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ABSTRACT 
Formation flying is an extremely promising approach 
to space operations with the potential to enable new 
types of missions and providing substantial increase 
in the performance of future space science and Earth 
observation applications. To successfully validate 
formation flying however requires the development 
of specific technologies and methodologies, which 
are beyond current state-of-the art in a wide range of 
diverse fields such as metrology and spacecraft 
guidance, navigation and control. A number of 
missions are currently under different stages of 
development to implement some of these stringent 
requirements.  
The paper develops and compares collision 
avoidance algorithms, demonstrating them within a 6 
degrees of freedom, multi-spacecraft environment. 
At first a number of different collision avoidance 
scenarios will be identified alongside the triggers that 
will cause the algorithms to be activated. Once 
activated the collision avoidance algorithm must 
ensure corrective action to avoid catastrophic 
consequences to the mission.  
 

INTRODUCTION 
Formation flying of satellites is an emerging 
technology for next generation space systems. The 
cost of launching a satellite depends on the size of 
the satellite. It becomes prohibitively expensive to 
launch large satellites. Formation flying technology 
aims at creating a ‘virtual satellite’ by a network of 
small satellites. The virtual satellite thus created, is 
expected to perform the functions of a large satellite 
at a much lower cost. Another advantage of 
formation flying is achieving multi mission 
capabilities, through the reconfiguration of the 
formation. Formation flying utilizes many satellites 
moving in a coordinated fashion to complete 
missions such as optical interferometry and 
Earth/Solar observation. In recent years, the concept 
of using a group of spacecraft flying in a close, 
precise formation has been considered in numerous 
future satellite missions. Xeus, Simbol-X, Darwin, 
Smart-3, Lisa/Lisa-PF, Ace+, Swarm and Apies are 
some of the proposed formation flying missions.  
We will use the Proba-3 mission, as our test case. 
This is the third in ESA’s series of missions for 
validating developments in space systems while 
carrying an ‘added value’ user payload which can 

directly benefit from the engineering innovations 
being assessed.  Proba-3 will aim to demonstrate the 
technologies required for formation flying of multiple 
spacecraft. The mission comprises two independent, 
a coronograph and an occulter, shown in Figure 1. 

  
Figure 1. Proba occulter and coronograph. 

 
Utilising either cold gas or electrical thrusters for 
agile manoeuvring, and both radio frequency (RF) 
and optical (laser-based) metrology techniques for 
accurate position measurement and control, the 
combined system is expected to achieve a relative 
positioning accuracy of the order of 100 microns over 
a separation range of 25 to 250 metres. The Proba-3 
mission will provide an opportunity to validate the 
metrology and actuation techniques and technologies 
and to develop and dynamically verify the guidance 
strategies and navigation and control algorithms 
necessary for formation flying during future science, 
astronomy and Earth observation missions. It will 
also test a wide range of command and control 
strategies and provide development and verification 
tools and facilities. The spacecraft pair will fly a 
Highly Elliptical Orbit (HEO) divided between 
periods of accurate formation flying, when payload 
observations will be possible, and periods of free 
flight. The relative positions of the two craft will be 
determined through radio metrology, which functions 
for separations between 5 metres and 8 kilometres, 
with an accuracy of a few centimetres. Increased 
accuracy for separations up to 500 metres will be 
obtained using optical laser techniques, having both 
coarse and fine sensors to refine the relative position 
measurements to an accuracy of hundreds of microns. 
 

PROBA-3 MISSION 
The objective of the mission is to demonstrate FF 
technology while at the same time provide a relevant 
scientific return. A Highly Elliptical Orbit (HEO) 
with a period of 24 hours has been selected; its 
parameters are shown in Table 1.  



Parameter Value 

Semi-major axis, a (km) 42378.144 

Eccentricity, e 0.830617 

Inclination, i (°) 17.8 

Right ascension, Ω (°) 68.0 

Argument of perigee, ω (°) 180.0 
Table 1: Proba-3 parameters 

 
The choice of a HEO was due to its quiet 
gravitational environment around the apogee, while 
the 24 hours orbital period was chosen for launch 
and operational reasons was chosen. The selected 
HEO can provide e low launch cost, GPS availability 
around perigee (for initial formation acquisition and 
back-up during the experimental mission phases), 
acceptable in-orbit disturbance level, quiet 
environment for accurate FF demonstrations and 
experiments at the apogee region, and minimum 
transfer cost from launch to operational orbit. Most 
of the science operations will be performed while 
close to apogee and good communications over this 
long apogee period are advantageous. Nominal 
Proba-3 operations shall maintain a spacecraft 
separation of 150 m and direct the mirror towards the 
Sun for solar corona observations. Solar corona 
observations shall be restricted to apogee passage. 
When the two spacecraft come within 25 m, this is 
considered a collision. 
 
COLLISION AVOIDANCE SCENARIOS 
While collision between the two spacecraft is always 
possible, there are particular mission phases during 
which this risk becomes substantially higher as 
shown in Figure 2.  
 

 
Figure 2: Mission phases along operational orbit. 

 
These heightened risk situations are considered to 
occur obviously during deployment and separation, 
as well as during the initial commissioning phase. 
Deployment is considered to be the highest risk 
phase while during commissioning the risk arise 
from wrongly executed manoeuvres such as 
formation acquisition, formation maintenance, 
perigee pass and reconfiguration. During nominal 
operations the most demanding phase is that of 
formation resizing, as the spacecraft prepare to 
acquire the correct relative position before the start 
of the experiment in proximity of the apogee. 

Specific technology demonstrator manoeuvres such 
as deployment experiments or Xeus mission 
simulation will possibly test the collision avoidance 
capabilities of the formation. In general however all 
manoeuvres that introduce a substantial change in the 
inter-satellite distance can be considered to be 
critical. While this linear distance gives us a first feel 
for possible collisions it is by no means the only 
metric to be considered. A second, and equally 
important metric, to be considered is that of relative 
velocity. An adequate combination of relative 
distance and velocities will be therefore considered to 
be the trigger for the collision avoidance algorithms 
that will be assessed later. 
 

FORMATION DYNAMICS 
When describing the motion of spacecraft formations  
it is convenient to do so by defining the closed 
relative orbit geometry in terms of relative orbit 
element differences, rather than using the relative 
Cartesian coordinates of the rotating Hill coordinate 
frame. If the closed relative orbit is a natural solution 
of the relative orbital mechanics, then the 
corresponding orbit element difference of the deputy 
satellite relative to the chief satellite remains 
constant. Thus, the actual orbit element difference 
between deputy and chief satellites can be compared 
at any point of time to their desired values. This 
greatly facilitates the task of determining any relative 
orbit errors and correcting them. As a comparison, if 
a general closed relative orbit is described through 
some Cartesian initial conditions, then these starting 
values must be forward integrated to obtain the 
desired Cartesian coordinates of both the deputy and 
chief spacecraft. For some special cases it is possible 
to find closed form solutions to these relative orbits, 
such as is the case with the elliptic relative orbits 
obtained using the Clohessy-Wiltshire equations. 
However, these special solutions typically require the 
chief orbit to be circular and the Earth to be perfectly 
spherical. Using orbit element differences to describe 
the relative orbit does not suffer from these 
constraints and is thus more easily applied to the 
general formation flying problem. However, a 
relative orbit is typically sensed or measured in terms 
of Hill local coordinates or inertial Cartesian 
coordinates differences, and typically not directly in 
terms of orbit element differences. A direct mapping 
between the local Cartesian position and velocity 
coordinates and the osculating orbit element 
differences was developed in the previous chapter. 
This transformation is a first order approximation to 
the true nonlinear transformation, where it is assumed 
that the relative orbit dimensions are very small 
compared to the inertial orbits.  
 
ORBIT VECTORS DIFFERENCE 
Let us consider two spacecraft C-chief and D-
Deputy, moving along similar elliptical orbits having 
the same semimajor axis. We want to determine the 



position, velocity and acceleration of D relative to C, 
measured along the xyz frame of reference and 
centred on C as shown in Figure 3. From the orbital 
elements of the two satellites we can find the 
position and velocity of the two spacecraft relative to 
the geocentric equatorial frame of reference.  

 
Figure 3: Hill reference geometry. 

 
We can see that if rd and rc are respectively the 
absolute position vectors for the two spacecraft then 
the position of D relative to the xyz moving frame 
will be: 
 
 rrel = rd – rc             [1] 
 
while the velocity and acceleration will be given by: 
 
           [2] relcdrel rΩvvv ×−−=
 

 ( ) relrelrelcdrel vΩrΩΩrΩaaa ×−××−×−−= 2&

[3] 
 

where  and Ω  are the angular velocity and 
angular acceleration of the xyz frame. The relative 
motion between the two satellites can be transformed 
to the body fixed frame by means of a rotation 
matrix, whose components are the unit vectors of the 
moving frame expressed in the inertial frame 

Ω &

 
LAWDEN EQUATIONS 
If the relative orbit radius is small compared with the 
chief orbit radius, it is possible to obtain a direct 
linear mapping between the Hill deputy state vector 
X and the orbit element difference vector δe, such 
that: 
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where r is the inertial orbit radius, θ is the true 
latitude angle (sum of argument of perigee and true 
anomaly), i is the inclination angle, and Ω the right 
ascension of the ascending node. This set of 
equations represents the local Cartesian Hill frame 

coordinates x, y, z expressed in terms of the orbit 
element differences. When describing relative orbit 
through orbit element differences, it is not convenient 
however, to describe the anomaly difference through 
δθ or δf. For elliptic chief orbits, the difference in true 
anomaly between two orbits will vary with time even 
when the relative orbit is closed and bounded. To 
avoid this issue, the desired anomaly difference 
between two orbits will be expressed here in terms of 
a mean anomaly difference δM. This anomaly 
difference will remain constant, assuming 
unperturbed Keplerian motion with equal orbit 
energy states, even in the case of elliptic chief orbits. 
Thus Equations 4 become: 
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where 21 e−=η , ω is the argument of pericentre, 
e is the eccentricity, a the semimajor axis, and f is the 
true anomaly. Note that with this linearised mapping 
the difference in the argument of perigee δω does not 
appear in the x(f) expression. Further, these equations 
are valid for both circular and elliptic chief orbits. 
Only the δM and δe terms contribute periodic terms 
to the radial x(f) solution. Due to the dependence of r 
on the true anomaly f, all orbit element difference 
terms in the along-track y(f) motion contribute both 
static offsets as well as periodic terms. For the out-of-
plane z(f) motion both the δi and δΩ terms control the 
out-of-plane oscillations. These equations describe 
the general linearised relative motion of the deputy 
satellite relative to the chief in terms of orbit element 
differences and using true anomaly as the 
independent variable. The secular growth terms are 
hidden in the orbit element description in the orbit 
element differences themselves. For this common 
analytical case where feasible bounded relative 
motions are studied, the relative motion is obtained 
by simply sweeping the true anomaly angle from its 
initial state f(t0) to its final state f(tf). To relate the 
anomaly angle and the current time, Kepler’s 
equation must be solved at each time step. The orbit 
element coordinate rates can be expressed as well in 
terms of orbit element differences {δa, δe, δi, δΩ, δω, 
δM} as: 
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where Vr and Vt are the chief radial and transverse 
velocity components, h is the chief orbit angular 
momentum magnitude and p is the semi-latus 
rectum. 
Some considerations can be done on the influence 
each element of the difference vector has on the 
shape and orientation of the relative orbit. First of all, 
the semi-major axis difference is taken into account 
to avoid the spacecraft drifting apart during a 
complete revolution of the formation around the 
Earth and thus guarantee a bounded relative orbit. 
The semi-major axis difference is set to zero, δa = 0, 
for both the spacecraft, thus the periods of each 
satellite orbit are identical and the relative orbit is not 
drifting apart. Having fixed the difference in semi-
major axis, the relative orbits of the formation can be 
found varying the remaining five Keplerian 
elements. The in-plane motion is governed by the 
difference in eccentricity, mean anomaly, argument 
of perigee and right ascension of the ascending node. 
The right ascension of the ascending node is 
coupling the in-plane motion with the out-of-plane 
motion, being i ≠ 0. The difference in inclination is 
controlling only the out-of-plane motion.  
 
MODEL COMPARISON 
Having introduced two different ways with which to 
represent the same problem we can now perform a 
comparison between the two models. It is important 
to remember that in the vector difference model no 
simplification or approximation was assumed, unlike 
the linearisation introduced in the Lawden equations. 
The eccentric anomaly is at first determined using a 
series expansions with Bessel functions defined by: 
 

( ) ( )kMkeJ
k

ME
k

k sin
2

1
∑
∞

=
+=           [7] 

 
where Jk are Bessel functions of the first order k: 
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Its accuracy is determined by the order of the highest 
power retained in the series solution. The accuracy of 
the solution depends on the value of e and the order 
of terms considered in the expansion. Therefore, for 
higher values of eccentricity, the solution obtained 

may not be very accurate. The series expansion 
implemented here considers k = 1 … 10, j = 0 … 6. 
and up to e22. Results are presented in Figures 4-5. 
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Figure 4: Relative orbit in inertial frame. 
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Figure 5: Relative orbit in body frame. 

 
It is evident that, although we have considered terms 
up to e22, this is not enough to get good results with 
our value of eccentricity, e = 0.830617. For this 
reason it is necessary to use Newton-Raphson 
iterative method to derive an adequate value of the 
eccentric anomaly through the orbital path. 
Let us first consider the case of modifying all the 
three parameters influencing the orbit’s orientation 
(δω, δΩ, δi) through the vector difference model. 
Results are shown in Figures 6-9.  
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Figure 6: Relative orbit in inertial frame. 
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Figure 7: Relative orbit in body frame. 
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Figure 8: Relative position vector. 
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Figure 9: Relative velocity vector. 

 
In order to get the relative orbit between the two 
spacecraft Lawden equations are solved through orbit 
element differences shown in Equations 4 and 5. 
There are two sets of orbit element differences we 
can use: (δa, δe, δω, δi, δΩ, δM) and (δa, δq1, δq2, δi, 
δΩ, δθ). The two linearized analytical systems of 
equations expressed in terms of the two sets of orbit 
element differences represent the solutions of the 
Lawden equations. For unperturbed Keplerian orbits, 
the anomaly difference in mean anomaly δM is 
constant, like the other orbital element differences, 
while the anomaly difference in true latitude δθ (with 
θ = f + ω) varies throughout the orbit, as we consider 
elliptic orbits. Let us again consider the case of 
modifying all the three parameters influencing the 
orbit’s orientation (δω, δΩ, δi). Results are shown in 
Figures 10-12.  
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Figure 10: Relative orbit in body frame. 
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Figure 11: Relative position vector. 
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Figure 12: Relative velocity vector. 

 
From the comparison between the two models, using 
the same values for the orbit element differences, we 
get the same results. This is a confirmation that, the 
use of the first order linearised expression of the 
equation of motion, employed for Lawden equations, 
is widely justified. 
 

FORMATION CONTROL 
In order to maintain a satellite formation, a control 
system must be designed to compensate for the 
deviation of the motion of the satellites from the 
desired trajectories. Control algorithms are also 
necessary, for establishing and reconfiguring 
formations. Continuous time control is more suitable 
for tracking the desired relative orbits that may or 
may not be natural solutions to the relative motion 
dynamics. Continuous time control seeks to establish 



zero tracking errors at all times. On the other hand 
impulsive control can manages errors within an 
appropriate threshold. Traditionally, impulsive 
control has been found to be more suitable for orbit 
corrections, and is done on a periodic basis. the 
complete nonlinear equations of relative motion 
dynamics between a chief satellite in an elliptical 
orbit and a deputy, can be written as follows 
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where n is the mean motion of the chief, and ux, uy, uz 
are the external controls. The system of equations 
presented above involves ten states and the full-
fledged effects of both nonlinearity and eccentricity 
are accounted for. The effects of eccentricity of the 
reference orbit that influences the relative motion 
dynamics of the deputy are captured by the 
augmented fourth order dynamics of the chief. This 
model is referred to as the ‘true model’, as the 
equations are presented in their exact nonlinear form, 
with no approximation or simplification. A controller 
is required to stabilize the relative motion dynamics. 
In the following section, continuous controllers are 
introduced. 
 
PERIOD MATCHING CONTROL 
The relative motion between two Earth orbiting 
spacecraft will always be bounded if the period of 
the two spacecraft is the same. Period-matching is 
equivalent to matching the energy of the two 
spacecraft. Energy-matching results in bounded 
relative orbits that are natural and hence consume 
zero fuel in steady state. The relative motion initial 
conditions determine the energy of the deputy, given 
the initial conditions of the chief. There exist energy 
matched manifolds in the state-space of relative 
motion dynamics, that result in bounded relative 
orbits. However the HCW initial conditions in 
general do not lie on these manifolds. This 
constitutes the reason for the breakdown of the HCW 
solutions. The period matched initial conditions and 
the manifolds cannot be analytically solved for. 
However, the criterion for period matching can be 
written as a constraint in terms of the relative motion 
coordinates. By stabilizing this constraint, we can 
draw the trajectory originating from HCW initial 
conditions to the nearest period matched trajectory. 
We now develop the constraint and the stabilizing 
control law. Considering the differential energy 
between chief and deputy orbital energy δE = Ed – Ec 

the energy matching requirements can be attained by 
imposing the following constraints of the relative 
motion dynamics: 
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Since the chief is in a two-body orbit, its energy is 
constant. Hence, the derivative of the difference in 
the energies of the two spacecraft can be written as: 
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strategy that ensures is required. Since we 
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equal to zero. We can therefore obtain the control uy 
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The period-matching controller will only result in 
relative orbits that are natural solutions to the family 
of zero differential energy solutions. 
 
POTENTIAL FUNCTION CONTROL 
The potential function method is an extension of 
Lyapunov’s second method and has found several 
applications in the field of space systems 
engineering. Given a set of differential equations 

( )xfy =& , which describe the time evolution of a 
dynamic system, and defining the desired final state, 
the convergence to this state and the global stability 
of the system can be guaranteed by building a 
Lyapunov potential function that has a global 
minimum in the final state. The aim is to bring the 
spacecraft to the desired location, avoiding any risks 
of collision. The terms that must be controlled 
therefore are the position and velocity vectors of the 
chaser. The potential function used here consists of 
two attractive terms. The first one controls the 
position while the second one controls the velocity: 
 
 V = Vp + Vv          [13] 
 
where 
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where m is the spacecraft mass, ri and vi the current 
position and velocity vectors of the spacecraft, rgoal 
and vgoal the desired position and velocity vectors and 
α is a shaping parameter. Note that there is no 
repulsive term in the potential function. The mission 
consists only of two spacecraft, which must maintain 
an average distance, when operational during the 
science phase of 150 m. Imposing this formation-
keeping between the two satellites, automatically 
implies the satisfaction of the collision avoidance 
requirement. 
 
REAL-TIME POSITION CONTROL 
This control methodology originates in the field of 
manipulator robotics. A safety zone is defined 
around the robot and virtual forces represent the 
intrusion of the manipulator into the obstacle zone. 
This method hinges on the definition of a velocity 
vector v to allow the reaching of the desired goal 
position ensuring collision avoidance 
 
 v = vd + vobs          [16] 
 
where vd is the desired velocity vector and vobs is a 
PID controller defined as: 
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where the vector d defines the obstacle zone as the 
difference between the current spacecraft position 
and a chosen detection sphere: 
 
 d  = robs – rsc          [18] 
 
GYROSCOPIC CONTROL 
This approach uses gyroscopic forces to drive the 
spacecraft away from an obstacle without modifying 
the nominal path. The method hinges on defining a 
velocity vector v, comprising three components: a 
desired velocity, a dissipative velocity and a 
gyroscopic velocity: 
 
 v = vd + vdiss+ vgyro         [19] 
 
where the dissipative and gyroscopic components are 
PID controllers: 
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where 
 
 ( )obssc eeK scd

rrvv −− −=*         [22] 

  
 scg Mvv =*           [23] 
 
with K and M being shaping parameters. 
   

NUMERICAL RESULTS 
We will now evaluate the different control strategies 
introduced earlier to assess their suitability in 
meeting the mission requirements. That is, ensure an 
operational distance between the spacecraft of at least 
150m while avoiding any collision. Results are 
presented in Figures 13-15 for the period matching 
approach, Figures 16-19 for the potential function 
control, Figures 20-22 for the real-time positioning 
control and Figures 23-25 for the gyroscopic control. 
 

 
Figure 13: Relative position vector. 

 

 
Figure 14: Differential energy. 

 

 
Figure 15: Control acceleration 

 

 
Figure 16: Relative position vector. 

 

 
Figure 17: Potential. 



 
Figure 18: Potential derivate. 

 

 
Figure 19: Control force. 

 

 
Figure 20: Relative position vector. 

 

 
Figure 21: Close up of relative position vector. 

 

 
Figure 22: Control accelerations. 

 

 
Figure 23: Relative position vector. 

 

 
Figure 24: Close up of relative position vector. 

 

 
Figure 25: Control accelerations. 

 
It can be sent that all controllers are capable of 
meeting the mission requirements. A number of 
considerations can however be made. The real-time 
positioning control, while successful, requires a 
substantial amount of time to reach convergence; 
close to one orbit and this is clearly not acceptable. In 
addition to this, this method produces substantial 
oscillations in the velocity and acceleration vectors, 
indicative of an intense actuator activity. The 
potential function and gyroscopic control both appear 
more promising as they both converge in comparable 
times. The potential function control however 
appears to be less demanding on the actuators. 
Finally the period-matching control law does not 
represent appear to be a valid alternative. The reason 
being that we obtain natural relative orbits and hence 
consume zero fuel. However since the relative orbit 
obtained is a natural orbit, the trend of the relative 
position vector along time is sinusoidal, and not 
constant, as would be desired. Practically this 
controller transfers the Hill-Clohessy-Wiltshire initial 
conditions to the nearest period matched initial 
conditions. Therefore using this approach with the 
HCW initial conditions is equal to having no control 
law but using the initial conditions including the 
bounded condition for the eccentricity.  
 

CONCLUSIONS 
This work presented here implemented different 
algorithms for the spacecraft formation 
reconfiguration and collision avoidance, taking 
Proba-3 as a test case. The contributions of this thesis 
are as follows. We introduced linearised and 
nonlinear models for the relative motion dynamics of 
a formation flying. One based on the relative motion 
kinematic equations the other using orbit element 
differences. Both models produce the same results 
with regards to the dynamics of the system. Different 
continuous control methods, that maintain and 
stabilize the formation, have been introduced. These 
methods provide the basis for a computationally 
efficient autonomous guidance and control system. 
The results show the benefits and drawbacks of the 
different control strategies. Potential function and 
gyroscopic control appear to be the most promising 
options. Further work will focus on introducing 
gravitational and solar radiation pressure disturbances 
as well as addressing the issue of fuel consumption. 
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