159 research outputs found

    Security strategies in genomic files

    Get PDF
    There are new mechanisms to sequence and process the genomic code, discovering thus diagnostic tools and treatments. The file for a sequenced genome can reach hundreds of gigabytes. Thus, for further studies, we need new means to compress the information and a standardized representation to simplify the development of new tools. The ISO standardization group MPEG has used its expertise in compressing multimedia content to compress genomic information and develop its ´MPEG-G standard’. Given the sensitivity of the data, security is a major identified requirement. This thesis proposes novel technologies that assure the security of both the sequenced data and its metadata. We define a container-based file format to group data, metadata, and security information at the syntactical level. It includes new features like grouping multiple results in a same file to simplify the transport of whole studies. We use the granularity of the encoder’s output to enhance security. The information is represented in units, each dedicated to a specific region of the genome, which allows to provide encryption and signature features on a region base. We analyze the trade-off between security and an even more fine-grained approach and prove that apparently secure settings can be insecure: if the file creator may encrypt only specific elements of a unit, cross-checking unencrypted information permits to infer encrypted content. Most of the proposals for MPEG-G coming from other research groups and companies focused on data compression and representation. However, the need was recognized to find a solution for metadata encoding. Our proposal was included in the standard: an XML-based solution, separated in a core specification and extensions. It permits to adapt the metadata schema to the different genomic repositories' frameworks, without importing requirements from one framework to another. To simplify the handling of the resulting metadata, we define profiles, i.e. lists of extensions that must be present in a given framework. We use XML signature and XML encryption for metadata security. The MPEG requirements also concern access rules. Our privacy solutions limit the range of persons with access and we propose access rules represented with XACML to convey under which circumstances a user is granted access to a specific action among the ones specified in MPEG-G's API, e.g. filtering data by attributes. We also specify algorithms to combine multiple rules by defining default behaviors and exceptions. The standard’s security mechanisms protect the information only during transport and access. Once the data is obtained, the user could publish it. In order to identify leakers, we propose an algorithm that generates unique, virtually undetectable variations. Our solution is novel as the marking can be undone (and the utility of the data preserved) if the corresponding secret key is revealed. We also show how to combine multiple secret keys to avoid collusion. The API retained for MPEG-G considers search criteria not present in the indexing tables, which highlights shortcomings. Based on the proposed MPEG-G API we have developed a solution. It is based on a collaboration framework where the different users' needs and the patient's privacy settings result in a purpose-built file format that optimizes query times and provides privacy and authenticity on the patient-defined genomic regions. The encrypted output units are created and indexed to optimize query times and avoid rarely used indexing fields. Our approach resolves the shortcomings of MPEG-G's indexing strategy. We have submitted our technologies to the MPEG standardization committee. Many have been included in the final standard, via merging with other proposals (e.g. file format), discussion (e.g. security mechanisms), or direct acceptance (e.g. privacy rules).Hi han nous mètodes per la seqüenciació i el processament del codi genòmic, permetent descobrir eines de diagnòstic i tractaments en l’àmbit mèdic. El resultat de la seqüenciació d’un genoma es representa en un fitxer, que pot ocupar centenars de gigabytes. Degut a això, hi ha una necessitat d’una representació estandarditzada on la informació és comprimida. Dins de la ISO, el grup MPEG ha fet servir la seva experiència en compressió de dades multimèdia per comprimir dades genòmiques i desenvolupar l'estàndard MPEG-G, sent la seguretat un dels requeriments principals. L'objectiu de la tesi és garantir aquesta seguretat (encriptant, firmant i definint regles d¿ accés) tan per les dades seqüenciades com per les seves metadades. El primer pas és definir com transportar les dades, metadades i paràmetres de seguretat. Especifiquem un format de fitxer basat en contenidors per tal d'agrupar aquets elements a nivell sintàctic. La nostra solució proposa noves funcionalitats com agrupar múltiples resultats en un mateix fitxer. Pel que fa la seguretat de dades, la nostra proposta utilitza les propietats de la sortida del codificador. Aquesta sortida és estructurada en unitats, cadascuna dedicada a una regió concreta del genoma, permetent una encriptació i firma de dades específica a la unitat. Analitzem el compromís entre seguretat i un enfocament de gra més fi demostrant que configuracions aparentment vàlides poden no ser-ho: si es permet encriptar sols certes sub-unitats d'informació, creuant els continguts no encriptats, podem inferir el contingut encriptat. Quant a metadades, proposem una solució basada en XML separada en una especificació bàsica i en extensions. Podem adaptar l'esquema de metadades als diferents marcs de repositoris genòmics, sense imposar requeriments d’un marc a un altre. Per simplificar l'ús, plantegem la definició de perfils, és a dir, una llista de les extensions que han de ser present per un marc concret. Fem servir firmes XML i encriptació XML per implementar la seguretat de les metadades. Les nostres solucions per la privacitat limiten qui té accés a les dades, però no en limita l’ús. Proposem regles d’accés representades amb XACML per indicar en quines circumstàncies un usuari té dret d'executar una de les accions especificades a l'API de MPEG-G (per exemple, filtrar les dades per atributs). Presentem algoritmes per combinar regles, per tal de poder definir casos per defecte i excepcions. Els mecanismes de seguretat de MPEG-G protegeixen la informació durant el transport i l'accés. Una vegada l’usuari ha accedit a les dades, les podria publicar. Per tal d'identificar qui és l'origen del filtratge de dades, proposem un algoritme que genera modificacions úniques i virtualment no detectables. La nostra solució és pionera, ja que els canvis es poden desfer si el secret corresponent és publicat. Per tant, la utilitat de les dades és mantinguda. Demostrem que combinant varis secrets, podem evitar col·lusions. L'API seleccionada per MPEG-G, considera criteris de cerca que no són presents en les taules d’indexació. Basant-nos en aquesta API, hem desenvolupat una solució. És basada en un marc de col·laboració, on la combinació de les necessitats dels diferents usuaris i els requeriments de privacitat del pacient, es combinen en una representació ad-hoc que optimitza temps d’accessos tot i garantint la privacitat i autenticitat de les dades. La majoria de les nostres propostes s’han inclòs a la versió final de l'estàndard, fusionant-les amb altres proposes (com amb el format del fitxer), demostrant la seva superioritat (com amb els mecanismes de seguretat), i fins i tot sent acceptades directament (com amb les regles de privacitat)

    Security strategies in genomic files

    Get PDF
    There are new mechanisms to sequence and process the genomic code, discovering thus diagnostic tools and treatments. The file for a sequenced genome can reach hundreds of gigabytes. Thus, for further studies, we need new means to compress the information and a standardized representation to simplify the development of new tools. The ISO standardization group MPEG has used its expertise in compressing multimedia content to compress genomic information and develop its ´MPEG-G standard’. Given the sensitivity of the data, security is a major identified requirement. This thesis proposes novel technologies that assure the security of both the sequenced data and its metadata. We define a container-based file format to group data, metadata, and security information at the syntactical level. It includes new features like grouping multiple results in a same file to simplify the transport of whole studies. We use the granularity of the encoder’s output to enhance security. The information is represented in units, each dedicated to a specific region of the genome, which allows to provide encryption and signature features on a region base. We analyze the trade-off between security and an even more fine-grained approach and prove that apparently secure settings can be insecure: if the file creator may encrypt only specific elements of a unit, cross-checking unencrypted information permits to infer encrypted content. Most of the proposals for MPEG-G coming from other research groups and companies focused on data compression and representation. However, the need was recognized to find a solution for metadata encoding. Our proposal was included in the standard: an XML-based solution, separated in a core specification and extensions. It permits to adapt the metadata schema to the different genomic repositories' frameworks, without importing requirements from one framework to another. To simplify the handling of the resulting metadata, we define profiles, i.e. lists of extensions that must be present in a given framework. We use XML signature and XML encryption for metadata security. The MPEG requirements also concern access rules. Our privacy solutions limit the range of persons with access and we propose access rules represented with XACML to convey under which circumstances a user is granted access to a specific action among the ones specified in MPEG-G's API, e.g. filtering data by attributes. We also specify algorithms to combine multiple rules by defining default behaviors and exceptions. The standard’s security mechanisms protect the information only during transport and access. Once the data is obtained, the user could publish it. In order to identify leakers, we propose an algorithm that generates unique, virtually undetectable variations. Our solution is novel as the marking can be undone (and the utility of the data preserved) if the corresponding secret key is revealed. We also show how to combine multiple secret keys to avoid collusion. The API retained for MPEG-G considers search criteria not present in the indexing tables, which highlights shortcomings. Based on the proposed MPEG-G API we have developed a solution. It is based on a collaboration framework where the different users' needs and the patient's privacy settings result in a purpose-built file format that optimizes query times and provides privacy and authenticity on the patient-defined genomic regions. The encrypted output units are created and indexed to optimize query times and avoid rarely used indexing fields. Our approach resolves the shortcomings of MPEG-G's indexing strategy. We have submitted our technologies to the MPEG standardization committee. Many have been included in the final standard, via merging with other proposals (e.g. file format), discussion (e.g. security mechanisms), or direct acceptance (e.g. privacy rules).Hi han nous mètodes per la seqüenciació i el processament del codi genòmic, permetent descobrir eines de diagnòstic i tractaments en l’àmbit mèdic. El resultat de la seqüenciació d’un genoma es representa en un fitxer, que pot ocupar centenars de gigabytes. Degut a això, hi ha una necessitat d’una representació estandarditzada on la informació és comprimida. Dins de la ISO, el grup MPEG ha fet servir la seva experiència en compressió de dades multimèdia per comprimir dades genòmiques i desenvolupar l'estàndard MPEG-G, sent la seguretat un dels requeriments principals. L'objectiu de la tesi és garantir aquesta seguretat (encriptant, firmant i definint regles d¿ accés) tan per les dades seqüenciades com per les seves metadades. El primer pas és definir com transportar les dades, metadades i paràmetres de seguretat. Especifiquem un format de fitxer basat en contenidors per tal d'agrupar aquets elements a nivell sintàctic. La nostra solució proposa noves funcionalitats com agrupar múltiples resultats en un mateix fitxer. Pel que fa la seguretat de dades, la nostra proposta utilitza les propietats de la sortida del codificador. Aquesta sortida és estructurada en unitats, cadascuna dedicada a una regió concreta del genoma, permetent una encriptació i firma de dades específica a la unitat. Analitzem el compromís entre seguretat i un enfocament de gra més fi demostrant que configuracions aparentment vàlides poden no ser-ho: si es permet encriptar sols certes sub-unitats d'informació, creuant els continguts no encriptats, podem inferir el contingut encriptat. Quant a metadades, proposem una solució basada en XML separada en una especificació bàsica i en extensions. Podem adaptar l'esquema de metadades als diferents marcs de repositoris genòmics, sense imposar requeriments d’un marc a un altre. Per simplificar l'ús, plantegem la definició de perfils, és a dir, una llista de les extensions que han de ser present per un marc concret. Fem servir firmes XML i encriptació XML per implementar la seguretat de les metadades. Les nostres solucions per la privacitat limiten qui té accés a les dades, però no en limita l’ús. Proposem regles d’accés representades amb XACML per indicar en quines circumstàncies un usuari té dret d'executar una de les accions especificades a l'API de MPEG-G (per exemple, filtrar les dades per atributs). Presentem algoritmes per combinar regles, per tal de poder definir casos per defecte i excepcions. Els mecanismes de seguretat de MPEG-G protegeixen la informació durant el transport i l'accés. Una vegada l’usuari ha accedit a les dades, les podria publicar. Per tal d'identificar qui és l'origen del filtratge de dades, proposem un algoritme que genera modificacions úniques i virtualment no detectables. La nostra solució és pionera, ja que els canvis es poden desfer si el secret corresponent és publicat. Per tant, la utilitat de les dades és mantinguda. Demostrem que combinant varis secrets, podem evitar col·lusions. L'API seleccionada per MPEG-G, considera criteris de cerca que no són presents en les taules d’indexació. Basant-nos en aquesta API, hem desenvolupat una solució. És basada en un marc de col·laboració, on la combinació de les necessitats dels diferents usuaris i els requeriments de privacitat del pacient, es combinen en una representació ad-hoc que optimitza temps d’accessos tot i garantint la privacitat i autenticitat de les dades. La majoria de les nostres propostes s’han inclòs a la versió final de l'estàndard, fusionant-les amb altres proposes (com amb el format del fitxer), demostrant la seva superioritat (com amb els mecanismes de seguretat), i fins i tot sent acceptades directament (com amb les regles de privacitat)

    Security strategies in genomic files

    Get PDF
    There are new mechanisms to sequence and process the genomic code, discovering thus diagnostic tools and treatments. The file for a sequenced genome can reach hundreds of gigabytes. Thus, for further studies, we need new means to compress the information and a standardized representation to simplify the development of new tools. The ISO standardization group MPEG has used its expertise in compressing multimedia content to compress genomic information and develop its ´MPEG-G standard’. Given the sensitivity of the data, security is a major identified requirement. This thesis proposes novel technologies that assure the security of both the sequenced data and its metadata. We define a container-based file format to group data, metadata, and security information at the syntactical level. It includes new features like grouping multiple results in a same file to simplify the transport of whole studies. We use the granularity of the encoder’s output to enhance security. The information is represented in units, each dedicated to a specific region of the genome, which allows to provide encryption and signature features on a region base. We analyze the trade-off between security and an even more fine-grained approach and prove that apparently secure settings can be insecure: if the file creator may encrypt only specific elements of a unit, cross-checking unencrypted information permits to infer encrypted content. Most of the proposals for MPEG-G coming from other research groups and companies focused on data compression and representation. However, the need was recognized to find a solution for metadata encoding. Our proposal was included in the standard: an XML-based solution, separated in a core specification and extensions. It permits to adapt the metadata schema to the different genomic repositories' frameworks, without importing requirements from one framework to another. To simplify the handling of the resulting metadata, we define profiles, i.e. lists of extensions that must be present in a given framework. We use XML signature and XML encryption for metadata security. The MPEG requirements also concern access rules. Our privacy solutions limit the range of persons with access and we propose access rules represented with XACML to convey under which circumstances a user is granted access to a specific action among the ones specified in MPEG-G's API, e.g. filtering data by attributes. We also specify algorithms to combine multiple rules by defining default behaviors and exceptions. The standard’s security mechanisms protect the information only during transport and access. Once the data is obtained, the user could publish it. In order to identify leakers, we propose an algorithm that generates unique, virtually undetectable variations. Our solution is novel as the marking can be undone (and the utility of the data preserved) if the corresponding secret key is revealed. We also show how to combine multiple secret keys to avoid collusion. The API retained for MPEG-G considers search criteria not present in the indexing tables, which highlights shortcomings. Based on the proposed MPEG-G API we have developed a solution. It is based on a collaboration framework where the different users' needs and the patient's privacy settings result in a purpose-built file format that optimizes query times and provides privacy and authenticity on the patient-defined genomic regions. The encrypted output units are created and indexed to optimize query times and avoid rarely used indexing fields. Our approach resolves the shortcomings of MPEG-G's indexing strategy. We have submitted our technologies to the MPEG standardization committee. Many have been included in the final standard, via merging with other proposals (e.g. file format), discussion (e.g. security mechanisms), or direct acceptance (e.g. privacy rules).Hi han nous mètodes per la seqüenciació i el processament del codi genòmic, permetent descobrir eines de diagnòstic i tractaments en l’àmbit mèdic. El resultat de la seqüenciació d’un genoma es representa en un fitxer, que pot ocupar centenars de gigabytes. Degut a això, hi ha una necessitat d’una representació estandarditzada on la informació és comprimida. Dins de la ISO, el grup MPEG ha fet servir la seva experiència en compressió de dades multimèdia per comprimir dades genòmiques i desenvolupar l'estàndard MPEG-G, sent la seguretat un dels requeriments principals. L'objectiu de la tesi és garantir aquesta seguretat (encriptant, firmant i definint regles d¿ accés) tan per les dades seqüenciades com per les seves metadades. El primer pas és definir com transportar les dades, metadades i paràmetres de seguretat. Especifiquem un format de fitxer basat en contenidors per tal d'agrupar aquets elements a nivell sintàctic. La nostra solució proposa noves funcionalitats com agrupar múltiples resultats en un mateix fitxer. Pel que fa la seguretat de dades, la nostra proposta utilitza les propietats de la sortida del codificador. Aquesta sortida és estructurada en unitats, cadascuna dedicada a una regió concreta del genoma, permetent una encriptació i firma de dades específica a la unitat. Analitzem el compromís entre seguretat i un enfocament de gra més fi demostrant que configuracions aparentment vàlides poden no ser-ho: si es permet encriptar sols certes sub-unitats d'informació, creuant els continguts no encriptats, podem inferir el contingut encriptat. Quant a metadades, proposem una solució basada en XML separada en una especificació bàsica i en extensions. Podem adaptar l'esquema de metadades als diferents marcs de repositoris genòmics, sense imposar requeriments d’un marc a un altre. Per simplificar l'ús, plantegem la definició de perfils, és a dir, una llista de les extensions que han de ser present per un marc concret. Fem servir firmes XML i encriptació XML per implementar la seguretat de les metadades. Les nostres solucions per la privacitat limiten qui té accés a les dades, però no en limita l’ús. Proposem regles d’accés representades amb XACML per indicar en quines circumstàncies un usuari té dret d'executar una de les accions especificades a l'API de MPEG-G (per exemple, filtrar les dades per atributs). Presentem algoritmes per combinar regles, per tal de poder definir casos per defecte i excepcions. Els mecanismes de seguretat de MPEG-G protegeixen la informació durant el transport i l'accés. Una vegada l’usuari ha accedit a les dades, les podria publicar. Per tal d'identificar qui és l'origen del filtratge de dades, proposem un algoritme que genera modificacions úniques i virtualment no detectables. La nostra solució és pionera, ja que els canvis es poden desfer si el secret corresponent és publicat. Per tant, la utilitat de les dades és mantinguda. Demostrem que combinant varis secrets, podem evitar col·lusions. L'API seleccionada per MPEG-G, considera criteris de cerca que no són presents en les taules d’indexació. Basant-nos en aquesta API, hem desenvolupat una solució. És basada en un marc de col·laboració, on la combinació de les necessitats dels diferents usuaris i els requeriments de privacitat del pacient, es combinen en una representació ad-hoc que optimitza temps d’accessos tot i garantint la privacitat i autenticitat de les dades. La majoria de les nostres propostes s’han inclòs a la versió final de l'estàndard, fusionant-les amb altres proposes (com amb el format del fitxer), demostrant la seva superioritat (com amb els mecanismes de seguretat), i fins i tot sent acceptades directament (com amb les regles de privacitat).Postprint (published version

    Fractal-based models for internet traffic and their application to secure data transmission

    Get PDF
    This thesis studies the application of fractal geometry to the application of covert communications systems. This involves the process of hiding information in background noise; the information being encrypted or otherwise. Models and methods are considered with regard to two communications systems: (i) wireless communications; (ii) internet communications. In practice, of course, communication through the Internet cannot be disassociated from wireless communications as Internet traffic is 'piped' through a network that can include wireless communications (e.g. satellite telecommunications). However, in terms of developing models and methods for covert communications in general, points (i) and (ii) above require different approaches and access to different technologies. With regard to (i) above, we develop two methods based on fractal modulation and multi-fractal modulation. With regard to (ii), we implement a practical method and associated software for covert transmission of file attachments based on an analysis of Internet traffic noise. In both cases, however, two fractal models are considered; the first is the standard Random Scaling Fractal model and the second is a generalisation of this model that incorporates a greater range of spectral properties than the first—a Generalised Random Scaling Fractal Model. [Continues.

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    End-to-end security in active networks

    Get PDF
    Active network solutions have been proposed to many of the problems caused by the increasing heterogeneity of the Internet. These ystems allow nodes within the network to process data passing through in several ways. Allowing code from various sources to run on routers introduces numerous security concerns that have been addressed by research into safe languages, restricted execution environments, and other related areas. But little attention has been paid to an even more critical question: the effect on end-to-end security of active flow manipulation. This thesis first examines the threat model implicit in active networks. It develops a framework of security protocols in use at various layers of the networking stack, and their utility to multimedia transport and flow processing, and asks if it is reasonable to give active routers access to the plaintext of these flows. After considering the various security problem introduced, such as vulnerability to attacks on intermediaries or coercion, it concludes not. We then ask if active network systems can be built that maintain end-to-end security without seriously degrading the functionality they provide. We describe the design and analysis of three such protocols: a distributed packet filtering system that can be used to adjust multimedia bandwidth requirements and defend against denial-of-service attacks; an efficient composition of link and transport-layer reliability mechanisms that increases the performance of TCP over lossy wireless links; and a distributed watermarking servicethat can efficiently deliver media flows marked with the identity of their recipients. In all three cases, similar functionality is provided to designs that do not maintain end-to-end security. Finally, we reconsider traditional end-to-end arguments in both networking and security, and show that they have continuing importance for Internet design. Our watermarking work adds the concept of splitting trust throughout a network to that model; we suggest further applications of this idea
    corecore