909 research outputs found

    Distributed Spacecraft Path Planning and Collision Avoidance via Reciprocal Velocity Obstacle Approach

    Get PDF
    This paper presents the development of a combined linear quadratic regulation and reciprocal velocity obstacle (LQR/RVO) control algorithm for multiple satellites during close proximity operations. The linear quadratic regulator (LQR) control effort drives the spacecraft towards their target position while the reciprocal velocity obstacle (RVO) provides collision avoidance capabilities. Each spacecraft maneuvers independently, without explicit communication or knowledge in term of collision avoidance decision making of the other spacecraft in the formation. To assess the performance of this novel controller different test cases are implemented. Numerical results show that this method guarantees safe and collision-free maneuvers for all the satellites in the formation and the control performance is presented in term of Δv and fuel consumption

    Optimal Reconfiguration of Formation Flying Spacecraft--a Decentralized Approach

    Get PDF
    This paper introduces a hierarchical, decentralized, and parallelizable method for dealing with optimization problems with many agents. It is theoretically based on a hierarchical optimization theorem that establishes the equivalence of two forms of the problem, and this idea is implemented using DMOC (Discrete Mechanics and Optimal Control). The result is a method that is scalable to certain optimization problems for large numbers of agents, whereas the usual “monolithic” approach can only deal with systems with a rather small number of degrees of freedom. The method is illustrated with the example of deployment of spacecraft, motivated by the Darwin (ESA) and Terrestrial Planet Finder (NASA) missions

    Collision and evaporation avoidance for spacecraft formation

    Get PDF
    <p>Formation flying is an extremely promising approach to space operations with the potential to enable new types of missions and providing substantial increase in the performance of future space science and Earth observation applications. To successfully validate formation flying however requires the development of specific technologies and methodologies, which are beyond current state-of-the art in a wide range of diverse fields such as metrology and spacecraft guidance, navigation and control. A number of missions are currently under different stages of development to implement some of these stringent requirements.</p> <p>The paper develops and compares collision avoidance algorithms, demonstrating them within a 6 degrees of freedom, multi-spacecraft environment. At first a number of different collision avoidance scenarios will be identified alongside the triggers that will cause the algorithms to be activated. Once activated the collision avoidance algorithm must ensure corrective action to avoid catastrophic consequences to the mission.</p&gt

    Flight Dynamics Operations of the TanDEM-X Formation

    Get PDF
    Since end of 2010 the German TerraSAR-X and TanDEM-X satellites are routinely operated as the first configurable single-pass Synthetic Aperture Radar interferometer in space. The two 1340 kg satellites fly in a 514 km sun-synchronous orbit. In order to collect sufficient measurements for the generation of a global digital elevation model and to demonstrate new interferometric SAR techniques and applications, more than three years of formation flying are foreseen with flexible baselines ranging from 150 m to few kilometers. As a prerequisite for the close formation flight an extensive flight dynamics system was established at DLR/GSOC, which comprises of GPS-based absolute and relative navigation and impulsive orbit and formation control. Daily formation maintenance maneuvers are performed by TanDEM-X to counterbalance natural and artificial disturbances. The paper elaborates on the routine flight dynamics operations and its interactions with mission planning and ground-station network. The navigation and formation control concepts and the achieved control accuracy are briefly outlined. Furthermore, the paper addresses non-routine operations experienced during formation acquisition, frequent formation reconfiguration, formation maintenance problems and space debris collision avoidance, which is even more challenging than for single-satellite operations. In particular two close approaches of debris are presented, which were experienced in March 2011 and April 2012. Finally, a formation break-up procedure is discussed which could be executed in case of severe onboard failures

    Decentralized Model Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming

    Get PDF
    This paper presents a decentralized, model predictive control algorithm for the reconfiguration of swarms of spacecraft composed of hundreds to thousands of agents with limited capabilities. In our prior work, sequential convex programming has been used to determine collision-free, fuel-efficient trajectories for the reconfiguration of spacecraft swarms. This paper uses a model predictive control approach to implement the sequential convex programming algorithm in real-time. By updating the optimal trajectories during the reconfiguration, the model predictive control algorithm results in decentralized computations and communication between neighboring spacecraft only. Additionally, model predictive control reduces the horizon of the convex optimizations, which reduces the run time of the algorithm

    A Distributed Model Predictive Control Framework for Road-Following Formation Control of Car-like Vehicles (Extended Version)

    Full text link
    This work presents a novel framework for the formation control of multiple autonomous ground vehicles in an on-road environment. Unique challenges of this problem lie in 1) the design of collision avoidance strategies with obstacles and with other vehicles in a highly structured environment, 2) dynamic reconfiguration of the formation to handle different task specifications. In this paper, we design a local MPC-based tracking controller for each individual vehicle to follow a reference trajectory while satisfying various constraints (kinematics and dynamics, collision avoidance, \textit{etc.}). The reference trajectory of a vehicle is computed from its leader's trajectory, based on a pre-defined formation tree. We use logic rules to organize the collision avoidance behaviors of member vehicles. Moreover, we propose a methodology to safely reconfigure the formation on-the-fly. The proposed framework has been validated using high-fidelity simulations.Comment: Extended version of the conference paper submission on ICARCV'1

    On-orbit assembly using superquadric potential fields

    Get PDF
    The autonomous on-orbit assembly of a large space structure is presented using a method based on superquadric artificial potential fields. The final configuration of the elements which form the structure is represented as the minimum of some attractive potential field. Each element of the structure is then considered as presenting an obstacle to the others using a superquadric potential field attached to the body axes of the element. A controller is developed which ensures that the global potential field decreases monotonically during the assembly process. An error quaternion representation is used to define both the attractive and superquadric obstacle potentials allowing the final configuration of the elements to be defined through both relative position and orientation. Through the use of superquadric potentials, a wide range of geometric objects can be represented using a common formalism, while collision avoidance can make use of both translational and rotation maneuvers to reduce total maneuver cost for the assembly process

    Coordination Control of Distributed Spacecraft System

    Get PDF

    Autonomous distributed LQR/APF control algorithms for CubeSat swarms manoeuvring in eccentric orbits

    Get PDF
    Spacecraft formation flying has shown to be promising approach to enhance mission capabilities. Nevertheless, formation flying presents several control challenges which escalate as the numbers of elements in the formation is increased. The objective of this paper is to develop decentralised control algorithms to regulate the station-keeping, reconfiguration and collision avoidance of spacecraft in formation around eccentric reference orbits using the combination of a Linear Quadratic Regulator (LQR) and an Artificial Potential Function (APF). Within this control scheme, the LQR will provide station-keeping and reconfiguration capabilities toward desired positions, while optimizing fuel consumption and the APF will ensure collision free manoeuvres between the elements of the formation during manoeuvres. The controller is designed under the assumption of continuous thrust as a standard LQR problem using the Pontryagin minimum principle, an APF based in normalized Gaussian functions and the Tschauner and Hempel (TH) equations as the relative dynamics model

    Proximity maneuvering of libration point orbit formations using adapted finite element methods

    Get PDF
    This doctoral dissertation is structured in four chapters as follows. The first chapter contains a summary of formation flying projects that have been taken into consideration since few years ago. We specially focus on the missions that have been planned to be located in a libration point regime. For completeness, this chapter also contains a general state of the art about the main reconfiguration techniques for satellite formations. The main new contributions of the thesis are contained in chapters 2, 3 and 4. Chapter 2 introduces the general methodology that will be considered in all the dissertation. It is based on a discretization in time by means of a finite element approximation, and at the same time, is suitable to incorporate optimal control problems. In this chapter we study the reconfigurations using linearized equations about a nominal Halo orbit minimizing the functional given by the sum of the square of the magnitude of the maneuvers. This functional is not directly related to the fuel consumption, but has good properties concerning minimization and regularity. In chapter 3 we are still working with the linearized model about the nonlinear orbit, but the functional that we optimize, given by the sum of the modulus of the maneuvers, is directly related to fuel consumption. As a consequence, the methodology can be tuned in such a way that, if possible, the user can choose to converge to bang-bang optimal controls (when possible) or to low thrust trajectories in general situations. In this chapter, our objective is not only to study how the reconfigurations can be accomplished. We also consider the problem of obtaining good meshes for our finite element discretization, and up to a certain extent, to decide which is the best mesh for each kind of problem. Finally, in chapter 4, we deal with non-linear and perturbed problems. In a first step we consider reconfigurations in the Restricted Three Body Problem and in a second one with JPL ephemeris. This fact slightly changes the trajectories of the spacecraft with respect to the ones obtained in the previous chapters. To correct for such deviations we design and implement a methodology based on adding small corrective maneuvers on top of the nominal ones. We also study the magnitude of corrective maneuvers that will need to be applied in case of errors in the execution of the nominal ones. Finally, this chapter ends with some other applications that can be performed using the methodology we have developed.Aquesta tesi doctoral està estructurada en quatre capítols. El primer capítol comprèn un resum dels projectes de vol en formació que s'han tingut en consideració els últims anys, especialment els que estan planejats de situar-se al voltant dels punts de libració. En aquest capítol també fem un estat de l'art de les principals tècniques de reconfiguració de formacions de satèl•lits. Les principals contribucions noves d'aquesta tesi es troben als capítols 2, 3 i 4. En el capítol 2 introduïm la metodologia general que s'utilitzarà en tota la dissertació. Aquesta metodologia està basada en una discretització del temps usant una aproximació en elements finits, que al mateix temps la fa factible d'incorporar en problemes d'optimització. En aquest capítol es consideren les equacions linealitzades al voltant d'una òrbita Halo. El problema d'optimització minimitza el funcional obtingut per la suma dels quadrats de les maniobres. Encara que aquest funcional no estigui directament relacionat amb el consum de combustible, es comporta bé a l'hora de minimitzar. En el capítol 3 es segueixen utilitzant les equacions linealitzades al voltant de l'òrbita Halo, però ara el funcional que es minimitza és la suma dels mòduls de les maniobres, que està directament relacionat amb el consum de combustible. Com a conseqüència, la metodologia permet que es pugui convergir a controls bang-bang en el cas que sigui possible, o a avanç continu en les altres situacions. En aquest capítol, el nostre objectiu no consisteix només en estudiar com fer les reconfiguracions, sinó que també considerem el problema d'obtenir una bona discretització per al nostre problema d'elements finits, i decidir quina és la millor malla per cada tipus de problema. Finalment, al capítol 4 considerem problemes no lineals i incloem perturbacions. Comencem considerant les reconfiguracions en el problema restringit de tres cossos, per després veure com es comporta usant les efemèrides JPL. Aquests nous models canvien una mica les trajectòries dels satèl•lits respecte les que havíem obtingut en els capítols anteriors. Per corregir aquestes desviacions implementem una metodologia basada en afegir petites correccions a les maniobres que estan donades. També estudiem la magnitud de les maniobres que cal aplicar quan es produeixen errors d'execució en les maniobres nominals. Finalment, aquest capítol acaba amb altres aplicacions que es poden dur a terme usant la metodologia que hem desenvolupat. Esta tesis doctoral está estructurada en cuatro capítulos. El primer capítulo contiene un resumen de los proyectos de vuelo en formación que se han tenido en consideración en los últimos años, especialmente aquellos que están planeados de situarse alrededor de los puntos de libración. En este capítulo también se hace un estado del arte de las principales técnicas de reconfiguración de formaciones de satélites.Las principales contribuciones nuevas de esta tesis se encuentran en los capítulos 2, 3 y 4. En el capítulo 2 introducimos la metodología general que se usará en toda la disertación. Esta metodología está basada en una discretización del tiempo usando una aproximación en elementos finitos, que al mismo tiempo la hace factible de incorporar en problemas de optimización. En este capítulo, se consideran las ecuaciones linealizadas alrededor de una órbita Halo. El problema de optimización minimiza el funcional obtenido como la suma de los cuadrados de las maniobras. Aunque este funcional no está directamente relacionado con el consumo de combustible, tiene un buen comportamiento en la minimización.En el capítulo 3 se siguen usando las ecuaciones linealizadas alrededor de la órbita Halo, pero ahora el funcional al minimizar es la suma de los módulos de las maniobras, que está directamente relacionado con el consumo de combustible. Como consecuencia, la metodología permite que se pueda convergir a controles bang-bang en el caso de que sea posible, o a avance continuo en las otras situaciones.En este capítulo, nuestro objetivo no consiste únicamente en estudiar cómo hacer las reconfiguraciones, sino que consideramos el problema de obtener una buena malla para el problema de los elementos finitos, y decidir cuál es la mejor malla para cada tipo de problema.Finalmente, en el capítulo 4 se consideran problemas no lineales y se incluyen perturbaciones. Empezamos considerando las reconfiguraciones en el problema restringido de 3 cuerpos, y luego observamos qué pasa cuando usamos las efemérides JPL. Estos nuevos modelos cambian un poco las trayectorias de los satélites respecto las obtenidas en los capítulos anteriores. Para corregir estas desviaciones, se implementa una metodología basada en añadir pequeñas correcciones a las maniobras dadas. También estudiamos la magnitud de las maniobras que hace falta aplicar cuando se producen errores de ejecución en las maniobras nominales. Para finalizar, este capítulo acaba con otras aplicaciones que se pueden llevar a término con la metodología desarrollada
    corecore