∈ [q]}| ≤ q · |C|3p ≤
(

1− 1
p

)
· |C|3 <

|C|
3 − p,

(7)

N3 := |{C ∈ C | (Ch, Ci, C) ∈ F3 for some h, i ∈ [q] with h < i}| ≤ q2 · |C|3p2 <
|C|
3 , (8)

where we use |C| > 3p2 to obtain (7). Since |C| − |F1| − N2 − N3 > p ≥ q + 1 by (6)–(8),
there exists a cycle Cq+1 ∈ C that is different from C1, . . . , Cq such that (C1, . . . , Cq, Cq+1)
satisfies the conditions in the claim. This shows the claim by induction on q. C

By this claim, there exists a sequence (C1, . . . , Cp) of p distinct cycles C1, . . . , Cp ∈ C such
that (Ch, Ci, Cj) 6∈ F3 for any h, i, j ∈ [p] with h < i < j, which means that (C1, . . . , Cp)
satisfies the condition (?). J

STACS 2020
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3.4 Constructing an Additive t-Spanner
In this subsection, we show that we can construct an additive t-spanner of G by using a
sequence of edge-disjoint cycles satisfying the condition (?).

I Lemma 7. For any positive integers t and k, there exists an integer f3(t, k) = (t+ 2)O(k)

satisfying the following condition. If there exists a sequence (C1, . . . , Cp) of p = f3(t, k)
edge-disjoint cycles of length at most t+ 2 satisfying the condition (?), then there exists an
edge set E′ ⊆

⋃
i∈[p] E(Ci) with |E′| = k such that H = (V,E \ E′) is an additive t-spanner

of G.

Proof. We show that p = f3(t, k) := k(t+ 2)k−1 satisfies the condition. For each edge e ∈ E,
define

I(e) := {i ∈ [p] | e 6∈
⋃
v∈V

E(P (v, Ci))}.

Since
⋃
v∈V E(P (v, Ci)) forms a forest for each i ∈ [p], for any cycle C there exists an edge

e ∈ E(C) such that i ∈ I(e). In other words,
⋃
e∈E(C) I(e) = [p] for any cycle C. We prove

the lemma by showing that Algorithm 1 always finds an edge set E′ ⊆
⋃
i∈[p] E(Ci) with

|E′| = k such that H = (V,E \ E′) is an additive t-spanner of G.

Algorithm 1 Constructing an additive t-spanner from a sequence with (?).

Input :A sequence (C1, . . . , Cp) of edge-disjoint cycles of length at most t+ 2 with
the condition (?)

Output :An edge set E′ ⊆
⋃
i∈[p] E(Ci) with |E′| = k such that H = (V,E \ E′) is

an additive t-spanner
1 I0 := [p]
2 for i = 1, . . . , k do
3 Let ind(i) be the minimum index in Ii−1
4 C ′i := Cind(i)
5 Choose an edge ei ∈ E(C ′i) that maximizes |(Ii−1 \ {ind(i)}) ∩ I(ei)|
6 Ii := (Ii−1 \ {ind(i)}) ∩ I(ei)
7 end
8 Return E′ := {e1, . . . , ek}

We first show that the algorithm returns a set of k edges. For i = 1, . . . , k − 1, since⋃
e∈E(C′

i
) I(e) = [p] and |E(C ′i)| ≤ t + 2, we have that |Ii| ≥ |Ii−1\{ind(i)}|

|E(C′
i
)| ≥ |Ii−1|−1

t+2 . By
combining this with |I0| = k(t+ 2)k−1, we see that |Ii| ≥ (k − i)(t+ 2)k−i−1 for each i by
induction, because

|Ii| ≥
|Ii−1| − 1
t+ 2 ≥ (k − i+ 1)(t+ 2)k−i − 1

t+ 2 ≥ (k − i)(t+ 2)k−i−1.

In particular, |Ik−1| ≥ 1 holds, and hence the algorithm returns a set E′ = {e1, . . . , ek}.
We next show that H = (V,E \ E′) is an additive t-spanner. Let x and y be distinct

vertices in V and let P be a shortest x-y path in G. If E(P ) ∩ E′ = ∅, then it is obvious
that distH(x, y) = distG(x, y). If E(P ) ∩ E′ = {ei} for some i ∈ {1, . . . , k}, then (E(P ) \
{ei}) ∪ (E(C ′i) \ {ei}) contains an x-y path, and hence we obtain distH(x, y) ≤ |(E(P ) \
{ei}) ∪ (E(C ′i) \ {ei})| ≤ distG(x, y) + t.
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z P

Figure 4 Proof of Lemma 7.

Thus, it suffices to consider the case when |E(P ) ∩ E′| ≥ 2. Let P [z, z′] be the unique
minimal subpath of P that contains all edges in E(P ) ∩E′, where x, z, z′, and y appear in
this order along P . Suppose that z and z′ are endpoints of edges eh and ei in E(P ) ∩ E′,
respectively. We may assume that h < i by changing the roles of x and y if necessarily. We
now observe the following properties of P (z, C ′i).

Since (C1, . . . , Cp) satisfies (?), (C ′1, . . . , C ′k) also satisfies (?). It follows that P (z, C ′i)
does not contain edges in E(C ′j) for any j > i, because z ∈ V (C ′h) and h < i. In particular,
P (z, C ′i) does not contain ej for any j > i.
Since ind(i) ∈ Ii−1 ⊆ I(e1) ∩ I(e2) ∩ · · · ∩ I(ei−1) by the algorithm, P (z, C ′i) does not
contain ej for any j < i.
It is obvious that P (z, C ′i) does not contain ei by the definition of P (z, C ′i).

By these observations, P (z, C ′i) does not contain edges in E′, which means that P (z, C ′i) is a
path in H (see Fig. 4). Since C ′i − ei contains a path connecting an endpoint of P (z, C ′i) and
z′, E(P (z, C ′i)) ∪ (E(C ′i) \ {ei}) contains a path between z and z′, and hence we have that

distH(z, z′) ≤ |E(P (z, C ′i))|+ |E(C ′i) \ {ei}| ≤ |E(P (z, C ′i))|+ t+ 1. (9)

Since P [z, z′]− ei forms a path from z to C ′i, we obtain

|E(P (z, C ′i))| ≤ |E(P [z, z′]) \ {ei}|. (10)

By (9) and (10), we have that

distH(x, y)
≤ distH(x, z) + distH(z, z′) + distH(z′, y) (by the triangle inequality)

≤ distH(x, z) + |E(P (z, C ′i))|+ t+ 1 + distH(z′, y) (by (9))

≤ distH(x, z) + |E(P [z, z′]) \ {ei}|+ t+ 1 + distH(z′, y) (by (10))

= |E(P [x, z])|+ |E(P [z, z′])|+ t+ |E(P [z′, y])|
= |E(P [x, y])|+ t

= distG(x, y) + t.

Therefore, H is an additive t-spanner of G. J

3.5 The Entire Algorithm
In this subsection, we describe our entire algorithm for the Parameterized Minimum
Additive t-Spanner Problem and prove Theorem 1 by using Proposition 4 and Lemmas 5
and 7. Define

p := f3(t, k), N := f2(t, p), f4(t, k) := N(t+ 2)2f1(k + t+ 1, t+ 1),

STACS 2020
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where f1, f2, and f3 are as in Lemmas 3, 5, and 7, respectively. Then, N = (t+ 2)O(k) and
f1(k + t+ 1, t+ 1) = (kt)O(t), and hence

f4(t, k) = (t+ 2)O(k) · (kt)O(t). (11)

When t ≥ k, (11) is bounded by (t+2)O(t) ·(t2)O(t) = (t+1)O(t). When t ≤ k, (11) is bounded
by (t+ 2)O(k) · (k2)O(t) = (t+ 1)O(k). By combining them, we obtain f4(t, k) = (t+ 1)O(k+t).
Note that we can simply denote f4(t, k) = tO(k+t) unless t = 1.

In our algorithm, we first compute the set F ⊆ E of all edges contained in cycles of length
at most t+ 2. Note that we can do it in O(|V ||E|) time by applying the breadth-first search
from each vertex.

As described in Section 3.1, if H = (V,E \E′) is an additive t-spanner of G for E′ ⊆ E,
then E′ ⊆ F holds. Thus, if |F | ≤ f4(t, k), then we can solve the Parameterized
Minimum Additive t-Spanner Problem in O(f4(t, k)k|V ||E|) time by checking whether
H = (V,E \ E′) is an additive t-spanner of G or not for every subset E′ of F with |E′| = k.

Otherwise, we have |F | ≥ f4(t, k) = N(t+ 2)2f1(k+ t+ 1, t+ 1). Since there exist at least
|F |
t+2 ≥ N(t+ 2)f1(k+ t+ 1, t+ 1) cycles of length at most t+ 2 by the definition of F , we can
take a set C of N(t+ 2)f1(k+ t+ 1, t+ 1) cycles of length at most t+ 2 by a greedy algorithm.
The procedure is formally described as follows: for i = 1, 2, . . . , N(t+ 2)f1(k + t+ 1, t+ 1),
we pick up an edge ei ∈ F , find a cycle Ci of length at most t + 2 that contains ei, and
remove E(Ci) from F . Then, define C := {C1, C2, . . . , CN(t+2)f1(k+t+1,t+1)}.

By Proposition 4 and Lemmas 5 and 7, there always exists a set E′ ⊆
⋃
C∈C E(C) with

|E′| = k such that H = (V,E \E′) is an additive t-spanner of G. Furthermore, such E′ can
be found in O(((t+ 2)|C|)k|V ||E|) = O(f4(t, k)k|V ||E|) time by checking all the edge sets of
size k in

⋃
C∈C E(C). Note that it will be possible to improve the running time of this part

by following the proofs of Proposition 4 and Lemmas 5 and 7. However, we do not do it in
this paper, because it does not improve the total running time.

Overall, our algorithm solves the Parameterized Minimum Additive t-Spanner
Problem in O(f4(t, k)k|V ||E|) = (t+1)O(k2+tk)|V ||E| time, and hence we obtain Theorem 1.
The entire algorithm is shown in Algorithm 2.

4 Extension to (α, β)-Spanners

In this section, we extend the argument in the previous section to (α, β)-spanners and give a
proof of Theorem 2.

Let t := bα+βc− 1. We compute the set F ⊆ E of all edges contained in cycles of length
at most t+ 2 = bα+ βc+ 1. If H = (V,E \ E′) is an (α, β)-spanner of G for E′ ⊆ E, then
distH(u, v) ≤ α·distG(u, v)+β ≤ α+β for each uv ∈ E′. By integrality, distH(u, v) ≤ bα+βc
for each uv ∈ E′, which shows that E′ ⊆ F holds. This implies that the problem is trivial
if t = 0. Thus, we consider the case when t ≥ 1 and define f4(t, k) as in Section 3.5. If
|F | ≤ f4(t, k), then we can solve the Parameterized Minimum (α, β)-Spanner Problem
in O(f4(t, k)k|V ||E|) time by checking whether H = (V,E \ E′) is an (α, β)-spanner of G or
not for every subset E′ of F with |E′| = k.

Otherwise, by the argument in Section 3.5, in O(f4(t, k)k|V ||E|) time, we can find an
edge set E′ with |E′| = k such that H = (V,E \ E′) is an additive t-spanner. Then, H is
also an (α, β)-spanner, because

distH(u, v) ≤ distG(u, v) + t ≤ (distG(u, v)− 1) + α+ β

≤ α · (distG(u, v)− 1) + α+ β = α · distG(u, v) + β

for every pair of vertices u and v. Therefore, it suffices to return the obtained set E′. This
completes the proof of Theorem 2.
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Algorithm 2 Entire Algorithm.

Input :A graph G = (V,E)
Output :An edge set E′ ⊆ E with |E′| = k such that H = (V,E \ E′) is an additive

t-spanner (or conclude that such E′ does not exist)
1 Compute F := {e ∈ E | e is contained in some cycle of length at most t+ 2}
2 if |F | ≤ f4(t, k) then
3 for each E′ ⊆ F with |E′| = k do
4 if H = (V,E \ E′) is an additive t-spanner of G then
5 Return E′
6 end
7 end
8 Conclude that such E′ does not exist
9 end

10 else
11 for i = 1, 2, . . . , N(t+ 2)f1(k + t+ 1, t+ 1) do
12 Find a cycle Ci of length at most t+ 2 that contains ei ∈ F
13 F := F \ E(Ci)
14 end
15 C := {C1, C2, . . . , CN(t+2)f1(k+t+1,t+1)}
16 for each E′ ⊆

⋃
C∈C E(C) with |E′| = k do

17 if H = (V,E \ E′) is an additive t-spanner of G then
18 Return E′
19 end
20 end
21 end

5 Conclusion

In this paper, we studied the Minimum Additive t-Spanner Problem from the viewpoint
of fixed-parameter tractability. We formulated a parameterized version of the Minimum
Additive t-Spanner Problem in which the number of removed edges is regarded as a
parameter, and gave a fixed-parameter algorithm for it. We also extended our result to the
Minimum (α, β)-Spanner Problem.

As described in the last paragraph in Section 1.1, handling the Minimum Additive
t-Spanner Problem is much harder than the Minimum Multiplicative t-Spanner
Problem, because we have to care about global properties of graphs. Since only few results
were previously known for the Minimum Additive t-Spanner Problem, this work may be
a starting point for further research on the problem.
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