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1. Introduction  

Spacecraft formation flying has received significant attention over the past decade, it has 
been a topic of interest because of its unique technical advantages and good application 
features. Several small, unconnected satellites operating in a coordinated way may achieve a 
better performance than a monolithic satellite, and possess advantages such as increased 
instrument resolution, reduced cost, reconfigurability, and overall system robustness, which 
can in turn enhance the scientific return (Zhang et al., 2008).Several ambitious distributed 
spacecraft missions are currently being put in operation or planned. The PRISMA satellite, 
which is an on-orbit technology demonstrator for autonomous formation flying and 
rendezvous, was launched on 15 June 2010 (Ardaens et al., 2011). The TanDEM-X satellite 
was launched on 21 June 2010 and orbited in close formation with the TerraSAR–X satellite 
on 15 October 2010. The twin satellites began a routine acquisition of the digital elevation 
model with flexible baselines on 12 December 2010 (Kahle et al., 2011). The F6 program of 
the Defense Advanced Research Projects Agency, the Terrestrial Planet Finder of the 
National Aeronautics and Space Administration, and the Darwin mission of the European 
Space Agency will all utilize the technology of formation flying. 

The modelling of relative motion of distributed spacecraft has been extensively investigated 
in the past. The Hill-Clohessy-Wiltshire (HCW) equations are widely used. The equations 
describe the relative motion of two close formation flying satellites in near circular orbits 
about a spherical Earth, and no disturbances are included in the Hill equations. Using 
orbital elements to parameterize the relative motion is another important way (D’Amico & 
Montenbruck, 2006; Ardaens & D’Amico, 2009), which is extremely efficient and was 
successfully demonstrated during the swap of the GRACE satellites (Montenbruck et al., 
2006). By a proper design of the relative orbit elements, a minimum distances in the cross-
track plane is guaranteed and the collision hazard is minimized. 

In recent years, a significant amount of work has been focused on formation relative orbit 
estimation. Liu considered the relative navigation for formation flying using an unscented 
Kalman filter (UKF) and showed that the error of the relative position and velocity 
estimation can be estimated in the centimeter and millimeter per second scales, respectively 
(Liu et al., 2008). The original Kalman filter is widely used in relative navigation; however, 
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its inherent linearization process typically introduces significant biases in the estimation 
results. A particle filter (PF) achieves a recursive Bayesian estimation via a non-parametric 
Monte Carlo method and shows significant advantages in the nonlinear estimation problem 
(Rigatos, 2009). A way of generating the importance density function of a PF is essential to 
improve its performance. EKF and UKF are effective in generating the importance density 
function.Therefore, because of the strong non-linearity of the dynamics of satellites 
formation flying; the extended PF (EPF) is adopted to improve the precision of the relative 
orbit estimation for autonomous formation flying. Moreover, the nonlinear least squares 
method is applied to determine the relative orbit for the ground-in-the-loop control mode, 
which is more accurate and suit for the short-arc observation data of the ground station.  

An accurate relative orbit control is also very important for the practical implementation of 
distributed spacecraft. A number of effective controllers are presented in recent literature, 
such as the linear quadratic regulator, the sliding mode control, and relative orbital 
elements.  Scharf divided the formation flying control problem into five architectures: 
Leader/Follower, Multiple-Input Multiple-output, Virtual Structure, Cyclic, and Behavioral. 
We adopt the Leader/Follower approach for practical implementation (Scharf et al., 2004).  

It is now known that finite-time stabilization of dynamical system usually demonstrate 
some nice features such as finite-time convergence to the equilibrium, high-precision 
performance, faster response as well as better disturbance rejection properties (Ding & Li, 
2011). A number of effective methods to achieve the FTC are presented in recent literature 
(Wu et al., 2011), such as the time-optimal control, TSM control, adaptive control, 
homogeneous system approach and finite time stability approach. TSM control has been 
widely used in many applications. By designing a nonlinear switching manifold, the states 
reach the equilibrium in finite time and exhibit insensitive properties, such as robustness to 
parameter perturbations and external disturbances (Hu et al., 2008). Man proposed a robust 
control scheme for rigid robotic manipulators using the TSM technique (Man et al., 1994). 
However, the controller has a singularity problem. Feng presented a global non-singular 
TSM controller for a second-order nonlinear dynamic systems (Feng et al., 2002). On the one 
hand, TSM controllers converge to the equilibrium quickly once in the neighbourhood of the 
equilibrium, however, when the states are far away from the equilibrium, the system states 
converge slowly. On the other hand, the linear-hyperplane-based sliding mode controllers 
converge to the equilibrium quickly when the states are far away from the equilibrium, but 
they only guarantee asymptotic stability and convergence. All these controllers can not 
achieve global fast convergence performance in finite time. Therefore, the current study 
concentrates on the FTC technique to deal with this problem. Currently, the FTC approach 
has been applied in many fields, such as spacecraft attitude tracking control, consensus for 
multi-agent systems, robotic manipulators control and missile guidance law design. We will 
adopt the FTC approach for formation maintenance. 

With an increasing number of projects in operation, a practical formation control has also 
become an area of concern. Relative orbital elements were demonstrated during the GRACE, 
PRISMA, and TanDEM-X missions. Therefore, the current study will concentrate on 
formation reconfiguration based on relative orbital elements. Ardaens and D'Amico 
proposed a dual-impulse method for the in-plane relative control and a single-impulse 
control for the cross-track motion (Ardaens & D’Amico, 2009); when the control period 
increases, the dual-impulse maneuver causes an additional along-track drift. Hence, the use 
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of a dual-impulse maneuver for an extended control period of formation keeping may be 
restricted. The formation reconfiguration control is divided into fuel-optimal triple-impulse 
in-plane motion control and single-impulse cross-track motion control. 

Safe trajectory planning methods are often employed in collision avoidance maneuver. By 

considering the minimum distances among the satellites as the constraints, safe trajectories 

can be generated using various planning algorithms, and collision avoidance can be realized 

by controlling the satellites along the planned trajectory. Tillerson and Richards introduced 

fuel-optimal trajectories for spacecraft using mixed-integer linear programming, which 

includes various avoidance constraints (Tillerson et al., 2002; Richards et al., 2002). The 

artificial potential function method for formation flying satellites has also received 

considerable attention in recent years (Nag et al., 2010; Bevilacqua et al., 2011). By 

constructing artificial fields, the goal position provides the attractive forces, whereas the 

collision avoidance constraints provide the repulsive forces, thereby enabling formation 

flying satellites to move into their target positions without colliding. Mueller used a robust 

linear programming technique for the collision avoidance manoeuvre of the PRISMA 

mission, enabling the satellites to rapidly exit the avoidance region through the application 

of a single impulse at a specified time (Mueller, 2009; Muelleret et al., 2010). Therefore, the 

linear programming algorithms are used for the collision avoidance manoeuvre of 

proximity operations. 

The topics concerning simulation or experiment testbeds which focus on the verification of 

the new technologies of distributed spacecraft have been studied by many researchers in 

recent years. J. Leitner firstly developed a closed-loop hardware-in-the-loop simulation 

environment for GPS based formation flying (Leitner, 2001). The SPHERES testbed provided 

a verification environment for formation flying, rendezvous, docking and autonomy 

algorithms (Mark, 2002). Wang developed a real-time simulation framework for 

development and verification for formation flying satellites, which provides access of real 

sensor system via serial interface (Wang &Zhang, 2005). D’Amico presented an offline and 

hardware -in-the-loop validation of the GPS-based real-time navigation system for the 

PRISMA formation flying mission (D’Amico et al., 2008). D’Amico developed the TanDEM-

X Autonomous Formation Flying (TAFF) system which is to support the design, 

implementation, testing and validation of real-time embedded GPS-based GNC system 

(D’Amico et al., 2009). 

The organization of this chapter is as follows: In Section 2, the relative orbit dynamics are 

introduced, and the general formation description parameters are presented. In Section 3, 

the relative orbit estimation based on extended particle-filter and nonlinear least squares are 

presented, respectively. The different coordination control methods are proposed in Section 

4. Section 5 presents the processor-in-the-loop distributed simulation system. Section 6 

summarizes our conclusions. 

2. Preliminaries 

With respect to a near-circular reference orbit, and assuming the satellites are taken 

sufficiently close to each other, the relative motion given by several Keplerian elements 

differing can be treated to first order. 
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2.1 Coordinate systems 

The relative motion dynamics has been discussed in many papers. We consider two 
neighbour satellites flying in Earth orbit. The inertial reference frame used is the J2000 
frame. The origin of the coordinate system is the centre of the Earth; the XI axis points 
toward the mean equinox of J2000.0, the ZI axis points toward the mean north celestial pole 
of J2000.0, and the YI axis completes the right-handed system. The relative reference frame 
used is the Hill frame. The origin of the coordinate system is placed at the centre of mass of 
the master satellite; the x axis is aligned in the radial direction, the z axis is aligned with the 
angular momentum vector and the y axis completes the right-handed system (Fig. 1). 

IX
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i



f

x

y

z

 

Fig. 1. J2000 inertial frame and Hill frame. 

2.2 Relative orbit dynamics 

2.2.1 Dynamics equations 

With respect to the circular reference orbit, the relative motion can be described as the 

following equations: 

 

2

2

2 3 0

2 0

0

   


 
  

 
 



x ny n x

y nx

z n z

 (1) 

where [ ]x y z x y z   is the relative position and velocity in Hill’s frame, n  is the mean 

orbit rate. 

The relative dynamics for the circular orbits can be expressed in a linear time-invariant (LTI) 
system in state-space. 

 
( ) ( ) ( )

( ) ( )

 


x x u
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where x is the state vector in Hill’s frame, u is the applied acceleration in Hill’s frame and 

y is the output which is equal to the state vector(C is identity). 

For a circular reference orbit, the A  and B are independent of time: 

 2

2

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

3 0 0 0 2 0 1 0 0

0 0 0 2 0 0 0 1 0

0 0 10 0 0 0 0

   
   
   
   
    
   
      
      

A B
n n

n

n

 (3) 

2.2.2 Kinematics equations 

The Keplerian orbital elements are a , e , i ,  ,  , and u , which correspond to the semi-

major axis, eccentricity, inclination, right ascension of the ascending node, argument of 

perigee, and mean argument of latitude (  u M , where M  is the mean anomaly, and 

can be obtained from the true anomaly f ), respectively. Spacecraft-1 is the master satellite, 

and Spacecraft-2 is the deputy satellite. For near-circular satellite orbits, the relative 

eccentricity vector can be defined as follows: 

 
2 1

2 1
2 1

cos cos cos

sin sinsin

       
                  

x

y

e
e e e

e

  


 
e  (4) 

where e  represents the amplitude of e  and  defines the initial phase angle of the in-

plane motion. 

The inclination vector i  can be defined using the law of sines and cosines for the spherical 

triangle: 

 
1

cos

sinsin

     
              

x

y

i i
i

i i





i  (5) 

where 2 1  i i i , 2 1-    , i  represents the amplitude of i , and   defines the 

initial phase angle of the cross-track plane motion. 

2.3 General formation configuration description parameters 

For a near-circular reference orbit, the relative motion of the formation flying satellites can 

be described by the following equations (Hu et al., 2010): 

 

cos( )

2 sin( )

sin( )

   
   
  

x a p u

y p u l

z s u





 (6) 
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where  , , , ,p s l   are the five general formation configuration description parameters; 

p a e  represents the semi-minor axis of the relative in-plane ellipse; s a i  denotes the 

cross-track amplitude;      defines the relative initial phase angle between the in-plane 

and cross-track plane motions; and   is the initial phase angle of the in-plane motion. 

2 1  u u u , 0

3
( cos ) ( )

2
      l a u i u u a , 0u  is the initial mean argument of latitude of 

the deputy satellite, and l  represents the along-track offset of the centre of the in-plane 

motion. An example trajectory is shown in Fig. 2. 
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l 

deputy 
deputy 

x 

z 

p 

s 

θ φ 

 

Fig. 2. Example of a relative motion in a near-circular reference orbit. 

2.4 Passively safe formation configuration 

The distance in the cross-track plane can be expressed as 

 2 2 r x z  (7) 

By substituting equation (6) into equation (7), we obtain r : 

 
2 2 2 2

2 2 2 2 cos2( ) cos2( )
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r p u s u

 
   (8) 

where  
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so that 

 2 2 4 4 2 2cos2( ) cos2( ) 2 cos2     p u s u p s p s    (10) 

Minimum distance minr  in the cross-track plane is  

 
2 2 4 4 2 2
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2 cos2
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 (11) 
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Eq. (11) shows that min 0r  when 2   or 3 2  , min min( , )r p s  when 0  or 

  . Fig. 3 shows the minimum distances in the cross-track plane with different relative 

phase angles. 

From Fig. 3(a), we can see that the radial and cross-track separations vanish at the same 
time, and that when the along-track distance is zero, the two satellites will collide. From Fig. 
3(b), we can see that radial separation reaches its maximum when the cross-track separation 
vanishes, and the cross-track separation reaches its maximum when the radial separation 
vanishes. The safety of the formation flying satellites is guaranteed even in the presence of 
along-track uncertainty. 

x

z O

s

p

      

x

z O

s

p

 
(a) cross-track plane when 2   (b) cross-track plane when 0  

Fig. 3. Cross-track plane with different relative phase angles. 

3. Relative orbit estimation 

3.1 Extended Kalman-particle filter 

3.1.1 Measurement model 

Formation flying satellites often operate in close proximity. Their relative measuring 

instruments include laser range finders and radio-frequency, infrared, and visible 

measurements. In the current work, we adopt the laser range finder and radio-frequency 

ranging equipment as the relative measurements. Thus, the high-precision relative distance, 

elevation, and azimuth angles can be obtained. The measurement geometry is shown in Fig. 4. 

The relative range ρ, the azimuth angle A, and the elevation angle E can be calculated 

according to the following equations: 

 

2 2 2

2 2 2

( )= tan( )

sin( )

                 

x y z

A arc x y

E arc z x y z


h x  (12) 
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where ( )h x  is the measurement matrix, and x, y, and z are the coordinates of the deputy 

satellite in the body-fixed frame of the master satellite. As we know, the transformation 

matrix between the body-fixed frame and the Hill frame is a function of the attitude of the 

master satellite. In this paper, the attitude determination problem was not considered. 

Therefore, the relative measurements are defined with respect to the Hill frame. 

x

y

z



'h

h

o A

E

 

Fig. 4. Relative measurement geometry. 

The state and measurement equations can be established as follows: 

 1( , )

( , )
 

 
k k k k

k k k k

f t

h t

X X W

Y X V
 (13) 

where kX  is the relative state vector in the Hill frame at time kt ; kY  is the relative 

measurements at time kt , which can be obtained using Eq. (12); kW  is the zero mean value 

white Gaussian process noise with the covariance kQ ; and kV  is the zero mean value white 

Gaussian observation noise with the covariance kR . 

Five typical measurement errors, namely, the relative range and angle measurement error, 
the absolute position and velocity measurement error, and the attitude determination error, 
are considered. 

3.1.2 EPF algorithm 

The Kalman filter is the most common method of relative navigation. However, the PF shows 
better performance in a nonlinear relative state and measurement equations. The principle of 
PF is to implement the recursive Bayesian filter using Monte Carlo simulations, in which the 
choice of the importance density function is very important. We employ EKF to realize the 
importance sampling, which not only makes full use of the latest measurement information, 
but also avoids the particle exhaustion problem. The particle weights, which are closely 
associated with the observation, increase, whereas the other particle weights decrease. 

The EPF algorithm is summarized as follows: the variable 0( )p x  is the prior probability 

density; 1ˆ k kx  and ˆ
k kx  are the predicted and updated estimates of the states at time kt , 

respectively; 1k kP  and k kP are their error covariance matrices, respectively; , 1k k  is the 
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state transition matrix, kK  represents the Kalman gain matrix; and i
kw  represents the 

importance weight. The Jacobian matrix kH  is defined as follows: 

 

1ˆ

( , )







k k

k k
k

k x

h t
H

X

X
 (14) 

We initialize the particles using: 

0 0 0( ), 1 1,2, ,  i ix p x w N i N  

Importance sampling: 

a. The particles are updated using the following equations: 
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b. The importance weights are calculated using the following equations: 

1 1 1 1:
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Re-sampling is conducted using 

   / /
ˆ ˆ, ,1i i i

k k k k k kx w x N 1,2, , i N  

Thus, the state update is expressed as follows: 

1

ˆ 1,2, ,


  
N

i i
k k k

i

x w x i N  

3.2 Nonlinear least squares method 

The nonlinear state equation and observation equation are as follows (Hu et al., 2010): 

  0 ,l lf tX X  (15) 

  , l l l ltY G X V  (16) 
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where lX  is the state vector at the time lt , which includes the J2 perturbations. lY  is the 

observation vector at the time lt . lV  is the observation noise with normal Gauss 

distribution.  

Equation (16) can expanded at the approximation point *
0X  by using the Taylor series 

equation, the following equations can be derived by keeping the linear items: 

     * * *
0 0 0 0, ,   l l l lt tY G X A X X X V  (17) 

where 

  
*

0 0

*
0

0

,



    
    

     

l l
l
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Y X
A X

X X
 (18) 

 
   ,  

         

l ll
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   0

0
0 0

,
,

  
         

ll f t
t t
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X X
  (20) 

Let  *
0 , l l lty Y G X  and *

0 0 0 x X X , we get the linear equation as follows: 

    0 0, l lt t ty H x V  (21) 

where lV  is the residual error, ( )tH  is the Jacobian matrix. The transition matrix  0,t t  

can be calculated as follows: 

     

 
*

0 0, , 


      

 t t t t t

f
t

X

F

F
X

 

 

Therefore, the nonlinear model turns out to be the following form: 

 
,0 0


 

l l

l l l l

X X

Y A X V


 (22) 

By using the least square method, the estimation value of epoch time can be derived by 
iteration: 

 

1

0/
1 1

ˆ



 

   
    
   
 

k k
T T

k l l l l
l l

x A A A y  (23) 

The optimal estimation should be calculated iteratively, and usually can converge by 3-5 
steps. 
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3.3 Numerical simulations and results analysis 

A numerical simulation is conducted to verify the effectiveness of the presented EPF 

algorithm. The simulation conditions are as follows: the mean orbital elements of the master 

and deputy satellites are as shown in Table 1, and Fig. 5 shows the three-dimensional 

formation configuration. The formation configuration parameters are p = 400 m, s = 350 m, 

  = 0°,   = 90°, l = 0 m. The absolute position and velocity measurement precision are 10 m 

and 0.1 m/s, respectively; and the relative range and angle measurement precision are 0.1 m 

and 0.01°, respectively. The sampling interval is 1 s. Perturbations of Earth oblateness, 

atmospheric drag, solar radiation pressure, perturbation of the third-body of the sun and 

moon, and perturbation of the earth body tide are considered in the dynamics simulation. 

The fourth-order Runge–Kuta algorithm is employed for the numerical integration.  
 

 a  (m) e  i  (deg)   (deg)   (deg) M  (deg) 

master 6892937.0 0.001170 97.443823 100.0 90.0 0.0 

deputy 6892937.0 0.001112 97.443823 99.997066 89.999620 0.0 

Table 1. Mean orbital elements of the master and deputy satellites. 

The absolute orbit of the master and deputy satellites can be generated using the Satellite 
Tool Kit based on the initial elements given in Table 1. The observation values can be 
simulated by the absolute orbit information and the measurement covariance using the 
Gaussian distribution random number series. The measurement sampling period is 1 s, and 
the simulation time is 3000 s.  
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Fig. 5. Three-dimensional formation configuration. 

The relative position and velocity estimation errors are shown in Figs. 6 and 7, respectively.  
The estimation curves are globally convergent, and the EPF algorithm achieved much faster 
convergence rate in the relative orbit estimation. The relative position estimation errors 
converge to 210-2 m within 500 s, and that of the relative velocity estimation are within 
110-4 m/s. 
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Fig. 6. Relative position estimation errors.  
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Fig. 7. Relative velocity estimation errors. 

4. Relative orbit control 

4.1 Coordinated control scheme 

We consider an operational scenario with two formation flying satellites, and the deputy 

satellite performs the relative orbit correction maneuvers. Fig. 8 shows the schematic 

diagram of the formation flying guidance, navigation, and control (GNC) system. 

The deputy satellite obtains the relative measurements and performs the relative orbit 

estimation to obtain the high-precision relative position and velocity. The formation control 

software generates control commands according to the current states and mission goals. 

Thrusters are used to control the geometry and phase angle of the formation, and the yaw 

angle maneuver commands are used to control the along-track drift. The ground station can 

monitor the formation flying system in autonomous mode and generate formation control 

commands in the ground-in-the-loop mode. 
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Fig. 8. Schematic diagram of the formation flying GNC system. 

4.2 Finite time control for formation maintenance 

4.2.1 Control objective 

The finite-time control for distributed spacecraft is to design the controller mu  which 

guarantees that the trajectory tracking errors of the deputy satellite with respect to the 

master satellite converge to zero in finite time. 

The trajectory tracking errors are defined as 

 ,     d de e     (24) 

where d , and 3d R  are the desired relative position and velocity vectors, respectively. 

4.2.2 Finite-time controller 

In this section, a robust sliding mode controller is proposed to improve the transient 
performance and to guarantee the finite-time stability and convergence. The formation 
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flying satellites are close to each other, thus, the disturbances acting on the satellites will be 

almost the same, and the total relative disturbances D  can generally be treated as bounded 

forces. Suppose that i iD F , 1,2,3i , where iF  is a positive constant.  

We propose the following controller  

 
1

( ) ( , , ) sgn( )
       n nC N

   m du r e e e k S     (25) 

where , 0  , 0ik , 1,2,3i , 0 1  . S  is given by 

 sgn( )   S e e + e e  (26) 

Theorem 1. For the formation flying system, the controller (25) can achieve the control 
objective of trajectory tracking presented in Section 4.2.1. 

Proof: Step 1: The system will reach the sliding mode 0S  in finite time. 

Consider Lyapunov function 
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Let  iFik  yields 

 
3 3

1 1

( ) ( ) 0
 

      
i i i i i i i

i i

V s F k s s k F  (29) 

V is positive, and V  is negative. Therefore, the sliding mode 0S  is achieved in finite time.  

Step 2: The system will converge to the equilibrium in finite time once under the condition 

of 0S . 

Once 0S , the system is transformed as  

 sgn( )   e = e e e  (30) 

= 0e  is the terminal sliding attractor of system (30). By integrating Eq. (30), we obtain the 

convergence time T : 

 In
1
01

(1 )

 



e

T
 

  
 (31) 
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where 0e  is the initial error state.  

Therefore, once the system states reach the sliding mode manifold (26), the system will 
converge to the equilibrium in the time T . Combining step 1 and step 2 completes the proof 
of Theorem 1.  

Remark 1. For linear controller, to increase the robustness of the closed-loop system, we can 
only modify the control gain; however, the control gain can not be too large considering the 
fuel consumption and system stability. For the FTC approach, we have an additional 
parameter   to modify, which exhibits better disturbance rejection performance.  

Remark 2. In order to reduce chattering due to high-frequency switching, the boundary 
layer approach is adopted to replace the signum function of (25) with a continuous 
saturation one 

 ( )
sgn( )


  

S S
sat S

S S

 



 (32) 

where   denotes the thickness of the boundary layer. Therefore, the proposed controller 

(25) can be rewritten as follows: 

 
1

( ) ( , , ) ( )
       n nC N sat S

    m du r e e e k     (33) 

However, when S  , the controller (33) can only guarantee asymptotic convergence, 

although chattering phenomenon can be substantially alleviated. Therefore, a new 

saturation function is put forward. 

 
sgn( )

( )
sgn( )

   

SS S
fsat S

SS

  


 (34) 

where 0 1  .  
Then, we obtain the following controller: 

 
1

( ) ( , , ) ( )
       n nC N sat S

    m d fu r e e e k   
 (35) 

The theoretical proof of the finite time convergence inside the boundary layer is provided by 
Ding (Ding & Li, 2007). Hence, we can guarantee the finite time convergence by adopting 
the modified controller (35). 

4.2.3 Numerical simulations and results analysis 

In this scenario, formation keeping simulation is conducted to verify the effectiveness of the 
proposed controller (35). The initial orbital elements of the master satellite are as shown in 
Table 2. 
 

a  (m) e  i  (deg)   (deg)   (deg) M  (deg) 

6934386.0 0.001075 97.617093 0.0 0.0 0.0 

Table 2. Initial orbital elements of the reference orbit. 
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The initial relative states in the Hill frame are as shown in Table 3. 

 

x  (m) y  (m) z  (m) xv  (m/s) yv  (m/s) 
zv  (m/s) 

-14.99910 0.32800 0.21871 0.00018 0.03285 0.02189 

Table 3. Initial relative states in the Hill frame. 

We design the formation with 0  , then, the projected trajectory in the cross-track plane is 

an ellipse, which guarantee the formation safety even in the presence of along-track 

uncertainty. The threshold of starting formation keeping control is set as 10% of the nominal 

formation geometry, namely, 50 m. The orbit propagator model includes perturbations of 

Earth oblateness, atmospheric drag, solar radiation, third-body of Sun and Moon and Earth 

body tides. The Earth’s gravity field adopts EGM96 model, and the atmospheric density 

model adopts Jacchia70. The eighth-order Runge–Kuta algorithm is employed for the 

numerical integration. The simulation time is 20000 s.The controller parameters are given by 

 0.01,0.01,0.01 T ,  0.01,0.01,0.01 T , 0.6 ,  0.96,0.96,0.96 T
k , and 1 . 

Fig. 9(a) shows the three-dimensional formation configuration; Fig. 9(b) shows the 

variations of relative position error vs. time, Fig. 8(c) is the enlargement view of Fig. 9(b) and 

Fig. 9(d) shows the variations of sliding mode manifold vs. time. 
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Fig. 9. Simulation results of formation keeping scenario. 
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As shown in Figs. 9(b) and 9(c), when the relative distance error reaches 50 m at the time t = 
15888 s, high position tracking accuracy and fast convergence are achieved, which shows 
that the proposed controller (35) is effective and robust, since finite time convergence is still 
obtained in the presence of model uncertainties and environment perturbations. 

4.3 Impulsive control for formation reconfiguration 

4.3.1 Triple-impulse in-plane control 

We assume that the nominal configuration parameters in the orbital plane are 1p  and 1 , 

and the current configuration parameters in the orbital plane are 2p  and 2 . According to 

Eq. (6), the relative position in the orbital plane can be described as 

 2 2 1 1

2 2 1 1

cos( ) cos( )

2 sin( ) 2 sin( )

    
    

x p u p u

y p u p u

 
 

 (36) 

which is equal to 

 0 0

0 0

cos( )

2 sin( )

  
  

x p u

y p u




 (37) 

where 

 
2 2

0 1 2 1 2 2 1

0 2 2 1 1 2 2 1 1

2 cos( )

tan( sin sin , cos cos )

    


  

p p p p p

arc p p p p

 
    

 (38) 

The problem of controlling the current configuration to achieve the nominal configuration is 

equivalent to the problem of setting 0p  to zero. According to Gauss variation equation, the 

variances in the relative orbital elements can be expressed by the along-track  Tv : 

 

(2 / )

(3 )

(2 / ) cos

(2 / ) sin

  
   
  
  

T

T

x T

y T

a a v v

l t v

e v v u

e v v u

 (39) 

where v  is the orbital velocity. 

The relative orbital element and the configuration parameters have the following 

relationship: 

 0 00

0 0

cos

sin

   
       

x

y

e p

e a




 (40) 

Setting 0p  to zero is equivalent to setting 0 xe  and 0 ye  to zero. Therefore, 

 0 0 0

0 0 0

(2 / ) cos ( / )cos / 2

(2 / ) sin ( / )sin

     
      

T T

T

V v u p a v np

V v u p a u


  

 (41) 
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The dual-impulse method mentioned by D’Amico equate to (D’Amico & Montenbruck, 

2006; Ardaens & D’Amico, 2009) 

 
1

2

/ 2

/ 2

  
  

T

T

v v

v v
 (42) 

The first impulse will cause an additional along-track drift during the time span between the 

two impulses. The influence can be neglected if the control period is small; however, if the 

control period is large, the influence must be considered. 

The conventional dual-impulse in-plane control method causes an additional along-track 

drift because of the time span between the two impulses. Hence, we implement the 

corrections three times. The maneuver sizes are 1v , 2v , and 3v , respectively, and the 

respective locations are 1u , 2u , and 3u . The triple-impulse locations must be equal to 

0    or 0  and satisfy the following constraints: 

 
1 2 3

1 2 3

0     
        T

v v v

v v v v
 (43) 

We let u1 0 , u u k2 1 (2 1)   , and u u k3 2 (2 1)   . Thus, 

 2 1 32 2      v v v   (44) 

We obtain the maneuver commands when 1 0 u   , as expressed by 

 
1

2

3

/ 4

/ 2

/ 4

  
  
  

T

T

T

v v

v v

v v

 (45) 

and another solution when 1 0u  , as expressed by the following equations: 

 

1

2

3

/ 4

/ 2

/ 4

  
  
  

T

T

T

v v

v v

v v

 (46) 

The along-track drift caused by the first impulse will be compensated by the subsequent two 

impulses. The maneuver sizes and locations can be easily calculated according to the initial 

and nominal formation parameters. Eq. (41) shows that the total v  needed for formation 

control can be calculated once the initial and nominal formation parameters are provided, 

which is helpful in formation-flying mission design and analysis. 

4.3.2 Single-impulse out-of-plane control 

The relative inclination vector of the initial and target formation configurations is i , the 

argument is 0 , and the single burn can be provided by Gauss variation equation. Thus, 
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0

0

cos cos

sin sin

    
    

N x

N y

v u v i

v u v i




i

i
 (47) 

and 

 
0 tan( , )

  
    

N

y x

v v

u arc i i
i

 (48) 

4.3.3 Numerical simulations and results analysis 

In this scenario, formation reconfiguration simulation is conducted to verify the 

effectiveness of the proposed method. The initial orbital elements of the formation flying 

satellites are as shown in Table 4. 

 

 a  (m) e  i  (deg)   (deg)   (deg) M  (deg) 

master 6 892 937.0 0.00117 97.4438 90 0 0 

deputy 6 892 937.0 0.00116 97.44698 89.9973 357.888 2.112 

Table 4. Initial orbital elements of the reference orbit. 

The formation is reconfigurated from the initial configuration { 300p m, 500s m, 

100  , 40  } to the target configuration { 500p m, 300s m, 90  , 60  }. 

Fig. 10(a) shows the reconfiguration of the relative eccentricity vector, Fig. 10(b) shows the 

reconfiguration of the relative inclination vector. 
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   (a) Relative eccentricity vector     (b) Relative inclination vector 

 

Fig. 10. Simulation results of the relative eccentricity and inclination vector. 

As shown in Figs. 11 and 12, we can see that formation was successfully reconfigurated to 
the target configurations. 
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Fig. 11. In-plane motion. 

 

Fig. 12. Cross-track motion. 

4.4 Linear programming method for collision avoidance maneuver 

4.4.1 Linear programming method 

The dynamic system mentioned in Section 2.2.1 can be discretized using zero-order hold as 

follows (Paluszek et al., 2008): 

 1  


k k k

k k

x Ax Bu

y x
 (49) 

where 0, , 1 k N , and the time-step is t .  

The problem of optimal collision avoidance manoeuvre can be described as follows. Given 

the initial and the terminal states, equation (21) is minimized by a sequence of ku  and 

manoeuvre time T : 

www.intechopen.com



 
Coordination Control of Distributed Spacecraft System 

 

143 

 
1

2

2
0

1
min

2





N

k
k

u  (50) 

with the constraints 
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  (51) 

where   is the small error vector of the terminal state, Lb  and Ub  are the boundaries of the 

thrust. 

The problem mentioned above can be converted into a standard linear programming 
problem: 

1 0 0 x Ax Bu
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Let 1 2    N N
pB A B A B AB and  0 1 1  T

p Nu u u u , 

so that 

 0 N
N p px A x B u  (53) 

The terminal constraint can then be written as 

 
*    Nx x   (54) 

Let 
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. We obtain  

  
pAu b  (55) 

The problem of optimal collision avoidance manoeuvre can be written as 
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4.4.2 Numerical simulations and results analysis 

Scenario 1 

We take the TanDEM-X formation as an example. When the relative measurement sensors 

fail, the formation satellites cannot obtain the relative states, which rapidly increases the 

collision probability. To minimize the collision hazard, we can manoeuvre the chaser 

satellite from the formation with 90 ° to a safe formation with 0 °. The safe 

configuration parameters are { 400p m, 300s m, 0 °, 0 °, 0l m}, and the terminal 

state error vector is [1 m, 1 m, 1 m, 0.1 m/s, 0.1 m/s, and 0.1 m/s]. When the initial and 

terminal configurations are given, the control sequences can be calculated while minimizing 

total delta-v by the proposed linear programming method. The method is flexible and 

independent of the time window. The maneuver time is 600 s.  

Fig. 13 shows the control input for the maneuver, Fig. 14 indicates the three-dimensional 

collision avoidance trajectory, and Fig. 15 displays the projected trajectory in the cross-track 

plane. 

Total delta-v is 0.646 m/s. The safe trajectory is reached within a short period. Fig. 15 shows 

that the trajectory reached has a minimum separation of 300 m. The two cases above 

illustrate that shorter maneuver time gives rise to a larger total delta-v, and that a collision 

avoidance strategy can be formulated by considering time urgency and residual propellant 

mass.  
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Fig. 13. Impulsive control input. 
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Fig. 14. Three-dimensional trajectory. 
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Fig. 15. Trajectory in the cross-track plane. 

Scenario 2 

The TanDEM-X formation is taken as an example. The nominal configuration is passively 

safe with 0 °. When the 40 mN cold gas thrusters are open for a certain period given 

some uncertainties, the collision hazard increases. After failure is eliminated, the chaser 

satellite should be controlled so that it immediately returns to safe orbit.  

The initial configuration parameters are { 300p m, 400s m, 0 °, 23 °, 0l m}, and 

the safe configuration parameters are { 507.2p m, 400s m, 0 °, 37.3 °, 0l m}. 

We assume that the chaser satellite burns only in the along-track direction; thus, the cross-

track motion amplitude remains unchanged. The collision avoidance region is defined as a 

circle with a 200 m radius. The optimal maneuver trajectory is shown in Fig. 16. 
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Fig. 16. Optimal maneuver that enables reaching the safe ellipse. 

As seen in Fig. 16, the trajectory intersects with the collision avoidance region after the 

thrusters malfunction is eliminated. The proposed optimal collision avoidance manoeuvre is 

used to steer the chaser satellite toward the safe trajectory within a minimum distance of 200 

m. Total delta-v is 0.126 m/s. The manoeuvre requires only two burns; hence, it is simple, 

effective, and suitable for on-board implementation. 

5. Processor-in-the-loop simulation system for distributed spacecraft 

5.1 System architecture 

In order to simulate the control architecture of distributed spacecraft, the distributed system 

architecture is selected. The main elements in the platform are the formation control 

embedded computers, which builds a VxWorks environment in a PowerPC8245 board and 

runs the GNC flight software. The dynamic simulation computers exchange data with the 

formation control embedded computers via CAN bus. The formation control embedded 

computer receive the high precision orbit, attitude and measurement data provided by the 

corresponding dynamic simulation computer real-time, and produce a series of time-tagged 

maneuver commands to add to the dynamic simulation environment, which forms the 

close-loop processor-in-the-loop simulation of the GNC system. The formation control 

embedded computers not only communicate with each other through wireless to emulate 

the communication among distributed spacecraft, but also communicate with the ground 

station to emulate the ground-in-the-loop communication. One workstation sets the 

simulation parameters and displays the simulation scenarios by a plasma displayer. One 

industrial control computer generates impulse to guarantee synchronization among 

different subsystems. Fig. 17 shows the system architecture diagram of the distributed 

simulation system (Hu et al., 2010).  
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Fig. 17. Distributed architecture of the simulation system. 

5.2 System implementation 

The dynamic simulation computers are the backbone of the close-loop simulation platform. 
The software is written in C language and compute orbit, attitude, sensor models and 
actuators of distributed spacecraft system. The simulation computers are synchronized with 
the pulse generator and the real-time simulation time step can be set as 10 milliseconds. It 
provides the epoch time, ECI states of each spacecraft, relative states to the master satellite 
and attitude data to the formation control computers via CAN bus. The typical error models 
of the motion data as Guassian noise are also added to evaluate the control performance and 
the fuel consumption. The adopted dynamic models for orbit propagation include the 
Earth’s gravity field (such as EGM96、JGM3、JGM2 or GEMT1 model), atmospheric 

drag(such as Harris-Priester or Jacchia70 atmospheric density model), solar radiation 
pressure, gravity of Sun and Moon and solid Earth tides. The dynamic simulation software 
also includes the attitude dynamic models based on quaternions to simulate six degree-of-
free motions of each spacecraft. 

The dynamic simulation computers can receive the maneuver commands from the 

formation control computers via CAN bus. The maneuver commands include the start 

control time, the execution time and the delta-V of the desired impulsive maneuver. The net 

force error and the direction error of thrust are added to emulate the natural environment. 

The effect of the maneuver is then reflected to the motion data sent to the formation control 

computers.  
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The formation control embedded computers receive the absolute and relative states with 

typical errors from the dynamic simulation computers. The Extended Kalman Filter is used 

to determine the relative orbit real-time for the autonomous formation flying, and the non-

linear least squares estimation is used to determine the relative orbit for the ground-in-the-

loop control mode. The formation initialization, formation keeping, formation 

reconfiguration and collision avoidance maneuver control algorithms are realized.  

The ground station is run on a workstation and developed by Visual C++ 6.0, it can 

produces the control commands in the ground-in-the-loop control, which is sent to the 

OBDH modules in the formation control embedded computers. 

The simulation manager is developed by Visual C++ 6.0, it has a friendship user interface, 

and enabled the user to select the simulation parameters such as the control model 

(autonomous mode or ground-in-the-loop mode), the mission scenario (formation 

initialization, formation keeping, formation reconfiguration or collision avoidance 

maneuver), the simulation time and the time step etc. It also receives the position and 

velocity from the dynamic simulation computers and drive the STK VO 3D window 

through STK’s Connect Module. 

5.3 Numerical simulations and results analysis 

This scenario demonstrates the autonomous formation keeping experiment. 

Fig. 18 shows the relative navigation error in RTN frame. The statistical performance of 

relative position is 3cm respectively and the relative velocity is 0.2mm/s respectively. 

 

Fig. 18. The relative navigation error in RTN frame. 

Fig. 19 shows the key results of formation keeping scenario. The simulation time is 30 days, 

the in-plane control period is 7 days and the cross-track control period is 28 days. The 1st 

plot shows the change of the relative semi-major axis( a ),the 2st plot shows the change of  
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Fig. 19. The key results of formation keeping scenario. 

the along-track drift( l ), the 3st plot shows the change of the in-plane geometry( a e ), the 4st 

plot shows the change of the in-plane phase angle( ), the 5st plot shows the change of the 

cross-track geometry( a i ), the 6st plot shows the change of the cross-track phase 

angle( ).The relative semi-major axis and the relative eccentricity vector are controlled by 

three in-plane impulse maneuvers in the along-track direction separated by half an orbital 

period interval. The relative inclination vector is controlled by out-of-plane maneuvers only. 

The relative semi-major axis and the long-track drift are affected by the execution of the 

three in-plane impulse maneuvers. The relative eccentricity vector and the relative 

inclination vector are properly moved from one perturbation side to the desired side in 

order to compensate their natural drift caused by J2. 

Through the formation keeping test and the formation reconfiguration test, the 

functionalities and the performance of the process-in-the-loop simulation testbed are 

validated. 

6. Conclusions 

This chapter investigates several key technologies of distributed spacecraft, such as the high 
precision relative orbit estimation, the formation maintenance and reconfiguration 
strategies, the collision avoidance maneuver and the distributed simulation system.  
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Simulation results show that the relative position estimation errors are within 210-2 m, and 

that of the relative velocity estimation are within 110-4 m/s.  

A robust sliding mode controller is designed to achieve formation maintenance in the 

presence of model uncertainties and external disturbances. The proposed controller can 

guarantee the convergence of tracking errors in finite time rather than in the asymptotic 

sense. By constructing a particular Lyapunov function, the closed-loop system is proved to 

be globally stable and convergent. Numerical simulations are finally presented to show the 

effectiveness of the developed controller. The full analytical fuel-optimal triple-impulse 

solutions for formation reconfiguration are then derived. The triple-impulse strategy is 

simple and effective. The linear programming method is suitable for collision avoidance 

maneuver, in which the initial and terminal states are provided. 

A real-time testing system for the realistic demonstration of the GNC system for the 

distributed spacecraft in LEO is presented. The system allows elaborate validations of 

formation flying functionalities and performance for the full operation phases. The test 

results of autonomous formation keeping and formation reconfiguration provide good 

evidence to support performance and quality of the coordination control algorithms. 

The key aim of this chapter is to introduce the important aspects of the distributed 

spacecraft, and pave the way for future distributed spacecraft.  
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