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72 V. VAMPA – M. MARTÍN

Abstract

In this paper an Adaptive Wavelet-Galerkin method for the solution of
parabolic partial differential equations modeling physical problems with
different spatial and temporal scales is developed. A semi-implicit time
difference scheme is applied and B-spline multiresolution structure on the
interval is used. As in many cases these solutions are known to present
localized sharp gradients, local error estimators are designed and an ef-
ficient adaptive strategy to choose the appropriate scale for each time is
developed. Finally, experiments were performed to illustrate the applica-
bility and efficiency of the proposed method.

Keywords: B-spline; multiresolution analysis; wavelet-Galerkin.

Resumen

En este trabajo se desarrolla un método Wavelet-Galerkin Adaptativo
para la resolución de ecuaciones diferenciales parabólicas que modelan
problemas físicos, con diferentes escalas en el espacio y en el tiempo. Se
utiliza un esquema semi-implícito en diferencias temporales y la estructura
multirresolución de las B-splines sobre intervalo.Como es sabido que en
muchos casos las soluciones presentan gradientes localmente altos, se han
diseñado estimadores locales de error y una estrategia adaptativa eficiente
para elegir la escala apropiada en cada tiempo. Finalmente, se realizaron
experimentos que ilustran la aplicabilidad y la eficiencia del método pro-
puesto.

Palabras clave: B-spline, análisis multirresolución; wavelet-Galerkin; ondeletas
Galerkin.

Mathematics Subject Classification: 65M99.

1 Introduction

Analytical solutions for nonlinear partial differential equations which describe
physical phenomena, such as the equations of fluid mechanics, are usually dif-
ficult to be obtained. In the development of numerical schemes, the use of
multiresolution techniques and wavelets has become increasingly popular and
wavelet-Galerkin approximations have been applied as an alternative to conven-
tional finite element methods.

When the solution exhibits multiscale features like coarse solution in the
whole domain and details near singularities, recalculation of the solution in finer
meshes is needed to get the desired convergence. Adaptive refinement eliminates
the need to remesh the whole domain and there are a number of papers in this
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AN ADAPTIVE WAVELET-GALERKIN METHOD FOR PARABOLIC PDE 73

direction where different adaptive strategies are designed and applied in solving
both, ordinary and partial differential equations.

Quraishi et al. [11] applied second generation wavelets as basis in the finite
element method for elastostatics problems. They developed a wavelet-Galerkin
method with an adaptive scheme choosing higher density of nodes in regions
where sharp change or gradient is presented. In Kumar et al. [8] a collocation
method to solve singularly perturbed reaction diffusion equation of elliptic and
parabolic types using cubic splines is presented and an efficient adaptive feature
is performed automatically by thresholding the wavelet coefficients.

For the solution of parabolic equations in cases there exists different spa-
tial and temporal scales as in equations modeling the formation of shock waves
in compressible gas flow several numerical methods have been proposed. Vasi-
lyev et al. [17] developed a dynamically adaptive multilevel wavelet collocation
method for the solution of partial differential equations using Daubechies scal-
ing functions. They applied the method to the solution of the Burgers equation
with small viscosity and to the solution of a moving shock problem.

In other proposals, Galerkin methods are used and in deriving the computa-
tional schemes, time discretization is performed prior to wavelet-based Galerkin
spatial approxi-mation. Schult and Wyld [13] employed a set of suitably selected
coarse-scale scaling functions and fine scale wavelets centered at the discontinu-
ity. Using Daubechies scaling functions, a second order time stepping scheme
was applied to advance in time. Lin and Zhou [9] used a semi-implicit time
difference scheme combined with wavelet interpolation based approximations.
Only scaling functions were used, and coiflets were chosen. On the other hand,
Kumar and Mehra [7], in 2005, developed a Taylor-generalized Euler time dis-
cretization method. Bindal et. al [2] presented a dynamically adaptive algorithm
for solving PDEs where Galerkin is used to discretize spatial variables and then,
a system of ordinary differential equations has to be solved. In the proposed al-
gorithm, successive iterations result in smaller wavelet coefficients and approxi-
mations with the desired accuracy are obtained. Daubechies scaling and wavelet
functions are used.

The aim of this paper is to formulate an efficient method to solve parabolic
equations with scaling functions and wavelets, extending the refinement process
developed in [16] for second order boundary value problems. An adaptive algo-
rithm based on the analysis of wavelets coefficients is incorporated and allow to
follow the local structures of the solution.

The novelty of our proposal is that an adaptive algorithm in each time step is
implemented: once an approximation in terms of scaling functions at an initial
coarse-scale is obtained, an error estimation allows to determine the
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74 V. VAMPA – M. MARTÍN

scale j necessary to achieve the required precision. And this is done at each
time step. We will call this method Adaptive Wavelet-Galerkin (AWG). It pro-
vides a simple way to adapt computational refinements to local demands of the
solution. High scales are used only in regions where sharp transition occurs.
The method is applied to the solution of one dimensional Burgers equation with
small viscosity.

The organization of this paper is as follows: In Section 2, a semi-implicit
scheme to advance in time is presented to solve parabolic equations and we de-
scribed the AWG method to solve boundary value problems: how to define an
MRA on the interval [4], the Modified Galerkin method [14] to obtain the ap-
proximation at an initial scale in terms of scaling functions and how wavelets
are used to increase the scale efficiently [16]. Finally, an error estimation is
given. The algorithm to solve parabolic equations after integration in time is
performed, applying the AWG method is described in Section 3. The method
is tested on the one-dimensional Burgers equation with two different types of
boundary conditions. Numerical results are shown in Section 4. Finally, conclu-
sions are presented in Section 5.

2 Adaptive Wavelet-Galerkin method

Different physical situations are modeled with parabolic differential equations
of the type

ut(x, t) + F (u)(x, t) ux(x, t) = ϵuxx(x, t), (1)

They are often referred to as being initial value problems in the sense we are
given the state of a system at sometime t = 0 and we require the state of the
system at subsequent times. We will be concerned with numerical methods for
initial value problems and the solution will be sought in the region a ≤ x ≤ b
for t ≥ 0. Several schemes can be applied to advance in time.

We consider the following semi-implicit time stepping scheme [9]:

uk+1 − uk

∆t
+ F (uk)

∂uk+1

∂x
= ϵ

∂2uk+1

∂x2
(2)

where uk(x) = u(x, k∆t) and ∆t is the time step. If we denote w(x) =
uk+1(x), a second order boundary value problem (BVP) for w on [a, b] is ob-
tained at each time step

− w′′ +
1

ϵ
F (uk)w′ +

1

ϵ∆t
w =

1

ϵ∆t
uk (3)

with the corresponding boundary conditions.
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It is known that when solving these kind of equations irregular features, sin-
gularities and steep changes arise. Consequently, procedures that can resolve
varying scales in an efficient manner are required. Wavelets, with their multires-
olution analysis properties [10], can be used advantageously in these types of
problems.

In order to solve boundary value problems on I = [a, b], multiresolution
structures in L2(R) have to be restricted to L2(I). As is described by Chui [5],
an MRA on L2(R) is constructed by first identifying the subspace V0 and the
scaling function ϕ. Then, for each j ∈ Z, the family {ϕj,k : k ∈ Z}, where
ϕj,k(x) := 2j/2ϕ(2jx−k), is a basis of Vj . Associated with the scaling function
ϕ there exists a function ψ called the mother wavelet such that the collection
{ψ(x− k), k ∈ Z} is a Riesz basis [5] of W0, the orthogonal complement of V0
in V1. If we consider, ψj,k(x) := 2j/2ψ(2jx − k) for each j ∈ Z, the family
{ψj,k : k ∈ Z} is a basis of Wj , the orthogonal complement of Vj in Vj+1. It is
noteworthy that wavelets would allow the refinement of the representation space
taking into account that

Vj+1 = Vj ⊕Wj . (4)

2.1 An MRA on the interval

Let us assume that the support of the scaling function ϕ(x) ∈ V0 is [0, S], S ∈
N , and the support of the wavelet ψ ∈W0 is [−S+1, S]. To fix notations, let us
assume that the interval is [0, 1]. Considering j0 such that 2j0 ≥ S, we define for
j ≥ j0, ϕIj,k(x) = ϕj,k(x)χ[0,1](x) and V̂ I

j = gen{ϕIj,k(x), 1−S ≤ k ≤ 2j−1}
as the space of basis functions that intersect the interval [0, 1].

In what follows, an MRA with B-splines as scaling functions is considered.
In its construction, orthogonality conditions are used in a way similar to when
an MRA is designed in L2(R) [10, 18, 16]. V0 is the subspace generated by
translations of the scaling function φm+1, the B-spline function of order m, and
for each j ∈ Z, the family {φm+1,j,k = 2j/2φm+1(2

jx− k) : k ∈ Z} is a basis
of Vj . These subspaces Vj , j ∈ Z, constitute an MRA in L2(R)([10, 18]).

In the cubic B-spline MRA framework [12, 15], let us denote scaling func-
tions by φI

j,k(x) = φj,kχ[0,1](x) and j ≥ 2 (for simplicity, the first subscript
is omitted, assuming m = 3) . They are supported on [2−jk, 2−j(k + 4)] and
are splines in Z/2j . They are interior splines if 0 ≤ k ≤ 2j − 4 and boundary
splines if −3 ≤ k ≤ −1 and 2j − 3 ≤ k ≤ 2j − 1. Denoting by V I

j the space of
interior scaling functions V I

j = gen{φI
j,k, 0 ≤ k ≤ 2j − 4}, of size 2j − 3 and

by V̂ I
j the space of scaling functions V̂ I

j = gen{φI
j,k,−3 ≤ k ≤ 2j −1}, of size

2j − 3 and the inclusions V I
j ⊂ V̂ I

j and V I
j ⊂ H1

0 are verified. Subspaces V̂ I
j
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76 V. VAMPA – M. MARTÍN

have dimension 2j + 3 and constitute an MRA in L2([0, 1]). Each subspace V̂ I
j

consists of piecewise polynomials of degree m = 3 with knots in 0 ≤ k/2j ≤ 1.
Motivated by the construction for the whole line, a suitable basis for the

wavelet space Ŵ I
j , the orthogonal complement of V̂ I

j in V̂ I
j+1, has the form

[ψ̂I
j ] = [φ̂I

j+1].Ĝj , where Ĝj , of size (2j+1 + 3) × 2j , is a matrix such that its
columns are in the null space of Ĥt

j .P̂
I
j+1 of size 2j . As described in detail in [15,

16], Ĥj is the two scale matrix of size (2j+1+3)× (2j+3), such that the relation
[φ̂I

j ] = [φ̂I
j+1].Ĥj is satisfied, while P̂ I

j = [φ̂I
j ]
t · [φ̂I

j ], P̂
I
j ∈ R(2j+3)×(2j+3) is

the Grammian matrix, associated to the bases [φ̂I
j ] .

Interior wavelets are not modified, the same as scaling functions: only bases
corresponding to the edges are different and are adequately designed (see [4]).
Denoting by W I

j the orthogonal complement of V I
j in V I

j+1 of size 2j , the con-

struction of a basis for W I
j is analogous to the method described above for Ŵ I

j ,

taking into account that dim(W I
j ) = dim(Ŵ I

j ) = 2j .

2.2 Modified Galerkin method for a boundary value. Problem

For the linear BVP on an interval, Lu = − u′′(x) + p(x)u′(x) + q(x)u(x) =
f(x), where p(x), q(x) and f(x) are continuous functions on I and u is a func-
tion in certain space V , it is known that the corresponding variational formulation
is to seek u ∈ V , such that a(u, v) = ⟨f, v⟩ , ∀v ∈ V , where:

a(u, v) =

∫ 1

0
(u′(x)v′(x) + p(x)u′(x)v(x) + q(x)u(x)v(x)) dx, (5)

for u and v ∈ V 0 ⊂ L2(I), the subspace of functions with homogeneous bound-
ary conditions, in case Dirichlet boundary conditions are considered.

Let us assume that we choose an approximate solution ũ of the form ũ =∑N
k=1 αkΦ

I
k. The substitution of this approximation in the weak formulation

produces the following linear system:

N∑
k=1

αk a(Φk,Φn) = ⟨f,Φn⟩ n = 1, 2, . . . , N, (6)

and we arrive at the problem of solving a matrix equation, Aα = b, where
A(n, k) = a(Φk,Φn) and b(n) = ⟨f,Φn⟩.

If the spaces of scaling functions, V I
j or V̂ I

j , described in the previous section
are used for the approximation solution ûj , the rate of convergence is not good.
In the first case the reason is that in the subspace V I

j , all functions and their
derivatives vanish at both ends and then, a poor approximation is provided.
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On the other hand, considering scaling functions in V̂ I
j the matrix tends to

be very ill conditioned when the scale j is large: as we have to restrict to the
interval I , the support of the intersection of boundary splines with the rest of
scaling functions becomes smaller and the rows corresponding to equations that
involve the edges are almost nulls.

These drawbacks were analyzed in recent articles [14, 15, 16] and motivated
the development of the Modified Galerkin (MG) method, which combines vari-
ational equations with a collocation scheme using both spaces V I

j and V̂ I
j to

construct an algebraic system to obtain ûj as follows:

1. (a) Variational equations: they are are obtained from the weak formu-
lation, considering that the approximation of the unknown function
u is in V̂ I

j and has the form ûj =
∑2j−1

k=−3 α̂j,kφ
I
j,k, while the test

function v is in V I
j . This leads to a rectangular system of size (2j −

3)× (2j + 3):

2j−1∑
k=−3

α̂k a(φ̂
I
j,k, φ

I
j,n) =

⟨
f, φI

j,n

⟩
n = 0, 1, . . . , (2j − 4), (7)

or in matrix form,
Â4,jα̂j = b̂4,j . (8)

(b) Collocation equations: they are obtained from the requirement that
the residual should be zero at the ends of the interval and in colloca-
tions points, 2−j and 1− 2−j ,

u′′(0) + p(0)u′(0) + q(0)u(0) = f(0)

u′′(2−j) + p(2−j)u′(2−j) + q(2−j)u(2−j) = f(2−j)

u′′(1− 2−j) + p(1− 2−j)u′(1− 2−j) (9)

+q(1− 2−j)u(1− 2−j) = f(1− 2−j)

u′′(1) + p(1)u′(1) + q(1)u(1) = f(1).

(c) Boundary conditions: are obtained from the requirement that the so-
lution satisfies the boundary conditions,

α̂−3 φ
I
4,j,−3(0) + α̂−2 φ

I
4,j,−2(0) + α̂−1 φ

I
4,j,−1(0) = 0

(10)

α̂2j−2 φ
I
4,j,2j−2(1) + α̂2j−1 φ

I
4,j,2j−1(1) + α̂2j φ

I
4,j,2j (1) = 0.
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78 V. VAMPA – M. MARTÍN

2. Approximate solution in V I
j : Solving the square algebraic system 2j + 3

coefficients α̃jk are obtained. Then we have to project ûj in order to get
the approximate solution ũj ,

ũj = PVI
j
(ûj) =

2j−4∑
k=0

α̂j,k φ4,j,k. (11)

It should be noted that the matrix of Eq.(8) has a Toeplitz structure and that
the final algebraic system that corresponds to the MG method has a band matrix,
as sparse as in the case of considering interior basis functions only, but different
at the top and at the bottom. Consequently, numerical solutions can be computed
efficiently [14, 15]. To calculate the matrix elements in Eq.(8) the following
convolution properties of B-spline scaling functions were used [14]:

⟨φm+1,j,l, φm+1,j,k⟩ = φ2(m+1)(m+ 1 + l − k) (12)⟨
φm+1,j,l, φ

′
m+1,j,k

⟩
= 2j φ′

2(m+1)(m+ 1 + l − k) (13)⟨
φm+1,j,l, φ

′′
m+1,j,k

⟩
= −22j φ′′

2(m+1)(m+ 1 + l − k), (14)

and then, taking into account Eq.(7), they have the following form:

Âm+1,j(n, k) = −22jφ′′
2(m+1)(m+ 1 + n− k) +

2jpj(n, k)φ
′
2(m+1)(m+ 1 + n− k) + (15)

qj(n, k)φ2(m+1)(m+ 1 + n− k),

where φ2(m+1) is the B-spline of order 2m+ 1 and b̂m+1,j(n) =
⟨
f, φI

j,n

⟩
, for

0 ≤ n, k ≤ 2j − 4.

2.2.1 Approximation error analysis

To analyze the approximation error in scale j using the Modified Wavelet-Galer-
kin Method, it is important to take into account that ûj is not the solution of
a pure variational problem in V̂ I

j , so then Céa’s lemma [6] cannot be applied.
However, as was demonstrated by the authors (see [15, 16] for details), it is
possible to design a subspace Û I

j of V̂ I
j in such a way that the approximation ûj

is the solution of a classic variational problem in Û I
j . Then, the following error

estimation is obtained:

∥u− ûj∥2V̂ I
j

≤ C

γ
inf

v∈ÛI
j
∥u− v∥2

V̂ I
j

, (16)
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AN ADAPTIVE WAVELET-GALERKIN METHOD FOR PARABOLIC PDE 79

where C and γ are constants corresponding to continuity and coercivity of the
bilinear form a, respectively.

From (16) it is derived that the solution obtained with the Modified Galerkin
Method minimizes norm error (with a constant factor) and converges to the exact
solution as the scale j increases.

It is demonstrated in Ref. [12] that the interpolatory cubic spline function
Sh, which coincides with a smooth function u ∈ C4 with uniform spacing h,
satisfies:

∥u− Sh∥2H1 ≤ 35

24
h4∥u∥∞. (17)

Finally, and as a consequence of the above results, the following bound is
valid for the approximation error:

∥u− ûj∥2L2 ≤ C(
1

2j
)4. (18)

2.3 Using wavelets to increase the scale

Once ûj at scale j is obtained, an error estimate of the approximation in V̂ I
j

may indicate the convenience of increasing the scale. Instead of repeating the
process described previously, an attractive strategy consists of improving the
approximation recursively using wavelets. In this way, the MRA structure is
exploited and large computational savings could be achieved.

Let us consider the following expansion for ûj+1 ∈ V̂ I
j+1:

ûj+1 =

−1∑
k=−3

α̂j+1,k φ
I
j+1,k +

2j+1−4∑
k=0

α̂j+1,k φ
I
j+1,k +

2j+1−1∑
k=2j+1−3

α̂j+1,k φ
I
j+1,k.

(19)
Taking into account that

∑2j+1−4
k=0 α̂j+1,k φ

I
j+1,k ∈ V I

j+1 and the space or-
thogonality relation, (Eq.(4)), Eq. (19) can be rewritten using another basis of
V̂ I
j+1:

ûj+1 =

−1∑
k=−3

α̂j+1,k φ
I
j+1,k+

2j−4∑
k=0

βj,kφ
I
j,k+

2j∑
k=1

ξj,kψ
I
j,k+

2j+1−1∑
k=2j+1−3

α̂j+1,k φ
I
j+1,k.

(20)
Then, solving the following variational equations:

⟨Lûj+1, φ
I
j,n⟩ = ⟨f, φI

j,n⟩ 0 ≤ n ≤ 2j − 4 (21)

⟨Lûj+1, ψ
I
j,n⟩ = ⟨f, ψI

j,n⟩ 1 ≤ n ≤ 2j (22)
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80 V. VAMPA – M. MARTÍN

with the six additional equations corresponding to both edges, the coefficients of
ûj+1 can be obtained. Considering that ûj+1 = ûj + [ûj+1 − ûj ] = ûj + v̂j , the
increment v̂j ∈ V̂j+1 can be expressed as:

v̂j =

2j+1−1∑
k=−3

γj+1,kφ̂
I
j+1,k = [φ̂I

j+1] · [γj+1], (23)

and replacing ûj+1 into Eq.(21), yields the following important result.

Lemma 1 The increment v̂j satisfies the orthogonality condition, ⟨Lv̂j , φI
j,n⟩ =

0, 0 ≤ n ≤ 2j − 4.

Due to this lemma the total number of unknowns is significantly decreased
from (2j+1 + 3) to (2j + 6) as a consequence of the following theorem.

Theorem 1 There exists a matrixNj of size (2j+1+3)×(2j+6), recursive and
of simple structure and a vector α̂j+1 of length (2j + 6) such that the increment
coefficients in the basis of scaling functions of V̂j+1 are [γj+1] = Nj [α̂j+1].

In conclusion, once the approximation ûj is obtained, the scale can be in-
creased efficiently using the AWG method (for details see [16]), which consists
of solving for the increment v̂j , 2j variational equations,

⟨Lv̂j , ψI
j,n⟩ = ⟨f − Lûj , ψ

I
j,n⟩, (24)

and imposing six equations corresponding to both edges.
Using the property described in the theorem above, large computations sav-

ings can be achieved since the effort required to advance form scale j to j + 1
using scaling functions is twice the effort using wavelets and solving Eq.(24).

2.3.1 Adaptivity: error estimate and refinement criteria

In this section, an error estimate for the approximate solution is obtained. Taking
the norm of the increment in Eq. (23), the following expression is obtained for
each scale:

∥v̂j∥22 ≤ Cj

2j+1−1∑
k=−3

|γj+1,k|2. (25)

As the functions φI
j,k constitute a Riesz basis of V̂ I

j+1, Eq.(25) is verified
for certain constants Cj , with Cj ≤ C, for all j, see [5]. Then, the incre-
ment coefficients constitute a natural expression for the error in the L2 norm
and

∑2j+1−1
k=−3 |γj+1,k|2 can be used as an error estimate.
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AN ADAPTIVE WAVELET-GALERKIN METHOD FOR PARABOLIC PDE 81

Once such an estimate has been made, one can decide whether the approxi-
mation is satisfactory or whether further refinement of the solution is necessary.
In the following section, the adaptive scheme for parabolic equations using this
refinement criteria is described.

3 AWG algorithm

Let us summarize the iterative refinement algorithm proposed to solve Eq.(3):

• Step 1

Choose ∆t and set an initial coarse scale j. u0(x) = u(x, 0) (initial
condition, t = k∆t, k = 0).

• Step 2

Solve the linear system using the Modified Wavelet-Galerkin Method (Sec-
tion 2.2) considering p(x) = 1

ϵF (u
k(x)), q(x) = 1

ϵ∆t and f(x) = 1
ϵ∆tu

k(x).

ûk+1
j =

∑2j−1
k=−3 α̂j,kφ

I
j,k is obtained.

• Step 3

Refine and advance in j with wavelets: Find [α̂j+1] and v̂j solving the
system Eq.(24).

• Step 4

Given an adequate threshold ε , IF ∥v̂j∥22 < ε , a good approximation
ûk+1
jw

is obtained (jw is the refined scale) Go TO Step 6 ,
IF NOT, GO TO Step 5.

• Step 5

ûj+1 = ûj + v̂j , j = j + 1 go back to Step 3.

• Step 6

t = t + ∆t (k = k + 1). If t = tfinal, STOP. Otherwise, find ukj =

Proj(ûkjw) on to Vj and REPEAT steps 2− 5.

Remark
In Step 6, ûkjw for t is obtained at scale jw > j. As in Step 2, ukj is needed

to solve the MG method but in scale j, the projection Proj(ûkjw) on to Vj is
used leading to big savings in computer time. This projection is calculated by
multiplying by two scale matrices Ĥj from j to jw.
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4 Numerical results

In this section experiments are presented to demonstrate the capability of the
proposed method: the Burgers equation is solved with two different types of
boundary and initial conditions.

It is important to point out the advantages of the proposed method in choos-
ing automatically the scale needed to get the required accuracy for each time
step: the algorithm performs spacial adaptivity letting the time step fixed. In
addition, as it was mentioned before, algebraic systems are efficiently solved
because matrices are sparse, well conditioned and with Toeplitz structure.

4.1 Burgers equation

In 1939, J. M. Burgers [3] simplified the Navier-Stokes equation and obtained
the following nonlinear equation:

ut(x, t) + u(x, t) ux(x, t) = ϵuxx(x, t) + F (x, t), (26)

known as the Burgers equation, where ϵ is the viscosity, frequently considered
without external force F (x, t).

In general, nonlinear equations cannot be solved analytically. But in this
case, the Cole-Hopf transformation [19] turns the nonlinear Burgers equation
into the linear heat conduction equation. Since the heat equation is explicitly
solvable in terms of the so-called heat kernel, a general solution of the Burgers
equation can be obtained. This is of importance because it allows one to compare
numerically obtained solutions of the nonlinear equation with the exact ones,
which is very useful to investigate the quality of the applied numerical schemes.
Furthermore, the Burgers equation still has interesting applications in physics
and astrophysics.

• Problem 1:

For the first test problem we consider Eq.(26) for 0 ≤ x ≤ 1.

ut(x, t) + u(x, t) ux(x, t) =
10−2

π
uxx(x, t). (27)

The following Dirichlet boundary conditions u(0, t) = u(1, t) = 0 and
initial condition, u0(x) = u(x, 0) = −sin(π2x− 1) are used. We have
solved this problem with a fixed time integration step, ∆t = 0.0025, an
initial scale j = j0 = 6 and tfinal = 0.1875.
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For the initial condition considered, the sine curve steepens as time ad-
vances, leading to a stationary discontinuity at x = 0.5.

First, in Figure 1 we present numerical results obtained with the proposed
algorithm but using a fixed scale j for all time steps, without adaptivity.
The oscillations are due to the fact that j is small and is not sufficient to
resolve the large gradient that occurs at x = 0.5. Secondly, in Figure 2
numerical solutions are shown applying the adaptivity strategy proposed.
ε = 0.5 10−2 is the threshold for the coefficients of the increment v̂j
(ûj+1 = ûj + v̂j) that was used as termination criterion. The scale take
increasing values 6 ≤ jw ≤ 10 as time advance, and is maximun for the
time the solution present a sharp gradient.

Figure 1: Evolution of Burgers equation solution (0 ≤ t ≤ 0.25).

Figure 2: Evolution of Burgers equation solution (0 ≤ t ≤ 0.25).

It should be noted that the value of the threshold must be chosen appro-
priately, in order computational savings could be achieved. For a smaller
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threshold ε = 0.5 10−4 the scale j = 10 is needed and no adaptivity is
performed.

In Figure 3 we present the approximation error versus x, for t = 4∆t and
t = 15∆t, in both cases taking j = 10. Adequate scale factors were used
to make possible the comparison. For the second time value increment,
coefficients are concentrated around the singularity located at x = 0.5
(See Figures 1 and 2).

Figure 3: The approximation error versus x (with knots in k/210, k = 0, . . . , 210). Left
for t = 0.01 and right for t = 0.0375.

• Problem 2:

As a second test problem, we consider Eq.(26) for 0 ≤ x ≤ 1

ut(x, t) + u(x, t) ux(x, t) = (0.002)uxx(x, t), (28)

with the following mixed boundary conditions ux(0, t) = 0 and u(1, t) =
1 and u0(x) = u(x, 0) = e−8(1−x) as the initial condition.

In Figure 4 we present numerical results obtained with the proposed algo-
rithm. In this case, the fix integration time step is ∆t = 0.015, an initial
scale j = j0 = 6, tfinal = 1.515. A quasi shock starting at t = 0.03 and
fully developed at t = 0.2 is shown. ε = 0.5 10−3 is the threshold for the
coefficients of the increment v̂j .

In Figure 5 we present the approximation error versus x for t = 10∆t and
t = 25∆t (for j = 7 left and j = 8 right).

It is evident from the plots that in both problems, the adaptive algorithm is
able to track the sharp changes of the solutions and that high-order accuracy can
be achieved by the adaptive Wavelet-Galerkin scheme proposed.
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Figure 4: Evolution of Burgers equation solution (0 ≤ t ≤ 1.515).

Figure 5: The approximation error versus x (with knots in k/27, k = 0, . . . , 27). Left
for t = 0.15 and right for t = 0.375.
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5 Conclusion

In the present work an adaptive Wavelet-Galerkin method is proposed to solve
partial differential equations of parabolic type. Numerical results reveal that the
introduced technique is effective and convenient to solve these equations because
it is easy to implement and yields the desired accuracy with low computational
cost. In case of Burgers equation, the developed algorithm can track the moving
fronts of the solutions and has the advantage of working well for small viscosity.
We hope that the proposed method will be useful in more difficult and interesting
cases, such as fluid mechanics problems.
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