12,093 research outputs found

    Space-Time adaptive algorithm for the mixed parabolic problem

    Get PDF
    Se presenta una estimación a posteriori del error para el problema parabólico lineal, y se diseña el correspondiente algoritmo de adaptación de malla y paso de tiempo. Para la discretización espacial se utiliza el elemento de Raviart-Thomas de menor orden y para la integración temporal la aproximación de Galerkin discontinua con paso variable. Se aplican los métodos numéricos desarrollados a varios problemas significativos que muestran la eficiencia del algoritmo desarrollado.In this paper we present an a-posteriori error estimator for the mixed formulation of a linear parabolic problem, used for designing an efficient adaptive algorithm. Our space-time discretization consists of lowest order Raviart-Thomas finite element over graded meshes and discontinuous Galerkin method with variable time step. Finally, several examples show that the proposed method is efficient and reliable

    Space-Time adaptive algorithmfor the mixed parabolic problem

    Get PDF
    Se presenta una estimación a posteriori del error para el problema parabólico lineal, y se diseña el correspondiente algoritmo de adaptación de malla y paso de tiempo. Para la discretización espacial se utiliza el elemento de Raviart-Thomas de menor orden y para la integración temporal la aproximación de Galerkin discontinua con paso variable. Se aplican los métodos numéricos desarrollados a variosproblemas significativos que muestran la eficiencia del algoritmodesarrollado.In this paper we present an a-posteriori error estimator for the mixed formulation of a linear parabolic problem, used for designing an efficient adaptive algorithm. Our space-time discretization consists of lowest order Raviart-Thomas finite element over graded meshes and discontinuous Galerkin method with variable time step. Finally, several examples show that the proposed method is efficient and reliable

    Space-time adaptive finite elements for nonlocal parabolic variational inequalities

    Get PDF
    This article considers the error analysis of finite element discretizations and adaptive mesh refinement procedures for nonlocal dynamic contact and friction, both in the domain and on the boundary. For a large class of parabolic variational inequalities associated to the fractional Laplacian we obtain a priori and a posteriori error estimates and study the resulting space-time adaptive mesh-refinement procedures. Particular emphasis is placed on mixed formulations, which include the contact forces as a Lagrange multiplier. Corresponding results are presented for elliptic problems. Our numerical experiments for 22-dimensional model problems confirm the theoretical results: They indicate the efficiency of the a posteriori error estimates and illustrate the convergence properties of space-time adaptive, as well as uniform and graded discretizations.Comment: 47 pages, 20 figure

    An a posteriori error analysis of a mixed finite element Galerkin approximation to second order linear parabolic problems

    Get PDF
    In this article, a posteriori error estimates are derived for a mixed finite element Galerkin approximation to second order linear parabolic initial and boundary value problems. Using mixed elliptic reconstruction method, a posteriori error estimates in L(L2)L^\infty(L^2) and L2(L2)L^2(L^2)-norms with optimal order of convergence for the solution as well as its flux are proved for the semidiscrete scheme. Finally, based on backward Euler method, a completely discrete scheme is analyzed and a posteriori bounds are derived, which improves earlier results on a posteriori estimates for mixed parabolic problems

    Adaptive discontinuous Galerkin approximations to fourth order parabolic problems

    Full text link
    An adaptive algorithm, based on residual type a posteriori indicators of errors measured in L(L2)L^{\infty}(L^2) and L2(L2)L^2(L^2) norms, for a numerical scheme consisting of implicit Euler method in time and discontinuous Galerkin method in space for linear parabolic fourth order problems is presented. The a posteriori analysis is performed for convex domains in two and three space dimensions for local spatial polynomial degrees r2r\ge 2. The a posteriori estimates are then used within an adaptive algorithm, highlighting their relevance in practical computations, which results into substantial reduction of computational effort

    CASTRO: A New Compressible Astrophysical Solver. II. Gray Radiation Hydrodynamics

    Full text link
    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically-rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunov scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.Comment: accepted for publication in ApJS, high-resolution version available at https://ccse.lbl.gov/Publications/wqzhang/castro2.pd

    Un método Wavelet-Galerkin para ecuaciones diferenciales parciales parabólicas

    Get PDF
    In this paper an Adaptive Wavelet-Galerkin method for the solution ofparabolic partial differential equations modeling physical problems withdifferent spatial and temporal scales is developed. A semi-implicit timedifference scheme is applied andB-spline multiresolution structure on theinterval is used. As in many cases these solutions are known to presentlocalized sharp gradients, local error estimators are designed and an ef-ficient adaptive strategy to choose the appropriate scale for each time isdeveloped. Finally, experiments were performed to illustrate the applica-bility and efficiency of the proposed method.En este trabajo se desarrolla un método Wavelet-Galerkin Adaptativopara la resolución de ecuaciones diferenciales parabólicas que modelanproblemas físicos, con diferentes escalas en el espacio y en el tiempo. Seutiliza un esquema semi-implícito en diferencias temporales y la estructuramultirresolución de las B-splines sobre intervalo.Como es sabido que enmuchos casos las soluciones presentan gradientes localmente altos, se handiseñado estimadores locales de error y una estrategia adaptativa eficientepara elegir la escala apropiada en cada tiempo. Finalmente, se realizaronexperimentos que ilustran la aplicabilidad y la eficiencia del método pro-puestoFil: Vampa, Victoria Cristina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Martín, María Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentin
    corecore