
University Library

._ Loughborough

., University

AuthorlFiling Title ... Mf\\2:,V:2""",R..; .. ~ .. :
..

\" Class Mark .. .

Please note that fines are charged on ALL
overdue items .

.. OR REFERE CE ONLY

~iI~l~iI\lill~ I II I llU 11111111 IIIII

If:) Loughborough
., University

Fractal-Based Models for Internet Traffic and

their Application to Secure Data Transmission

by

Rashiq Rafiq Marie

Doctoral Thesis

Submitted in partial fulfillment of the requirements

for the award of PhD

Research School of Informatics/Department of Computer Science

Loughborough University

England

October 2006

©2006 Rashiq Marie

"'~ Loughborough "'t ",
~~~}f Univcl'sity 

Filk inglon Library -
Date ') \'LDOb 
Class 'I 
Ace 
No. O(A()1,4C{, \'6\1;1 



This work is dedicated to 

My Father 

and 

The memory of my Mother 



Abstract 

This thesis studies the application of fractal geometry to the application of 

covert communications systems. This involves the process of hiding infor­

mation in background noise; the information being encrypted or otherwise. 

Models and methods are considered with regard to two communications sys­

tems: 

(i) Wireless communications; 

(ii) Internet communications. 

In practice, of course, communication through the Internet cannot be disas­

sociated from wireless communications as Internet traffic is 'piped' through a 

network that can include wireless communications (e.g. satellite telecommuni­

cations). However, in terms of developing models and methods for covert com­

munications in general, points (i) and (ii) above require different approaches 

and access to different technologies. With regard to (i) above, we develop 

two methods based on fractal modulation and multi-fractal modulation. With 

regard to (ii), we implement a practical method and associated software for 

covert transmission of file attachments based on an analysis of Internet traffic 

noise. In both cases, however, two fractal models are considered; t.he first is 

the standard Random Scaling Fractal model and the second is a generalisation 

of this model that incorporates a greater range of spectral properties than the 

first - a Generalised Random Scaling Fractal Model. 

The use of encryption techniques for securing information interchange is of 

course well known and has a long and well established history. However, there 

is one crucial point that is often not stressed as much as it perhaps should be; 

ii 



r---------------------------------------------------------------------------------------- ~ 

this is, that the act of encrypting information raises a 'flag' to an interceptor of 

the potential value of the information that is being sent, otherwise why should 

the sender want to encrypt the information in the first place. In other words, 

encrypted information is not covert as long as an interceptor realises that the 

information is encrypted. This consideration leads directly to an investigation 

of methods of hiding or camouflaging encrypted data before it is transmitted. 

These include watermarking appropriate data files (e.g. audio and image files) 

with the encrypted information and/or appropriate keys and embedding data 

in noise whose characteristics are compatible with the transmission environ­

ment, e.g. radio noise and/or Internet traffic noise. This thesis investigates 

both examples and uses both for the development of the MATLAB prototype 

software system that is described and provided on the accompanying CD. 

iii 



Acknow ledgments 

I thank God for giving me the ability, health and knowledge to complete this 

project. 

I deeply appreciate Professor J.M. Blackledge for spending alot of his precious 

time offering me guidance and supervision on my work. 

I would like to express my gratitude to Or. Helmut Bez and Dr. Sekharjit 

Datta for their help throughout this project. Thanks to Mr. Martin Hamilton 

for providing me data. 

Many sincere thanks must go to my father for his support and encouragement 

through my studying and also to my brothers and sisters. 

Last, but by no means least, I wish to thank my wife and my children for their 

unconditional support. 

iv 



Contents 

Dedication . 

Abstract ..... . ii 

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . .. iv 

List of Figures xiii 

List of Tables xix 

Glossary of Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii 

1 Introduction 

1.1 The Information Society 

1.2 Information Security .. 

1.3 Innovations in Cryptology trough Synergy 

1.4 Fractal and Chaos in Cryptology 

1.5 Original Contribution ...... . 

v 

1 

1 

2 

4 

6 

7 



1. 6 References.............................. 9 

2 Background to Fractal Geometry 10 

2.1 Introduction . . . . . . 10 

2.2 Definition of a Fractal 11 

2.3 Background to Fractal Geometry 12 

2.4 The Concept of Self-Similarity . . 24 

2.5 Some Examples of Deterministic Fractals 25 

2.5.1 The Von Koch Curve and Island. 25 

2.5.2 The Cantor Set . . . . 27 

2.5.3 The Sierpinski Carpet 29 

2.6 Fractal Dimension. . . . . . . 30 

2.6.1 Self-Similarity and Self-Affinity 31 

2.7 Least Squares Principle. . . . . . . . . 34 

2.8 Survey of Some Methods for Estimating Fractal Dimension 36 

2.8.1 The Line Divider Method . . . . . 37 

2.8.2 The Box-Counting Method (BCM) 38 

2.8.3 The Prism Counting Method ... 40 

2.8.4 The Perimeter-Area Relationship Method 41 

2.8.5 Fractional Brownian Motion (fBm) 41 

vi 



2.8.6 The Power Spectrum Method (PSM) . . 

2.9 Computation of Power Spectrum Parameter, (3 . 

2.10 Computing the Fractal Dimension of a Fractal Signal 

2.11 References . . . . . . . . . . . . . . . . . . . . . . . . 

3 Multi-Fractal Models and Fractal Modulation 

3.1 Random Scaling Fractal Signals . . . . . . . . 

3.2 Mathematical ModeJing of Transmission Noise 

3.3 RSF Signals as Solutions to Stochastic Fractional Differential 

42 

43 

44 

47 

49 

49 

51 

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

3.3.1 Relationship between White Noise and Fractal noise. 58 

3.3.2 Digital Algorithms to Generate Fractal Noise and the 

Fractal Dimension .. 

3.4 Review of Fractal Modulation 

3.4.1 Secure Digital Communications 

3.4.2 Fractal Modulation and Demodulation 

3.5 Experimental Results . . . . . . . . . . . . . . 

59 

62 

63 

65 

67 

3.5.1 Results of Estimating q Without Additive Noise 67 

3.5.2 Results of Estimating q With Additive Noise. 68 

3.5.3 Illustrative Example . . . . . . . . . . . . . . 69 

vii 

---------------------------- ---- -- - -



3.6 Multi-Fractal Modulation ................... 72 

3.6.1 Generalized Random Scaling Fractal (GRSF) Model. 73 

3.6.2 Basic Properties. 74 

3.7 Analysis . . . . . . . . . 76 

3.7.1 Parameter Estimation for the GRSF Model 79 

3.7.2 Power Spectrum Method for Estimating g, q and c 80 

3.8 Experimental Results . . . . . . . . . . . . . . . 

3.8.1 Estimating the Numerator parameter 9 

3.8.2 Estimating the Denominator parameter q 

3.9 Multi-fractal Modulation and Demodulation 

3.9.1 Multi-Fractal Modulation . 

3.9.2 Multi-Fractal Demodulation 

3.9.3 Illustrative Example 

3.10 References . . . . . . . . . . 

4 Digital Watermarking and Self-Authentication 

4.1 Information Embedding and Digital Watermarking 

4.1.1 The Matched Filter . . . . . . . . 

4.1.2 Derivation of the Matched Filter 

4.1.3 Pseudo Code for the Matched Filter. 

viii 

86 

86 

86 

94 

94 

95 

96 

· 101 

103 

· 103 

· 104 

· 106 

· 107 



4.1.4 Deconvolution of Frequency Modulated Signals . 108 

4.1.5 Watermarking using Chirp Coding . 112 

4.1.6 Basic concepts. . . . . . . . . . . 114 

4.1. 7 Matched Filter Reconstruction. . 117 

4.1.8 Chirp Coding, Decoding and Watermarking . 118 

4.1.9 Code Generation . . . . . . . . . . 122 

4.1.10 MATLAB Application Programs 

4.1.11 Discussion . . . . . . . . 

4.2 Exchanging the Cut-Off Points 

4.3 References............ 

5 Internet Traffic Data Analysis 

5.1 Introduction ...... . 

5.2 The Concept of Packets 

5.3 Internet Traffic Noise .. 

5.3.1 Self-affinity of Internet Traffic Noise. 

.126 

· 134 

· 136 

· 140 

141 

· 141 

· 142 

· 145 

· 145 

5.4 The Mathematical Description of Self-Similarity and Fractality . 150 

5.4.1 Continuous-Time Process 

5.4.2 Discrete-Time Process 

5.4.3 Principal Properties 

ix 

· 150 

· 151 

· 154 



5.5 Fractal Characteristics of Internet Traffic · 155 

5.5.1 Why is Internet Traffic Fractal? · 156 

5.6 Network Traffic Measurements ..... · 158 

5.7 Estimating the Hurst Parameter from Real Network Traffic Mea-

surements .............................. 160 

5.7.1 

5.7.2 

The RIS Method 

Variance-Time Method 

· 161 

· 162 

5.8 Experimental Proof of the Fractal Nature of Internet Traffic . 162 

5.9 Characterization of Internet Traffic Noise using a Fractal Model 164 

5.9.1 

5.9.2 

Random Scaling Fractal Noise 

Power Spectrum Method . . . 

· 165 

· 169 

5.10 Fractal Parameters Estimation for Internet Traffic Data. . 173 

5.10.1 Parameter Estimation for Packet Size Time Series . 174 

5.10.2 Parameter Estimation for Packet Inter-arrival Times . 179 

5.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 181 

6 Covert Transfer of Data Through the Internet 185 

6.1 Introduction . . . . . . . . . . . . . · 185 

6.2 Simulation of Internet Traffic Data .186 

6.2.1 Synthetic Generation of a Fractal Traffic Trace. . 186 

x 



6.2.2 Synthetic Generation of the Timestamps Sequence .... 190 

6.3 Transmission of Files Between a Sender-Receiver Pair on a Net-

work . . . . 192 

6.4 References · 195 

7 Software Development and Test Results 197 

7.1 Introduction ......... . · 197 

7.2 Wireless Transmission System · 198 

7.3 Encoding and Decoding of a bit stream using a fmctal model .. 199 

7.3.1 Modulation Module .. 

7.3.2 Watermarking module 

7.4 Selection of Parameter Values 

7.4.1 Demodulation Module 

7.4.2 Cut-Off Points (COPs) Extraction Module 

7.4.3 Bit Decoding . 

7.4.4 Chirp Function 

7.5 FmcNet: Transferring a File via the Internet 

7.5.1 Generation of a Synthetic Fractal Trace. 

7.5.2 Generation of a Table List of Timestamps 

7.5.3 Defragmentation of Received Files. 

xi 

.201 

.202 

.205 

.206 

.207 

.208 

.210 

· 212 

· 217 

.220 

.221 



8 Summary of Work and Conclusions 

8.1 Cryptography using Chaotic Systems 

8.2 Multi-fractal Modulation 

8.3 Internet Traffic Noise . 

8.4 Self-authentication .. 

8.5 Software Development 

8.6 Further Development and Extensions 

8.6.1 Fractal Modulation 

8.6.2 Watermarking. . . 

A MATLAB Prototyping 

A.1 Introduction. . . . . 

..... 

A.2 Wireless Communications: Multi-Fractal Modulation and De-

modulation ..... 

A.2.1 Main_Sending 

A.2.2 Main_Receiving 

A.3 FracNet: Internet Communications 

A.3.1 ReaLFracNet 

A.3.2 Synth_FracNet . 

xii 

222 

.223 

.225 

.226 

.226 

.227 

.228 

.228 

.228 

230 

.230 

. 231 

.231 

.235 

.237 

. 237 

.239 



List of Figures 

1.1 The cross-disciplinary approach to cryptology. . . . . . . . . .. 5 

2.1 The variety disciplines related to fractal geometry and chaos. " 13 

2.2 Weierstrass function for a = 9, b = 0.7, with successive lOx 

zooms on the origin. ....................... 14 

2.3 Some sample images of natural objects: from top to bottom and 

from left to right: a tree, rock, lava, a cloud, a forest, sage, a 

water fall and fern. . . . . . . . . . . . . . . . . . . . . . . .. 18 

2.4 Three images of a fern at different scales illustrating the princi-

ple of self-similarity. ....................... 20 

2.5 Illustration of a self-similar object - a Cauliflower. . . . . . . . . 21 

2.6 Texture by Claude Monet (top-right) taken from the painting 

shown (top-left) and texture by Jackson Pollock (bottom). . . . 22 

xiii 



----------

2.7 Examples of self-similarity in Islamic art (top-left), self-similarity 

by the Japanese artist K Hokusai from the 1800s (top-right), 

and an example of deterministic self-similarity by the Dutch 

graphic artist M C Escher (bottom). ............... 23 

2.8 The initiator and the first four steps in the construction of the 

Koch Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 

2.9 The initiator and the first three steps in the construction of the 

"" Koch Snowflake. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

2.10 The exact self-similarity in Koch Curve. ............. 28 

2.11 The initiator and the first six steps in the construction of the 

Cantor Set. ............................. 28 

2.12 The initiator and the the first four steps in the construction of 

the Sierpinski Carpet. . .............. 29 

2.13 The continuum of fractal dimensions. 

2.14 Illustration of the Line-Divider method for computing the frac­

tal dimension 0 of a signal showing four iterations and the least 

33 

squares fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

2.15 Illustration of the Box-Counting Method for computing the frac­

tal dimension of a signal showing four iterations and the least 

squares fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

3.1 (a)&(c) Fractal signal of size N=1024 and its PDF, (b)&(d)Fractal 

signal of size N=512 and its PDF. . . . . . . . . . . . . . . . . . 50 

XlV 



--------------------.----

3.2 The relationship between White Noise and Fractal Noise. . . . . 57 

3.3 (a)&(b) Fractal signal with q=O.l and its PDF, (c)&(d) its the-

oretical and empirical PS. .... . . 61 

3.4 Generation of a Fractal Noise Signal. 61 

3.5 Estimation of the Fractal Parameter, q (Fourier Dimension). 62 

3.6 (a)&(b)Fractal signal with NSR=O and its PS , (c)&(d) Fractal 

signal with NSR=0.25, and its PS. ................ 70 

3.7 Non-Stationary contiguous stream of fractal modulated signals, 

with qo = 0.10 and qj = 0.20 . . . . . . . . . . . . . . . . . . . . 71 

3.8 (a)&(b) Fractal signal with q = 0.20 and its empirical PS, 

(c)&(d) Fractal signal with q = 0.10 and its empirical PS .... 71 

3.9 (a)&(c) Fractal signal of size N=1024 and its PDF, (b)&(d) 

Fractal signal of size N=512 and its PDF. ............ 78 

3.10 (a)&(b) Fractal signal with parameters g=3.5, q=4, Wo = 10 and 

its PDF, (c)&(d), its theoretical and empirical power spectrum. 87 

3.11 Estimation regions and COPs . . . . . 95 

3.12 Fractal coding and decoding processes. 98 

3.13 The PSDF with q = 4 and (a) gj = 3.5, (b)g2 = 3.6, (C)g3 = 3.7 

(d) and g4 = 3.8. .......................... 99 

3.14 Power spectrum with q = 4 and (a) gj = 3.5, (b)g2 = 3.6, 

(C)g3 = 3.7 (d) and g4 = 3.8. . . . . . . . . . . . . . . . . . . . . 99 

xv 



3.15 Multi-fractal modulated signals, without scaling factor (c= 1). . 100 

3.16 Multi-fractal modulated signals, with different scales. . ..... 100 

4.1 Example of a matched filter in action (bottom right) by recover­

ing information from a noisy signal (bottom left) generated by 

the convolution of an input consisting of two spikes (top left) 

with a linear FM chirp IRF (top right). The simulation and 

restoration of the signal given in this example is accomplished 

using the MATLAB function MATCH(256,l). 

4.2 Modulation and Watermarking. . . 

4.3 Demodulation and authentication .. 

5.1 Pictorial 'proof' of self-similarity: LAN traffic over five different 

· 113 

· 138 

· 139 

time units (from [2]). . . . . . . . . 148 

5.2 Tcpdump Trace format. 

5.3 Internet Bytes Traffic Bursts over Four Orders of Magnitude; 

Upper Left: 1000ms (1 sec.), Upper Right: 100 ms, Lower Left: 

· 158 

10 ms, and Lower Right: 1 ms aggregations, Trace: LU-HR-l. . 164 

5.4 Internet Bytes Traffic Bursts over Four Orders of Magnitude; 

Upper Left: 1000 ms(l sec.), Upper Right: 100 ms, Lower Left: 

10 ms, and Lower Right: 1 ms aggregations, Trace:LU-HR-2 ... 165 

5.5 Internet Bytes Traffic Bursts over Four Orders of Magnitude; 

Upper Left: 1000 ms(l sec.), Upper Right: 100 ms, Lower Left: 

10 ms, and Lower Right: 1 ms aggregations, Trace:LU-HR-3. . 166 

xvi 



5.6 Internet Packets Traffic Bursts over Four Orders of Magnitude; 

Upper Left: 1000 ms (1 sec.), Upper Right: 100 ms, Lower Left: 

10 ms, and Lower Right: 1 ms aggregations, Trace:LU-HR-l. .. 167 

5.7 Internet Packets Traffic Bursts over Four Orders of Magnitude; 

Upper Left: 1000 ms (1 sec.), Upper Right: 100 ms, Lower Left: 

10 ms, and Lower Right: 1 ms aggregations, Trace:LU-HR-2 ... 168 

5.8 Internet Packets Traffic Bursts over Four Orders of Magnitude; 

Upper Left: 1000 ms (1 sec.), Upper Right: 100 ms, Lower Left: 

10 ms, and Lower Right: 1 ms aggregations, Trace:LU-HR-3 ... 169 

5.9 Inter-arrival Packets Times Bursts of Traces: (a)LU-HR-1, (b)LU-

HR-2 and (c)LU-HR-3 ........................ 170 

5.10 Measured Power Spectrum of Bytes Traffic: from top to bottom 

and from left to right: 1sec (q=0.45), lOOms (q=0.28), lOms 

(q=O.lO) and 1ms (q=0.15) ..................... 171 

5.11 Measured Power Spectrum of Packets Traffic: from top to bot­

tom and from left to right: 1sec (q=0.76), lOOms (q=0.28), lOms 

(q=0.23) and 1ms (q=0.44) ..................... 172 

5.l2 Measured Power Spectrum of Packets Inter-arrival times, from 

top to bottom and from left to right:(q=0.08),(q=O.15),(q=0.19) 

and (q=O.ll) ............................. 173 

5.13 Block diagram for estimating the Fourier dimension, q, of In­

ternet Traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 

6.1 Block Diagram for the Synthesis of a Fractal Trace. . . . . . . . 188 

xvii 



6.2 Synthetic Internet Bits Traffic Bursts over Four Orders of Mag­

nitude: 1 sec, q=0.6 (top-left); 100 ms, q=0.3 (top-right); 10 

ms, q=0.13 ( bottom left) and 1 ms, q=0.2 (bottom-right). .. 189 

6.3 Plot of the synthetic sequence of inter-submission times for q = 

0.10 ................................. 192 

6.4 Block Diagram for the mechanism for sending a digital file over 

the Internet .............................. 194 

xviii 



List of Tables 

2.1 Fractal types and range of fractal dimension, D. 32 

2.2 Common Euclidean and fractal objects and their fractal dimen-

sion. 32 

3.1 Estimated values of q, with different seeds. 68 

3.2 Estimated values of q, with different seeds. 68 

3.3 Estimated values of q with different values of NSR (exact q = 

0.10) .. , .. . . . . . . 69 

3.4 Estimated values of g for q = 3 88 

3.5 Estimated values of g for q = 3 88 

3.6 Estimated values of g for q = 4 89 

3.7 Estimated values of g for q = 4 89 

3.8 Estimated values of g for q = 5 90 

3.9 Estimated values of g for q = 5 90 

xix 



3.10 Estimated values of 9 for q = 5, c = 1.5 91 

3.11 Estimated values of 9 when q = 3, c = 2 91 

3.12 Estimated values of 9 when q = 4, c = 2 92 

3.13 Estimated values of q for 9 = 3 .................. 92 

3.14 Estimated values of 9 for 9 = 3 ............. 93 

3.15 Estimated values of q when 9 = 3, c = 2 ............. 93 

5.1 Qualitative description of the used data (m = 106). · 160 

5.2 Estimated values of q for time scale 1 ms. · 175 

5.3 Estimated values of q for time scale 10 ms. · 176 

5.4 Estimated values of q for time scale 100 ms. · 177 

5.5 Estimated values of q for time scale 1000 ms .. · 177 

5.6 Some statistics on the estimated values of q for time scale 1 ms. 177 

5.7 Some statistics on the estimated values of q for time scale 10 ms.178 

5.8 Some statistics on the estimated values of q for time scale 100 

ms . .................................. 178 

5.9 Some statistics on the estimated values of q for time scale 1000 

ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .178 

5.10 Summary statistics for all traces over different time scales. . 179 

5.11 Estimated values of q for packet Inter-arrival times. . . .. . 180 

xx 



5.12 Some statistics on the the estimated values of q for packet Inter-

arrival times. ............................ 180 

6.1 The first 10 points of synthetic Inter-submission times with the 

corresponding Timestamps. .................... 191 

xxi 



Glossary of Terms 

ACF Autocorrelation Function. 

AM Amplitude Modulation. 

ASCII American Standard Code Interchange. 

DC Direct Current. 

DFT Discrete Fourier Transform. 

IBM fractional Brownian Motion. 

FT Fourier Transform. 

FFT Fast Fourier Transform. 

FM Frequency Modulation. 

FIR Finite Impulse Response. 

HTTP HyperText Transport Protocol. 

HR Halls of Residence. 

IDFT Inverse Discrete Fourier Transform. 

IFS Iterated Function System. 

IP Internet Protocol. 

IRF Impulse Response Function. 

LANs Local-Area Networks. 

LRD Long-Range Dependence. 

LU Loughborough University. 

PDF Probability Density Function. 

PSDF Power Spectrum Density Function. 

PSM Power Spectrum Method. 

xxii 



RSF 

SFD 

SNR 

TCP 

WAN 

WGN 

WWW 

Random Scaling Fractal. 

Stochastic Fractional Differentiation. 

Signal to Noise Ratio. 

Transmission Control Protocol. 

Wide Area Network. 

White Gaussian Noise. 

World Wide Web. 

xxiii 



Chapter 1 

Introduction 

1.1 The Information Society 

Our digital age has brought about a number of changes in society but perhaps 

the most profound is the impact it has had upon basic human activities such 

as decision making, information processing and communications which are all 

supported by computer devices. 

The information revolution can be compared in its impact to that of the in­

dustrial revolution of the nineteenth century. The value of information has 

changed in that both the constructive and destructive powers of information 

flow are very different compared with the situation less than a hundred years 

ago. In the commercial sector, 'know how' contributes considerably to com­

pany market value because information provides a primary competitive advan­

tage. Clearly, critical information is vital for national security and financial 

organizations [1 J. 

1 



------------------------------------------------------------------

Accurate knowledge of public opinion allows political leaders to react rapidly 

in their policies or programs. Thus, political power is now critically dependent 

on the flow of information. 

The speed of information flow has developed considerably over the past ten 

years. As with high speed vehicles, skilled control becomes increasingly impor­

tant as information flow increases in the rapidity of its exchange; the web being 

an environment in which information flow is now very difficult to control effec­

tively. Access to the global market is a key incentive in society. New economic . 

incentives require new services based on electronic and mobile transactions 

and both individuals and industries require involvement under conditions that 

are not only financially advantageous but secure. The continuous update of 

security infrastructures is absolutely necessary to encourage the further devel­

opment of the new global economy. Therefore, knowledge management can be 

considered as a top priority issue in the twenty-first century. Proper informa­

tion security can ensure the healthy evolution of society and avoid computer 

terrorism and crime. 

1.2 Information Security 

Modern information security manifests itself in many ways according to the sit­

uation and requirement. It deals with such concepts as confidentiality, data in­

tegrity, access control, identification, authentication and authorization. Practi­

cal applications, closely related to information security, are private messaging, 

financial transactions, online services and many others. 

A century ago, one could say that cryptography is the science (or art) of secret 

2 



writing and reading, which has grown from semiotics, the study of signs and 

sign-using behavior1 , rather than mathematics. The word is derived from the 

Greek kryptos, meaning 'hidden', and graphein meaning 'to write'. 

Today cryptography is, essentially, the study of mathematical and compu­

tational techniques underlying information security. Cryptography is closely 

connected to the disciplines of cryptanalysis and cryptology. In simple terms, 

cryptanalysis is the art of breaking cryptosystems, i.e. retrieving the original 

message without knowing the proper key or forging an electronic signature. 

Cryptology is the mathematics, such a number theory, which underpin cryp­

tography and cryptanalysis. 

Cryptography has always been shrouded in secrecy itself and remains one of 

the most secret sciences in the world. Professional cryptographers working for 

intelligence services and commercial organizations have been limited in their 

publications. As a result, the freely available literature never fully reflects the 

state of the art. Nations vary in their reticence: whereas the United States 

released quite generous information on the situation in the Second World War, 

the Soviet Union locked itself in silence; but all the time scientists from both 

countries kept abreast of each other. Claude Shannon, an American electri­

cal engineer, formulated the major criteria and fundamentals of cryptographic 

techniques in his secret report of 1945 that was declassified in 1949 and pub­

lished as Communication theory of secrecy systems. Unlike Shannon, Vladimir 

Alexandrovich Kotelnikov, a Russian electrical engineer, is not very well known 

as a founder of modern cryptography. However, in 1941 Kotelnikov clearly for-

I Although the word was used in this sense in the 17th century by the English philosopher 

John Locke, the idea of semiotics as an interdisciplinary mode for examining phenomena in 

different fields emerged only in the late 19th and early 20th centuries. 

3 



mulated the requirements to a perfect encryption system and mathematically 

proved its cryptographic resistance. This work together with the Kotelnikov 

theorem (the sampling theorem) became the foundation of Russian cryptogra­

phy and provided secure communication during the World War II in 1942-1945. 

Since that time, cryptography has absorbed ideas from complexity theory, 

number theory, group theory, combinatory logic and modern computer science 

and grown from basic symmetric ciphers to PKI infrastructure and complex 

cryptosystems. In particular, in 1976 asymmetric public keys were first pro­

posed in a revolutionary article by Whitfield Diffie and Martin Hellman. 

1.3 Innovations in Cryptology trough Synergy 

In making innovations, we typically take existing models from one science and 

transplant them into a new subject area. For example, it is quite natural to 

apply models from nonlinear dynamics (chaos theory) for the purpose of en­

cryption or to apply the principles of fractal geometry to hide information in 

noise[2). If we are successful, a new algorithm will emerge. This is a practi­

cal benefit of a cross-disciplinary approach. Unlike most new disciplines that 

appear at the edge of existing sciences when a model or a technique from one 

subject area is applied in another, synergetics studies the common fundamen­

tals of these sciences and extends the global collection of ideas and methods. 

The term synergetics (from Greek: synergeia - working together, cooperation) 

was introduced by the German physicist Haken in the beginning of 1970's. 

Haken's synergetics treats systems in which cooperation among subsystems 

creates organized st.ructure on macroscopic scales. 

4 



Synergetics 

Chaos Theory 

Cryptography 
Cryptanalysis 

Computer 
Science 

Mathematics 

Infonnation 
Theory 

Semiotics 

Communication 
Theory 

Figure 1.1: The cross-disciplinary approach to cryptology. 

Synergetics aims to understand common laws driving processes in different 

nonlinear systems with a feedback. Examples of problems studied by syner­

getics are bifurcations, phase transitions in physics, nonlinear oscillations in 

electrical circuits, population dynamics. From a certain view point, a similar 

defini tion is given by the American scientist R. Buckminster Fuller: 'Synergy 

means behavior of whole systems unpredicted by the behavior of their parts 

taken separately'. One can see this property in cryptographic systems, whose 

strength depends on the integrity of several mathematical constructions. 

Today, it would not be easy to find a discipline remaining untouched by syn­

ergetics deterministic chaos and fractal geometry. These new sciences have 

transfused all the scope of human knowledge: not only mathematics, physics, 

biology, economics, digital imaging, simulation sciences but also many human 

5 



· ----- ------------------------------

studies such as history and sociology. Cryptology, of course, is not an exception 

- a number of scientists have evaluated encryption techniques based on non­

linear dynamic systems and fmctals and this thesis represents a continuation 

of this work. 

1.4 Fractal and Chaos in Cryptology 

The idea that many simple nonlinear deterministic systems can behave in an 

apparently unpredictable and chaotic manner was first observed by the great 

French mathematician Renri Poincare. Other early pioneering works in the 

field of chaotic dynamics are to be found in the mathematicallitemture by such 

luminaries as Birkhoff, Cartwright, Littlewood, Levinson, Smale, Kolmogorov 

and his students. 

The key feature of chaotic behavior in different systems is mainly related to 

the high sensitivity to initial conditions due to exponential divergence of all 

trajectories lying on the attmcting structure which is normally bounded in an 

appropriate phase space. In the 1960's Edward Lorenz, an American meteo­

rologist, discovered a stable chaotic attractor and predicted that: " ... it may 

happen that small differences in the initial conditions produce very great ones 

in the final phenomena. A small error in the former will produce an enormous 

error in the future. Prediction becomes impossible . .. " 

The practical value of chaos theory is that it attempts to describe mathemati­

cally the extreme complexity of the real world such as the process of Brownian 

motion in physics, weather changes in meteorology, population fluctuations in 

biology and the geometry of nature for example[2]. 

6 



On the other hand, chaos theory has caused a major paradigm shift in the 

philosophy of the universe, providing the first 'scientific' explanation of the 

coexistence of such concepts as law and disorder, determinism and unpre­

dictability. 

Mathematical or deterministic chaos is a dynamic system, characterized with a 

'complex' and 'unpredictable' behavior. Intuitively, this property suits the re­

quirements of a digital encryption system - on the one hand computer-based 

cryptosystems are deterministic; on the other, they must be cryptographically 

unpredictable. Practically, the last property implies that given certain in­

formation on the ciphertext and the plaintext (the message), a cryptanalyst 

should not be able to predict the cryptographic transformation and recover 

the key or the message[3]. 

Since 2000, the potential of chaos- and fractal-based communication, especially 

spread spectrum modulation, has been recognized worldwide. Many authors 

have described chaotic modulations and suggested electronic implementations. 

Again, the emphasis here is put on information coding rather then digital 

encryption and information hiding, which is the subject of this research. 

1.5 Original Contribution 

This thesis discusses the theoretical background and practical implementations 

of chaos-based cryptosystems with a focus on fractal-based information hiding. 

The following results are considered the most useful and unique and contribute 

to the primary aspects of the authors original contributions: 

7 



• Re-appraisal of the fractal modulation technique originally developed 

by J M Blackledge and its extension of the technique to multi-fractal 

modulation[4],[5]. 

• Analysis of Int.ernet traffic noise in terms of a new generalised random 

scaling fractal model. 

• The development of a new method for transmitting data over the Internet 

that is based on: 

i) Application of the new model for Internet traffic noise to segment 

a single file into many files whose sizes and times of transmission 

are compatible with the Internet traffic that has been sampled at a 

given time; 

ii) The application of symmetric or asymmetric encryption algorithm 

for encrypting plaintext before submission of a file for Internet trans­

mission; 

iii) The use of a new waterma.rking method (based on chirp coding) for 

covertly embedding t.he parameter settings required for a receiver 

to reconstruct the information; 

iv) The development of a prototype software system (based on MAT­

LAB) 

• An evaluation of the system developed based on (i)-(iv) above. 

• Conclusions with regard to the use of Internet traffic noise for covert 

transmission. 

8 



1.6 References 

[lJ Ghonaimy M.A., EI-Hadidi M. T. and Asian H. K, "Security in the In­

formation Society: Visions and Perspectives," IFIP TCll 17th International 

Conference on Information Security (SEC2002), Cairo, Egypt, May 7-9, 2002. 

[2J Turner M.J., Blackledge J.M. and Andrews P.R., Fractal Geometry in Dig­

ital Imaging, Academic Press Ltd., UK, 1998. 

[3J Ptitsyn N.V., Blackledge J.M. and Chernenky V.M., "Deterministic Chaos 

in Digital Cryptography", Proc. of IMA Conference on Fractal Geometry, 

Horwood Publishing, London, pp. 189-222, 2002. 

[4J Blackledge J.M., Foxon B. and Mikhailov S., "Fractal modulation for dig­

ital communications systems," Proc. of the IEEE Military Communications 

Conference MILCOM'98, Boston, USA, Oct. 1998. 

[5J Blackledge J.M., Digital Signal Processing: Mathematical and Computa­

tion Methods, Software Development and Applications, Horwood Publishing 

Limited, London, 2nd Edition, 2006. 

9 



Chapter 2 

Background to Fractal 

Geometry 

2.1 Introduction 

Euclidean or classical geometry consists of describing physical objects using 

lines, circles, ellipses, etc. This type of geometry is appropriate for describing 

man-made objects; however, the patterns found in nature are significantly 

more complex and this complexity can be best modelled by fractal geometry 

[1]. There are a number of important differences between Euclidean and Fractal 

geometry. For example, it is not possible to draw a tangent to a fractal curve 

because a fractal curve is not smooth. Further, although fractals may be either 

continuous or fragmented, they are not differentiable [2] at least in the ordinary 

sense of the term. 

10 



-- -- ----------------

2.2 Definition of a Fractal 

The term jractal was coined by the Polish mathematician B. Mandelbrot in 

1975, a pioneer in the field of fractal geometry and some times referred to as 

the father of fractal geometry. However, many of the mathematical principles 

started appearing much earlier than this, even in the Nineteenth Century, with 

the work of mathematicians such George Cantor, Karl Weierstrass, Giuseppe 

Peano, and others. 

Moreover, Mandelbrot studied with the French mathematician, Paul Levy, in 

the late 1930s, who was the first to considered the nature of self-affine random 

walks. In turn, Levy's ideas came from the work of the English civil engineer, 

E. Hurst, who found that Einstein's model for Brownian motion (first observed 

by Robert Brown in the 1860s) was relatively accurate when applied to rea.l 

world problems such as the apparent random behavior of the Nile delta annual 

flood. 

Mandelbrot claimed that fractal geometry would provide a useful tool to ex­

plain a variety of naturally occurring phenomena. Fractal objects can be found 

everywhere in nature such as coastlines, ferns trees, foods, clouds, mountains 

and bacteria and a range of electronic signals. The word jractal, that Man­

delbrot introduced, comes from the Latin adjective jractus which is derived 

from the Latin verb jrangere, which means 'to break' or to create irregular 

fragments. In addition to 'fragmented'jractus can also mean 'irregular', both 

meanings being preserved in jragment. Since fractals are both fragmented 

and irregular this word is perfectly suited and Mandelbrot originally defined 

the formal mathematical definition of a fractal as follows: a jractal is a set 

11 



for which the Hausdorff-Besicovich dimension strictly exceeds the topological 

dimension, i.e. exceeds an integer dimension. 

In simple terms, fractals are geometrical shapes that unlike EuC\idean objects 

are irregular all over, with the same degree of irregularity on all scales. They 

cannot be described by terms from classical geometry. However, relatively 

simple iterative rules can be used to describe these shapes in ways for which 

conventional techniques are non-applicable. 

2.3 Background to Fractal Geometry 

Fractal geometry is a consequence of the computing revolution and its devel­

opment has gone hand-in-hand with advances in digital data processing and 

computer graphics. However, the principles of fractal geometry have been 

studied for many years and began with the French School of mathematics in 

the late Nineteenth Century. This included French mathematicians such as 

Jules Henri Poincare who was one of the first mathematicians in history to 

conceive the idea that a dynamical system (and a Newtonian one at that) 

could not be predicted deterministic ally. He was in effect describing the prin­

ciples of chaos as a result of re-evaluating an award winning piece of work he 

had undertaken early in his career on the orbits of multiple interacting bodies. 

Chaos is the study of functions which exhibit patterns or fields that are similar 

at different scales (see, for example, [3)). Today algorithms abound that are 

used to generate fractals and chaotic fields that ideally depend on: 

(i) an understanding of the physical (typically a non linear) system; (ii) a clear 

and concise mathematical definition of the field properties. 

12 



Statistics Nonlinear 
Dynamics 

Fractal 
Geometry Geometry Computer & 
Topology & Science 

Chaos 

Computer 
Control Graphics 

& Engineering 
Vision 

Figure 2,1: The variety disciplines related to fractal geometry and chaos, 

13 



Further, there are a range of applications based on fractals and chaos that 

have been developed including time series analysis, speech processing, data 

compression, segmentation, terrain modeling, image synthesis, music, financial 

forecasting, biomedical engineering, digital communications and information 

technology security. The development of fractal geometry has been undertaken 

through many different fields of study and it now has an important contribution 

to make to these fields (see Figure 2.1). 

Figure 2.2: Weierstrass function for a = 9, b = 0.7, with successive lOx zooms 

on the origin. 

During the eighteenth and early nineteenth centuries, it was widely believed 

that every continuous function must be differentiable at least at one point. 

14 



It was well known that a continuous function may not be differentiable at a 

specific point, for example at x = 0 in the function f(x) =1 x I. Having estab­

lished a consistent approach to calculus by introducing the limiting condition 

for a derivative, i.e. defining a derivative as 

J'(x) = lim f(x + t.x) - f(x), 
t:.x~O t.x t.x f. 0 

Karl Wilhelm Weierstrass (1815-1879), was one of the first to create a function 

that was nowhere differentiable but still continuous. This is a function that 

has the property that the first derivative J'(x), and all higher order integer 

derivatives, cannot be found. An example of such a function (invented by 

Weierstrass) is based on an infinite sum of cosine curves given by 
00 

f(x) = I:>i cos(ai7l'x) 
i=l 

where a is an odd integer, bE (0,1) and ab > 1 + 37l'/2. Figure 2.2 shows a 

plot of this function when a = 9, b = 0.7 and with 10 'zooms' on the origin. 

After the publication of this result, other mathematicians began to follow 

Weierstrass example using many 'variations on a theme'. 

Giuseppe Peano (1858-1952), for example, introduced the first deterministic 

space filling function in the 1890s which passes arbitrarily close to any point 

in the plane. The uses of these functions at the time was not apparent and 

many mathematicians were alarmed at the loss of differentiation as a 'constant'. 

Hermi te defined them as a 'dreadful plague', and Poincare wrote in his collected 

works (Volume II, page 130), 'Yesterday, if a new function was invented it was 

to serve some practical end; today they are specially invented only to show 

up the arguments of our fathers, and they will never have any other use'. It 

was not until the 1920's, when nowhere differentiable functions were used to 

15 



construct good models for Brownian motion, that such functions started to 

be appreciated for their practicability. By this time the idea of Weierstrass 

functions had gone from an interesting peculiarity to become the start of a 

new field within mathematics. 

The growing interest in random motion and stochastic field theory led, in the 

late 1930s, to Paul Levy (1886-1971) asking a simple but profound question: 

Under what circumstances does the distribution associated with a random walk 

of a few steps look the same as the distribution after many steps (except for 

scaling)? This question is the same as asking under what circumstances do we 

obtain a random walk that is statistically the same at different scales. One 

of Paul Levy's research students was Benoit Mandelbrot who later coined the 

phrase 'fracta!' geometry (e.g. in his most famous book The F'ractal Geometry 

of Nature, Freeman, 1982) as the study of geometric objects, either determin­

istic or stochastic, that are self-similar, i.e. look the same at different scales. 

The characteristic property of a fractal is that it is self-similar for every scale 

of analysis. This fact implies that any part of a fractal object is a scaled-down 

copy of the original. 

However, for natural objects the self-similarity is observed only for a limited 

range of scales and it appears in a statistical sense. Moreover, a fractal function 

is not differentiable in the normal (i.e. integer) sense, but it is differential to 

fractional order. Further, one way of defining a fractal is in terms of the 

solution to a fractional differential equation which can be solved by resorting 

to the applications of the fractional calculus. 

Euclidean geometry (a term that derives from Euclid of Alexadria who pub­

lished his Elements around the year 300 BC and provided a systematic devel-

16 



opment of much of Greek mathematics up to that point) is based on ideas, 

axioms, theorems and results that are associated with simple objects - trian­

gles, squares, circles, lines, etc. Some abstract concepts are required in order 

to maintain consistency such as defining two parallel lines as those that meet 

at infinity. However, the underlying philosophy of Euclidean geometry is that 

we can combine primitive objects to build up and construct complex ones. To 

do this we first need to analyze a complex object in terms of its 'elements' 

to construct a simple set of primitives. This is the basis for the construction 

of most man-made objects and computational Euclidean geometry including 

computer aided design, solid geometry, etc. It is also the basis we tend to use 

for analysing a complex problem. 

Fractal geometry is based on looking at things in terms of the 'big picture' 

and observing the fact that the 'smaller pictures' look similar. It uses ideas, 

axioms, theorems and so on associated with complex objects with repeating 

patterns, and includes abstract concepts such as infinite repeatability. 

Hence, unlike Euclidean geometry, the philosophy of fractal geometry is to con­

struct an object by classifying it in terms of its repetitive underlying structure 

and repeating this structure again and again. This is the basis upon which 

many natural object and dynamical systems appear to be based. For exam­

ple, consider Figure 2.3 which shows a number of gray scale images of natural 

objects and scenes - a tree, fern, rock, lava, etc. In each case, the image is 

of an object that, at first sight, appears relatively complex with different tex­

tures. However, if we 'look' at the object imaginatively enough in terms of its 

repeating patterns at different scales, then this complexity starts to be seen 

for what it is - self-similar simplicity! 

17 



Figure 2.3: Some sample images of natural objects: from top to bottom and 

from left to right: a tree, rock, lava, a cloud, a forest, sage, a water fall and 

fern. 

18 



This principle is emphasized in Figure 2.4 which shows three images of a fern 

at different scales to illustrate the principle that 'self-similarity over limited 

ranges of scale is very common in nature '. Another example is given in Figure 

2.5 which shows another natural fracta!. Here, every part of whole cauliflower 

is similar to another irrespective of the (limited) scale. Another important 

aspect of fractals is that (unlike Euclidean objects) they exhibit texture. While 

mathematicians and scientists sometime find texture 'hard to grasp' and define, 

artists and musicians have understood it for many years. Impressionist paint-
, 

ings are studies in texture, initiated by English artists such as J M W Thrner in 

the mid-Eighteenth Century, extended by the French school of impressionism 

by artists such as Claude Monet and developed further by modernists such as 

Jackson Pollack (see Figure 2.6). 

Much of the music of composers such as Debussy, Ravel and Scriabin, for 

example, are studies of musical texture. Indeed, the art, music and languages 

of most cultures exhibit properties that are fractal, from the stylized versions 

of self-repeating patterns associated with Islamic art to Japanese art and the 

work of M C Escher, for example, as illustrated in Figure 2.7. 

In this case, a part of the object magnified to the size of the original, ex­

hibits statistical properties similar to those of the original. These 'statistical 

properties' define the texture of the object (i.e. its roughness). The princi­

pal numerical quantification of this texture is defined in terms of the fractal 

dimension. 

19 



Figure 2.4: Three images of a fern at d ifferent scales illustrating t he principle 

of self-similarity. 

20 



Figure 2.5: Illustration of a self-similar object - a Cauliflower. 

21 



Figure 2.6: Texture by Claude Monet (top-right ) taken from the painting 

shown (top-left ) and texture by Jackson Pollock (bottom). 

22 



Figure 2.7: Examples of self-similarity in Islamic art (top-left), self-similarity 

by the Japanese artist K Hokusai from the 1800s (top-right), and an example of 

deterministic self-similarity by the Dutch graphic artist M C Escher (bottom). 

23 



2.4 The Concept of Self-Similarity 

The concept of self-similarity is central to fractal geometry. Fractal objects can 

be classified according to their self-similar properties in terms of the following: 

(1) Deterministic self-similar fractals in which the fractal object is com­

posed of distinct features which resemble each other in some way at different 

scales (feature scale invariance). These fractals normally occur in mathemat­

ically defined fractals whose realities/constraints on fractal structures by the 

physical world rarely apply. 

(2) Statistical (Random) self-similarity fractals in which the features of 

the fractal object may change at different scales but whose statistical properties 

at all scales are the same (statistical scale invariance). 

Deterministic fractals associated with (1) above are usually generated through 

some Iterative Function System (IFS) and are remarkable for the complexity 

that can be derived through the simplest of such systems. The way in which 

the output from these systems is viewed graphically and interpreted geometri­

cally changes substantially from one fractal to another but the overall principle 

remains the same. Random self-similar fractals are those used to model a vari­

ety of naturally occurring objects (clouds, landscapes, coastlines, etc.). They 

can be generated by a variety of different stochastic modelling techniques. 

They can also be considered to be the solution to certain classes of stochastic 

differential equations of fractional order. Consequently, random fractals have 

become increasingly important. What began as a purely mathematical concept 

has now found many applications in the physical and bio-sciences where fractal 

models arise frequently in a variety of disciplines such as physics, chemistry, 

24 



biology and computer science. In the field of digital signal processing, frac­

tal models have proved useful for applications such as data network analysis, 

texture analysis and image compression. 

2.5 Some Examples of Deterministic Fractals 

2.5.1 The Von Koch Curve and Island 

One of the most famous deterministic fmctals was invented by the mathe­

matician Niels Von Koch in 1904 and is called the Von Koch Curve. Here, 

by deterministic we mean that the Von Koch curve is uniquely determined by 

a simple production rule. The limiting curve is made from a series of deter­

ministic Euclidean line segments. There is no element of randomness in the 

production of the curve. 

The construction of the curve starts with a line segment of unit length called 

the initiator. The construction of the Koch curve proceeds by replacing the 

initiator by the generator or production rule, that states: Take the initiator, 

scale it down by a factor r = 1/3, make N = 4 copies and replace the initiator 

by these scaled down copies, oriented as shown in Figure 2.8. After iterating 

this procedure with each segment an infinite number of times, the resulting 

Koch curve becomes infinitely long and is nowhere differentiable because of 

the infinitely many discontinuous changes of slope. At the nth step, each line 

segment has length En = 3-n and there are N(En) = 4n segments. Alternative, 

to create the Von Koch Island (also called the Von Koch Snowflake) we join 

the three lines together to form a triangle (the initiator) and repeat the above 

25 



Seep 

'lniltalor' 

'!:ener::ll("or' 

/..=_\ 

k=4 

Figure 2.8: The initiator and the first four steps in the construction of the 

Koch Curve. 

(')11=0. (h) ,,~ I. (c)n=2. 

Figure 2.9: The initiator and the first three steps in the construction of the 

Koch Snowflake. 

26 



process on all three sides (see Figure 2.9). Surprisingly it is not too difficult 

to calculate the area enclosed by each level of the Island. We may define the 

area of the original triangle to be Aa = tl. At each level the small triangles 

added to the Island are one ninth the size of the last triangles added. At level 

one we add three of these triangles, so that Al = tl + 3/9tl = [1 + 3/9]tl. The 

number of small triangles added at each level is then four times the number 

added at the last level. Hence at level two A2 = [1 + 1/3(1 + 4/9)]tl and at 

level three, As = [1 + 1/3(1 + 4/9 + (4/9)2)]tl. Repeating these steps, then at 

nth step 
1 n-I 4 . 

An = [1 + 3" :LH']tl 
i=O 9 

and as n ..... 00, 

Aoo ",; [1 + 1/3(1 - 4/WI]tl = ~tl 

Thus although the Island has a fractal boundary, and therefore one of infinite 

length, the area enclosed is finite and very well defined! This is an example 

of objects that have come to be known a 'pathological monsters' - geomet­

ric objects that do not conform to the principle of conventional (Euclidean) 

geometry. 

However, as one successively zooms in the resulting shape of Figure 2.8 is 

exactly the same no matter how far in the zoom is applied, (see Figure 2.10). 

2.5.2 The Cantor Set 

One of the simplest and best known fractals is the so called triadic Cantor Set, 

named after the Nineteenth Century German mathematician George Cantor. 

The initiator is a line of length L. The production rule is as follows: 

27 



Figure 2.10: The exact self-similarity in Koch Curve. 

Divide the line by 3 parts; remove the middle third; repeat the procedure for 

each of the two remaining parts; repeat this process indefinitely. In each step 

the same structure is obtained but to a smaller scale [8]. Figure 2.11 visualizes 

the construction of this 'fractal dust' from the initiator (the first row) to the 

sixth step. 

--•• •• 1111 1111 
1111 11 '!I 

-•• 
1111 
:1 '" 

-•• 
1111 
n! I 

--•• •• 
1111 1111 

--•• •• 
11 11 11 11 
[lll \If! 

Figure 2.11: The initiator and the first six steps in the construction of the 

Cantor Set. 

28 



---t- +­
i I _=II=_ 
I I 

EIIJ El 

Il El 

tlI El 

~ III 
!rt 

IIM. '" ItlICI It: 

Figure 2.12: The initiator and the the first four steps in the construction of 

the Sierpinski Carpet. 

2.5.3 The Sierpinski Carpet 

The Sierpinski carpet is a plane fractal first described by W. Seirpinski in 1916. 

The carpet is one generalisation of the Cantor dust to two dimensions. The 

initiator is a rectangle - see Figure 2.12 (top-left). The production rule is: 

Take the initiator; divide each side by 3; remove the middle part; repeat the 

procedure for each of the remaining parts. 

There are many more examples of deterministic fractals that can be formed 

through application of some initiator and production rule(s). Indeed, in prin­

ciple the number of process that can be invented are unlimited. However, in 

each case, it is desirable to attempt to quantify the fractal object in terms of 

a suitable parameter which classifies the fractal object. The most important 

parameter with respect to this requirement is called the Fractal Dimension. 

29 



2.6 Fractal Dimension 

The measure most commonly associated with a self-similar object is its fractal 

(or similarity) dimension, usually denoted by D. For regular objects (not 

fractal) the fractal dimension is an integer and is the same as the usual notation 

of a topological dimension - i.e. an integer dimension of 1, 2 and 3. However, 

fractal objects can have fractal dimensions that are non-integer and one of the 

most common definitions (first introduced by Mandelbrot) of a fractal as that 

it is an object whose fractal dimension is NOT an integer. 

The fractal dimension measures the complexity or irregularity of a fractal. An 

object with a higher fractal dimension is more complicated or 'rough' than 

one with a lower fractal dimension. The higher the fractal dimension the more 

the fractal fills space. The fractal dimension is a fractional dimension and an 

object with a fractal dimension of D = 1.2, for example, fills more space than 

a one-dimensional curve, but less space than a two-dimensional plane. Thus, 

the fractal dimension succinctly provides information about the geometry of an 

abject. It 'attempts to quantify a subjective feeling we have about how densely 

the fractal occupies the metric space in which it lies' [2]. 

The fractal dimension is embedded in the original theory of fraetals (in [1] for 

example) that was, in part, based on the work of Hausdorff and Besicovitch [7] 

who introduced the Hausdorff-Besicovich dimension DH which is defined as: 

where N(E) is the number of elements of E required to cover the object. 

30 



-------

2.6.1 Self-Similarity and Self-Affinity 

A bounded set A in a Euclidean n-dimensional space is said to be self-similar if 

A is the union of N distinct (non-overlapping) copies of itself, each of which has 

been scaled down by a ratio r < 1 in all coordinates. The following relationshi p 

between Nand r is then valid (see, for example [1]) 

so that the similarity (fractal) dimension is given by 

D = _InN 
In r 

(2.1) 

(2.2) 

Thus, for example, from equation (2.1) the fractal dimension for the Cantor 

Set is 

D= 
In 2 

In(1/3) ~ 0.631 

since this structure is generated from N = 2 parts (lines) repeated over the 

scale r = 1/3. This value is to be compared with the initiator for the Cantor 

Set which has a topological dimension of 1. The structures of the Cantor 

Set is thus quasi-point-like (fractal dust) having fractal (similarity) dimension 

between zero and unity. 

For the Koch Curve, generated by the procedure illustrated in Figure 2.8, 

N = 4 and r = 1/3, so that the similarity dimension is 

In( 4) ~ 
D = -In(1/3) = 1.262 

In this case, instead of the line segment (initiator), which has a topological 

dimension of 1, the successive structures partially occupy a two-dimensional 

31 



space and thus, the dimension of the fractal is more than a curve bu t less than 

a surface. Similarly, for the Sierpinski Carpet the similarity dimension is 

D= 
In(8) ~ 

In(1/3) = 1.893 

The range in the value of D characterizes the types of fractals as shown in 

Table 2.1 

Fractal Type 

Fractal Dust 
Fractal Curve(Fractal Signal) 

Fractal Surface(Fractal Image) 
Fractal Volume 
Fractal Time 

Hyper Fractals 

I Fractal Dimension I 
0< D < 1 
1 < D < 2 
2 < D < 3 
3 < D <4 
4 < D < 5 

D >5 

Table 2.1: Fractal types and range of fractal dimension, D. 

In each case, the fractal may be deterministic or random. When the fractal 

is random then it is taken to be composed of N distinct subsets, each of 

which is scaled down by a ratio r < 1 from the original and the same in all 

statistical respects to the scaled original. Table 2.2 gives some examples of 

common Euclidean and fractal objects together with their fractal dimension. 

The fractal dimension in this case is given by equation (2.2). 

Object I Dimension I 
point 0 

Cantor set 0.6309 
Koch curve 1.2619 

plane 2 
Sierpinski sponge 2.7268 

solid 3 

Table 2.2: Common Euclidean and fractal objects and their fractal dimension. 

32 



-1 
I 

• I 
j 

, 
j L_ 

o 1 
f-J.--- I 

c.:~ 
... : 

----" 

Dimension 0 
,..----..--
r---:d' 

._~ ____ J 

Figure 2.13: The continuum of fmctal dimensions. 

3 
.~ 

The scaling ratios need not be the same for all the scaled down copies. Certain 

fractal sets are composed of the union of N distinct subsets each of which is 

scaled down by a ratio ri, i = 1,2,3 .... , N from the original in all coordinates. 

Thus the fracta! dimension is given by a generalization of equation (2.1), 

namely 

(2.3) 
i=l 

Further, there are self-affine fractal sets which are scaled by different ratios in 

different coordinates. For example, consider the curve f(x) which satisfies 

flAx) = X' f(x) (2.4) 

where A is a scaling factor and et is the scaling exponent. Equation (2.4) implies 

that a scaling of the x -coordinate by A gives a scaling of the f -coordinate by 

a factor X" which is an example of self-affinity. 

33 



A special case occurs when a = 1 as we have a scaling of x by A producing a 

scaling of f by A which is an example self-similarity. Self-affine curves repeat 

themselves only when the different axes are magnified by different factors, 

whereas self-similar curves have the same factor for each axis. Random fractal 

signals and images are, in general, examples of self-affine records. 

Naturally occurring fractals do not have such regular structures as determin­

istic fractals. For instance, in a coastline there is an irregularity over a broad 

range of spatial scales. A magnified view of one part of the coastline will not 

precisely reproduce the full picture, but it will have the same qualitative ap­

pearance. The time series of many natural phenomena are self-affine fmetals. 

Small sections taken from these series scaled by the appropriate factor, cannot 

be distinguished from the whole signal. Being able to recognize a time series 

as fmctals provides a way of 'linking' the information time series convey at 

different time scales. Many time series exhibit statistical self-affine structures. 

For such structures, the similarity dimension, as given by Equation (2.2), is 

not appropriate because the data is not based on a precise production rule. 

They also differ from the strictly mathematically defined fmctals in that they 

do not display statistical or exact self-similarity over all scales. Rather, they 

display fractal properties over a limited range of scales. 

2.7 Least Squares Principle 

In the next section, we outline some of the many different methods to estimate 

the fractal dimension which often depend on application of the least squares 

criterion. The least squares method is therefore briefly reviewed. 

34 

.... _----------------------------------- ~--~ ------



Let /;, i = 1,2,3, .... , N be a real digital function and let Ji be an approximation 

to this function. We assume that Ji is the expected form of the data k The 

least squares error, E, is then defined as 

N 

" • 2 E = L)fi -];) 
i=l 

In most cases, algorithms for computing the fractal dimension use logarithmic 

or semi-logarithmic plots to fit the results of a given algorithm to a best straight 

line. In these cases, we are interested in finding the slope B and, in certain 

cases, the intercept A of the line 

Ji = BXi + A 

To find the best fit, we are required to minimize the error, E, which is taken 

to be a function of A and B. This is achieved by finding the solutions to the 

equations!!.§. - 0 and aE - 0 aB - aA -

Differentiating E with respect to A and B yields 

and 

oE N 
- = " x·(f· - Bx· - A) = 0 oB L.J" , 

i 

aE N 
- = "(f· - Ax· - B) = 0 eA L.J" . 

i 

Solving for A and B we obtain 

and 

B = N E~l fiX; - (E~l fi) (E~l Xi) 

N E~l xr - (E~l Xi)2 

35 



2.8 Survey of Some Methods for Estimating 

Fractal Dimension 

In general, there is no unique and general rule for estimating the fractal di­

mension of a data set. A wide spectrum of techniques has been developed 

to estimate the fractal dimension. As with many other techniques for digital 

signal processing, the computation of the fractal dimension can be undertaken 

in 'real space' (processing the data directly) or in 'transform space' (processing 

the data after taking an appropriate transform). The techniques of estimating 

the fmctal dimension can be broadly categorized into two classes: 

1. Size-measure relationships that are based on recursive length or area 

measurements of a curve or surface using different measuring scales. 

2. Application of relationships which are based on approximating or fitting 

a curve or surface to a known fractal function or statistical property such as 

the variance. 

The following subsections give a brief explanation of some salient methods as 

applied to fractal signals and/or images. Note that in the following sections, 

the algorithms for computing the data used to estimate the fractal dimension 

are based on the least squares method discussed in the previous section. In 

particular, some of these algorithms are based on the following relationship: 

Length = c SterJ 

which can be linearized as, In(Length)=ln(c)+,6ln(Step) 

where A = In(c) and B = (3. Here, the Length represents the measurement of 

the curve using a 'ruler' of size Step. (3 is the slope of the the bi-Iogarithmic 

36 



plot which has a simple algebraic relationship with the fractal dimension D, 

depending on the algorithm used. 

2.8.1 The Line Divider Method 

This method was introduced by Shelberg [5], in which for a given step Step, 

measures the number of chord lengths Length required to cover a fractal curve. 

The technique is based on the principle of taking smaller and smaller rulers 

of size Step to cover the curve and counting the number of rulers required in 

each case. This approach is a recursive process in which the Step is decreased 

(typically halved) and the new Length calculated. Here, the input signals are 

taken to be of size N, where N is a power of 2 due to the recursive nature of the 

method. The process is repeated until there are enough points to reasonably 

fined the line of the best fit for the relationship: 

Log[total Length] Vs. Log[Step size] 

The fractal dimension is then given by 

D =-(3 

where (3 = Log[total Length) 
, Log[Step stZe} 

In the Line-divider method the initial Step must be carefully chosen. Shelberg 

specified an appropriate starting value as half of the average distance between 

the points. Clearly the computation of the initial value and the procedure 

required to count the number of Steps, makes this algorithm time consuming. 

Figure 2.14 shows an illustration of this method for the computation of the 

fractal dimension. 

37 



Step 

JM 

Step·' /, Length-20 

\.,j 

Step-2, Lenglh-9 

Ster8, Length-2 

Step 

log(L<illgth) 

IOj((.I'lep) 

Figure 2.14: Illustration of the Line-Divider method for computing the fractal 

dimension D of a signal showing four iterations and the least squares fit. 

2,8.2 The Box-Counting Method (BCM) 

One of the most popular algorithms for estimating the fractal dimension of 

fractal signals and images is the box-counting method originally developed in 

[6] but modified by others to develop a reasonably fast and accurate algorithm. 

Its popularity is largely due to its relative ease of mathematical calculation and 

empirical estimation [7]. In general, BCM involves covering a fractal with a 

grid of n-dimensional boxes or hyper-cubes with side length E and counting the 

number of non-empty boxes N(E). The number of N(E) depends on the choice 

for E. For signals, the grid is one of squares and for images a grid of cubes. 

Boxes of recursively different sizes are used to cover the fractal. However, an 

input signal with N elements is used where N is of power 2. 

38 



" i f " t' 
;' V .. 

;' 

\ , 
\\ 

I.{' 

Size "128. /3oFl 

; 
: .~ 

\ . .1 
Size~32. Box-ID 

: 

" i :V 
/ 

: ~ , \ 

,.1 

\" 

Size~16. BOF21 

\ Box 

Size 

lng(Rox) 

log(Size) 

Figure 2.15: Illustration of the Box-Counting Method for computing the fractal 

dimension of a signal showing four iterations and the least squares fit. 

The slope (3 obtained in a bi·logarithmic plot of the number of boxes used 

against their sizes then gives the fractal dimension D where D = -(3 [8]. 

Figure 2.15 illustrates the principle of this method. 

For a one-dimensional smooth curve of length L, we would expect 

N(€) "" !:. 
€ 

Thus the box counting measure gives us the generalization 

1 
N(€) ex 15 

€ 

Then, 

DB = lim 
,~O 

(2.5) 

Successive divisions by a factor of 2 are used for the box Size to give a regular 

spacing in the bi·logarithmic plot and least squares fit. 

39 



The behavior of this algorithm is such that the greater the number of points 

used for the least squares fit, the better the estimate of the fractal dimension. 

However, it must be remembered that the box counting dimension is a distinct 

definition in its own right and is not just an algorithmic method for estimating 

the Hausdorff dimension proper. 

In general, box counting algorithms behave well and produce accurate esti­

mates for fractal dimension between 1 and 1.5 for digital signals and between 

2 and 2.5 for digital images and are easy to code and fast to compute. Outside 

this range (Le. for higher fractal dimension) they tend to give less accurate 

results [8]. 

2.8.3 The Prism Counting Method 

Clark [10], defines an algorithm based on the idea of box counting, in which 

instead of counting the number of boxes in a region for given size, the area 

based on four triangles defined by the corner points is computed and summed 

over a gray level surface. 

The triangles define a prism based on the elevated corners and a central point 

computed in terms of the average of the four corners. A bi-logarithmic plot 

of the sum of the prism areas for a given base area gives a fit to a line whose 

slope is (3 in which D = 2 - (3. The basic engine for this algorithm is similar 

to the box counting method but is slower due to the number of multiplications 

implied by the calculation of the areas. 

40 



---- ------------------------------------------

2.8.4 The Perimeter-Area Relationship Method 

For non-fractal closed curves in the plane, the perimeter L is related to the 

enclosed area A by the relation L = cv0f, where C is a constant for given 

type of shape. For a square C = 1 and for circles C = 2,fir. Mandelbrot [1], 

generalizes this equation for the case of closed fractal curves to give 

where 1 < D < 2. In this case, D = In L/ In cv0f. 

2.8.5 Fractional Brownian Motion (fBm) 

Fractional Brownian motion, also known as the 'Random Walk Process', is a 

function denoted by BH(t) whose increments !1BH(x) = BH(t + x) - BH(t) 

are Gaussian distributed with zero mean and variance given by 

The parameter 0 < H < 1 specifies the statistical scaling behavior of fBm. We 

have 

For the case when H = ~ the function B H reduces to the ordinary Brownian 

motion and !1BH(t) ex !1t. If we consider the trace of a fBm covering a time 

period !1t = 1, then, without loss of generality, we define the vertical range 

!1BH = 1. We know that BH is statistically self-similar so if we divide the time 

span into N = 1/!1t equal intervals, the vertical range within these intervals 

41 



will be 
H 1 H 

t::..BH = t::..t = NH = N-

Using the box counting method, with boxes of length E = 1J, the number of 

boxes required to cover each interval is 

This means that, 

N(E) = NN1- H = N 2- H 

and thus from equation (2.2) we have 

D=2-H (2.6) 

Thus, since for ordinary Brownian motion H = 1/2 the fractal dimension is 

D = 3/2. 

2.8.6 The Power Spectrum Method (PSM) 

The PSM consider here is both generalizable and computationally accurate. 

The PSM is implemented by applying the Fast Fourier Transformation (FFT) 

to the real-space signal in order to obtain the power spectrum P(w) where 

We consider the power spectrum of an ideal one-dimensional fractal signal 

with dimension D. Then ?(w,J = cl Wi I-~, where c is a scaling constant and 

f3 is the spectral exponent, which is related to the fractal dimension, D, as 

described later in Section 2.10. Thus, by fitting a least squares error line to 

the data, the value of the spectral exponent f3 and hence D can be obtained. 

42 



One of the main advantages of this approach is that the computation of D 

is based on an explicit formula rather than on some iterative process. In the 

following section the full details for the discrete case are given. 

2.9 Computation of Power Spectrum Param­

eter, (3 

Consider a digital fractal signal 1;, i = 1,2,3, "., N (N being a power of 2), 

and suppose the digital power spectrum P(w,) is obtained by applying FFT 

to k This data can be approximated by(where c is a generic constant) 

or 

c 
F(w,) = --f 

1 Wi I' 

2' C 
1 F(w,) 1 = P(w,) = 1 Wi I~ 

and by using the least squares method we can estimate f3 and c as follows: 

N 

E((3, c) = 2:)n P(w,) - In P(w,W 
i=l 

N 

= 2:)n P(w,) - C + f3lnw;)2 
i=l 

where C = In c and it is assumed that w, > 0 and P(w,) > 0, Vi. 

Differentiating E with respect to (3 and C gives 

8E N 
8(3 = 22:[lnP(w,) - C + (3lnw,Jlnwi 

~=1 

43 



BE N 
BC = -2 I)1nP(ki ) - C + ,6 In w;J 

i=l 

Solving ~~ = 0 and gg = 0 we obtain the following formulas for ,6 and C, 

[3): 

N N N 
N2:(lnwi)lnP(wi) - (2: Inwi)(2: In P(Wi) 

,6 = i=1 i-I i-I 
N N 

(2: Inwi)2 - N 2:(lnWi)2 
i=l i=l 

1 N ,6 N 

C = N I)nP(wi) + N Llnwi 
i==l i=l 

where c = exp C. Here, P(Wi) is the measured power spectrum of the signal 

and Wi its spatial (or temporal) frequency. Since the power spectrum of real 

signals of size N is symmetric about the DC level, where the DC level is taken 

to the mid point ~ + 1 of the array, so in practice we consider only ~ data 

points that lie to the left (or right) of the DC. 

2.10 Computing the Fractal Dimension of a 

Fractal Signal 

Herein, we extract the relationship between the spectral exponent (3 and the 

fractal dimension D. Suppose f(t) be a fractal signal over an infinite support 

and a finite sample het) given by 

het) = { f(t), 
0, 

0< t < T 

O.W 

44 



In reality f(t) ia a random function and for any experiment or computer simu­

lation we should consider a finite sample. Let FT(W) be the Fourier transform 

of fr(t), then 

and 

fr(t) == - FT(w)eiwtdw 1 100 
21f -00 

PT(W) == ~IFT(W)12 

P(w) == !im PT(W) 
T-oo 

where PT(w) and P(w) are the Power Spectrum of fr(t) and f(t) respectively. 

The power spectrum gives an expression for the power of a signal for particular 

harmonics. Suppose that g(t) is the function obtained from f(t) through scal­

ing the t-coordinate by some scale r > 0, and f-coordinate by l/rH • Taking a 

finite sample as before, 

{ 

g(t), 0 < t < T 
gT(t) == 

0, otherwise 

( ) { 
rk f(rt), 0 < t < T 

gT t = 
0, otherwise 

Let GT(w) and Pf(w) be the Fourier transform and the power spectrum of 

gT(t), respectively. We can then obtain an expression of GT(w) in terms of 

FT(W) as follows, 

iT 1 
= -f(rt)e-iwtdt 

o rH 

Substitute s == rt we obtain, 

45 



1 iT iw, H+l f(s)e- r ds 
r 0 

and hence 

and the power spectrum of gT(t) is 

F~(w) = ~IGT(W)12 

1 1 I W)12 = 2H+l -T FrT(-r r r 

When T -> 00, we obtain the power spectrum of g(t) as 

F'(w) = _l_F(~) 
r 2H+1 r 

Since g( t) is a properly scaled version of f (t), their power spectra are equal, 

and so 

F(w) = F'(w) = 2~+1 F(~). 
r r 

Now, formally if we set w = 1 and then replace 1/r by w we get 

1 1 
F(w) ex w2H+1 = wi3 ' 

The signal that we have produced is statistically self-similar and it is defined 

by the parameter H as introduced it in the previous section for fBm. 

From the above equation we have f3 = 2H + 1, and by using the equation (2.6), 

we can compute the Fractal dimension D as 

This relationship provides a simple formula for computing the fractal dimen­

sion from the power spectrum of a signal [8]. 

46 



2.11 References 

[I] Mandelbrot B.B., The Fractal Geometry of Nature, Freeman, 1983. 

[2] Barnsley M.F., Froctals Everywhere, John Wiley & Sons, New York, 1995. 

[3] Blackledge J.M., Digital Signal Processing, Horwood, London, 2003. 

[4] Peitgen H., Jurgens H. and Saupe D., Chaos and F'ractals, Springer Verlage, 

Berlin, 1992 . 

. [5] Shelberg M., The Development of a Curve and Surface Algorithm to Mea­

sure F'ractal Dimensions, Ms Thesis, Ohio State University, 1982. 

[6] Voss R, Random F'ractal: Characterization and Measurement.Scaling Phe­

nomena in Disorder Systems, RPynn and A. Skjeltorps, USA, 1982. 

[7] Falconer K., Froctal Geometry: Mathematical Foundations and Applica­

tions, John Wiley& Sons Ltd., UK, 1990. 

[8] Turner M.J., Blackledge J.M. and Andrews P.R., Fractal Geometry in Dig­

ital Imaging, Academic Press Ltd., UK, 1998. 

[9] Giordano A.A., Hsu F.M., Least Squares Estimation with Application to 

Digital Signal Processing, John Wiley& Sons Ltd., UK, 1985. 

[10] Clarke K. c., 'Scale-based simulation of topographic relie," The American 

Cartographer, vol. 15, no. 2, pp. 173-181,1988. 

[11] Crown over RM., Introduction to F'ractals and Chaos, Jones and Barlett, 

Boston, 1995. 

47 



[12] Tatom F.B., The Application of Fractional Calculus to the Simulation of 

Stochastic Processes, Engineering Analysis Inc., Hunstville, Alabama, AIAA-

89/0792, 1989. 

[13] Tricot C., Curves and Fractal Dimension, New York, London: Springer­

Verlag, 1995. 

[14] Crownovre R.M., Introduction to Fractals and Chaos, Boston: Jones&Bartlett, 

1995. 

[15] Falconer K.J., Techniques in Fractal Geometry, John Wiley& Sons Ltd., 

1997. 

[16] Schepers H.E., Beek J.H. and Bassingthwaighte J.B., "Four methods to 

estimate the fractal dimension from self-affine signals [medical application]," 

Engineering in Medicine and Biology Magazine, IEEE, vo!. 11, no. 2, pp. 

57-64, 71, Jun 1992. 

[17] Reljin 1. and Reljin B., "Fractal geometry and multifractals in analyzing 

and processing medical data and images," Archive of Oncology, vo!. 10, no. 4, 

pp. 283-293, 2002. 

[18] Kaye B.H., A Random Walk through Fractal Dimensions, 2nd edition, 

John Wiley& Sons Ltd., 1994. 

[19] Theiler J., "Estimating fractal dimension," Optical Society of America, 

vo!. 7, no. 6, pp. 1055-1073, June 1990. 

[20] Mandelbrot B.B. and Frame M., "Fractals," Encyclopedia of Physical Sci­

ence and Technology, vo!. 20, no.l , pp. 185-199, June 2001. 

48 



Chapter 3 

Multi-Fractal Models and 

Fractal Modulation 

3.1 Random Scaling Fractal Signals 

Many signals observed in nature are random fractals. Random fmctals are 

signals that exhibit the same statistics at different scales. In other words, they 

are signals whose frequency distribution (Probability Distribution Function 

or PDF) has the same 'shape' irrespective of the scale over which they are 

observed. Thus, random fractal signals are (statistically) self-similar; they 

'look the same' (in a stochastic sense) at different scales. We can define this 

property as follows: Suppose s(t) is a signal, with Pr[s(t)] its PDF and A is a 

scaling parameter, then the signal s(t) exhibits statistical self-similarity if 

Pr[S(At)] = APr[s(t)] (3.1) 

49 



(a) 

3r----------~·--·--·---·---, 

·2 
0 200 400 coo 

(d, 
.. 0 

'20 

'00 

80 

60 

40 

20 

0 2 3 
0 
·2 ., 

Figure 3.1: (a)&(c) Fractal signal of size N=1024 and its PDF, (b)&(d)Fractal 

signal of size N=512 and its PDF. 

The interpretation of this result is that as we zoom into a fractal signal to 

observe the detailed structure of the signal, changing the scale by a factor of 

A, the distribution of amplitudes remains the same (subject to scaling A) even 

though the signal itself 'looks different at a different scale', i.e. s(t) =f slAt). 

In a more general sense, random fractal signals are statistically self-affine, i.e. 

when they conform with the following property: 

Pr[S(At)] = AqPr[s(t)], q > O. (3.2) 

Figure 3.1 illustrates the idea of the of statistical self-similarity, where the 

signal (b) is scaled down version of signal (a). The two signals have the same 

PDF form for the scaling A = 1/2. 

50 



3.2 Mathematical Modeling of Transmission 

Noise 

Developing mathematical models to simulate and analyse noisy signals has an 

important role in digital signal processing. The ideal approach for developing 

a model for transmission noise is to analyse the physics of a transmission 

system. However, there are a number of problems with this approach. First, 

the physical origins of many noise types are not well understood. Secondly, 

conventional approaches for modeling noise fields usually fail to accurately 

predict these characteristics [1]. 

The application of fraetal geometry to modeling naturally occurring signals is 

well known. This is due to the fact that the statistics and spectral characteristic 

of Random Scaling Fractals (RSFs) are consistent with many objects found 

in nature, a characteristics that is compounded in the term 'statistical self­

affinity'. This term refers to random processes that are scale invariant. 

A RSF signal is one whose PDF remains the same irrespective of the scale over 

which the signal is sampled. Thus, as we zoom into a RSF signal, although 

the pattern of amplitude fluctuations will change across the field of view, the 

distribution of these amplitudes remains the same (a scaled down version of the 

'original'), see Figure 3.1. Many noise signals found in nature are statistically 

self-affine including transmission noise. Also, speech signals, financial time 

series and Internet traffic time series tend to exhibit the characteristics of 

RSFs which is discussed further in Chapter 5. The incredible range of vastly 

different systems which exhibit random fractal behavior is leading the scientific 

community to consider statistical self-affinity to be a universal law, a law that 

51 



is particularly evident in systems which are undergoing a phase transition. In 

a stable state, the behavior of the elements from which a system is composed 

depends primarily on their local neighbors and the statistics of the system is 

not self-affine. 

In a critical state, the elements become connected, propagating 'order' through­

out the system in the sense that the statistical characteristics of the system 

are self-affine with 'system wide' correlations. This is more to do with the 

connectivity of the elements than the elements themselves. Of course, critical 

states can be stable in the dynamical sense. Moreover, critical states appear 

to be governed by the power law 

System(size) ex _( 1 ) , 
size q 

where q > 0 is a non-integer. Herein, the term 'system' is a generic term 

representative of some definable parameter that can be measured experimen­

tally over different scales of a certain 'size'. This power law is the principle 

'signature' that the system is behaving in a statistically self-affine way. 

The published literature shows that there are a wide variety of examples which 

demonstrate this power law. In particular, the distribution of Internet traffic 

data is statistically self-affine, i.e. the frequencies of the flow of bytes in a time 

unit interval is the same at different scales. In Chapter 5 we demonstrate this 

property for Internet traffic by considering the traffic of an Ethernet network 

at Loughborough University. 

The power law given above, which governs so many of natural signals and 

systems, is a universal law. However, to date, there is no general mechanism 

or deeper understanding through which this law can be derived. 

52 



RSF signals are characterized by power spectra whose frequency distribution 

is proportional to ~q where w is the frequency and q > 0 is the 'Fourier 

dimension', a value that is related to the Fractal Dimension D. The above 

power law describes convenential RSF models which are based on stationary 

processes in which the 'statistics' of the RSF signals are invariant of time 

and the value of q is constant. However, when the signal is governed by a 

non-stationary process, the value of q may change. Such signals are common; 

they are examples of multi-fractal behavior and finding a theoretical basis for 

modeling and interpreting such signals is important in many areas of science 

and engineering. 

There are two principal approaches to characterizing a stochastic field: 

(i) Analysis of the Probability Density Function (PDF) or the Characteristic 

Function (i.e., the Fourier transform of the PDF) - the shape or envelope of 

the distribution of amplitudes of the field. 

(ii) Analysis of the Power Spectral Density Function (PSDF)of the noise signal. 

The PSDF is the function that describes the envelop or shape of the power 

spectrum of the field and is related to the autocorrelation function of a signal 

through the autocorrelation theorem. In this case, the PSDF is a measure of 

the time correlations of a signal. For example, a white Gaussian noise signal is 

characterized by a PSDF which is effectively constant over all frequencies and 

has a PDF with a Gaussian profile whose mean is zero (for a bi-polar signal). 

In Chapter 5, we investigate the relation between the power spectrum function 

and the autocorrelation function of the time series signal for Internet traffic 

data. 

53 



Many noise (stochastic) fields observed in nature have two fundamental char­

acteristics: 

(i) The field is statistical self-affine. 

(ii)The PSDF is characterized by irrational power laws, i.e. 1~lq, where w is 

the frequency and q > O. 

A good stochastic model is one that accurately predicts both the PDF and 

the PSDF of the data under analysis. It is also one which takes into account 

the fact that a stochastic field may be non-stationary. Note that there is no 

connection between the theoretical prediction and/or the experimental deter­

mination of the PDF and the PSDF, i.e. there is no direct relationship between 

the characteristics of the Fourier transform of stochastic field and the Fourier 

transform of the PDF of the same field. 

In other words, for a given stochastic field, each of the PDF and PSDF can­

not be computed directly one from each of other. There are two traditional 

approaches that are usually adopted in developing a stochastic noise model( to 

simulate the stochastic noise field): 

(i) An approach which is based on modeling the PDF (or characteristic func­

tion) of the system (i.e. predicting the PDF theoretically if possible) so that 

we can design a pseudo random number generator that provide us with a 

stochastic field that is characteristic of the PDF. 

(ii) An approach that is based on modelling the PSDF; the stochastic field is 

then simulated by filtering white Gaussian noise for example according to the 

PSDF model. In this work we consider the second approach. 

54 



3.3 RSF Signals as Solutions to Stochastic Frac­

tional Differential Equations 

Suppose that 8(t) is a signal that is given by the solution of the following 

Stochastic Fractional Differential (SFD) equation of the qth order: 

dq 

-d 8(t) = n(t) tq (3.3) 

where q is a real (or complex) number such that 1 < q < 2, and n(t) is a 

noise function whose PSDF is constant. Note that when q = 1 and assuming 

that the function n(t) is dimensionless, then the solution of this equation has 

dimension 1 (t being taken to be length), and when q = 2 the solution has 

dimension 2. Thus for 1 < q < 2 the solution of this equation can be regarded 

in terms of a fractal signal with a fractional dimension between 1 and 2. 

In what follows, we aim to show that the solution of equation (3.3) is one that 

is consistent with the fractal power law. As a consequence of this, we are able 

to quantify the PSD F of a fractal signal. 

The first problem to consider is the method of solution required to solve equa­

tion (3.3). Fractional Calculus is not new [6, 12], but in general the use of 

fractional calculus to define RSF signals and stochastic processes has not been 

deeply explored. The principal arguments with regard to this issue have been 

explored by Blackledge [2]. 

There are many techniques to working with fractional derivatives but they all 

depend on the generalization of results associated with derivatives of integer 

order. 

55 



Here we consider the following definition of the qth fractional derivative of the 

function s(t), which is particular useful: 

d
q 1100 

. -s(t) = - (iw)qS(w)e'wtdw 
dtq 21f_

00 

(3.4) 

where S(w) is the Fourier transform of s(t) given by 

S(w) = 1: s(t)e-iwtdt 

and w is the frequency. By using this definition, the solution of equation (3.3) 

becomes 

s(t) = - (iw)-qN(w)e,wtdw 1 100 . 
21f -00 

where N(w) is the Fourier transform of n(t). Note that the solution is expressed 

in terms of the inverse Fourier transform of the two functions (iw)-q and N(w). 

Application of the convolution theorem allows us to write this result in the form 

s(t) = J h(t - r)n(r)dr 

where h is given by 

h(t) = - (iw)-qe,wtdw 1 100 . 
21f -00 

Substituting r for iw, h(t) can be written in terms of the inverse Laplace 

transform of r q • Since 

q> -1 

where t is taken to denote the Laplace transform and r is the Gamma function 

we can write 

56 



1-

or 

L-I[..!..] = _1_tq- 1 

r q f(q) 

Thus, the solution to equation (3.3) can be written in the form 

1 lt n(r) 
s(t) = r(q) -00 (t _ r)1 qdr 

This is the Liouville-Rieman transform and is an example of a fractional inte­

gral. The question now IS whether this transform is consistent with the concept 

of statistical self-affinity. Consider the case when 

8(t) - _1_1t n(Ar) dr 
- f(q) -00 (t - r)l-q 

where A is a scaling parameter. Now, with Z = Ar, we obtain 

_ 1 1 lAt n( z) 1 
s(t) = Aqf(q) -00 (At _ z)1 qdz = AqS(At) 

Both 8(t) and S(At) are stochastic signals but over different scales, (n(t) being 

white noise at any scale) and so, although 8(t) oF S(At) we have 

Pr[S(At)] = AqPr[s(t)] 

which describes a statistical self-affine property of RSF signals. 

White Gaussion Noise 
(WGN) 

I 

Fractional Differentiation 
'--------' ~ " 

Fractol Gaussion Noise 
(FGN) 

Figure 3.2: The relationship between White Noise and Fractal Noise. 

57 



3.3.1 Relationship between White Noise and Fractal noise 

From the previous section, we note the relationship between white noise and 

fractal noise in terms of fractional differentiation and fractional integration as 

illustrated in Figure 3.2. This result allows us to generate a fractal signal with 

a given fractal dimension by means of a well-defined fractional integration of 

white noise. However, in general, a fractal signal is not stationary but varies, 

i.e. the fractal dimension, D, and also Fourier dimension q, changes with 

time. This reality leads us to consider a new type of integration/differentiation 

in which q becomes a function of time. This non-stationary process can be 

described by the equation 
dq(t) 
dtq(t)s(t) = n(t). 

We can now define the forward and the inverse problems: the forward problem 

is, given the function q(t) and a white noise signal n(t), compute the frac­

tal signal s(t); the inverse problem is, given the fractal signal s(t) estimate 

the function q(t). The inverse problem can be approached in terms of the 

characteristic PSDF given by P(w) = IS(w)12 which is proportional to Iwl-2q 

i.e. 

P(w) ex Iwl-2q 

or 
c 

P(w) = Iwl!1' (3 = 2q 

where c is a constant of proportionality. Note, that c provides a measure of 

the 'energy' of the signal since from Rayleigh's theorem 

100 1 100 c 1"" 1 Energy = Is(tWdt = -2 IS(w)l2dw = - -I 12qdw 
-00 7r -00 211" -00 W 

58 



3.3.2 Digital Algorithms to Generate Fractal Noise and 

the Fractal Dimension 

We introduce two principle algorithms that are required to generate a fractal 

noise signal by using a fractal noise model and to estimate the fractal dimen-

sion. 

Algorithm I: Fractal Noise Generation 

This algorithm is concerned with the computation of a discrete fractal noise 

signal Si given that the parameter q is known and is as follows: 

Step1: Generate a White Gaussian Noise (WGN), ni, i = 1,2,3, ... 

Step2: Calculate the Discrete Fourier Transform (DFT)of ni to obtain Ni 

using a Fast Fourier Transform (FFT). 

Step3: Apply the Fractal filter ~ on Ni , where q = 5-;/. 
(iw,)' 

Step4: Calculate the Inverse DFT of the result using an (inverse) FFT to 

obtain the fractal signal Si (real part). 

Algorithm 11: Estimation of the Fourier Dimension q 

This algorithm is an inverse algorithm in which the fractal signal Si is given 

from which we are required to compute q. A suitable approach to do this, 

which is consistent with the algorithm given above is to estimate q from the 

Power Spectrum of Si whose expected form is 

i = 1,2,3, .... N/2-1 

where c is a constant. 

59 



Here, we consider only the positive half space and exclude the DC component 

which is singular. The formula for estimating q from a fractal signal is given 

in Section 2.9 and the required algorithm to implement this inverse solution is 

as follows [3]: 

Step!: Take the fast Fourier transform (FFT) of the fractal signal. 

Step2: Calculate the Power Spectrum (PS), 

Pi(W) = Re(wi)2 + Im(wi)2, where Re(wi) and Im(wi) are real and imaginary 

parts of the spectrum, respectively. 

Step3: Compute the estimated value of q using the following formula which 

was derived in Section (2.9) 

N N N 

N 2: (In Wi) In P(Wi) - (2: Inwi) 2: In P(Wi) 
q= 

_

~i-~l ____ ~ ______ -2i~-~l ____ ~i-~l ____ __ 
N N 

(2: Inwi)2 - N 2:(lnwi)2 
i=l i=l 

The mechanisms of generating a fractal signal with a given Fourier dimension, 

q, and then estimating such parameter from the generated signal are shown in 

Figure 3.4 and Figure 3.5, respectively. 

Figure 3.3 shows the graph of a generated fractal signal with its probability 

distribution function (a&b), and graph of the theoretical and the empirical 

power spectrum density function (c&d). 

60 



(b) 
300 

250 

200 

150 

100 

50 

0 
-2 -1 0 2 3 

(c) (d) 
5000 

0.9 4000 

0 .• 3000 

0.7 

0.6 _____ ",,,/'" ----
0.5

0 500 1000 1500 

Figure 3.3: (a)&(b) Fractal signal with q=O.l and its PDF, (c)&(d) its theo­

retical and empirical PS. 

Fourier Dimension (q) .r Fractal Signal 
, , . 

"I ( 1'1 
1 I, 

While Gaussian Noise 

Figure 3.4: Generation of a Fractal Noise Signal. 

61 



Figure 3.5: Estimation of the Fractal Parameter, q (Fourier Dimension). 

3.4 Review of Fractal Modulation 

Embedding information in data whose properties and characteristics resemble 

the background noise of a transmition system is of particular interest in covert 

digital communications. In this section, we review a technique which was 

introduced through the work of [6], which is based on embedding a bit stream 

in fractal noise by modulating the fractal dimension of a fractal noise generator 

and reconstructing the bit streams in the presence of additive noise assumed 

to be introduced during the transmission phase. 

This form of 'embedding information in noise' is of value in the transmission 

of information in situations when communication traffic needs to hidden in a 

covert sense by coupling an increase in the background noise of a given area 

with appropriate disinformation. 

62 



3.4.1 Secure Digital Communications 

A digital communications systems is one that is based on transmitting and 

receiving bit streams, this could include a text file for example. The basic 

processes involved are as follows: (i) a digital signal is obtained from sampling 

an analogue signal derived from some speech and/or video system; (ii) this 

signal (floating point stream) is converted into a binary signal consisting of Os 

and Is (bit stream); (iii) the bit stream is then modulated and transmitted; (iv) 

at reception, the transmitted signal is demodulated to recover the transmitted 

bit stream; (v) the (floating point) digital signal is reconstructed. Digital to 

analogue conversion may then be required depending on the type of technology 

being used. 

In the case of sensitive information, an additional step is required between 

stages (ii) and (iii) above where the bit stream is coded according to some 

classified algorithm. Appropriate decoding is then introduced between stages 

(iv) and (v) with suitable pre-processing to reduce the effects of transmission 

noise for example which introduces bit errors. The bit stream coding algorithm 

is typically based on a pseudo random number generator or nonlinear maps in 

chaotic regions of their phase spaces (chaotic number generation). 

The modulation technique is typically either Frequency Modulation or Phase 

Modulation. Frequency modulation involves assigning a specific frequency to 

each 0 in the bit stream and another higher (or lower) frequency to each 1 in 

the stream. The difference between the two frequencies is minimized to provide 

space for other channels within the available bandwidth. Phase modulation 

involves assigning a phase value (0, 7r/2, 7r, 37r/2) to one of four possible 

combinations that occur in a bit stream (i.e. 00, ll, 01 or 10). 

63 



Scrambling methods can be introduced before binarization. A conventional 

approach to this is to distort the digital signal by adding random numbers 

to the out-of-band components of its spectrum. The original signal is then 

recovered by lowpass filtering. This approach requires an enhanced bandwidth 

but is effective in the sense that the signal can be recovered from data with a 

relatively low signal-to-noise ratio. 'Spread spectrum' or 'frequency hopping' 

is used to spread the transmitted (e.g. frequency modulated) information over 

many different frequencies. Although spread spectrum communications use 

more bandwidth than necessary, by doing so, each communications system 

avoids interference with another because the transmissions are at such mini­

mal power, with only spurts of data at anyone frequency. The emitted signals 

are so weak that they are almost imperceptible above background noise. This 

feature results in an added benefit of spread spectrum which is that eaves­

dropping on a transmission is very difficult and in general, only the intended 

receiver may ever known that a transmission is taking place, the frequency 

hopping sequence being known only to the intended party. Direct sequencing, 

in which the transmitted information is mixed with a coded signal, is based on 

transmitting each bit of data at several different frequencies simultaneously, 

with both the transmitter and receiver synchronized to the same coded se­

quence. More sophisticated spread spectrum techniques include hybrid ones 

that leverage the best features of frequency hopping and direct sequencing 

as well as other ways to code data. These methods are particularly resistant 

to jamming, noise and multi path anomalies, a frequency dependent effect in 

which the signal is reflected from objects in urban and/or rural environments 

and from different atmospheric layers, introducing delays in the transmission 

that can confuse any unauthorized reception of the transmission. 

64 



The purpose of Fractal Modulation is to try and make a bit stream 'look 

like' transmission noise (assumed to be fractal). The technique considered 

here focuses on the design of algorithms which encode a bit stream in terms 

of two fractal dimensions that can be combined to produce a fractal signal 

characteristic of transmission noise. Ultimately, fractal modulation can be 

considered to be an alternative to frequency modulation although requiring a 

significantly greater bandwidth for its operation. 

However, fractal modulation could relatively easily be used as an additional 

pre-processing security measure before transmission. The fractal modulated 

signal would then be binarized and the new bit stream fed into a conventional 

frequency modulated digital communications system albeit with a considerably 

reduced information throughput for a given bit rate. The problem is as follows: 

given an arbitrary binary code, convert it into a non-stationary fmctal signal 

by modulating the fmctal dimension in such a way that the original binary code 

can be recovered in the presence of additive noise with minimal bit errors. 

3.4.2 Fractal Modulation and Demodulation 

The technique considered here focuses on the design of the algorithms which 

encode a bit stream in terms of two fractal dimensions that can be combined 

to produce a fractal signal that is characteristic of transmission noise. The 

transmission noise could include that associated with a range of frequency 

channels including the radio and microwave (mobile telecommunications for 

example) ranges. 

65 



Instead of working in terms of fractal dimension, D, we shall consider the 

Fourier dimension, q, which is related to D by 

5-2D 
q= 

2 

Fractal Modulation 

1 < D < 2, O<q<1. 

Consider a stream of binary bits ' ... 10110011 .. .' ,of length L where we allocate 

qo to bit=O and qj to bit=l, where qo < qj. 

Compute a fractal signal of length N for each bit in the stream using values 

for qo or qj. 

Concatenate the resulting signals to produce a contiguous stream of non­

stationary fractal noise. 

Fractal Demodulation 

The problem of reconstructing the original bit stream, is achieved as follows: 

Estimate the parameter q via the power spectrum method, as introduced in 

Chapter 2, using a covenential moving window of size N to provide a stream 

of estimated values of q, i.e. qi, i = 1,2,3, '" L. 

Reconstruct the bit stream from the following algorithm: 

if qi ::; 6. then bit=O 

if qi > 6. then bit= 1, 

where D. = ~(qj + qo), the thresholding point. 

66 



3.5 Experimental Results 

In this section we introduce some results that have been obtained through ap­

plication of the MATLAB code developed for investigating Fractal Modulation 

(see Appendix A) and in particular, the estimation of the Fourier dimension 

q. 

The results given in Table 3.1 and Table 3.2 are non-inclusive of an applied 

noise-to-signal ratio (i.e. NSR = 0) whereas in Table 3.3 result are presented 

with different NSR (for additive noise) for the fractal signal, applied before 

computing an estimate for q. 

3.5.1 Results of Estimating q Without Additive Noise 

Here, we have taken the fractal signal to be of size N = 1024 with differ­

ent seeds, say seed=5, 10, 15, 20, and different values of the parameter q. 

Comments on Tables 

We note from the tables given that the estimated values of q alter according 

to the changes in its exact value and also change in seed value. As the value 

of the seed increases, the estimation error of the parameter also increase; this 

means that it is convenient to use small values of the seed (such 5 or 10 for 

example) for the purpose of encoding binary bits. The question that may arise 

is how can we control the effect of the seed value on the estimation error? The 

other principal result is that a fixed increment in the estimated values of the 

parameter q is of the order of 0.04 which is double the increment in the exact 

values of q. 

67 



Exact(q) Seed=5 Seed=lO Seed=15 
Est.(q) Error(q) Est.(q) Error(q) Est.(q) Error(q) 

0.06 0.04 33% 0.07 21% 0.02 58% 
0.08 0.08 0% 0.11 41% 0.04 18% 
0.10 0.12 20% 0.15 52% 0.10 40% 
0.12 0.16 33% 0.19 60% 0.14 20% 
0.14 0.20 42% 0.23 66% 0.18 32% 
0.16 0.24 50% 0.27 70% 0.22 40% 
0.18 0.28 55% 0.31 73% 0.26 47% 
0.20 0.32 60% 0.35 76% 0.30 52% 

Table 3.1: Estimated values of q, with different seeds. 

Exact(q) Seed=20 Seed=24 Seed=25 
Est.( q) Error(q) Est.(q) Error(q) Est.(q) Error(q) 

0.06 0.08 44% 0.02 58% 0.06 10% 
0.08 0.12 58% 0.06 18% 0.10 33% 
0.10 0.16 66% 0.10 5% 0.14 46% 
0.12 0.20 72% 0.14 21% 0.18 55% 
0.14 0.24 76% 0.18 32% 0.22 61% 
0.16 0.28 79% 0.22 41% 0.26 66% 
0.18 0.32 55% 0.26 47% 0.30 70% 
0.20 0.36 60% 0.30 53% 0.34 73% 

Table 3.2: Estimated values of q, with different seeds. 

For example, Table 3.1 shows that with the seed=5, where the exact value of 

the parameter q starts from 0.06 and increases incrementally by 0.02 to 0.20, 

the corresponding estimated value start from 0.04 and increases incrementally 

by 0.04 (double of increment in the exact value) until 0.32. 

3.5.2 Results of Estimating q With Additive Noise 

Here, we added different percentages of noise (white noise) to the generated 

fractal signal before estimating the parameter q, where q = 0.20. 

68 



NSR Seed=5, Seed of NSR = 5 Seed=5, Seed of NSR = 20 
Est.(q) Error(q) Est.(q) Error(q) 

0.00 0.120 20% 0.12 20% 
0.05 0.121 21% 0.126 26% 
0.10 0.118 18% 0.125 24% 
0.15 0.106 6% 0.116 16% 
0.20 0.090 1% 0.102 2% 
0.25 0.070 24% 0.074 25% 
0.30 0.057 42% 0.075 24% 
0.35 0.058 41% 0.067 32% 
0.40 0.610 39% 0.058 41% 
0.45 0.045 54% 0.042 57% 
0.50 0.041 58% 0.03 69% 

Table 3.3: Estimated values of q with different values of NSR (exact q = 0.10). 

The results in Table 3.3 show that as the NSR increases, the error in estimation 

of the parameter q also increase as is expected. Also, when we use the same 

seed value for the fractal signal and for the added noise signal, the estimation 

error of q is small compared with the estimation error associated with the case 

when the seed value is changed. 

3.5.3 Illustrative Example 

In this section we introduce an example for coding and decoding a bit streams. 

Encoding a Binary Bit Stream 

Suppose that the binary bit array to be encode is bn= '10110010', and we use 

initial values N = 1024 and seed = 5 with parameters qo = 0.10 and ql = 0.20. 

69 



, ·fa ) 1!'l0OO 
'b, 

5000 

~ODO 

3=0: ~ 
;2'000 

,"oo~~'\ I.' '. , J ',', - _ 1 I '.: 

o . . . 

1 

i 
1500 0 :'>00 1000 1500 

'0' ,d, 
7000 

I GOOD • I 
! 5000 

I 4000 

3000 

1 
1000 -. 0 .00 1000 1500 1500 

Figure 3.6: (a)&(b)Fractal signal with NSR=O and its PS , (c)&(d) Fractal 

signal with NSR=0.25, and its PS. 

Figure 3.7 shows a non-stationary contiguous stream of ffactal modulated sig­

nals and we note that the texture of the whole signal varies according to 

changes in the bit stream: from 1 to 0 and 0 to 1. 

Decoding the Binary Bit Stream 

Assuming that we have used the previous modulated signal of length 8192, 

a window of length N = 1024 is moved over the signal 1024 points at a time 

and we estimate the value of q from each segment. We therefore obtain an 

array of length L=8 giving the estimated values of the parameter q as follows: 

fA = 0.32,0.12,0.32,0.32,0.12,0.12,0.32,0.12. The value of the threshold is 

6. = q,;qO = 0.15 and if we compare the values of qi with the 6. = 0.15 

according to the algorithm given above, then we recover the original binary 

bit stream, with no error. 

70 



Figure 3.7: Non-Stationary contiguous stream of fractal modulated signals, 

with qo = 0.10 and q1 = 0.20 

") 
3- "---'-'~~-'.-.'---'-'-

:il~. 'iMt~1 ;,J1~I.!bl~ 
,~ .• il ..• 

~ "I) . • '. I' . f. i 

.~- --j 

1 
,5«> 

<l>, 

2000 

I IlIJ I 

:~ :JktM~l~ 
o wo 1000 .. , 

. I 
''''''' 

Figure 3.8: (a)&(b) Fractal signal with q = 0.20 and its empirical PS, (c)&(d) 

Fractal signal with q = 0.10 and its empirical PS 

71 



3.6 Multi-Fractal Modulation 

Modulation techniques for digital communications systems are typically based 

on either Frequency Modulation or Phase Modulation. As discussed in Section 

3.4.1, frequency modulation involves assigning a specific frequency to each 0 

in the bit stream and another higher (or lower) frequency to each 1 in the 

stream, the difference between the two frequencies being minimized to provide 

space for other channels within the available bandwidth. Phase modulation 

involves assigning a phase value (0, 1f/2, 1f, 31f/2) to one of four (and only 

four) possible combinations that occur in a bit stream ( i.e. 00,01, 10, 11). 

In this thesis, we introduce a new technique to modulate binary bit streams, 

which can be considered as an extension to the fractal modulation technique 

discussed in the previous section, i.e. multi-fractal modulation. In this sense, 

fractal modulation, as discussed above is analogous to conventional frequency 

modulation and multi-fractal modulation, as discussed here, is analogous to 

phase modulation. The difference is that both fractal and multi-fractal mod­

ulation attempt to hide information in background noise, thus making the 

transmission entirely covert. 

In multi-fractal modulation we try to embed a binary bit stream in background 

fractal noise, by modulating the values of one or two parameters using a gener­

alized random scaling fractal model to be introduced in the following section. 

Ultimately, multi-fractal modulation can be considered to be an alternative 

approach to phase modulation although requiring a significantly greater band­

width for its operation. Thus, for civilian purpose, which requires the use 

of minimal bandwidths, these techniques are not appropriate but for military 

72 



communications (where bandwidth is not so critically constrained) fractal and 

multi-fractal modulation techniques have a number of applications. 

3.6.1 Generalized Random Scaling Fractal (GRSF) Model 

Although statistical self-similarity and self-affinity are properties of many sig­

nals found in nature, the basic PSDF model P(w) = ;k, which is associated 

with a random fractal signal, is not appropriate to all noise types and/or char­

acteristic of their behavior as a whole. Most signals do have a high frequency 

decay for which the RSF model is appropriate but the complete power spec­

trum may have characteristics for which a simple power law (Le wk) is not 

appropriate. This has led to the development of spectral partitioning algo­

rithms which attempt to extract the most appropriate part of the spectrum 

for which the ;k power law applies. 

Developing theoretically valid models for the spectral characteristics (PSDF)and/or 

the PDFs of stochastic fields is one of the principle aims of statistical mechan-

ics. Ideally, what we require is a profile for the PSDF which characterizes a 

wider variety of PSDFs of which the the w-2q law is a special case. Following 

[1], a more general stochastic model can be proposed where the PSDF of a 

stochastic signal is assumed to be of the form 

w2g 

P(w) = c.( 2 2) 
Wo +w q 

(3.5) 

where 9 (Numerator parameter) and q (Denominator parameter) are positive 

real numbers, c is a scaling parameter and Wo is a characteristic frequency 

parameter [21. This model is a generalization of the RSF model discussed above 

73 



and thus is called the Generalized Random Scaling Fractal (GRSF) model. 

Here, the two parameters 9 and q can be consider to be Fourier dimensions 

which together with the parameter Wo provides a way of 'shaping' the PS OF 

of a stochastic field. Note that this model reduces to the PS OF for a fractal 

signal when 9 = 0, Wo = 0 and 1 < q < 2. 

3.6.2 Basic Properties 

The PSOF given in equation (3.5) has a maximum value at a certain fre­

quency Wm E (0,00). To find this value, for simplicity, we write the PSOF in 

logarithmic form, i.e. 

and then find w when 

i.e. 

W
2g 

In F(w) = In [e. (2 2)] 
Wo +w q 

= Ine+2glnw -qln(w6 +w2
) 

dF(w) = 0 
dw 

dIn F(w) 1 dF(w) 2g 2wq = 0 
dw = F(wr~ = W - w5 +w2 

This implies that 

dF(w) = [2g _ 2wq ]F(w) = 0 
dw W w5+W2 

and since 

F(w) -I- 0, Vw E (0,00) 

[2g _ 2wq ]_ 0 
w w5 +w2 -

or 
9 wq 
w 

74 



Thus 

and 

Hence, the PSDF attain its maximum value at 

Wm = J gW5 = wo) 9 
q-g q-g 

such that 9 < q but when 9 ;:::: q then the maximum value of the PSDF does 

not exist and 

lim P(w) = 00. 
w-oo 

If we apply the value Wm in P(w) we can obtain the maximum value 

P(Wm ) = P(wo) 9 ) 
q-g 

= C(w2_g_)9(W2 + w2- g-tq 
0q_g ° 0q_g 

_ 2g-2q( 9 )g( q )_q -cwo ----
q-g q-g 

2( - ) gg = CWo 9 q (_)(q - g)q-g. 
qq 

Beyond this point, the generalized PSDF decays and its asymptotic form is 

dominated by a w-2q power law which is consistent with RSF signals and 

many noise types at the high frequency end of their power spectra. At low 

frequencies, the spectrum is characterised by the term (iW)2g. 

75 



3.7 Analysis 

Given the generalized PSDF in equation (3.5), the complex spectrum equation 

of the noise signal F(w) can be written as 

F(w) = H(w).N(w) 

where as before N(w) is the complex spectrum of white noise. Here, the term 

'white noise' is defined conventionally as noise whose PSDF is constant and 

H (w) is the transfer function (ignoring scaling) given by 

H(w) = (iw)g 
(wo + iw)q 

The noise function fix) is then given by 

00 

1 f . fix) == 27f H(w).N(w)e'wxlku. 
-00 

It is interesting to analyse this result with the aim of establishing the transform 

of nix) and so obtain f(x). If we consider the definition offractional derivative 

in terms of the inverse Fourier transform of (iW)9, then using the convolution 

theorem we can write (for independent variable x) 

J dg 
fix) = h(x - y) dyg n(y)dy 

where 
00 

h(x) == - e'wxdw 1 J 1 . 
27f (wo+iw)q . 

-00 

Substitution of p for iw allows us to write this result in terms of the inverse 

Laplace transform, i.e. 

h(x) == L -\ 1 )]. 
Wo +p q 

76 



Since 

------------_._---

L[xqe-WOX ] = r(q + 1) 
(wo + p)q+! 

where, q > -1 and Re(p + wo) > 0 it follows that 

Hence fix) can be written in terms of the fractional integral transform: 

x 
1 J e-wo(x-y) d9 

fix) = r(q) (x _ y)H dy9 n(y)dy. 
-00 

The scaling characteristics of this transform can be investigated by considering 

the function 
x 

, 1 J e-wo(x-y) d9 

fix; wo) = r(q) (x _ y)I-q' dy9 n()..y)dy 
-00 

)..9 1 100 e=x"('\X-Z) d9 

= Aq'f(q) (AX _ z)Hdz9·n(z)dz 
-00 

A9 Wo 
= Aqf()..x;>:) 

with substitution of z for )..y. 

Hence, the scaling relationship for this model is 

Pr[J(Ax, ~o)] = )..Q-9.Pr[J(x,wo)] 

where Pr[.) denotes the PDF. Here, as we scale x by A, the characteristic 

frequency Wo is scaled by * a result that is in some sense consistent with the 

scaling property of the Fourier transform 

1 w 
f()..x) ~ ;XF( ;X). 

77 



The interpretation of this result is that as we zoom in the signal f(x) the 

distribution of amplitudes (Le., the probability density function, PDF) remains 

the same subject to a scaling factor A (g-q) and the characteristic frequency of 

the signal increase by a factor * 
Figure 3.9 shows a fractal signal of size 1024 points, generated using the GRSF 

model, with its PDF and another fractal signal of size 512 points with its PDF, 

where the second fractal signal is a half zoom-in of the first signal. Clearly, 

the PDF of the second signal is similar to the PDF of the first signal. This 

figure illustrates the characteristic of self-affinity in the two signals where the 

distribution of amplitudes for the two signals are the same over (two) different 

scales. 

o 

-0115 1 
o 

2e:.O 

"0 

100 

50 

o 
-015 

,.) 

!').(]O 1000 

(c) 

(., 

j\~~~,~ ! 
-0' i i I 

_015 1 

''''0 o ;200 400 fJOO 

.d. 

Figure 3.9: (a)&(c) Fractal signal of size N=1024 and its PDF, (b)&(d) Fractal 

signal of size N=512 and its PDF. 

78 



3.7.1 Parameter Estimation for the GRSF Model 

The results discussed previously for the GRSF model reduce to the 'normal' 

theory of RSF signals when 9 = 0 and Wo = O. However, GRSF model gives a 

much greater degree of flexibility in terms of characterizing the PSDFs of many 

noise types, nearly all of which have some degree of statistical self-affinity, and 

PSDFs with power laws of irrational form. In terms of using this model to 

characterize signal texture, we consider the case where a suitable combination 

(some cluttering algorithm) of the parameters g, q,and c is taken to be a 

measure of texture, in particular, 9 and/or q and their product for example. In 

each case, we are required to obtain estimates for these parameters associated 

with the data /;, i = 1,2,3, "., N. 

The general four-parameter problem is not easy to solve, primarily because of 

difficulties in Jinearizing P(w) with respect to Wo. However, suppose that a 

good estimate of Wo can be obtained, then we can compute estimates for g, 

q and c using a standard least squares method by constructing a logarithmic 

least squares estimate in the usual way. Suppose that we have a digital fmctal 

signal/;, i = 1,2,3, "., N whose expected power spectrum density function is 

described by a GRSF model of the form 

, w2g 

P( w) = c. (2 2) 
Wo +w q 

The power spectrum method (PSM) requires the use of the least square prin­

ciple in order to find the best estimation for the parameters g, q, Wo and c. 

79 



3.7.2 Power Spectrum Method for Estimating g, q and 

c 

As discussed earlier, the general four-parameter problem is not easily to solve 

analytically, primarily because of difficulties in linearizing P(w) with respect 

to Wo. Thus, we shall concentrate only on estimating the three parameters g, 

q and c. Assuming that a good estimate for Wo can be obtained, suppose P; 

is the empirical value of the power spectrum of the data j;, i = 1,2,3, ... , N 

where 

ai = Real(Fi), 

bi = Imag(Fi), 

Fi=FFT(fi), i=1,2,3, ... ,N 

We shall consider two cases, i.e. when c = 1 and when col!. 

Case 1: c = 1 

Suppose that we wish to fit Pi to the expected form of a fractal power spectrum 

P, where 
2g p,. _ wi 

, - ( 2 + 2)q' Wo wi 
Wi > O. 

We construct the logarithmic least square estimate in the usual way, i.e., 

and consider the error 

In Pi = 2g Inwi - q In(w5 + wt) 

N 

E(g,q) = I: (In Pi -lnpi)2 
j=O 

80 



- - -------------~----~ 

N 

= I.: (In Pi - 2g InWi + q In(w5 + w;W 
j~O 

which is minimum when 

Then 

oB =0 og , oB =0 oq . 

oB N a = -4 I.: (In P; - 2glnwi + qln(w5 +wllllnwi = 0 
g j~O 

N N N 

= I.: (In Pi)(lnwi) - 2g I.: (lnwi)2 +qI.:ln(w5 +W;)(lnwi) = 0 
j=O j=O 

N N N 

=? 2g I.: (In W;)2 - q I.: In(w5 + wn(In Wi) '" I.: (In Pi) (In Wi) (3.6) 
j~O j~O j~O 

Similarly, 

oB N 
F = 2 I.: (In P; - 2g In Wi + q In(w5 + wl)]ln(w5 + wf) = 0 

q j~O 

N N N 

= I.: (In P;)(ln(w5 + wn - 2g I.: (lnwi) In(w5 + wl) +q I.: (In(w5 + wll? = 0 
j~ j~ j~ 

N N N 

=? 2g I.: (Inwi) In(w6 + wn - q I.: (In(wg + w:W = I.: (In P;) In(w5 + wl) 

Put, 

j=O j=O j~O 

N 

alJ = 2 L (Inwi)2, 
j=O 

N 

a12 = - I.: IIl(w5 + wn(lIlWi) 
J~O 

81 

(3.7) 



N 

a21 '" 2 2:)lnwi) In(w5 + wf), 
j~O 

N 

b1 '" ~ (in p;)(ln Wi), 
j~O 

N 

a22'" - ~ (in(w5 + wm 2 

)=0 

N 

b2 '" ~ (In Pi) (In(w5 + wf) 
j~O 

We can write equation (3.6) and equation (3.7) in a more abbreviated form as 

and these equations can be written in matrix form as 

A.Q=B 

where 

Q"'(:) 
and 

B '" C: ) . 
Thus, the vector of estimated parameters is 

(3.8) 

given that A is not a singular matrix. 

82 



Case 2: c f 1 

As with the previous case, the PSDF will have the form 

P(W) = c.( 2 2) Wo +W q 

and the logarithmic form of PSDF is 

In?; = Inc+2glnwi - qln(w5 +w;) 

with C = Inc and so 

In Pi = C + 2glnwi - qln(w5 +w;). 

Here, we need to find the estimated values of the three parameters g, q and C 

by minimizing the value of 

or 

N 

E(g, q, C) = L [In Pi -In Fi[2 
j~O 

N 

E(g,q,C) = L [In?; - C - 2glnwi + qln(w6 +W;W. 
j=O 

This achieved by finding the solutions to the three equations 

Then 

oE 
og = 0, oE = 0 

oq and 
oE 
oC =0. 

oE N 
7} = -4 L[lnPi - C- 2glnwi +qln(w5+w;)]lnwi = 0 

9 j~O 

N N N N 

= L(lnPi)(lnwi) -CLlnwi -2g L(lnwi)2+qLln(w5 +wfl(lnwi) = 0 
j~O j=O j~O j~O 

83 



N N N N 

=} 2g L (InWi)2 - q Lln(w~ +Wll(lnwi) + CLlnwi = L (In?;)(lnWi) 
j=O j=O j=O j=O 

(3.9) 

8E N 
7J = 2 L [In Pi - C - 2glnwi + qln(w5 + wlllln(w5 + w;) = 0 

q j=O 

N N 

= L (In?;) In(w5 + wll - CLln(w5 +wn 
j=O j=O 

N N 

-2g L (In Wi)(In(w5 + wn + q L (In(w5 + wll? = 0 
j~ j~ 

N N N N 

=} 2g L (In Wi) In(w5 + w;)-q L (In(w~ + wi))2+C L In(w5 + wn = L (In Pi) In(w5 + wn 
j=O j=O j=O j=O 

(3.10) 

8E N 

8C = -2 L [In Pi - C - 2g lnwi + qln(w5 +wnl = 0 
j=o 

N N N N 

= LlnPi - CLl- 2g LlnWi +q Lln(w5 +wn = 0 
j=O j=O j=O j=O 

N N N 

=} 2g L lnwi - q Lln(w5 + wt) + CN = L In Pi (3.11) 
j=O j=O )=0 

put 

N N N 
all = 2 L (Inwi)2, 

j=O 
a12 = - L In(w5 + W[)(lnwi), 

j=O 
a13 = L Inwi, 

j=O 

N 

a21 = 2 L (In Wi) In(w5 + wrJ, 
j=O 

N N 
a22 = - L (In(w5 + w;))2, a23 = L In(w5 + wl), 

j=O j=O 

84 



1-

N 

a31 = 22:= In Wi, 
j=O 

N 
b1 = L (InPi)(Inwi), 

j=O 

N 

a32 = - 2:= In(w5 + wl), 
j=O 

N 

b2 = 2:= (In Pi) In(w5 +wf), 
j=O 

N 

b3 = L In Pi. 
j=O 

Equations (3.9), (3.10) and (3.11) can be written in abbreviated form as a 

system of linear equations, i.e. 

The matrix form of this system is 

A.Q=B 

where, 

A= 

9 

Q= q 

c 
and 

b1 

B = b2 

b3 

The vector of estimated parameters is then 

given that A is a non-singular matrix. 

85 

(3.12) 



3.8 Experimental Results 

Herein, we introduce some numerical results of estimating the parameters g 

and q of the GRSF model. These results depend on using the formulas given in 

equations (3.8) and (3.12) and the MATLAB code (see Appendix A) designed 

and executed for this exercise. We consider the two cases when the the scaling 

parameter c is not applied, Le the results depend on the case when c = 1, and 

when the scaling applied. 

3.8.1 Estimating the Numerator parameter g 

Here, we present different tables that give us different exact values of the 

parameter g, ranging from 1.9 to 2.9 in increments of 0.1 with estimated values 

and the percentages of estimation errors. In each table the initial conditions 

are fixed with values N = 1024 and seed = 4. The denominator parameter q 

is changed per five tables with the values q = 3,4,5 whereas the characteristic 

frequency Wo is changed per table for values of Wo = 5,10,15,20,25. 

3.8.2 Estimating the Denominator parameter q 

We present different tables of the estimation results for the parameter q where 

its exact values ranges from 3.1 to 4.1 with increments of 0.1 and with the 

same options that are used in the estimation of the parameter g. 

Comments on Tables 

Table 3.4 to Table 3.9 show results of estimation along with the error of esti-

86 



(lIo) ,D) 

003,----------------------, ."" 
Q ~.o 

200 

,.'" 
'''' 
.0 

-0 .8 -0 

,<, (.) 

o W. H 

0,02 2 

0015 .. 
00' 

0' + 0 

""" 0 .,"" '''''' 

o eo, 
~ ---00 ,.00 '''''' 

Figure 3.10: (a)&(b) Fractal signal with parameters g=3.5, q=4, Wo = 10 and 

its PDF, (c)&(d), its theoretical and empirical power spectrum. 

mation of the numerator parameter, g, when the denominator parameter q is 

fixed and the scaling parameter is not applied, whereas results of Table 3.10 to 

Table 3.12 when there is scaling. In these results different values of the charac­

teristic frequency Wo are considered. The exact values of g are incremented by 

0.1 with a different start value according to the fixed value of the parameter q. 

Table 3.13 to Table 3.15 show the estimated values along the estimation error 

of the parameter q with and without scaling. 

As the exact value of the parameter (g or q) increases incrementally by 0.1, the 

corresponding estimated value increases by 0,2 ( double the increment in the 

exact value). The error of estimation increases when the difference between 

the exact values of g and q increases. 

87 



Exact(g) Wo = 5 Wo = 10 Wo = 15 
Est.(g) Error(g) Est.(g) Error(g) Est.(g) Error(g) 

1.9 0.21 89% 1.83 3% 2.35 19% 
2.0 0.417 80% 2.03 1% 2.55 23% 
2.1 0.617 71% 2.23 6% 2.55 27% 
2.2 0.81 63% 2.43 10% 2.95 30% 
2.3 1.01 56% 2.63 14% 3.15 33% 
2.4 1.21 50% 2.83 18% 3.35 36% 
2.5 1.41 44% 3.03 21% 3.55 39% 
2.6 1.61 38% 3.23 24% 3.75 42% 
2.7 1.81 32% 3.43 27% 3.95 44% 
2.8 2.01 28% 3.63 30% 4.15 46% 
2.9 2.21 24% 3.83 32% 4.35 50% 

Table 3.4: Estimated values of 9 for q = 3 

Exact(g) Wo - 20 Wo = 25 
Est.(g) Error(g) Est.(g) Error(g) 

1.9 2.62 38% 2.79 47% 
2.0 2.82 41% 2.99 49% 
2.1 3.02 44% 3.19 52% 
2.2 3.22 46% 3.39 54% 
2.3 3.42 49% 3.59 56% 
2.4 3.62 51% 3.79 58% 
2.5 3.82 53% 3.99 60% 
2.6 4.02 55% 4.19 61% 
2.7 4.22 56% 4.39 63% 
2.8 4.42 58% 4.59 64% 
2.9 4.62 59% 4.79 65% 

Table 3.5: Estimated values of 9 for q = 3 

88 



Exact(g) Wo = 5 Wo = 10 Wo = 15 
Est:{gj Error[g) Est.(g) Error(g) Est.(g) Error(g) 

2.9 2.20 24% 3.83 32% 4.35 50% 
3.0 2.41 20% 4.03 34% 4.55 52% 
3.1 2.61 16% 4.23 37% 4.75 53% 
3.2 2.81 12% 4.43 38% 4.95 55% 
3.3 3 9% 4.63 40% 5.15 56% 
3.4 3.21 6% 4.83 42% 5.35 57% 
3.5 3.41 3% 5.03 44% 5.55 58% 
3.6 3.61 0.3% 5.23 45% 5.75 60% 
3.7 3.81 3% 5.43 47% 5.95 61% 
3.8 4.01 6% 5.63 48% 6.15 62% 
3.9 4.21 8% 5.83 50% 6.35 63% 

Table 3.6: Estimated values of 9 for q = 4 

Exact(g) Wo = 20 Wo = 25 
Est.(g) Error(g) Est.\gj Error(g) 

2.9 4.62 59% 4.79 65% 
3.0 4.82 61% 4.99 66% 
3.1 5.02 62% 5.19 67% 
3.2 5.22 63% 5.39 68% 
3.3 5.42 64% 5.59 69% 
3.4 5.62 65% 5.79 70% 
3.5 5.82 66% 5.99 71% 
3.6 6.02 67% 6.19 72% 
3.7 6.22 68% 6.39 73% 
3.8 6.42 69% 6.59 74% 
3.9 6.62 70% 6.79 74% 

Table 3.7: Estimated values of 9 for q = 4 

89 



Exact(g) Wo = 5 Wo = 10 Wo = 15 
Est.(g) Error(g) Est.(g) Error(g) Est.(gf Error(g) 

3.9 4.21 24% 5.83 50% 6.35 63% 
4.0 4.41 20% 6.03 51% 6.55 64% 
4.1 4.61 16% 6.23 52% 6.75 65% 
4.2 4.81 12% 6.43 53% 6.95 65% 
4.3 5.01 9% 6.63 54% 7.15 66% 
4.4 5.21 6% 6.83 55% 7.35 67% 
4.5 5.41 3% 7.03 56% 7.55 68% 
4.6 5.61 0.3% 7.23 57% 7.75 68% 
4.7 5.81 3% 7.43 58% 7.95 69% 
4.8 6.01 6% 7.63 59% 8.15 70% 
4.9 6.21 27% 7.83 60% 8.35 70% 

Table 3.8: Estimated values of 9 for q = 5 

Exact(g) Wo = 20 Wo = 25 
Est.(g) Error(g) Est.(g) Error(g) 

3.9 6.62 70% 6.79 74% 
4.0 6.82 70% 6.99 75% 
4.1 7.02 71% 7.19 75% 
4.2 7.22 72% 7.39 76% 
4.3 7.42 72% 7.59 76% 
4.4 7.62 73% 7.79 77% 
4.5 7.82 74% 7.99 78% 
4.6 8.02 74% 8.19 78% 
4.7 8.22 75% 8.39 78% 
4.8 8.42 75% 8.59 79% 
4.9 8.62 76% 8.79 79% 

Table 3.9: Estimated values of 9 for q = 5 

90 



Exact(g) Wo - 5 Wo - 10 Wo - 15 
Est.(g) Error(g) Est.(g) Error(g) Est.(g) Error(g) 

3.9 7.36 88.7% 7.57 94.1% 7.63 95.6% 
4.0 7.56 89% 7.73 94.3% 7.83 95.7% 
4.1 7.76 89.3% 7.93 94.4% 8.03 95.8% 
4.2 7.96 89.5% 8.17 94.5% 8.23 95.9% 
4.3 8.16 89.8% 8.37 94.7% 8.43 96 % 
4.4 8.36 90 % 8.57 94.8% 8.63 96.1% 
4.5 8.56 90.2% 8.77 94.9% 8.83 96.2% 
4.6 8.76 90.4% 8.97 95 % 9.03 96.3% 
4.7 8.96 90.6% 9.17 95.1% 9.23 96.4% 
4.8 9.16 90.8% 9.37 95.2% 9.43 96.5% 
4.9 9.36 91% 9.57 95.3% 9.63 96.5% 

Table 3.10: Estimated values of 9 for q = 5, c = 1.5 

Exact(g) Wo = 5 Wo = 10 Wo = 15 
Est.(g) Error(g) Est.(g) Error(g) Est.(g) Error(g) 

1.9 3.36 76.9% 357 88 % 3.63 91.1% 
2 3.56 78.1% 3.73 88.6 % 3.83 91.5% 
2.1 3.76 79.1% 3.93 89.1% 4.03 91.9% 
2.2 3.96 80.1% 4.17 89.6% 4.23 92.3% 
2.3 4.16 80.9% 4.37 90.1% 4.43 92.6% 
2.4 4.36 81.7% 4.57 90.5% 4.63 92.9% 
2.5 4.56 82.4% 4.77 90.9% 4.83 93.2% 
2.6 4.76 83.1% 4.97 91.2% 5.03 93.4% 
2.7 4.96 83.7% 5.17 91.5% 5.23 93.7% 
2.8 5.16 84.3% 5.37 91.8% 5.43 93.9% 
2.9 5.36 84.9% 5.57 92.1% 5.63 94.1% 

Table 3.11: Estimated values of 9 when q = 3, C = 2 

91 



Exact(g) Wo = 5 Wo = 10 Wo = 15 
Est.(g) Error(g) Est.(g) Error(g) Est.(g) Error(g) 

2.9 5.36 84.9% 5.57 92.1% 5.63 94.1% 
3 5.56 85.4% 5.77 92.4% 5.83 94.3% 
3.1 5.76 85.8% 5.97 92.6% 6.03 94.5% 
3.2 5.96 86.3% 6.17 92.8% 6.23 94.7% 
3.3 6.16 86.7% 6.37 93.1% 6.43 94.8% 
3.4 6.36 87.1% 6.57 93.3% 6.63 95 % 
3.5 6.56 87.4% 6.77 93.5% 6.83 95.1% 
3.6 6.76 87.8% 6.97 93.6% 7.03 95.3% 
3.7 6.96 88.1% 6.17 93.8% 7.23 95.4% 
3.8 7.16 88.4% 6.37 94% 7.43 95.5 % 
3.9 7.36 88.7% 6.57 94.1% 7.63 95.6% 

Table 3.12: Estimated values of 9 when q = 4, c = 2 

Exact(q) Wo = 5 Wo = 10 Wo = 15 
Est-:( q.) Error(q) Est.(q) Error( q) Est.(q) Error(q) 

3.1 2.02 35% 3.65 18% 4.16 34% 
3.2 2.22 31% 3.85 20% 4.36 36% 
3.3 2.42 27% 4.05 23% 4.56 38% 
3.4 2.62 23% 4.25 25% 4.76 40% 
3.5 2.82 19% 4.45 27% 4.96 42% 
3.6 3.02 16% 4.65 29% 5.16 43% 
3.7 3.22 13% 4.85 31% 5.36 45% 
3.8 3.42 10% 5.05 33% 5.56 46% 
3.9 3.62 7% 5.25 35% 5.76 48% 
4.0 3.82 4% 5.45 36% 5.96 49% 
4.1 4.02 2% 5.65 38% 6.16 50% 

Table 3.13: Estimated values of q for 9 = 3 

92 



Exact(q) Wo - 20 Wo - 25 
Est.(g) Error(g) Est.(g) Error(g) 

3.1 4.43 43% 4.61 49% 
3.2 4.63 45% 4.81 50% 
3.3 4.83 46% 5.01 52% 
3.4 5.03 48% 5.21 53% 
3.5 5.23 50% 5.41 55% 
3.6 5.43 51% 5.61 56% 
3.7 5.63 52% 5.81 57% 
3.8 5.83 54% 6.01 58% 
3.9 6.03 55% 6.21 59% 
4 6.23 56% 6.41 60% 
4.1 6.43 57% 6.61 61% 

Table 3.14: Estimated values of 9 for 9 = 3 

Exact(q) Wo = 5 Wo = 10 Wo = 15 
Est.(q) Error(q) Est.(q) Error(q) Est.(q) Error(q) 

3.1 5.72 84.6% 5.92 91.2% 5.98 92.9% 
3.2 5.92 85 % 6.12 91.5% 6.18 93.1% 
3.3 6.12 85.5% 6.32 91.7% 6.38 93.3% 
3.4 6.32 85.9% 6.52 92 % 6.58 93.5% 
3.5 6.52 86.3% 6.72 92.2% 6.78 93.7% 
3.6 6.72 86.7% 6.92 92.4% 6.98 93.9% 
3.7 6.92 87.1% 7.12 92.6% 7.18 94.1% 
3.8 7.12 87.4% 7.32 92.8% 7.38 94.2% 
3.9 7.32 87.7% 7.52 93 % 7.58 94.4% 
4 7.52 88 % 7.72 93.2% 7.78 94.5% 
4.1 7.72 88.3% 7.92 93.3% 7.98 94.6% 

Table 3.15: Estimated values of q when 9 = 3, c = 2 

93 



3.9 Multi-fractal Modulation and Demodula­

tion 

The purpose of multi-fractal modulation is to try and make the information 

content of the transmission phase 'look like' transmission noise so that any 

unauthorized recipient is incapable of distinguishing between the transmission 

of sensitive information and background noise. In this section, we present 

the forward algorithm to accomplish this purpose and later, we present the 

backward algorithm in which we demodulate the data to reconstruct the bit 

stream. 

3.9.1 Multi-Fractal Modulation 

Here, the method of modulation involves generating fractal signals in which 

four values of either the numerator parameter 9 or the denominator parameter 

q are used to differentiate between the bit-pairs 00, 01, 10 and 11 in a bit 

stream. Note that the optimal values of 9 and q are as given in the previous 

tables, where 9 < q. In what follows, we outline the technique when the 

modulation is based on values of the numerator parameter 9 for a fixed q. The 

basic approach is as follows: 

(i) For a given bit stream allocate 91, 92, 93 and 94 for 00, 01, 10, and 11, 

respectively. 

(ii) Compute a fractal signal of size N for each pair of bits in the stream. 

(iii) Concatenate the results to produce a contiguous stream of fractal noise. 

94 



-_._---

3.9.2 Multi-Fractal Demodulation 

Here, we recover the encoded binary bits using fractal demodulation which is 

achieved by computing the estimated value of each of the parameters gl, g2, 

g3 and g4 via the power spectrum method using a moving window of size 1024. 

To accomplish this we define three Cut-Off Points (COPs), say, CP1, CP2 

and CP3. These points divide the estimation region of the parameter into four 

sub-regions, say, RI, R2, R3 and R4 such that each estimated value of the used 

parameter in the encoding process belongs only to one of these regions (see, 

Figure 3.11). The bit stream is then obtained from the following algorithm: 

RI R2 

I 
R3 R4 

COP1 COP2 COP3 

Figure 3.11: Estimation regions and COPs 

if 91 E RI then the bit-pair is 00 

if rh E R2 then the bit-pair is 01 

if 93 E R3 then the bit-pair is 10 

if 94 E R4 then the bit-pair is 11. 

In practical, the COPs are pre-configured and are chosen depending on the 

results compounded in Table 3.4 to Table 3.15. In reality, when the contiguous 

stream of modulated fractal signals has been transmitted, it is important for 

the receiver to have the cut-off points in order be able to demodulate the signal 

and recover the encoded bit stream. 

95 



In this case, the cut-off points can be considered to be private keys which are 

known only by the sender (and receiver). There are, in principle, many ways to 

exchange the cut-off points between sender and receiver. One of these methods 

is to use the chirp coding technique in which we watermark the contiguous 

stream of fractal modulated signals by watermarking them with the cut-off 

points. In chapter 4 we present the background theory to this method and 

explain how the embedding of the cut-off points in the transmitted signal can 

additionally be used to authenticate the signal. 

3.9.3 Illustrative Example 

Herein, we present an illustrative example for encoding a stream of binary 

bits to produce a stream of modulated fractal signals, and then decode the 

contiguous stream of such signals to recover the encoded bit stream. 

Modulating 

Suppose we look forward to encode the stream of bits bn='OOllOllOI11100100110' 

via modulating the value of the parameter g by gl = 3.5, g2 = 3.6, g3 = 3.7, 

and g4 = 3.8 with fixed value of the parameter q = 4 and the initial conditions 

N = 1024, Wo = 5, seed = 4 without the scaling factor, i.e. c = 1. Figure 3.15 

and Figure 3.16 show the plots of the contiguous streams of the multi-fractal 

modulated signals for the binary code bn when the scaling parameter is not 

applied and when it is applied with different values. 

Figure 3.13 and Figure 3.14 show the theoretical PSDF and the empirical power 

spectrum of the fractal signal with four different values of the parameter g, a 

fixed value of the parameter q, and c=l. 

96 



Demodulating 

To recover the encoded stream of bits we apply a moving window of size 

N = 1024 on the contiguous stream of modulated fractal signals that is shown 

in Figure 3.16. From each window segment we use the Power Spectrum Method 

(PSM) to estimate the parameter 9 and q, but are interested in the resulting 

values of 9 which are given as follow: 3.41, 4.01, 3.61, 3.81, 4.01, 4.01, 3.41, 

3.81,3.61,3.81 

To recover the encoded binary original bit stream, assume that the three pre­

con figured cut-off points are: CP1= 3.5, CP2= 3.7, CP3= 3.9; applying the 

decoding algorithm discussed in the previous subsection we get the original 

binary bit with no error. 

Similarly, we can apply multi-fractal modulation by modulating value of de­

nominator parameter q by four values, say ql, q3, q3 and q4, where the value of 

the parameter 9 is fixed and predefined together with the initial conditions. 

Also we can encode the bit-pair by modulating the value of parameter 9 and the 

value of parameter q at time, with two values for each one, namely, 91,92 and 

ql, Q2, respectively. This means that we may encode 00 and 01 by modulating 

the value of 9 to 91 and 92, respectively, and modulate the value of q by ql, and 

Q2, to encode 10 and 11, respectively. Figure 3.12 shows the block diagram of 

the coding and decoding processes. 

97 



.. . '" 

Fractal Coded 
Signal 

Fractal Coded 
Signal 

FractaJ Coding 

00 -11 
... 10000101. . 01 - 9, 

10 -I) 

11 _8. 

WGN 

Fractal Decoding 

COPs 

Recoverd binary bits 
Parameters '--__ .-
Estimation f---+I Thresholding r ... 10000101.. 

Decryplion I+---.J 

Figure 3.12: Fractal coding and decoding processes. 

98 



.. ---- --------

'a' ,b, 
0.05 ---~----."'-, ".------- 0.08 ".". "-"" .. '"--"' •.. "-' .•. --"' .. ---"'--" 

004 

)~---
0.06 

0.03 
0.04 

0.02 

0.01 
0.02 

------ ---
OD 500'-'''''-''0'00 00 -'---",,-

1500 500 1000 1500 

'C' ,d, 
0.2 0.25 

0.15 
0.2 

~ 
0.15 

/ \"'" 01 
0.1 /' 

0.05 
./ 0.05 

-.~-,~~ 

00 500 1000 1500 
0 

0 500 1000 1500 

Figure 3.13: The PSDF with q = 4 and (a) 91 = 3.5, (b)92 = 3.6, (C)93 = 3.7 

(d) and 94 = 3.8. 

,., 
5 

4 

3 

2 

0 
0 500 1000 1500 

(c, 
80 

60 

Figure 3.14: Power spectrum with q 

(C)g3 = 3.7 (d) and 94 = 3.8. 

99 

,b, 
20 

15 

10 

5 

00 500 1000 1500 

,d, 
250 

200 

500 1000 1500 

4 and (a) 91 3.5, (b)g2 3.6, 



O.6r--------,--------,-------~--------._--------__ ------, 

g4 
g4 94 

-0,6 

.O.800--------::2-::00"'0,---------:c40:':0:::0--------,6::0"'070-------c8"'0'=-000------:c,0'"0:::00~-----,=-'2000 

Figure 3.15: Multi-fractal modulated signals, without scaling factor (c=l). 

0.15 r-------~------------------~--------__ --------,-------_____, 

-0_15 

-0.200--------;;2-::00::0,------47.0"'0"'0-------;6:::0'=-00;;--------::8-::00::0,-------,,"0"'00::00------c, -::!2000 

Figure 3.16: Multi-fractal modulated signals, with different scales. 

100 



3.10 References 

(1 J Tatom F.B., The Application of fractional Calculus to the Simulation of 

Stochastic Processes, Engineering Analysis Inc., Huntsville, Alabama, AIAA-

89/0792, 1989. 

(2J Blackledge J.M., TUner M.J. and Andrews P.R., Fractal Geometry in Digital 

Imaging, Academic Press, ISBN 0-12-703970-8, London., 1998. 

(3J Blackledge J.M., Digital Signal Processing:Mathematical and Computation 

Methods, Software Development and Applications, Horwood Publishing Lim­

ited, London, 2nd Edition, 2006. 

(4J Samko S., Kilbas A., Marichev 0., Fractional Integrals and Derivatives, 

Gordon and Breach Science Publishers, 1993. 

!5J Blackledge J.M., Applications of the Froctal Geometry to Pattern Recogni­

tion in Digital Images, Science and Engineering Research Center, De Montfort 

University, UK, 1993. 

[6J Blackledge J.M., Foxon B. and Mikhailov S., "Fractal modulation for dig­

ital communications systems," Proc. of the IEEE Military Communications 

Conference MILCOM'9S, Boston, USA, Oct. 1998. 

[7J Mandelbrot B.B., The Fractal Geometry of Nature, Freeman, 1983. 

[81 Oldham K.B. and Spanier J., The Fractional Calculus, Academic Press, 

1974. 

[91 Blackledge J.M. Foxon B. Mikhailov S., "Fractal coding techniques," Proc. 

of the IEEE Military Communications Conf. MILCOM'96, Nice, France, 1996. 

101 



[ID] Oldham KB. and Spanier J., The Fractional Calculus, Academic Press, 

1974. 

[11] Miller KS. and Ross B., An Introduction to the Fractional Calculus and 

Fractional Differential Equations, John Wiley& Sons Ltd., 1993. 

[12] Oberhettinger F. and Badii L., Table of Laplace Transforms, Springer, 

1973. 

[13] Blackledge J.M., Foxon B. and Mikhailov S., "Fractal Dimension Seg­

mentation," Proc. of the 1st IMA Conj. on Image Processing, pp. 249-289, 

1997. 

[14] Bracewell, The Fourier Transform and its Applications, McGraw-Hill, New 

york, 2nd edition, 1996. 

[15] Evans A.K, "Fourier dimension, fracta! dimension and the fractional 

derivative," Technical Report, 23, SERCenter, De Montfort University, Uk, 

1997. 

[16] Blackledge J.M., On the Synthesis and Processing of Fractal Signals and 

Images in Applications of Practals and Chaos, Springer-Verlag, New York, 

1993. 

[17] Mikhailov S., Practal Modulation and Encryption, PhD Thesis, De Mont­

fort University, UK, 1999. 

[18] Evans A.K, "The Fourier dimension and the fractal dimensions", Chaos, 

Solitons and Fractals, vo!. 9, no. 12, pp. R848-R851, 1995. 

102 



Chapter 4 

Digital Watermarking and 

Self-Authentication 

4.1 Information Embedding and Digital Wa­

termarking 

In this Chapter, we introduce a new watermarking technology as a solution to 

verifying (or invalidating) the authenticity of a signal. Digital watermarking 

and information embedding, which are also referred as data hiding, refer to 

the process of embedding one signal called the 'embedded signal' or 'digital 

watermark' within another signal called the 'host signal', Here, i.e, within 

the context of this thesis, we introduce the idea of watermarking in order to 

satisfy the two purposes: 

103 



(i) to exchange the thresholding or cut-off points which are vital for recon­

structing the encoded binary bits (as discussed in Chapter 3). 

(ii) to authenticate the stream of fractal modulated signals in order to confirm 

authenticity of the signal before applying the reconstruction processes. 

In this application, the host signal is a fractal modulated signal and the digital 

watermark is a binary coded bit stream of the cut-off points. 

The watermarking method is based on linear frequency modulated 'chirp cod­

ing'. The principle underlying this approach is based on the use of a matched 

filter to provide a reconstruction of a chirp code that is uniquely robust in the 

case of very low signal-to-noise ratios. This is the principal reason as to why 

the method can be used so effectively to embed data in a host signal. 

In what follows, we present a brief revision of the theoretical and computational 

aspects of the matched filter and the properties of a chirp to provide the 

essential background to the method. Signal code generating schemes are then 

addressed and details of the coding and decoding techniques consid ered. 

4.1.1 The Matched Filter 

In this thesis, the method of watermarking is based on application of a specific 

function - the chirp - coupled with a well defined processes - the matched filter. 

The matched filter is a result of finding a solution to the following problem: 

Given that a signal can be modelled in terms of the linear time invariant 

process 

Si = LPi-jfj + ni, 
j 

104 

I 

I 



where Pi is the Impulse Response Function (IRF), J; is the information carried 

by the signal and ni is noise, find an estimate for the IRF given by 

where 

Ji = LqjSi-j 
j 

1 2: QiPi 12 

SNR = 2: 1 Ni 121 Qi 12 
i 

is a maximum. Note that the ratio defining SN R is a measure of the signal­

to-noise ratio (SNR). In this sense, the matched filter maximizes the signal-to­

noise ratio of the output. Assuming that the noise ni has a 'white' or uniform 

power spectrum, the filter Qi which maximizes the signal-to-noise defined by 

SN R is given by 

Qi = P;' 

and the required solution is therefore 

Ji = IDFT(P;' S;). 

Using the correlation theorem, we then have 

Ji = LPj-iSj. 
j 

The matched filter is therefore based on correlating the signal Si with the 

!RF Pi. This filter is frequently used in systems that employ linear frequency 

modulated (FM) pulses - 'chirped pulses' - which will be discussed later. 

105 



4.1.2 Derivation of the Matched Filter 

With the problem specified as above, the matched filter is essentially a 'by­

product' of the 'Cauchy-Schwartz Inequality', i.e. 

2 

The principal 'trick' is to write 

1'; 
QiPi =1 Ni 1 Qi X 1 Ni 1 

so that the above inequality becomes 

From this result, using the definition of r given above, we see that 

Now, if r is to be a maximum, then we want 

or 
2 2 

'" 1 Q Pi '" 1 121 12 '" 1 1'; 1 ~ 1 Ni i 1 Ni 1 = ~ Ni Qi ~ 1 Ni 12 ' 

• • • 
But this is only true if 

and hence, r is a maximum when 

P' 
Qi = 1 N; 12 ' 

106 



Note that if the noise ni is white noise, then its power spectrum 1 Ni 12 is 

uniformly distributed. In particular, under the condition 

1 Ni 12= 1 'Vi = 0, 1, "., N - 1 

then 

Qi = p;*. 

4.1.3 Pseudo Code for the Matched Filter 

Using pseudo code the matched filter process is; 

for i=1, 2, ... , n; do: 

sr(i)=signal(i) 

si(i)=O. 

pr (i) =IRF (i) 

pi(i)=O. 

enddo 

forward_fft(sr,si) 

forward_fft(pr,pi) 

for i=1, 2, ... , n; do: 

fr(i)=pr(i)*sr(i)+pi(i)*si(i) 

fi(i)=pr(i)*si(i)-pi(i)*sr(i) 

enddo 

inverse_fft(fr,fi) 

for i=1, 2, ... , n; do: 

hatf(i)=fr(i) 

enddo 

107 



4.1.4 Deconvolution of Frequency Modulated Signals 

The matched filter is frequently used in systems that utilize linear frequency 

modulated (FM) pulses. IRF's of this type are known as chirped pulses. Ex­

amples of where this particular type of pulse is used include real and synthetic 

aperture radar, active sonar and some forms of seismic prospecting. 

Interestingly, some mammals (dolphins, whales and bats for example) use fre­

quency modulation for communication and detection. The reason for this is 

the unique properties that FM IRFs provide in terms of the quality of ex­

tracting information from signals with very low signal-to-noise ratios and the 

simplicity of the process that is required to do this (Le. correlation). 

The invention and use of FM IRFs for man-made communications and imaging 

systems dates back to the early 1960s (the application of FM to radar for 

example); mother nature appears to have 'discovered' the idea some time ago. 

Linear FM Pulses 

The linear FM pulse is given (in complex form) by 

p(t) = exp(-iae), I t Is T/2 

where a is a constant and T is the length of the pulse. The phase of this pulse 

is at2 and the instantaneous frequency is given by 

d 
dt (at2

) = 2at 

which varies linearly with t. Hence, the frequency modulations are linear which 

is why the pulse is referred to as a linear FM pulse. In this case, the signal 

that is recorded is given by (neglecting additive noise) 

s(t) = exp(-iat2 ) ® f(t). 

108 

I. 

I 

J 



With matched filtering, we have 

i(t) = exp(iae) 0 exp( -iat2) @ /(t). 

Evaluating the correlation integral, 

T/2 

exp(iat2
) 0 exp( -iat2) = J exp[ia(t + T)2] exp( -iaT2)dT 

-T/2 

T/2 

= exp(iat2
) J exp(2iart)dT 

-T/2 

and computing the integral over T, we have 

and hence 

i(t) = Texp(iae)sinc(aTt) @/(t). 

In some systems, the length of the linear FM pulse is relatively long. In such 

cases, 

cos(ae)sinc(aTt) :::: sinc(aTt) 

and 

sin(at2)sinc(aTt) :::: 0 

and so 

i(t) :::: TSinc(aTt) 09 /(t). 

Now, in Fourier space, this last equation can be written as 

F(w) = { ~F(w), 
0, 

Iw I:::; aT} 

otherwise 

109 



The estimate j is therefore a band limited estimate of f whose bandwidth is 

determined by the product of the chirping parameter Cl! with the length of the 

pulse T. An example of the matched filter is given in Figure 4.1 obtained using 

the MATLAB code given below. Here, two spikes have been convolved with 

a linear FM chirp whose width or pulse length T is significantly greater than 

that of the input signal. 

The output signal has been generated using an SNR of 1 and it is remarkable 

that such an excellent restoration of the input is recovered using a relatively 

simple operation for processing data that has been so badly distorted by addi­

tive noise. The remarkable ability for the matched filter to accurately recover 

information from linear FM type signals with very low SNRs leads naturally 

to consider its use for covert information embedding. 

This is the subject of the section that follows which investigates the use of 

chirp coding for covertly watermarking digital signals for the purpose of signal 

authentication. 

function MATCH(T,snr) 

'i,Input: 

% T - width of chirp IRF 

% snr - signal-to-noise ratio of signal 

% 

n=512; %Set size of array (arbitrary) 

nn=1+n/2; %Set mid point of array 

%Compute input function (two spikes of width m centered 

%at the mid point of the array. 

m=10; %Set width of the spikes (arbitrary) 

110 



for i=l:n 

end 

f(i)=O.O; %Initialize input 

p(i)=O.O; %Initialize IRF 

f(nn-m)=1. 0; 

f(nn+m)=1.0; 

%Plot result 

figure (1) ; 

subplot(2,2,1), plot(f); 

%Compute the (real) rRF, i.e. the linear FM chirp using a 

%sine function. (N.B. Could also use a cosine function.) 

m=T/2; 

k=l; 

for i=l:m 

p(nn-m+i)=sin(2*pi*(k-1)*(k-1)/n); 

k=k+1 ; 

end 

%Plot result 

subplot(2,2,2), plot(p); 

%Convolve f with p using the convolution theorem and normalize to unity. 

f=fft(f); p=fft(p); 

f=p.*f; 

f=ifft(f); f=fftshift(f); f=real(f); 

f=f./max(f); %N.B. No check on case when f=O. 

%Compute random Gaussian noise field and normalize to unity. 

nOise=randn(l,n); 

111 



noise=noise./max(noise); 

%Compute signal with signal-to-noise ratio defined by snr. 

s=f+noise./snr; 

%Plot result 

subplot(2,2,3), plot(s); 

%Restore signal using Matched filter. 

%Transform to Fourier space. 

s=fft(s); 

%Compute Matched filter. 

rest=conj(p).*s; 

rest=ifft(rest); rest=fftshift(rest); rest=real(rest); 

%Plot result 

subplot(2,2,4), plot(rest); 

4.1.5 Watermarking using Chirp Coding 

In this section, we discusses a new approach to 'watermarking' digital signals 

using linear frequency modulated 'chirp coding'. The principle underlying to 

this approach is based on the use of a matched filter to provide a reconstruction 

of a chirped code that is uniquely robust, i.e. in the case of very low signal­

to-noise ratios. 

Chirp coding for authenticating data is generic in the sense that it can be used 

for a range of data types and applications(the authentication of speech and 

audio signals for example). Signal code generating schemes are then addressed 

and details of the coding and decoding techniques considered. 

112 



0.8 

0.6 

0 .• 

0.2 
-0.5 

0 
0 200 400 600 

-1 
0 

40 

30 

20 

10 

~~ 0 

600 200 400 600 

Figure 4.1: Example of a matched filter in action (bottom right) by recovering 

information from a noisy signal (bottom left) generated by the convolution of 

an input consisting of two spikes (top left) with a linear FM chirp IRF (top 

right). The simulation and restoration of the signal given in this exam pie is 

accomplished using the MATLAB function MATCH(256,1). 

113 



---- --------------------

4.1.6 Basic concepts 

Methods of watermarking digital data have applications in a wide range of 

areas. Digital watermarking of images has been researched for many years in 

order to achieve methods which provide both anti-counterfeiting and authenti­

cation facilities. One of the principal equations that underpins this technology 

is based on the 'fundamental model' for a signal which is given by 

where f is the information content for the signal (the watermark), P is some 

linear operator, n is the noise and s is the output signal. This equation is usu­

ally taken to describe a stationary process in which the noise n is characterized 

by stationary statistics (i.e. the probability density or distribution function of 

n is invariant of time). 

In the field of cryptology, the operation P f is referred to as the processes 

of 'diffusion' and the process of adding noise (i.e. P f + n) is referred to as 

the process of 'confusion'. In cryptography and steganography (the process of 

hiding secret information in images) the principal 'art' is to develop methods 

in which the processes of diffusion and confusion are maximized, an important 

criterion being that the output s should be dominated by the noise n which 

in turn should be characterized by a maximum! (i.e. a uniform statistical 

distribution). 

Digital watermarking and steganography can be considered to form part of 

the same field of study, namely, cryptology. Being able to recover f from 

s provides a way of authenticating the signal. If, in addition, it is possible 

1 A measure of the lack of information on the exact state of a system 

114 



to determine that a copy of s has been made leading to some form of data 

degradation and/or corruption that can be conveyed through an appropriate 

analysis of I, then a scheme can be developed that provides a check on: (i) 

the authenticity of the data s; (ii) its fidelity. 

Formally, the recovery of I from s is based on the inverse process 

where p-I is the inverse operator. Clearly, this requires the field n to be 

known a priori. If this field has been generated by a pseudo random number 

generator for example, then the seed used to generate this field must be known 

a priori in order to recover the data f. In this case, the seed represents the 

private key required to recover f. However, in principle, n can be any field 

that is considered appropriate for confusing the information PI including a 

pre-selected signal. Further, if the process of confusion is undertaken in which 

the signal-to-noise ratio is set to be very low (i.e. Ilnll » IIPIII), then the 

watermark I can be hidden covertly in the data n provided the inverse process 

p-I is well defined and computationally stable. In this case, it is clear that the 

host signal n must be known in order to recover the watermark I leading to a 

private watermarking scheme in which the field n represents a key. This field 

can of course be (lossless) compressed and encrypted as required. In addition, 

the operator P (and its inverse P-I) can be key dependent. The value of this 

operator key dependency relies on the nature and properties of the operator 

that is used and whether it is compounded in an algorithm that is required to 

be in the public domain for example. 

Another approach is to consider the case in which the field n is unknown and 

to consider the problem of extracting the watermark f in the absence of this 

115 

----------- ----



field. In this case, the reconstruction is based on the result 

f=p-1s+m 

where 

Now, if a process P is available in which IIp-Isll » Ilmll, then an approx­

imate (noisy) reconstruction of f can be obtained in which the noise m is 

determined by the original signal-to-noise ratio of the data s and hence, the 

level of covertness of the diffused watermark P f. In this case, it may be pos­

sible to post-process the reconstruction (de-noising for example) and recover 

a relatively high-fidelity version of the watermark, i.e. 

This approach (if available) does not rely on a private key (assuming P is not 

key dependent). The ability to recover the watermark only requires knowledge 

of the operator P (and its inverse) and post-processing options as required. 

The problem here is to find an operator .that is able to recover the watermark 

effectively in the presence of the field n. Ideally, we require an operator P with 

properties such that p-In --> O. 

In this application, the operator is based on a chirp function, specifically, a lin­

ear Frequency Modulated (FM) chirp of the (complex) type exp( -iat2 ) where 

a is the chirp parameter and t is the independent variable. This function is 

then convolved with f. The inverse process is undertaken by correlating with 

the (complex) conjugate of the chirp exp(iat2 ). This provides a reconstruc­

tion for f in the presence of the field n that is accurate and robust with very 

116 



low signal-to-noise ratios. Further, we consider a watermark based on a cod­

ing scheme in which the field n is the input. The watermark f is therefore 

n-dependent. This allows an authentication scheme to be developed in which 

the watermark is generated from the field in which it is to be hidden. Authenti­

cation of the watermarked data is then based on comparing the code generated 

from s = Pf + n and that reconstructed by processing s when IIPfl1 » Ilnll. 

This is an example of a self-generated coding scheme which avoids the use, dis­

tribution and application of reference codes. Here, the coding scheme is based 

on the application of Daubechies wavelets. There are numerous applications 

of this technique in areas such as telecommunications and speech recognition 

where authentication is mandatory. For example, the method can readily be 

applied to audio data with no detectable differences in the audio quality of 

the data. The watermark code is able to be recovered accurately and changes 

relatively significantly if the data is distorted through cropping, filtering, noise 

or a compression system for example. Thus, it provides a way making a signal 

tamper proof. 

4.1. 7 Matched Filter Reconstruction 

Given that 

s(t) = exp( -iat2
) 0 f(t) + n(t), 

after matched filtering, we obtain the estimate 

j(t) ~ Tsin(aTt) 0 f(t) + exp(iat2
) 0 n(t). 

The correlation function produced by the correlation of exp(iat) with n(t) will 

in general be relatively low in amplitude since n(t) will not normally have 

117 



features that match those of a chirp. Thus, it is reasonable to assume that 

IITsin(aTt) Cl f(t)11 » 11 exp(iat2) 0 n(t)11 

and that in practice, j is a band-limited reconstruction of f with high SNR. 

Thus, the process of using chirp signals with matched filtering for the pur­

pose of reconstructing the input in the presence of additive noise provides a 

relatively simple and computationally reliable method of 'diffusing' and recon­

structing information encoded in the input function f. This is the underlying 

principle behind the method of watermarking described here. 

4.1.8 Chirp Coding, Decoding and Watermarking 

We now return to the issue of watermarking using chirp functions. The basic 

model for the watermarked signal (which is real) is 

sIt) = chirp(t) Cl fIt) + n(t) 

where 

chirp(t) = sin(at2). 

We consider the field nIt) to be some pre-defined signal to which a watermark 

is to be 'added' to generate sIt). In principle, any watermark described by the 

function f(t) can be used. 

On the other hand, for the purpose of authentication we require two criteria: 

(i) fIt) should represent a code which can be reconstructed accurately and 

robustly; 

118 



-- --- - - - - - - - ---- - - - - ------------------

(ii) the watermark code should be sensitive (and ideally ultra-sensitive) to any 

degradation in the field n(t) due to lossy compression, cropping or highpass 

and lowpass filtering for example. 

To satisfy condition (i), it is reasonable to consider f(t) to represent a bit 

stream, i.e. to consider the discretized version of f(t) - the vector fi - to be 

composed of a set of elements with values 0 or 1 and only 0 or 1. 

This binary code can of course be based on a key or set of keys which, when 

reconstructed, is compared to the key(s) for the purpose of authenticating the 

data. 

However, this requires the distribution of such keys (public and/or private). 

Instead, we consider the case where a binary sequence is generated from the 

field n(t). 

There are a number of approaches that can be considered based on the spectral 

characteristics of n(t) for example. These are discussed in later on, in which 

binaJ'Y sequences are produced from the application of wavelet decomposition. 

Chirp Coding 

Given that a binary sequence has been generated from n(t), we now consider 

the method of chirp coding. The purpose of chirp coding is to 'diffuse' each bit 

over a range of compact support T. However, it is necessary to differentiate 

between 0 and 1 in the sequences. The simplest way to achieve this is to change 

the polarity of the chirp. Thus, for 1 we apply the chirp sin(at2 ), t E T and 

for 0 we apply the chirp -sin(at2
), t E T where T is the chirp length. The 

chirps are then concatenated to produce a contiguous stream of data, i.e. a 

signal composed of ±chirps. 

119 



Thus, the binary sequence 010 for example is transformed to the signal 

-chirp(t), t E [0, T); 

8(t) = +chirp(t), t E [T,2T); 

-chirp(t), t E [2T,3T). 

The period over which the chirp is applied depends on the length of the signal 

to which the watermark is to be applied and the length of the binary sequence. 

In the example given above, the length of the signal is taken to be 3T. 

In practice, care must be taken over the chirping parameter Cl< that is applied 

for a period T in order to avoid aliasing and in some cases it is of value to apply 

a logarithmic sweep instead of a linear sweep. The instantaneous frequency of 

a logarithmic chirp is given by 

W(t) = Wo + lOat 

where 
1 

a = T IOglO(W1 -Wo) 

Wo is the initial frequency and W1 is the final frequency at time T. In this case, 

the final frequency should be greater than the initial frequency. 

Decoding 

Decoding or reconstruction of the binary sequence requires the application of a 

correlator using the function chirp(t), t E [0, T). This produces a correlation 

function that is either -1 or +1 depending upon whether -chirp(t) or +chirp(t) 

has been applied respectively. 

120 



For example, after correlating the chirp coded sequence 010 given above, the 

correlation function c( t) becomes 

-1, tE[O,T) 

c(t) = +1, t E [T,2T) 

-1, t E [2T,3T) 

from which the original sequence 010 is easily inferred, the change in sign of 

the correlation function identifying a bit change(from 0 to 1 or from 1 to 0). 

Note that in practice the correlation function may not be exactly 1 or -1 when 

reconstruction is undertaken and the binary sequence is effectively recovered 

by searching the correlation function for changes in sign. The chirp used to 

recover the watermark must of course have the same parameters (inclusive of its 

length) as those used to generate the chirp coded sequence. These parameters 

can be used to define part of a private key. 

Watermarking 

The watermarking process is based on adding the chirp coded data to the 

signal n(t). Let the chirp coded signal be given by the function h(t), then the 

watermarking process is described by the equation 

[ 
bh(t) n(t)] 

s(t) = a Ilh(t)lloo + IIn(t)lloo 

and the coefficients a > 0 and 0 < b < 1 determine the amplitude and the 

SNR of s where 

a = Iln(t)lloo. 

The coefficient a is required to provide a watermarked signal whose amplitude 

is compatible with the original signal n. The value of b is adjusted to provide 

121 



an output that is acceptable in the application to be considered and to pro­

vide a robust reconstruction of the binary sequence by correlating sit) with 

chirp(t), t E [0, T). To improve the robustness of the reconstruction, the value 

of b can be increased, but this has to be offset with regard to the perceptual 

quality of the output, Le. the perturbation of n by h should be as small as 

possible. 

4.1.9 Code Generation 

In the previous section, the method of chirp coding a binary sequence and 

watermarking the signal nit) has been discussed where it is assumed that the 

sequence is generated from this same signal. In this section, the details of this 

method are presented. The problem is to convert the salient characteristics 

of the signal nit) into a sequence of bits that is relatively short and conveys 

information on the signal that is unique to its overall properties. 

In principle, there are a number of ways of undertaking this. For example, 

in practice the digital signal ni, which will normally be composed of an array 

of real numbers, could be expressed in binary form and each element con­

catenated to form a contiguous bit stream. However, the length of the code 

(Le. the total number of bits in the stream) will tend to be large leading to 

high computational costs in terms of the application of chirp coding/decoding. 

What is required, is a process that yields a relatively short binary sequence 

(when compared with the original signal) that reflects the important properties 

of the signal in its entirety. Two approaches are considered here: 

(i) power spectral density decomposition; (ii) wavelet decomposition. 

122 



Power Spectral Density Decomposition 

Let N(w) be the Fourier transform n(t) and define the Power Spectrum P(w) 

as 

P(w) =1 N(w) 12 . 

An important property of the binary sequence is that it should describe the 

spectral characteristics of the signal in its entirety. Thus, if for example, the 

binary sequence is based on just the low frequency components of the signal, 

then any distortion of the high frequencies components will not affect the 

watermark and the signal will be authenticated. 

Hence, we consider the case where the power spectrum is decomposed into N 

components, i.e. 

PI(W) = P(w), wE [0, Od; 

P2(w) = P(w), wE [01 , O2); 

Note, that it is assumed that the signal n(t) is band-limited with a bandwidth 

of ON. 

The set of the functions PI, P2 , ... , PN now reflect the complete spectral char­

acteristics of the signal n(t). Since each of these functions represents a unique 

part of the spectrum, we can consider a single measure as an identifier or tag. 

A natural measure to consider is the energy which is given by the integral of 

the functions over their frequency range. 

123 



In particular, we consider the energy values in terms of their contribution to 

the spectrum as a percentage, i.e. 

where 

EN = l~O 7 PN(w)dw, 

nN-l 

nN 
E = J P(w)dw. 

o 
Hence, code generation is then based on the following steps: 

(i) Rounding to the nearest integer the (real) values of Ei to decimal integer 

form: 

ei = round(Ei), Vi. 

(ii) Decimal integer to binary string conversion: 

bi = binary(ei). 

(iii) Concatenation of the binary string array bi to a binary sequence: 

fJ = cat(bi). 

The watermark fJ is then chirp coded as discussed previously. 

124 



Wavelet Decomposition 

The wavelet transform is defined by 

where 

WL(t,r) = kWC~T). 
The wavelet transformation is essentially a convolution transform in which 

w(t) is the convolution kernel but with a factor L introduced. 

The introduction of this factor provides dilation and translation properties into 

the convolution integral (which is now a function of L) that gives it the ability 

to analyse signals in a multi-resolution role. The code generating method is 

based on computing the energies of the wavelet transformation over N levels. 

Thus, the signal f(t) is decomposed into wavelet space to yield the following 

set of functions: 

The (percentage) energies of these functions are then computed, i.e. 

100 J (12 
EN = If 1 hN T) dr, 

where 

125 



The method of computing the binary sequence for chirp coding from these 

energy values follows that described in the method of power spectral decom­

position. 

Clearly, whether applying the power spectral decomposition method or wavelet 

decomposition, the computations are undertaken in digital form using a DFT 

and a DWT (Discrete Wavelet Transform) respectively. 

4.1.10 MATLAB Application Programs 

Two prototype MATLAB programs have been developed to implement t.he 

watermarking method discussed. The coding process reads in a named file, 

applies the watermark to the data using wavelet decomposition and writes out 

a new file using the same file format. The Decoding process reads a named file 

(assumed to contain the watermark or otherwise), recovers the code from the 

watermarked data and then recovers the (same or otherwise) code from the 

watermark. 

The coding program displays the decimal integer and binary codes for analysis. 

The decoding program displays the decimal integer streams generated by the 

wavelet analysis of the input signal and the stream obtained by processing the 

signal to extract the watermark code or otherwise. This process also provides 

an error measure based on the result 

I: I Xi - Yi I 
e= ~,~. ---~ 

I: I Xi + Yi I 
i 

where Xi and Yi are the decimal integer arrays obtained from the input signal 

and the watermark (or otherwise). 

126 



In the application considered here, the watermarking method has been applied 

to audio (.wav) files in order to test the method on data which requires that the 

watermark does not affect the fidelity of the output (i.e. audio quality). Only a 

specified segment of the data is extracted for watermarking which is equivalent 

to applying and off-set to the data. The segment can be user defined and if 

required, form the basis for a (private) key system. In this application, the 

watermarked segment has been 'hard-wired' and represents a public key. The 

wavelets used are Daubechies wavelets computed using the MATLAB wavelet 

toolbox. However, in principle, any wavelets can be used for this process and 

the actual wavelet used yields another feature that can form part of the private 

key required to extract the watermark. 

Coding Process 

The coding process is compounded in the following basic steps: 

Step 1: Read a . wav file. 

Step 2: Extract a section of a single vector of the data (note that a .wav 

contains stereo data, i.e. two vectors). 

Step 3: Apply wavelet decomposition using Daubechies wavelets with 7 levels. 

Note, that in addition to wavelet decomposition, the approximation coefficients 

for the input signal are computed to provide a measure on the global effect of 

introducing the watermark into the signal. Thus, 8 decomposition vectors in 

total are generated. 

Step 4: Compute the (percentage) 'energy values'. 

Step 5: Round to the nearest integer and convert to binary form. 

127 



Step 6: Concatenate both the decimal and binary integer arrays. 

Step 7: Chirp code the binary sequence. 

Step 8: Scale the output and add to the original input signal. 

Step 9: Re-scale the watermarked signal. 

Step 10: Write to a file. 

In the MATLAB code that follows, the above procedure has been implemented 

where the parameters for segmenting and processing data of a specific size have 

been 'hard wired'. 

%read .wav audio file 
[au2,fs,nbit]=wavread('wavefile'); 

%clear screen 
cIc 

%Set data size (arbitrary) to be watermarked (assumed to be less than 
or equal to data in file). 
data_size=1500150; 

%Extract single set of data composed of 1500150 (arbitrary) elements. 
au1=au2(1:data_size,1); 

%Set scaling factor. 
div_fac=270; 

%Set data segment origin. 
data_seg=300031 ; 

%Extract segment of data from data_seg to data_size and 
%compute the maximum value. 
au=au1(data_seg:data_size,1); 
au_max1=max(aul(data_seg:data_size, 1»; 

128 



%Apply wavelet decomposition using Daubechies (4) wavelets with 7 levels, 
[ca cl]=wavedec(au(:,1),7,'db4'); 

%Compute the approximation coefficients at level 7, 
appco=appcoef(ca,cl,'db4',7); 

%Determine coefficients at each level, 
detc07=detcoef(ca,cl,7); 
detc06=detcoef(ca,cl,6); 
detc05=detcoef(ca,cl,5); 
detc04=detcoef(ca,cl,4); 
detc03=detcoef(ca,cl,3); 
detc02=detcoef(ca,cl,2); 
detco1=detcoef(ca,cl,1); 

%Compute the energy for each set of coefficients, 
ene_appco=sum(appco,-2); 
ene_detc07=sum(detc07,-2); 
ene_detc06=sum(detc06,-2); 
ene_detc05=sum(detc05,-2); 
ene_detc04=sum(detc04,-2); 
ene_detc03=sum(detc03,-2); 
ene_detc02=sum(detc02,-2); 
ene_detco1=sum(detco1,-2); 

%Compute the total enegy of all the coefficients, 
tot_ene=round(ene_detc07+ene.detc06+ene_detc05+ene_detc04", 

+ene_detc03+ene_detc02+ene_detco1); 

%Round towards nearest integer the percentage energy of each set, 
pene_hp7=round(ene_detc07*100/tot.ene); 
pene_hp6=round(ene_detc06*100/tot_ene); 
pene_hp5=round(ene_detc05*100/tot_ene); 
pene_hp4=round(ene_detc04*100/tot.ene); 
pene_hp3=round(ene_detc03*100/tot_ene); 
pene_hp2=round(ene_detc02*100/tot_ene); 
pene_hpl=round(ene_detco1*100/tot_ene); 

%Do decimal integer to binary conversion with at least 17 bits, 

129 



tot_ene_bin=dec2bin(tot_ene,31); 
f7=dec2bin(pene_hp7,17); 
f6=dec2bin(pene_hp6,17); 
f5=dec2bin(pene_hp5,17); 
f4=dec2bin(pene_hp4,17); 
f3=dec2bin(pene_hp3,17); 
f2=dec2bin(pene_hp2,17); 
f1=dec2bin(pene_hp1,17); 

%Concatenate the arrays f1, f2, ... along dimension 2 to 
%produce binary sequence - the watermark wmark. 
wmark=cat(2,tot_ene_bin,f7,f6,f5,f4,f3,f2,f1); 

%Concatenate decimal integer array. 
per_ce=cat(2,tot_ene,pene_hp7,pene_hp6,pene_hp5, ... 

pene_hp4,pene_hp3,pene_hp2,pene_hp1); 

%Write out decimal integer and binary codes. 
d_string=per_ce 
b_string=wmark 

%Assign -1 to a ° bit and 1 for 1 bit. 
for j=1:150 

end 

if str2num(wmark(j»==O 
x(j)=-l; 

else 
x(j)=l; 

end 

%Initialize and compute chirp function using a log sweep. 
t=O:1/44100:10000/44100; 
y=chirp(t,OO,10000/44100,100,'log'); 

%Compute +chirp for 1 and -chirp for 0, scale by div_fac and concatenate. 
znew=O; 
for j=1:150 

z=x(j)*y/div_fac; 

130 



znew=cat(2,znew,z); 
end 

%Compute length of znew and watermark signal. 
znew=znew(2:1ength(znew»; 
wmark_sig=znew'+aul; 

%Compute power of watermark and power of signal. 
w_mark_pow=(sum(znew."2»; 
sig_pow=(sum(aul."2»; 

%Resca1e watermarked signal. 
wmark_sigl=wmark_sig*au_maxl/max(wmark_sig); 

%Concatenate and write to file. 
wmark_sig=cat(2,wmark_sigl,au2(1:data_size,2»; 
wavwrite(wmark_sig,fs,nbit,'wm_wavefi1e'); 

Decoding process 

The decoding process is as follows: 

Step 1: Steps 1-6 in the coding processes are repeated. 

Step 2: Correlate the data with a chirp identical to that used for chirp coding. 

Step 3: Extract the binary sequence. 

Step 4: Convert from binary to decimal. 

Step 5: Display the original and reconstructed decimal sequence. 

Step 6: Display the error. 

%Read watermarked file and clear screen. 
[au,fs, nbit]=wavread('wm_wavefi1e'); 

%Set parameters for data processing. 

131 



data_size=1500150; 
data_seg=300031; 

%Extract data, 
aul=au(data_seg:data_size,l); 

%Do wavelet decomposition, 
[ca cl]=wavedec(aul,7,'db4'); 

%Extract wavelet coefficients, 
appco=appcoef(ca,cl,'db4',7); 
detc07=detcoef(ca,cl,7); 
detc06=detcoef(ca,cl,6); 
detc05=detcoef(ca,cl,5); 
detc04=detcoef(ca,cl,4); 
detc03=detcoef(ca,cl,3); 
detc02=detcoef(ca,cl,2); 
detcol=detcoef(ca,cl,l); 

%Compute energy of wavelet coefficients, 
ene_appco=sum(appco,-2); 
ene_detc07=sum(detc07,-2); 
ene_detc06=sum(detc06,-2); 
ene_detc05=sum(detc05,-2); 
ene_detc04=sum(detc04,-2); 
ene_detc03=sum(detc03,-2); 
ene_detc02=sum(detc02,-2); 
ene_detcol=sum(detcol,-2); 

%Compute total energy factor, 
tot_ene=round(ene_detc07+ene_detc06+ene_detc05+ene_detc04, , , 

+ene_detc03+ene_detc02+ene_detcol); 

%Express energy values as percentage of total, 
%energy and round to nearest integer, 
pene_hp7=round(ene_detc07*100/tot_ene); 
pene_hp6=round(ene_detc06*100/tot_ene); 
pene_hp5=round(ene_detc05*100/tot_ene); 
pene_hp4=round(ene_detc04*100/tot_ene); 

132 



- --- - - -- - -- -------------------------------

pene-hp3~round(ene-detco3*100/tot-ene); 

pene-hp2~round(ene-detco2*100/tot-ene); 

pene-hpl~round(ene-detco1*100/tot-ene); 

per-ene~cat(2,tot-ene,pene-hp7,pene-hp6,pene-hp5, ... 
pene-hp4,pene-hp3,pene-hp2,pene-hp1); 

%Output original decimal integer code obtained from 
%signal via wavelet decomposition. 
original_d_string~per-ene; 

original_d_string 
orig=original_d_string; 

%Compute chirp function. 
t=O:1/44100:10000/44100; 
y=chirp(t,OO, 10000/44100, 100, 'log'); 
%Correlate input signal with chirp and recover sign. 
for i~l: 150 

yzcorr=xcorr(au(10000*(i-l)+1:10000*i),y,0); 

r(i)=sign(yzcorr); 
end 
%Recover bit stream. 
for i=1:150 

end 

if r(i)~~-l 
recov(i)=O; 

else 
recov(i)=l; 

end 

%Convert from number to sring. 
recov=(num2str(recov,-8»; 

%Covert from binary to decimal and concatenate. 
rec_ene_dist=cat(2,bin2dec(recov(1:31»,bin2dec(recov(32:48», ... 
bin2dec(recov(49:65»,bin2dec(recov(66:82»,bin2dec(re cov(83:99», ... 
bin2dec(recov(100:116»,bin2dec(recov(117:133»,bin2de c(recov(134:150»); 

%Write out reconstructed decimal integer stream recoverd from watermark. 
reconstructed_d_string=rec_ene_dist; 

133 



reconstructed_d_string 
rec=reconstructed_d_string; 

%Write out error between reconsructed and original watermark code. 
error=sum(abs(rec-orig»/sum(abs(rec+orig» 

4.1.11 Discussion 

In a practical application of this method for authenticating audio files for 

example, a threshold can be applied to the error value. If and only if the error 

lies below this threshold is the data taken to be authentic. 

The prototype MATLAB programs provided have been developed to explore 

the applications of the method for different signals and systems of interest to 

the user. Note that in the decoding program, the correlation process is car­

ried out using a spatial cross-correlation scheme (using the MATLAB function 

xcorr), i.e. the watermark is recovered using the process chirp( t) (') s( t) instead 

of the Fourier equivalent CHIRP*(w)S(w) where CHIRP and S are the Fourier 

transforms of chirp and s respectively (in digital form of course). This is due 

to the fact that the' length' of the chirp function is significantly less than that 

of the signal. Application of a spatial correlator therefore provides greater 

computational efficiency. The method of digital watermarking discussed here 

makes specific use of the chirp function. This function is unique in terms of 

its properties for reconstructing information (via application of the Matched 

Filter) that has been 'diffused' through the convolution process, i.e. the wa­

termark extracted is, in theory, an exact band-limited version of the original 

watermark as defined in the presence of significant additive noise, in this case, 

the signal into which the watermark is 'embedded'. 

134 



The approach considered here allows a code to be generated directly from the 

input signal and that same code used to watermark the signal. The code used 

to watermark the signal is therefore self-generating. Reconstruction of the 

code only requires a correlation process with the watermarked signal to be 

undertaken. This means that the signal can be authenticated without access 

to an external reference code. In other words, the method can be seen as 

a way of authenticating data by extracting a code (the watermark) within 

a code (the signal). For example, audio data watermarking schemes rely on 

the imperfections of the human audio system. They exploit the fact that the 

human auditory system is insensitive to small amplitude changes, either in the 

time or frequency domains, as well as insertion of low amplitude time domain 

echos. 

Spread spectrum techniques augment a low amplitude spreading sequence 

which can be detected via correlation techniques. Usually, embedding is per­

formed in high amplitude portions of the signal, either in the time or frequency 

domains. A common pitfall for both types of watermarking systems is their 

intolerance to detector de-synchronization and deficiency of adequate methods 

to address this problem during the decoding process. 

Although other applications are possible, chirp coding provides a new and novel 

technique for fragile audio watermarking. In this case, the watermarked signal 

does not change the perceptual quality of the signal. In order to make the 

watermark inaudible for example, the chirp generated is of very low frequency 

and amplitude. Using audio files with sampling frequencies of over 1000Hz, a 

logarithmic chirp can be generated in the frequency band of I-100Hz. Since 

the human ear has low sensitivity in this band, the embedded watermark will 

135 



not be perceptible. Depending upon the band and amplitude of the chirp, the 

signal-to-watermark ratio can be in excess of 40dB. 

Various forms of attack can be applied which change the distribution of the 

percentage sub-band energies originally present in the signal including filtering 

(both low pass and high pass), cropping and lossy compression (e.g. MP3 

compression) with both constant and variable bit rates. 

In each case, the signal and/or the watermark is distorted enough to register 

the fact that the data has been tampered with. F\lrther, chirp based wa­

termarks are difficult to remove from the signal since the initial and the final 

frequency is at the discretion of the user and its position in the data stream can 

be varied through application of an offset, all such parameters being combined 

to form a private key. 

4.2 Exchanging the Cut-Off Points 

In this section we explain how to exchange cut-off points between sender and 

receiver as detailed in Chapter 3. These points are vital for the reconstruction 

of the encoded binary bits. In the case of multi-fractal modulation, in order 

to recover the encoded binary bits, we compare the estimated values of the 

parameters with the cut-off points. These cut-off points can be considered as 

private keys and the exact values of the parameters as public keys. 

The cut-off points a critical set of decimal numbers which need to be converted 

to binary form to construct the watermarking signal. After chirp coding, the 

signal is embedding in the fractal modulated signal. 

136 



In what follows, we describe the basic algorithm for coding the cut-off points: 

Coding the cut-off points 

Step 1: Consider the cut-off decimal numbers to be: CP1, CP2 and CP3. 

Step 2: Convert these number into a stream of binary bits. 

Step 3: Encode the binary stream using a chirp signal. 

Step 4: Scale the output signal and add to the contiguous stream of fractal 

modulated signals. 

Step 5: Re-scale the watermarked signal. 

Decoding the cut-off points 

The basic steps for extracting the cut-off points from the received fractal mod­

ulated signal are as follow: 

Step 1: Correlate the received signal with a chirp identical to that used for 

chirp coding. 

Step 2: Extract the binary sequence. 

Step 3: Convert the binary sequence to a decimal sequence which gives the 

set of recovered cut-off points. 

Authentication of the received signal is achieved if the receiver is able to read 

the recovered plaintext. Figure 4.2 shows the block diagram of encoding a 

plain text file and watermarking the binary coded cut-off points in the resulting 

fractal modulated signal. Figure 4.3 shows the block digram for recovering the 

cut-off points and the demodulation of the received signal. 

137 



c 
p 
ut-off 
oints--+ 

Plainle~ 

File 

~ 

Binary bits 
Chirp coded Watermarked 

Binartzation " 
Chirp signal 

" 
~gnal 

• Coding • 

11 , 
ID 
n 
~ 

!! 

• <1i 
~ 
ID 

Transmitted 
Fractal Extract a Signal 

Parameters Concalenation • 
segmenl • 

Freatal 
MOdulaled 

Text Bina~ bits Multi-Fractal Signal 
" Binarization • Modulation 

Figure 4.2: Modulation and Watermarking. 

138 



Chirp signal 

d Receive 
Fraclal Sig nal 

Correlate 

Extract 
watermark 

Binary code ~ 1 Bina.ry 10 1 

I Decimal 1 

_I Estimate I 
Fractal 

-! parameters J 

Recoverd 
Cut-off points 

I I Recovered 
Multi.lhresholdJng r en 

5 • 
~ -< 

" ~ • 
~ 
0 3 

Estimated "-

Binary 10 
Decimal 

I Pla,n rext 
File 

-
Figure 4.3: Demodulation and authentication. 

139 



4.3 References 

[1] Cox I.J., Bloom J.A. Miller M.L., Digital Watermarking, Morgan-Kaufman, 

2002. 

[2] Katzenbaiser S. and Petitcolas F.A.P., Information Hiding Techniques for 

Stenography and Digital Watermarking, Artech, 2000. 

[3] Petitcolas F.A.P., Anderson R.J. and Kuhn M.G., "Information Hiding: A 

survey," Proc. IEEE, vo!. 87, no. 7, pp. 1062-1078, 1999. 

[4] Blackledge J.M, Digital Signal Processing:Mathematical and Computation 

Methods, Software Development and Applications, Horwood Publishing Lim­

ited, London, 2nd Edition, 2006. 

140 



Chapter 5 

Internet Traffic Data Analysis 

5.1 Introduction 

The Internet is, by definition, a collection of networks throughout the world 

that agree to communicate using specific telecommunications protocols, the 

most basic being the Internet Protocol(IP) and Transmission Control Protocol 

(TCP), and the services supplied by these networks. The Internet has become 

a kind of common infrastructure and plays an important role in various human 

activities. It has made it possible for people all over the world to effectively 

and inexpensively communicate with each other. Traffic in the Internet results 

from the uncoordinated actions and operations of a very large population both 

of users and network devices. Internet traffic has been increasing exponentially 

in recent years. The major reason for this increase in traffic is the introduction 

of new applications on the Internet. These applications range from t.ext-based 

utilities such as file transfer, electronic mail and network news from the early 

141 



days of the Internet, to the advent of desktop video conferencing, multimedia 

streaming, the world-Wide-Web, Grid computing and electronic commerce on 

today's Internet. Another reason is that many users have become connected to 

the Internet and are now actively exchanging data for business or personal use 

on a routine basis. However, an important feature of Internet traffic is that it is 

far too complex to be understood and controlled in details. The complexity of 

its traffic has a large number of causes, which may be divided into two classes. 

The first class stems from the network and its enormous current size spanning 

the whole planet with, in many places, a very fine structure. The second class 

is directly linked with the flow of the data. This results in several kinds of 

complexity such as the different multi-layered protocols and their hierarchies 

(e.g. Transmission Control Protocol (TCP), Internet Protocol (IP), HyperText 

Transport Protocol (HTTP)) which all have their own dynamics, mechanisms, 

and timescales. 

Traffic sources are themselves distributed in a very inhomogeneous way, with 

high concentrations around universities and research centers, etc. Furthermore, 

protocols split and combine data so that streams of packets often correspond 

to a complex mixture of sources. 

5.2 The Concept of Packets 

Most computer networks do not transfer a message of data as an arbitrary 

string of continuous bits. Instead, the network system divides data into small 

blocks called packets, which it sends individually. Typically, one Ethernet 

packet contains 64 to about 1500 bytes, but larger packet sizes may be used 

142 



with Jumbo Frames. All information exchanges - whether a short e-mail mes­

sage, a large file transfer, or a complicated Web transaction - are broken down 

into these basic blocks. Computer networks that use packet technology are 

called packet networks or packet switching networks. 

Two facts motivate the use of packets data as organised and required by net­

work system design. First, a sender and receiver need to coordinate transmis­

sion to ensure that data arrives correctly, where the data can be lost when the 

transmission errors occur. Dividing data into small blocks helps a sender and 

receiver to determine which blocks arrive intact and which do not. Second, be­

cause communication circuits and associated modern hardware are relatively 

expensive, multiple computers often share underlying connections and hard­

ware. 

To ensure that all computers receive fair and prompt access to a shared commu­

nication facility, a network system cannot allow one computer to deny access 

to others. Using small packets ensures fairness, contrary to the alternative 

used in early computer networks which did not guarantee fair access; and al­

lowed an application program to hold a shared communication resource for 

an arbitrarily long time - an application was permitted to finish before an­

other application could begin using the resource. Thus, to avoid having one 

computer holding a network for an arbitrary time, modern computer networks 

enforce the use of packets. 

A network permits one computer to send a packet, then blocks that computer 

from sending another. Meanwhile the network permits another computer to 

send a packet, and so on. 

143 



A single computer can hold a shared resource only long enough to send a 

single packet, and must wait until other computers have a turn before sending 

a second packet [1]. 

The Internet's infrastructure consists of a series of routers interconnected by 

links. Each packet of each network connection is self-contained in the sense 

that its header contains complete 'addressing' information. Thus, all packets 

in a single message do not have to travel along the same path. As traffic 

conditions change, they can be dynamically routed via different paths in the 

network, and they can even arrive out of order. 

The routers along the packet's path inspect the header of each packet they 

receive in order to determine the next hop (either a another router or the des­

tination computer) to which they should forward the packet so that it will 

ultimately reach its destination. The destination computer reassembles the 

packets into their proper sequence. Each packet is transmitted independently 

from the other packets that have already been transmitted or still await trans­

mission; the routers do not keep track of which packets belong to which active 

connections. Thus, a router can 'forget' about a packet as soon as it has been 

forwarded. 

Sometimes routers receive more packets than they can immediately forward, 

this means that the number of injected packets exceeds the capacity of the 

network, so packets are temporarily stored in a buffer of a router increasing 

the delay of the packets through the network. Sometimes, in the worst case, 

they are dropped because the router's buffer has a finite size; such a state is 

called congestion. Format specifications of individual packets for transmission 

through the network form one of the Internet's underlying protocols (this is 

144 



fundamental and is called the Internet Protocol, or IP). Other protocols regu­

late other aspects of Internet communications, such as how to divide streams 

of data into individual packets such that the original data can be delivered to 

the receiving computer, even if some of the individual packets are lost due to 

drops or damage (a form of transport protocol) which is built on top of IP. 

5.3 Internet Traffic Noise 

The explosive growth in the Internet data traffic has made the study of the na­

ture and statistical characteristics of this type of traffic increasingly important. 

Modern Internet traffic measurements system such as Tcpdump, Windump and 

Eathrel, record the time in 1 microsecond at which a packet of information 

arrives along with other information such as the source address, destination 

address, etc. and packet size of the data transferred. From this record, a time 

series of the data transmitted (the number of bytes or packets arriving at a 

router) per time unit interval (flow density) is then obtained. 

5.3.1 Self-affinity of Internet Traffic Noise 

Although Internet traffic is purely man-made, it can be studied as a natural 

phenomenon. Measurement and analysis of Internet traffic has been the sub­

ject of interest as long as there has been Internet traffic. In the last decade, 

there have been several empirical and analytical studies of high resolution traf­

fic measurements from a variety of working packet networks, including Ether­

net Local-Area Networks (LANs) [2], Wide Area Network (WAN) [3], World 

145 



Wide Web (WWW) data transfer [4] and other communication systems; all 

have convincingly demonstrated the presence of self-affine characteristics. 

Self-affinity and self-similarity are associated with fmctals - objects that appear 

the same regardless of the scale at which they viewed (See Chapter 2). Self­

similar objects look the same or behave the same when viewed at different 

degrees of 'magnification' or different scales over a dimension. This dimension 

may be space (length, width) or time. With Internet data, this it manifested 

in the absence of a natural length of a 'burst'; at every time scale, ranging 

from a few milliseconds to minutes and hours, bursts occur that consist of 

sub-periods separated by less bursty sub-periods, so that there is no definite 

duration of 'busy' or 'silent' periods. In other words, a segment of a traffic 

signal at some time scale looks or behaves like an appropriately scaled version 

of the traffic measured over a different time scale. 

A variety of studies have demonstrated that measured traffic data (Le. the 

number of bits, bytes or packets that traverse a given link or node per time 

unit) in Internet networks exhibits surprising scaling properties over a wide 

range of time scales; that is, actual network traffic looks statistically the same 

over small (Le. over time scales of the order of milliseconds or seconds) and 

large (Le. time scales of the order of minutes and beyond) scales and no natural 

length of a 'burst' is discernible: at every time scale ranging from milliseconds 

to seconds to minutes and beyond, bursts have the same qualitative appear­

ance and cause the resulting traffic to exhibit fmcta~like characteristics. These 

studies have challenged the commonly assumed models for network traffic data 

(e.g Poisson model). Traditional analysis of network traffic generally neglects 

the existence of self-similarity. These models do not 'fit' the statistical charac-

146 



teristics of Internet traffic data, primarily because they are not able to capture 

the fractal behavior of Internet traffic. Were Internet traffic to follow Poisson 

statistics, it would have a characteristic burst length which would tend to be 

smoothed over a long enough time scale. However, measurements of real traffic 

indicate that significant traffic burstiness is present on a wide range of time 

scales, see Figure 5.1 . Since a self-similar process has observable bursts on all 

time scales, it exhibits Long-Range Dependence (LRD); values at any instant 

are typically correlated with values at all future instances. 

Many queuing models based on Poisson or Markovian processes often underes­

timate the burstiness of traffic. Such models have a characteristic burst length 

which tends to be smoothed out by averaging over a long enough time scale. 

These traffic models do not posses long range characteristics. However, real 

traffic measurements show that significant traffic burstiness is observed on a 

wide range of time scales. Thus Markovian models which are classically used 

for network design cannot capture the observed long range characteristics of 

the actual network data traffic. Fluctuations occur on the data traffic traces 

that may also appear in very short intervals resulting in bursts. Bursty traf­

fic, which may be observed quite easily in actual network traffic, cannot be 

modeled properly using traditional traffic models [5]. Understanding the na­

ture of network traffic is critical in order to properly design and implement 

computer networks and network services. Recent studies have revealed that 

self-similarity has a profound impact on network performance. The original 

study on the self-similar behavior in measured network traffic was reported in 

[2] and was based on an extensive statistical analysis of traffic measurements 

of Bellcore's Ethernet traffic Local Area Network (LAN) over four periods 

(ranging from 21 to 48 hours) from 1989-1993. 

147 



Figure 5.1: Pictorial 'proof' of self-similarity: LAN traffic over five different 

time units (from [2]). 

148 



The study given in [2] illustrated some of the most striking differences between 

self-similar models and the standard models for packet traffic considered in the 

literature. The statistical patterns were found to be essentially the same for all 

periods, despite tremendous changes in the network. Moreover, the measured 

traffic satisfied the criteria for self-similarity. The fluctuations in the number of 

bytes or packets transmitted per time unit were statistically the same, whether 

the time units were minutes or milliseconds (see, Figure 5.1). In simple terms, 

the measured internet traffic behaved in a self-similar way which intuitively 

means that the traffic is 'similar to itself' on all time scales. The self-similarity 

of the traffic relates to, and is define in terms of, aggregates of the time series. 

A number of important follow-up studies have provided further evidence of the 

prevalence of self-similar traffic patterns in measured traffic from Wide Area 

Networks (WANs) (e.g. [3] and [4]). On the other hand, in [4] it is observed 

that traffic due to WWW transfers show characteristics that are consistent 

with self-similarity. They trace the genesis of Web traffic self-similarity to 

the heavy-tailed distribution of available file sizes in the Web. It has been 

argued in [5] that transferring files whose sizes are drawn from a heavy-tailed 

distribution will generate self-similarity in network traffic [4], [13]. However, 

the fundamental stochastic explanation of these phenomena still represents an 

open research issue. 

All studies given in the open literature provide inspirations for investigating 

new types of traffic models. In particular, authors have encouraged the use 

of stochastic processes which have distributions with infinite moments. Self­

similar structures and hence fraetal processes have been employed for this 

reason. 

149 



---------

The issue of self-similarity has also been addressed in various studies from 

many aspects including its impact on network performance [15), modelling 

techniques [16), [15) and causes for the appearance of self-similarity (e.g. [4), 

[17), [18]). 

In the following section, we describe, from a mathematical viewpoint, the con­

cept of self-similar processes, discuss their most important mathematical and 

statistical properties, modelling approaches and outline methods for analyzing 

self-similar data. 

5.4 The Mathematical Description of Self-Similarity 

and Fractality 

We present a brief description of the mathematics of self-similarity in term of 

both continuous-time and discrete-time stochastic processes but concentrating 

on this phenomenon in terms of a discrete-time series. 

5.4.1 Continuous-Time Process 

A continuous-time stochastic process X = {X(t), t ~ O} is considered to 

be statistical self-similar (more precisely, self-affine) if 

D 
X(t) "" a-H X(at) for any a > 0 and (0.5:5 H :5 1) 

The symbol g means 'asymptotically equal to' in the sense of finite-dimensional 

distributions (Le. same statistical properties). Here, the parameter H is called 

the Hurst parameter or the index of self-similarity which indicates the 'degree' 

150 



of self-similarity, i.e. the degree of persistence of the statistical phenomenon. 

A value of H = 0.5 indicates the lack of self-similarity, whereas large values 

for H (close to 1) indicates a large degree of self-similarity in the process. 

Self-affinity indicates that the graph (t, X(t» remains statistically unchanged 

when the time and the amplitude axes are simultaneously scaled by a factor 

a and aB, respectively. We say that X(t) has the same scaling behavior on 

all time scales. Practically, statistical self-similarity means that the following 

conditions are valid [8]: 

• mean: E[X(t)] = a-H E[X(at)]. 

• variance: var(X(t» = a-2Hvar[X(at)]. 

• autocorrelation function: Rx(t, T) = a-2H Rx(at, aT). 

5.4.2 Discrete-Time Process 

Let X = {Xt : t == 0, 1,2,3, ... ,}, be a discrete-time stochastic process (station­

ary time-series). X t represents; for example, the number of bytes or packets 

per time interval observed in a given link of a network. Define another time 

series (m-aggregated) x(m) = {Xkm
), k = 1,2,3, ... } where x(m) is obtained 

by averaging the original series X over non-overlapping adjacent blocks of 

size m, i.e. replacing each block by its sample mean. That is x(m), for each 

m = 1,2,3, .... , is given by 

km 

X (m) - ~ ""' X. k -- ~ ~, 
m. k 

t= m-m+l 

k=1,2,3, ... 

151 



In this case X(1) represents the highest resolution that is possible for the pro­

cess. Lower resolution evolutions of the process x(m) can be obtained by 

m-aggregating the X process, for instance 

The process Xk4
) therefore represents a less-detailed copy of the process X(l). 

In the case that statistical properties (e.g. mean, variance) are preserved with 

aggregation, then the process is of a self-similar nature. 

There are two classes of self-similar processes, namely, exactly self-similar and 

asymptotical self-similar processes. Process X is said to be exactly self-similar 

with parameter f3 (0 < f3 < 1) iffor all m = 1,2,3, ". the following conditions 

are fulfilled: 

• variance var(x(m)j = m-ilvar(Xj. 

• autocorrelation function, R(x(m), k) = R(X, k). 

Note that this means that the series is distributionally self-similar; the dis­

tribution of the aggregated series is the same (except for changes in scale) 

as that of the original. Another class of self-similar process is the so called 

asymptotically self-similar process if we meet conditions with large values of k 

and m = 1,2,3, ".: 

• variance var(X(m)j = m-~var(Xj. 

• autocorrelation function, R(x(m), k) ~ R(X, k). 

152 



This feature is in contrast to stochastic processes where the autocorrelation 

function degenerates as k --> 00. As a result of this, self-similar processes 

can show long-range dependence (LRD). Long-range dependence in time se­

ries is the presence of a significant correlation between observations of signals 

separated by large time spans. It is closely linked with self-similar stochastic 

processes and random fractals which have been considered extensively, though 

only recently, for signal processing applications. 

A process with long-range dependence has an autocorrelation function R(k) ~ 

k- iJ as k -> 00, where 0 < (3 < 1. Thus, the autocorrelation function of such a 

process follows a power law, as compared to the exponential decay exhibited by 

traditional models. One of the attractive features of using self-similar models 

for time series, when appropriate, is that the degree of self-similarity of a 

series is expressed using only a single parameter. This parameter expresses 

the speed of decay of the series auto correlation function. Thus, for self-similar 

series with long-range dependence, 1/2 < H < 1. As H -> 1, the degree of 

both self-similarity and long-range dependence increases. 

The parameter (3 is related to the Hurst parameter by (3 = 2(1 - H). Frac­

tional Gaussian noise with 1/2 < H < 1 is the standard example of an ex­

actly self-similar (Gaussian) process with self-similar parameter H. Generally 

self-similarity means that when a discrete time or continuous time stochastic 

process is scaled in time, similar patterns can be seen. The process in large 

scale is a copy of itself in smaller timescales. 

153 



5.4.3 Principal Properties 

Mathematically, self-similarity manifests itself in a number of equivalent ways: 

(i)The variance, Var(X(m)), of the sample mean decreases more slowly than 

the reciprocal of the sample size (slowly decaying variances), i.e. 

o < (3 < 1, Cl > 0, m -> 00. 

(ii) The autocorrelation function decays hyperbolically rather than exponen­

tially fast, implying a non-summable autocorrelation function 2:k R(k) = 00 

(long range dependence). 

(iii) The power spectral density function P(w) obeys a power-law (l/w-noise) 

that is P(w) "" C2W->' with 0 < A < 1 and A = 1 - (3, C2 > O. 

Thus, we can conclude that, for both classes of self-similar processes, the vari­

ance Var[x(m)] decreases more slowly than l/m as m --> 00. This can be 

compared to stochastic processes where the variances decreases in proportion 

to l/m and approaches zero as m ----> 00. The most striking feature of a self­

similar processes is, however, the fact that the autocorrelation function does 

not degenerate when m ----> 00. 

The effect of self-similarity in network traffic is shown in [14], which compares 

a self-similar series with a compound Poisson series having the same distribu­

tional characteristics. It is shown that Poisson models for network aggregated 

traffic become essentially uniform when aggregated by a factor of 1000; while 

actual network traffic shows no such decrease in variability over the same range 

of aggregation. 

154 



5.5 Fractal Characteristics of Internet Traffic 

As discussed in Chapter 2, the concept of fractals (mono-fractals and multi­

fractals) was first introduced by Mandelbrot in the early 1970's. Since then, 

fractal processes have been widely used in a va.riety of research fields such 

as image processing, signal processing, stock market modelling, and recently 

network traffic characterization. It is indicated in [111 that we define a process 

to posses fractal (mono-fractal) characteristics, if there exist a relationship of 

the form 

(5.1) 

where Q is a certain quantity of the underlying process that depend on rand 

D. Herein, r denotes a resolution in time or space of observation variables at 

which Q is evaluated, and D is a fractal dimension. 

To declare fractality, the above relationship is supposed to hold for a range 

of different r-values, with a value of D that is less than the embedded dimen­

sion (Le. D < 2). Due to the extreme variability the Internet traffic data 

exhibiting such fractal-like structures over almost all scales of resolution, the 

fractal characteristics can exist both in temporal and spatial scales. Indeed, 

one of measures of self-similarity is based on such an equation. When Q is the 

variance of data then D is - f3, so that the fractal dimension D is identified to 

be f3 via 

which describes fractal behavior of data in time. 

In the case of multi-fractals we refer to the situation where the exponent f3 

varies from one range of scales (m) to another. 

155 



It is also possible to observe that a similar description of a time series data X 

or its m-aggregation x(m) can be found with the resolution in the magnitude 

of data [121. Assume that a range of data is to be divided into equal segments 

(windows) of size E, and count the number of segments, say N(E), that contain 

the data. Equation(5.1) can be written as 

and the fractal dimension D at resolution E can be obtained from the slope of 

plotting In N(E) versus In E, i.e. 

D= -lnN(E). 
InE 

(5.2) 

Note that equation (5.2) is expected to give the dimension for a range of 

scales depending on the size of the data. The time series X or x(m) i; fractal 

if equation (5.2) is valid over appreciable range of scales. For random data 

(not fractal), and since all values are equally likely to occur, D=l. Thus, 

equation (5.2) gives an indication that all values in the range of data are not 

equally probable if D is fractional. As in all natural causes, it is to be noted 

that equation (5.2) is expected to give the dimension for the average of scales 

depending on the size and accuracy of data. Multi-fractals can exist with 

exponent D's, depending on the scales (E) of observation. 

5.5.1 Why is Internet Traffic Fractal? 

The reasons .behind self-similarity in network traffic have not been clearly 

identified. Since the pioneering work on self-similarity of network traffic by 

Leland et. al. [2], many studies have attempted to determine the cause of 

156 



this phenomenon. Initial efforts focused on application factors. For example, 

in [4], the authors investigated, in some cases, the cause of self-similarity by 

focusing on the variability in the size of documents transfered and the inter­

request time. They proposed that the heavy-tailed distribution of a file size and 

'user think time' might potentially be the cause of self-similarity (fractality) 

found in WWW traffic. In other words, the behavior of self-similarity in the 

traffic of World Wide Web transfers can be explained in terms of file system 

characteristics and user behavior. 

Other studies have show that the irregular ON/OFF nature of the Internet 

communications with heavy - tailed file sizes can result in self-similar processes 

[13], [14]. As Mandelbrot found as early as the 1960s, a large number of 

independent ON/OFF sources, when taken together, produce self-similarity, 

provided the ON and OFF cycles of each source are themselves (heavy-tailed); 

this is precisely what the studies reported in [13] and [14] found for the cases 

considered. 

The purpose of the protocols, as used for Internet traffic, is to establish on 

orderly transfer of information. They do this in part by adjusting the rate at 

which packets are sent to correspond to the rate at which they arrive. A few 

studies have considered the possibility that underlying network protocols such 

as TCP can cause or exacerbate the phenomenon, whereas, others explain that 

such protocols may cause departure from self-similarity, at least on small time 

scales. Anna Gilbert [19], describes wavelet-based scaling analysis of simulated 

Internet traffic in which multi-fractal behavior was found to results from TCP. 

157 



TIMESTAMP SOURCE PORT DESTINATION PORT FLAG SEQNUM ACKNUM 
19:52.731470406.17.8.12.64826> 723.65.19.6.www: S 4256930:4256930(0) 
19:52.731889 723.65.19.6.www > 406.17.8.12.64826: S 768500:768500(0) ack 4256931 
19:52.732200406.17.8.12.64826> 723.6S.19.6.www: . ack 768501 win 17520 
19:52.738205 40S.17.8.12.64826 > 723.65.19.6.www: P 4256931 :42571 01(170) ack 768501 
19:52.743248 723.65.19.6.www > 406.17 .8.12.64826: P 768501 :5769840(1339) ack 4257101 
19:52.758535406.17.8.12.64826 > 723.6S.19.6.www: F 4257101 :4257101 (0) ack 5769840 
19:52.758862 723.65.19.6.www > 406.17.8.12.64826:. ack 4257102 
19:52.759700 723.S5.19.6.www > 406.17.8.12.64826: F 5769840:5769840(0) ack 4257102 
19:52.759935406.17.8.12.64826> 723.65.19.6.www: . ack 5769841 

Figure 5.2: Tcpdump Trace format. 

The key finding of the study that was conducted in [19) is that user-related 

variability results in self-similar scaling over large time scales, wheres the pres­

ence of TCP and other flow control algorithms underlies a transition to more 

complex multi-fractal scaling over small time scales. 

5.6 Network Traffic Measurements 

A stream of packets between a particular host and server is often described 

as a flow or a trace of network traffic; if we wish to know how the Internet is 

being used, we have to measure these traffic flows. The data set considered in 

this work was a collection of measurements made of a network in place at the 

Loughborough University (LU) campus in March 2006. 

158 



As part of the University network, a number of LANs belong to the Halls 

of Residence (HR). We considered all workstations (approximately 4500) that 

belong to HR. All packet headers have been captured simply using the tcpdump 

utility, which is widely available in Unix environments. The monitoring station 

for running tcpdump was at the intrusion detection server in the Computing 

Services Department. 

Among all the possible traffic characteristics, the work focused on two prop­

erties: packet size and packet timestamp. Measurements were made over the 

course of one hour, and records made of all packets arriving at or originating 

from the host site. 

By way of an example, we consider three traces at three different times on 

March 30, 2006, namely, at 10:30 AM (LU-HR-1 trace), 14:30 PM (LU-HR-2 

trace), and 2:30 AM (LU-HR-3 trace) [20J. These time periods were selected 

because they correspond with periods of Low (L), Medium (M) and High (H) 

network utilization, respectively. Table 5.1 gives a summary description of 

these measurements. Information is provided on the trace name, the duration 

time over which data were collected, the total number of packets and bytes 

collected, maximum and minimum size of the trace packets, and the mean and 

the standard deviation of the packet sizes. 

The data was obtained as an ASCII file which included a number of extraneous 

data elements, such as IP addresses of sources and destination hosts and TCP 

ports. These were removed using Perl script ( an editor used to removing 

redundant data). 

An example of a tcpdump trace is given in Figure 5.2. The trace format shows a 

timestamp for each packet at a microsecond resolution, source and destination 

159 



IP addresses, source and destination port numbers and packet size. The used 

measurements represent the number of bytes that arrived over the server at 

the Computing Services and the corresponding timestamps. for their arrivals. 

The data in its original format was at the scale of 1Jls. 

This was aggregated to resolve the data at different time scales of 1 s, 0.1 s, 

0.01 sand 0.001 s for computational convenience. In other words, since each 

packet captured with tcpdump has a timestamp, the traffic trace is divided up 

into time intervals (bins) of size 100 ms for example. 

For each time interval, the number of packets or bytes that arrived is counted. 

The resulting time series array with the number packets (or bytes) that arrived 

in each time interval is considered as the set of observations in this work. 

Trace Time Duration Num. of Num.of Max Min Mean of 
Name Sec. Packets Bytes Packet Packet Bytes 

LU-HR-1 @1O:30 2156 8m 5000m 8408 0 635 
(L) 

LU-HR-2 @ 14:30 4974 8m 4000m 8406 0 504 
(M) 

LU-HR-3 @ 2:30 4549 8m 5500m 8404 0 701 
(H) 

Table 5.1: Qualitative description of the used data (m := 106 ). 

5.7 Estimating the Hurst Parameter from Real 
Network Traffic Measurements 

Several methods are commonly used for measuring the self-similarity or the 

long range dependence of a real network traffic trace. Here we mention two 

160 

Std. of 
Bytes 

10240 

997 

1092 



important examples, the Rescaled Adjusted Range plot (R/S plot) and the 

Variance Time plot. 

5.7.1 The RIS Method 

The R/ S method is one of the oldest and best known methods for estimating 

H. Let X k , k = 1,2,3, ... , N be a set of N observations for the number of bytes 

or packets in each interval (bin) and let X(N) and S(N) be the mean and the 

standard deviation of these observations. 

The R/ S-statistic or rescaled adjusted range, is defined by the ratio: 

R(N) max(O, 1111,1112,1113, ... , 11IN) - min(O, 1111,1112,1113, ... , 11IN) 
= 

S(N) S(N) 

where, 

k = 1,2,3, ... ,N. 

Busrt found empirically, that for many time series observed in nature, they 

are well represented by the relation 

R(N) H 
S(N) "" C.N , N->oo 

where C is a finite positive constant. By taking logs we obtain 

10g(~iZi) "" 10g(C) + H.log(N). 

Therefore, the slope of a plot of 10g(R/ S) against 10g(N) provides the Burst 

parameter [61. 

161 



5.7.2 Variance-Time Method 

This method relies on the slowly decaying variance of a self-similar series. 

Let X k be a series of observations for the number of bytes or packets in each 

interval (bin) k = 1,2,3, ... , N. If we take a sample of m points then the 

variance-time plot is obtained by plotting log[Var(x(m)] against log(m) and 

by fitting simple lines through the resulting points in the plane. An estimate 

of the Hurst parameter is given by H = 1 - !3 /2 where !3 is slope of the plot 

[61· 

5.8 Experimental Proof of the Fractal Nature 
of Internet Traffic 

A simple way of understanding fractality (self-similarity) is in terms of scale­

invariance. Basically, this means that whatever be the time-scale over which 

the traffic is plotted, the plots will appear (intuitively) very 'similar' to one 

another. 

In each of the figures, i.e. Figure 5.3 to Figure 5.5, there are four time series 

plots of size 1024 for the Internet bytes traffic induced by the three reference 

traces: LU-HR-1, LU-HR-2 and LU-HR-3. The horizontal axis represents 

the time scale; the vertical axis represents traffic load in bytes per unit time. 

The plots are produced by aggregating the (bytes) traffic into discrete time 

units (bins) of 1 ms, 10 ms, 100 ms and 1000 ms. The plots of the Internet 

packets traffic for the same traces are given in Figures 5.6 to 5.8, with the 

same considerations as those in the plots of bytes traffic whereas the vertical 

axis represents the number of packets per unit time. 

162 



We observe, from the plots given in each figure, that all the plots are 'similar' 

to each other, i.e. the bytes (or packets) traffic appears to look the same over 

the whole spectrum of time scales. 

Starting from a time scale 1 ms, all subsequent plots are obtained from the 

previous one by increasing the time resolution by a factor of 10. It is apparent 

that all the plots appear almost similar and exhibit self-similarity, indicating 

that different values of magnification give similar plots. In other words, all 

these plots show clearly the burstiness of the Internet traffic across many time 

scales (1 ms, 10 ms, 100 ms or 1000 ms). Increasing the time scale (time bin) 

of observation, say from 1 ms to 1000 ms, does not cause the traffic to 'smooth 

out' as would normally be expected. Instead, the traffic of all traces continues 

to exhibit burstiness. 

Figure 5.9 shows the plots of sample of size 1024 points of inter-arrival packet 

time sequences corresponding to the given traces. The horizontal axis repre­

sents the sample point, the vertical axis represents the inter-arrival time in 

seconds. If we look at the plots of the time series of the Internet bytes or 

packets traffic or the plots of the packets inter-arrival time sequence, we see a 

similar appearance to the plots in each figure, regardless of time scale; this is 

the characteristic signature of the fractal behavior of such time series. Notice 

that, in each plot, the absence of a fixed length of a 'burst'; we observe dif­

ferent burst lengths on different time scales. This experimental observation is 

consistent with the prior studies. 

163 



1 

i 

I 
.1 

Figure 5.3: Internet Bytes Traffic Bursts over Four Orders of Magnitude; Upper 
Left: 1000ms (1 sec.), Upper Right: 100 ms, Lower Left: 10 ms, and Lower 
Right: 1 ms aggregations, Trace: LU-HR-l. 

5.9 Characterization of Internet Traffic Noise 
using a Fractal Model 

There are many models in the literature that consider the main characteristics 

of Internet traffic noise either by processing real measurements of packets (or 

bytes) traffic in time or the frequency domain. Fractals are applicable when 

the underlying processes being modelled have a similar appearance regardless 

of the time or observation scale and much of the traffic 'riding' the Internet 

can be modelled using fractals. Further, it is arguable that as the Internet has 

become larger and larger, the fractal nat ure of the traffic has become more and 

more pronounced. In this section we introduce a novel method that depends 

on the frequency analysis through which we attempt to capture the fractal 

164 



behavior of Internet traffic by adopting a Random Scaling Fractal model to 

characterize the self-affine characteristics of the traffic. 

Figure 5.4: Internet Bytes Traffic Bursts over Four Orders of Magnitude; Upper 
Left: 1000 ms(l sec.), Upper Right: 100 ms, Lower Left: 10 ms, and Lower 
Right: 1 ms aggregations, Trace:LU-HR-2. 

5.9.1 Random Scaling Fractal Noise 

Many noise signals observed in nature are random fractals. Random Scaling 

Fractals (RSFs) are signals whose probability distribution function or PDF 

has the same 'shape' irrespective of the scale over which they are observed. 

Random fractal noise fields are statistically self-similar or self-affine; 'they look 

the same' in a stochastic sense at different scale. As discussed at the beginning 

of this chapter, Internet traffic time series exhibit the features of self-affinity 

fields so we can consider such a series to be an example of RSF noise. 

165 



TIme trn"- In< 

1.·lme trnlt _ 1 n,. 

Figure 5.5: Internet Bytes Traffic Bursts over Four Orders of Magnitude; Upper 
Left: 1000 ms(l sec.), Upper Right: 100 ms, Lower Left: 10 ms, and Lower 
Right: 1 ms aggregations, Trace:LU-HR-3. 

RSF noise is characterized by power spectra whose frequency distribution is 

proportional to 1/ wq where w is the frequency and q > 0 is the' Fourier dimen­

sion' (see Chapter 2), a value that is simply related to the Fractal Dimension, 

D and Hurst(Dimension) parameter H. The relationship between the q, H 

and D is given by (see Chapter 2) 

q = H + 1/2 = (5 - 2D)/2. 

This power law describes the conventional RSF model which is based on sta­

tionary processes in which the 'statistics' of the RSF signals are invariant of 

time and the value of q is constant. As discussed earlier in this Chapter, the 

Hurst parameter (Dimension) H measures the features of self-affinity of a time 

series in the time domain. 

166 



1 
! 
j 

! 
! 
j 

! 
! 
i 

"n •• ~,,"~, on. 

Figure 5.6: Internet Packets Traffic Bursts over Four Orders of Magnitude; 
Upper Left: 1000 ms (1 sec.), Upper Right: 100 ms, Lower Left: 10 ms, and 
Lower Right: 1 ms aggregations, Trace:LU-HR-l. 

We now present a description of these features through processing the time 

series in the frequency domain in which we assume that the power spectrum of 

this signal is dominated by a RSF model P(w) = c/wq where c > O. Let X(t), 

in the time domain, be a time series of Internet ( bytes or packets) traffic which 

is assumed to be a self-affine signal. The power spectrum of such a signal can 

be written as P(w) = IX(w)12, where X(w) is Fast Fourier Transform (FFT) 

of the time series in the frequency domain ( i.e. X(w) = f ft(X(t))). For such 

a time series the power spectrum obeys the RSF model 

c 
P(w) =-

wq 

167 



'~r-~-----------' 

Time 1.Tnlt .. 1 ne. 

TIme unit .. 1 ml 

Figure 5.7: Internet Packets Traffic Bursts over Four Orders of Magnitude; 
Upper Left: 1000 ms (1 sec.), Upper Right: 100 ms, Lower Left: 10 ms, and 
Lower Right: 1 ms aggregations, Trace:LU-HR-2. 

Figure 5.10 and Figure 5.11 show example of different plots of the measured 

power spectrum of Internet (bytes and packets) traffic over four different time 

units. Figure 5.12 shows the plot of measured power spectrum of packets inter­

arrival times. These plots give the evidence that the power spectrum of the 

time series signal of internet traffic obeys the RSF model. 

We can characterize the behavior of Internet traffic through estimating the pa­

rameter q in the proposed model where the estimated values of this parameter 

reflect the degree of self-similarity (fractality) in the internet traffic. 

To do this we apply the Least Square Method on the measurements of Internet 

traffic which is described in the following Section. Note that the Wiener­

Kintchine theorem expresses the relation between the Fourier transform of the 

168 



Time 'Unit .. 100 ml 

Figure 5.8: Internet Packets 'Traffic Bursts over Four Orders of Magnitude; 
Upper Left: 1000 ms (1 sec.), Upper Right: 100 ms, Lower Left: 10 ms, and 
Lower Right: 1 ms aggregations, 'Trace:LU-HR-3. 

auto-correlation function and the power spectrum density function (PSDF) of 

a time series as 

R(k) <-+ P(w) 

where R(k) is the auto-correlation function of the time series and 

P(w) = 1: R(k)e-ikWdk 

5.9.2 Power Spectrum Method 

Let Xi, i = 1, 2, 3, ... , N (N being a power of 2) be an aggregated time series 

that represent the number of bits, bytes or packets that occur in a predefined 

169 



'" 

Sunpl~ Point Samp.e Point 

,.) 

Figure 5.9: Inter-arrival Packets Times Bursts of Traces: (a)LU-HR-l, (b)LU­
HR-2 and (c)LU-HR-3. 

unit of time, say, 1 sec, 100 msec, 10 msec, or 1 msec. Consider the case in 

which the digital power spectrum P; == P(Wi) is given by applying a FFT to 

this time series. This data can be approximated by 

or 

c 
F(w;) = --. 

I Wi I' 

2 - c I F(Wi) I = P(Wi) = I Wi Iq 

and by using the least squares method we can estimate q and c as follows: 

N 

E(q, c) = L[1n P(Wi) -In P(Wi)]2 
i=l 

N 

= L[lnP(wi) - C + qlnwi]2 
i=l 

170 



.00 

'00 

= 
= 
= 
'00 

'00 

00 

00 'M <00 

Figure 5.lO: Measured Power Spectrum of Bytes Traffic: from top to bottom 
and from left to right: lsec (q=oO.45), lOOms (q=oO.28), lOms (q=oO.lO) and lms 
(q=oO.15). 

where C =0 In c, and it is assumed that Wi > 0 and F(Wi) > 0, Vi 

Differentiating E with respect to q and C gives 

Solving 

and 

aE N 
[} =0 22)1n P(Wi) - C + q Inwi]lnwi 

q i=1 

aE N 
ac = -2 I)1n F(ki ) - C + qlnw;J. 

i=l 

aE =0 
aq 

aE =0 
ac 

we obtain the following formulas for q and C respectively: 

171 



Figure 5.11: Measured Power Spectrum of Packets Traffic: from top to bottom 
and from left to right: 1sec (q=O.76), lOOms (q=O.28), lOms (q=O.23) and 1ms 
(q=0.44). 

N N N 

N2::(lnwi)lnP(wi) - (2:: Inwi)(2::InP(wi) 
_ _ '~'-~l ____ ~ ______ ~i~-~l~ __ ~i-~l~ __ __ 

q= N N 

(2:: Inwi)2 - N 2::(lnwi)2 
i=l i=l 

1 N N 

C = N '2:)nP(wi) + ~ '2::: In Wi 
i=l i=l 

where c = exp C. Here, P(Wi) is the measured power spectrum of the signal 

and Wi its spatial frequency. Since the power spectrum of real signals of size 

N is symmetric about the DC level, where the DC level is taken to the mid 

point !;} + 1 of the array, so in practice we consider only the!;} data that lie 

to the right of DC [10]. 

172 



Figure 5.12: Measured Power Spectrum of Packets Inter-arrival times, from top 
to bottom and from left to right:(q=O.08),(q=O.15),(q=O.19) and (q=O.ll). 

5.10 Fractal Parameters Estimation for Inter­
net 'Iraffic Data 

The two main properties of network packets are their sizes in bytes and their 

inter - arrival times; both are taken to obey a Random Scaling Fractal model. 

To estimate the fractal parameter in these series we convert them to the fre­

quency domain in which we assume that the empirical power spectrum of each 

series has an envelope of Power Spectrum Density Function (PSDF) given 

by P(w) = Iwl-q
. In the following sections the results of estimation of the 

parameter for the proposed fractal model are given. 

173 



5.10.1 Parameter Estimation for Packet Size Time Se­
ries 

Suppose that {X} be a time series of the number of bytes gathered, corre­

sponding to four different values of a time unit 1ms, lOms, lOOms and Is. 

These time series are taken from the traces of the Internet traffic described 

in Section 5.6. By using a moving window technique, we choose a window 

of size N = 1024 to move over the points of the time series according to the 

given time unit. From each window segment we apply the power spectrum 

estimation method to estimate the Fourier dimension q after transforming to 

the spectral domain of a given segment. 

The following algorithm summarizes the steps of the estimation process (using 

m-code syntax): 

Step 1: Use a window of size N = 1024 over the points of a given time series 

to extract a segment array, say Xi, i=1,2,3, .... ,N 

Step 2: Normalize the segment: Y; = X;jmax(Xi ). 

Step 3: Compute the Discrete Fourier Transform (OFT) of Y; using a Fast 

Fourier Transform (FFT) and (with spectral shifting) to yield Zi = f ftshift(j ft(Y;). 

Step 4: Compute the empirical power spectrum of Zi, i.e. P = IZ;j2. 

Step 5: Extract the right halve of the power spectrum (excluding the DC 

term at N/2+1). 

Step 6: Compute the parameter q using the computational formula of the 

PSM given above. 

174 



x Q Y 

G"" ifftshift 

Internet T raffie Noise 

Figure 5.13: Block diagram for estimating the Fourier dimension, q, of Internet 
Traffic. 

Step 7: Iterate Step 1 through to Step 6 until the end of the time series. 

Figure 5.13 shows a block diagram of the estimation method. Table 5.2 through 

to Table 5.5 gives the result of estimating the Fourier dimension q according 

to the different time scales from the traffic of bytes and packets through for 

the traces described in Table 5.1. 

Wind. No. LU-HR-1 (L) LU-HR-2 (M) LU-HR-3 (H) 
Byte Packet Byte Packet Byte Packet 

1 0.07 0.29 0.20 0.25 0.25 0.31 
2 0.10 0.24 0.19 0.15 0.21 0.31 
3 0.10 0.31 0.36 0.35 0.32 0.26 
4 0.11 0.31 0.19 0.15 0.31 0.40 
5 0.12 0.27 0.13 0.23 0.36 0.34 
6 0.10 0.35 0.16 0.24 0.17 0.42 
7 0.04 0.20 0.18 0.29 0.15 0.52 
8 0.07 0.29 0.42 0.40 0.30 0.44 
9 0.17 0.30 0.14 0.27 0.40 0.43 
10 0.16 0.36 0.29 0.24 0.14 0.24 

Table 5.2: Estimated values of q for time scale 1 ms. 

175 



Wind. No. LU-HR-1 (L) LU-HR-2 (M) LU-HR-3 (H) 
Byte Packet Byte Packet Byte Packet 

1 0.02 0.31 0.19 0.34 0.11 0.32 
2 0.17 0.31 0.12 0.26 0.16 0.29 
3 0.10 0.26 0.20 0.33 0.18 0.26 
4 0.11 0.40 0.14 0.32 0.09 0.23 
5 0.07 0.34 0.06 0.22 0.17 0.33 
6 0.008 0.42 0.16 0.18 0.04 0.15 
7 0.03 0.52 0.23 0.29 0.07 0.22 
8 0.13 0.44 0.20 0.32 0.15 0.15 
9 0.04 0.43 0.38 0.58 0.04 0.24 
10 0.08 0.24 0.18 0.39 0.13 0.22 

Table 5.3: Estimated values of q for time scale 10 ms. 

In each table, the first column is the window number whereas the other three 

columns are of the estimated values of the Fourier dimension q for the three 

traces. Under each of the trace column there are two sub-columns; one to esti­

mate the parameter from the bytes traffic and one to estimate the parameter 

from the packets traffic. Note from these tables that as the time resolution 

increases then the estimated values of the parameter q decreases; whereas the 

variation among the estimated values increases as the time resolution increases, 

i.e. as the utilization of the network increases the estimated value of q, either 

from bytes or packets traffic, also increases. This is to be expected given the 

fractal model Internet traffic noise being considered. In other words, the the­

oretically expected results are consistent with those obtained experimentally. 

176 



Wind. No. LU-HR-1 (L) LU-HR-2 (M) LU-HR-3 (H) 
Byte Packet Byte Packet Byte Packet 

1 0.25 0.44 0.32 0.45 0.20 0.28 
2 0.26 0.35 0.24 0.49 0.08 0.16 
3 0.18 0.31 0.36 0.40 0.13 0.23 
4 0.30 0.48 0.17 0.25 0.13 0.26 
5 0.29 0.51 0.31 0.35 0.36 0.38 
6 0.35 0.52 0.17 0.27 0.24 0.28 
7 0.34 0.44 0.22 0.31 0.28 0.29 
8 0.39 0.51 0.30 0.29 0.31 0.34 
9 0.41 0.53 0.26 0.40 0.10 0.26 
10 0.19 0.34 0.27 0.33 0.20 0.30 

Table 5.4: Estimated values of q for time scale 100 ms. 

Wind. No. LU-HR-1 (L) LU-HR-2 (M) LU-HR-3 (H) 
Byte Packet Byte Packet Byte Packet 

1 0.77 0.70 0.54 0.64 0.54 0.49 
2 0.58 0.56 0.58 0.80 0.43 0.51 
3 0.74 0.86 0.56 0.63 0.61 0.76 

Table 5.5: Estimated values of q for time scale 1000 ms. 

Statistics LU-HR-1 (L) LU-HR-2 (M) LU-HR-3 (H) 
Byte Packet Byte Packet Byte Packet 

Min. 0.04 0.20 0.13 0.15 0.14 0.24 
Max. 0.17 0.36 0.42 0.40 0.40 0.52 
Mean 0.10 0.29 0.23 0.26 0.26 0.37 
Std. 0.04 0.05 0.10 0.08 0.09 0.09 

Table 5.6: Some statistics on the estimated values of q for time scale 1 ms. 

177 



Statistics LU-HR-1 (L) LU-HR-2 (M) LU-HR-3 (H) 
Byte Packet Byte Packet Byte Packet 

Min. 0.08 0.24 0.06 0.18 0.04 0.15 
Max. 0.17 0.52 0.38 0.58 0.18 0.33 
Mean 0.08 0.37 0.19 0.37 0.11 0.24 
Std. 0.05 0.09 0.08 0.11 0.05 0.06 

Table 5.7: Some statistics on the estimated values of q for time scale 10 ms. 

Statistics LU-HR-1 (L) LU-HR-2 (M) LU-HR-3 (H) 
Byte Packet Byte Packet Byte Packet 

Min. 0.18 0.17 0.17 0.25 0.08 0.16 
Max. 0.41 0.53 0.36 0.49 0.36 0.38 
Mean 0.30 0.44 0.26 0.35 0.20 0.28 
Std. 0.08 0.08 0.06 0.08 0.09 0.06 

Table 5.8: Some statistics on the estimated values of q for time scale 100 ms. 

Tables 5.6 to 5.9 give statistical information ( the Max., Min, Mean and Stan­

dard Deviation (Std.)) of the estimated values of q that are given in Tables 

5.2 to 5.5. These values suggest that the Internet traffic noise behaves in a 

non-stationary way and that the traffic is characterized by more than one pa­

rameter value leading to the hypothesis of that Internet traffic is a multi-fractal 

phenomenon. In other words, the traffic has more than one value of the Fourier 

dimension. Table 5.10 presents a summary of some statistics of the estimated 

values of q for all traces together at different time scales. 

Statistics LU-HR-1 (L) LU-HR-2 (M) LU-HR-3 (H) 
Byte Packet Byte Packet Byte Packet 

Min. 0.58 0.56 0.54 0.63 0.43 0.49 
Max. 0.77 0.86 0.58 0.80 0.61 0.76 
Mean 0.70 0.71 0.56 0.69 0.53 0.59 
Std. 0.10 0.15 0.02 0.09 0.09 0.15 

Table 5.9: Some statistics on the estimated values of q for time scale 1000 ms. 

178 



Statistics 1 ms 10 ms 100 ms 1000 ms 
Byte Packet Byte Packet Byte Packet Byte Packet 

Min. 0.04 0.15 0.04 0.006 0.08 0.16 0.43 0.49 
Max. 0.42 0.52 0.38 0.58 0.41 0.53 0.77 0.86 
Mean 0.20 0.31 0.12 0.31 0.20 0.36 0.59 0.59 
Std. 0.10 0.09 0.08 0.10 0.09 0.10 0.10 0.15 

Table 5.10: Summary statistics for all traces over different time scales. 

5.10.2 Parameter Estimation for Packet Inter-arrival Times 

The inter-arrival times are that sequence which consists of the timestamp dif­

ferences between consecutive packets. To characterize the behavior of such 

sequences we estimate the Fourier dimension q in the RSF model by using the 

same steps as those described in the previous section. 

Figure 5.9 shows the plot of the first 1024 sample points of the packets inter­

arrival time sequence of the three traces LU-HR-1, LU-HR-2 and LU-HR-3. 

The horizontal axis is the sample points whereas the vertical axis represents 

the inter-arrival times in seconds. From the Figure 5.9 we note that the inter­

arrival time of packets has a fractal like behavior, i.e. the series of these 

times can be considered as a Random Scaling Fractal series. To characterize 

the series of inter-arrival times of packets we apply the same approach for 

estimating the Fourier dimension. 

179 



I Wind. No. I LU-HR-1 I LU-HR-2 I LU-HR-3 I 
1 0.14 0.09 0.34 
2 0.26 0.08 0.08 
3 0.10 0.17 0.21 
4 0.11 0.03 0.24 
5 0.17 0.06 0.10 
6 0.14 0.12 0.16 
7 0.12 0.09 0.20 
8 0.10 0.16 0.12 
9 0.14 0.09 0.10 
10 0.26 0.15 0.14 

Table 5.11: Estimated values of q for packet Inter-arrival times. 

Table 5.11 shows the estimated values of the parameter q from sequences of 

the packet inter-arrival times. The first column is the window number and the 

other columns are of the estimated values of q correspond to the LU-HR-1, LU­

HR-2, and LU-HR-3 traces. Table 5.12 gives some statistics on the estimated 

values of q for the inter-arrival time sequences that are given in Table 5.11. 

The mean of the estimated values of q takes on large values when there is high 

utilization (LU-HR-3 trace) as compared with the mean when there is low to 

medium utilization (LU-HR-1 or LU-HR-2 traces). 

I Statistic. I LU-HR-1 I LU-HR-2 I LU-HR-3 I 
Min. 0.10 0.03 0.08 
Max. 0 .. 26 0.17 0.34 
Mean 0.15 0.10 0.17 
Std. 0.06 0.05 0.08 

Table 5.12: Some statistics on the the estimated values of q for packet Inter­
arrival times. 

180 



- - - - - -- -- ----------------

5.11 References 

[l]Douglas E. Comer, Gomputer Networks and Internet, Prentice Hall, 4th 

edition, 2004. 

[2]Leland W., Taqqu M., WilIinger W., and Wilson D., "On the self-similar 

nature of Ethernet traffic (extended version)," IEEE/AGM Trans. on Net­

working, vol. 2, no. 1, pp. 1-15, 1994. 

[3]Paxon V. and Floyd S., "Wide-area traffic: The failure of Poisson mod­

elling," IEEE/AGM Transactions on Networking, vol. 3, pp. 226-244, June 

1995. 

[4]Crovella M. E. and Bestavros A. , "Self-similarity in World Wide Web traffic: 

Evidence and possible causes," IEEE/AGM Transactions on networking, vol. 

5, pp. 835-846, Dec. 1997. 

[5]Marke E. Crovella M. and Bestavros A., "Explaining World Wide Web traffic 

self-similarity," Tech. Rep., Boston University, CS Dept., Boston, Oct. 1995. 

[6]Beran J., Statistics for Long-Memory Processes, Chapman and Hall, New 

York, 1994. 

[7] Keresteci E., Sema F., Ersoy C. and Ufuk M., "Generation and evaluation 

of self-similar traffic in computer networks,"Dept. of Computer Engineering, 

Bogazii University, Istanbul, Turkey, 1996. 

[8] Willinger W., Govindan R., Jamin V. and Shenker S., "Scaling phenomena 

in the Internet: Critically examining criticality," PNAS, vol. 99, pp. 2573-

2580, Feb. 2002. 

181 



[9] Abrahansson H., "Traffic measurement and analysis," SICS Tech. Rep., 

Kista, Sweden, Sept. 1999. 

[10] Turner M., BJackledge J. and Andrew P., Fractal Geometry in Digital 

Imaging, Academic Press Ltd., UK, 1998. 

[11] Willinger W. and Paxson V., "Where Mathematics meets the Internet," 

Notices of the American Mathematical Society, vol. 45, no. 8, pp. 961-970, 

Sept. 1998. 

[12] Cipra B. A., "Oh what a tangled Web we have woven ... ," SIAM News, 

vol. 33, no. 2, 2001. 

[13] Taqqu M.S., Willinger W., and Sherman R., "Proof of a fundamental result 

in self-similar traffic modelling," Computer Communication Review, vol. 27, 

pp. 5-23, 1997. 

[14] Willinger W., Taqqu M. S., Leland W. E. and Wilson D. V., "Self­

similarity in high speed packet traffic: Analysis and modelling of Ethernet 

traffic measurements," Statistical Science, vol. 10, no. 1, pp. 67-85, 1995. 

[15] Park K., Kim G., and Crovella M., "On the effect of self-similarity on 

network performance," Proc. of the SP lE International Conf. on Performance 

and Control of Network System, pp. 296-310, Nov. 1997. 

[16] Ost A. and Boudwijn R.H.,"Modelling and evaluation of pseudo self­

similar traffic with Infinite-State Stochastic Petri Nets," Proc. of the workshop 

on formal method telecom., pp. 120-136, Sept. 1999. 

182 



[17] Peha J. M., "Protocols can make traffic appear self-similar," Proc. of the 

1997 IEEE/AGM/SGS Gomm. Networks and Distributed System. Modellin9 

and Simulation Conf., pp. 47-52, Jan. 1997. 

[18] Veres A. and Boda M., "The chaotic nature of TCP congestion control," 

IEEE INFOCOM 2000, pp. 1715-1723, Apr. 2000. 

[19] Gilbert A. C., Fledman A. and Willinger W., "Data networks: Investigat-

ing the multi-fractal nature ofInternet WAN traffic," Proc. of the AGM/SIGGOMM'98, 

Canada, Sept. 1998. 

[20] The internet traffic archive, Personal communication with Network man­

ager at Computing Services Dept.jLoughborough Univ., April 2006. 

[21] Williamson C., "Internet traffic measurement," IEEE Internet Gomputing, 

vol. 5, no. 6, pp. 70-74, Nov. 2001. 

[22] Cleveland W. and Sun D., "Internet traffic data," Journal of the American 

Statistical Association, vol. 95, pp. 979-985, 2000. 

[23] Mian S., "Traffic modelling: the advent of fractals," Communications 

Engineer, vol. 1, no. 1, pp. 32-35, Feb. 2003. 

[25] Jacques Levy Vehel, "Fractal and multi-fractal Traffic," Project Fractals, 

INRIA Rocquencourt, Le Chesnay Cedex, France, 2002. 

[26] Taqqu M., Teverovsky V., and Willinger W., "Is network traffic self-similar 

or multi-fractal?" Fractals, no. 5, pp. 6373, 1997. 

[271 Molnar S. and Terdik G., "A General fractal model of Internet traffic," In 

Proc. of IEEE LGN 2001, Tampa, Florida, Nov. 2001. 

183 



[28J Lucas M., Wrege D. , Dempsey, Bert J. and Weaver A., "Statistical char­

acterization of Wide-Area IP traffic," Proceedings of Sixth International Con­

ference on Computer Communications and Networks (IC3N'97), pp. 442-447, 

1997. 

[29J Chakraborty D., Ashir A., Suganuma G., Mansfield K., Roy T. and Shi­

ratori N., "Self-similar and fractal nature of Internet traffic," Int. J. Network 

Mgmt, no. 14, pp. 119-129, 2004. 

[30J Mian S., Ghassempoory M. and Bentall M., "Mathematical analysis of net­

work traffic," In Proc. of Student Conference on Research and Development, 

Shah Alam, Malaysia, 2002. 

[31J Cao J., Cleveland W., Lin D., and Sun D., "On the non-stationarity of 

Internet traffic," Proc. of ACM SIGMETRICS '01, pp. 102112, 2001. 

[32] Chong K. and Choo Y., "Fractal analysis in Internet traffic time series," 

arXiv:physics/0206012, vo!. 3, Jun 2003. 

[33J Fischer M., and Fowler T., "Fractal, Heavy-Tails and the Internet," Sigma 

Technology Summaries: Mitretek Systems, no. 2, pp. 11-16., May 2003. 

[34J Wisitpongphan N. and Peha J., "Effect of TCP on self-similarity of net­

work traffic," Proc. of the 12th International Conference on Computer Com­

munications and Networks, ICCCN 2003, pp. 370- 373, Oct. 2003. 

[35J Fowler T., "A Short tutorial on fractals and Internet traffic," The Telecom­

munication Review 10, Mitretek Systems, McLean, VA, pp.114, 1999. 

[36J Paxon V. and Floyd S., "Wide area traffic: the failure of Poisson mod­

elling," In Proc. ACM SIGCOMM'94, London, UK, pp. 45-56, Sept. 1994. 

184 



Chapter 6 

Covert Transfer of Data 

Through the Internet 

6.1 Introduction 

In this chapter we introduce a novel method of using the fractal characteris­

tics of internet traffic to disguise or camouflage the transfer of a digital file 

through the Internet. For applications to securing data transmission through 

the Internet, instead of attaching a complete file (encrypted or otherwise) at 

a given time, we first encrypt the file and then split a binary representation 

of the file into a number of blocks. Each block is then saved as a sequence (a 

trace) of binary files in which the statistical characteristics of such traces fit 

with the characteristics of the actual trace of Internet packets. In principle, for 

the purpose of encrypting the plaintext any encryption product can be used; 

185 



for example, the Crypstic™system which is provided in the CD that accom­

panies this thesis and was used for this work. 

The sizes of the split files are determined by the fractal characteristics of the In­

ternet through which the data is transmitted using the Random Scaling Fractal 

model. At the same time, a sequence of inter-submission times are generated 

using the same model. This sequence is used to formulate the required times­

tamps. The data is then applied to the Internet as e-mail attachments and 

submitted according to the sequence of timestamps computed. The recipient 

of the data recovers the information by concatenating the file sequence and 

decrypting the result. 

In terms of known published materials, this approach is the first of its kind to 

use the self-affine nature of Internet traffic in order to disguise the transmission 

of a digital file by splitting the file into a number of blocks (files) whose size 

and submission times are compatible with the bursty fractallengths of Internet 

traffic. 

6.2 Simulation of Internet Traffic Data 

In this section we focus on simulating the two variables of Internet traffic data, 

namely, the sizes of packets and the corresponding timestamps. 

6.2.1 Synthetic Generation of a Fractal Traffic Trace 

The method of generating a synthetic traffic trace for the purpose of securely 

transferring a set of files as e-mail attachments is considered. 

186 



Generally, this equates to the problem of letting the behavior of e-mail arrivals 

match the behavior of packets observed in actual computer networks. In what 

follows, we introduce the steps associated with the method to generate a syn­

thetic trace or sample path which displays the same statistical properties as 

the actual data traffic. In this way, we generate synthetic data sequences that 

exhibit similar features to the measured traffic. The points of the sample path 

represent the sizes in bits of the split files. 

In general, this method of generating a synthetic trace with fractal charac­

teristics depends on generating white Gaussian noise that is filtered using the 

Random Scaling Fractal model with a suitable value of the parameter q. To 

ensure that the synthetic trace is representative of a trace that is likely to be 

encountered in the 'real world', the synthetic trace is used the estimated values 

of q from the captured traces of actual Internet traffic. 

The inputs to the method are q, the desired Fourier dimension, and N, the 

desired number of points in the synthesized sample, (where N is a power of 2). 

Here, the parameter q takes a value from the table of estimated values (see, 

Table 5.2 to Table 5.5) or it may take the average of these values (see, Table 

5.6 to Table 5.9). In what follows, we give a description of the principal steps 

(quasi m-code based): 

Step 1: Generate a stream of white Gaussian noise, sayXi , where i = 1,2,3, ... , N 

Step 2: Compute the Discrete Fourier Transform (DFT) of Xi using a Fast 

Fourier Transformation (FFT) to give a new series (in the complex domain), 

namely, Yi = j jt(Xi). 

Step 3: Choose a value of the fractal parameter q. 

187 



Step 4: Apply the fractal filter on Y; using the RS F model to obtain Zi = 

Y; * Ilk'/. 

Step 5: Compute the inverse DFT of Zi using an FFT to give Wi . 

Step 6: Consider the real part of Wi giving fractal noise stream, say Si, where 

Si = real [WiJ. 

Step 7: Compute the Hilbert transform of the fractal signal, Hi = hilbert(si). 

Step 8: Compute the modulus of Hi and normalize the result, hi = m!~ii)' 

Step 9: Rescaling the sequence hi, by multiplying each element of hi by a 

scaler C (Ri = C.hi)' where C is a power of 2, and then round down the 

elements to the nearest integer. The integer values of the sequence Ri, which 

lie in the interval (0, Cl, constitute the sizes series of the of the actual files 

(packets) sizes as described above. 

x 
White Gaussian 

FGN 

Figure 6.1: Block Diagram for the Synthesis of a Fractal Trace. 

Figure 6.1 shows a block digram of the method of generating a synthetic fractal 

trace. Figure 6.2 shows four time series plots of synthetic sample paths. 

188 



------------ -- -------------------------------------------

Figure 6.2: Synthetic Internet Bits Traffic Bursts over Four Orders of Mag­

nitude: 1 sec, q=0.6 (top-left); 100 ms, q=0.3 (top-right); 10 ms, q=0.13 ( 

bottom left) and 1 ms, q=0.2 ( bottom-right). 

Each path is of length 1024. The horizontal axis represents the sample num­

ber; the vertical axis represents traffic load in bytes per time unit. The plots 

are produced according to the algorithm given above and with four different 

estimated values of the Fourier dimension q = 0.59,0.2,0.12, and 0.2. The 

estimated values of q considered are the values of means over the three traces 

at different time scales given in Table 5.10. 

From this figure we see clearly that the plots of the generated series using 

the algorithm described above appear to be somewhat like to the plots of the 

actual series of the Internet traffic (e.g. see Figure 5.3 to Figure 5.5). 

189 



6.2.2 Synthetic Generation of the Timestamps Sequence 

A timestamps sequence, say Tj , T2 , T3 , .", TN is required to send each file in 

the trace of files at time intervals compatible with the fractal characteristic of 

Internet noise, i.e. the fractal time signature. The principal steps to generate 

such sequence are given below: 

Step 1: Generate a series of white Gaussian noise, sayXi , where i = 1,2,3, "., N. 

Step 2: Compute the Discrete Fourier Transform (DFT) of Xi using a Fast 

Fourier Transformation (FFT) yields a new series in complex domain, namely, 

Y; = j jt(Xi ). 

Step 3: Choose a value of the fractal parameter q from the estimated values 

of the real timestamp sequences that given in Table (5.11). 

Step 4: Apply the fractal filter on Y; using the RSF model to obtain Zi = 

Y;*l/kf, 

Step 5: Consider the real part of the inverse DFT of Zi using an FFT to give 

a series of fractional Gaussian noise, Ui = real[ij jt(Zi)]' 

Step 6: Compute the Hilbert transform of the fractal series, Hi = hilbert(Ui). 

Step 7: Compute the modulus of Hi and normalize the result, hi = m~t;). 

Step 8: Rescale the sequence hi by multiplying each hi by a scaler C to give 

Ii = C.hi where C is a power of 2 and then round the elements to the nearest 

integers toward zero. 

Step 9: Write the sequence of timestamps in 'military form', i.e, hh:mm:ss 

(hours, minutes and seconds respectively). 

190 



---------

To do this, we first consider an initial and then add the inter-submission values 

obtained in Step 8 above to the initial time in an accumulative way until the 

last timestamp is reached. 

Inter-submission Time Timestamp 
(Second) 

53 22:11:38 
8 22:11:46 
7 22:11:53 
7 22:12:00 
4 22:12:04 
43 22:12:47 
28 22:13:15 
21 22:13:36 
12 22:13:48 
5 22:13:53 

Table 6.1: The first 10 points of synthetic Inter-submission times with the 
corresponding Timestamps. 

Table 6.1 shows the first 10 points of a sequence of timestamps that is obtained 

by applying the above algorithm according to the RSF model with q = 0.10 

and the initial time is '22:10:45'. Figure 6.3 shows the plot of 1024 sample 

points of the sequence of inter-submission with q = 0.10. Note that the plot of 

the inter-submission time sequence is similar to the plot of the actual packet 

inter-arrival times sequence (see Figure 5.9) where the estimated value of q 

from this sequence is 0.10. 

191 



'C 
g 'C)() 

~ 
l3 

11 .... 
~ 
~ 00 

il 

S'flmptc PoInt 

Figure 6.3: Plot of the synthetic sequence of inter-submission times for q = 0.10 

6.3 Transmission of Files Between a Sender-

Receiver Pair on a Network 

In recent years the Internet has become the most popular media for information 

transfer in the world. Terms like 'e-mail' and 'e-commerce' are well known 

and accessible to everyone. Here, the resulting series Ri where i = 1,2,3, ... , N 

represents the synthetic fractal trace, and N is the length of this trace. 

Each element in the generated trace is considered to be the size of each file of 

bits, and the length of such trace is the number of the split files. We describe 

the mechanism of sending and receiving the files below. 

192 



- --_.- - -----------------------------------

In light of the above, if we consider the set of split files to be file!, filez, file3, ... , fileN 

then size(file!) = R!, size(filez) = R2 , .... , size(fileN) = RN. These 

files are then sent over the Internet according to the sequence of timestamps, 

Tb T2 , T3 , .•. , TN • 

Sending Files 

For the application of securing data transmission through the Internet, instead 

of attaching a complete file (encrypted or otherwise) at a given time, we first 

encrypt the file and then split a binary representation of the file into a number 

of blocks. 

Each block is then saved as a sequence of binary files whose size is determined 

by the fractal characteristics of the Internet through which the data is to 

transmitted using the Random Scaling Fractal model. 

At the same time, a sequence of inter-submission times are generated using the 

same model. The data is then applied to the Internet as e-mail attachments 

and submitted according to the sequence of inter-submission times computed. 

Here, it is assumed that the inter-submission times are compatible with the 

inter-arrival times in that they adhere to the same fractal model that is as­

sumed to be stationary over the given period of interest. 

To make the traffic associated with a transmitted file sequence (packets) com­

patible with the fractal nature of internet traffic, we send an e-mail with one 

attached file only, say file file;, at a timestamp 1;, where i = 1,2,3, ... , N. 

Figure 6.4 shows the block diagram of the mechanism for sending a digital file 

over the Internet by splitting its binary representation into a trace of digital 

files. 

193 



Real Internet Bytes Traffic 

Encryplion Binaritalion 

Estimate 
-+ Fractal 

parameter 

r-----~ r------, r-----~ 

Plalntext File I--t~ Ciphertext File I---I.~I Binary Bits File 

Send attached files 
via a-mails 

Binary Fllas 

FlleJ 

File_2 

File_3 

Flle_" 

Figure 6.4: Block Diagram for the mechanism for sending a digital file over 

the Internet. 

Receiving Files 

Once all the attached files have arrived at the recipients location, they are 

recombined into their original file. For the purpose of increasing the security 

of the communication, we first encrypt the whole file before binarization. Upon 

reception and after concatenation of the binary contents of the received files, 

we decrypt the resultant to recover the plaintext file. 

The operation of encryption and decryption can be based on any algorithm 

but here, we use the Crypstic™ system. 

194 



6.4 References 

[1]Shu-Gang Liu, Pei-Jin Wang and Lin-Jie Qu, "Modelling and simulation of 

self-similar data traffic," Proc. of 2005 International Conference on Machine 

Learning and Cybernetics, vo!. 7, pp. 3921- 3925, Aug. 2005. 

[2] Paxson V. and Floyd S., "Why we don't know how to simulate the Internet," 

Proc. of the winter simulation conference, 1997. 

[3] Bo R. and Lowen S., "Fractal traffic models for Internet simulation," Proc. 

of fifth IEEE Symposium (ISCC 2000), pp. 200 - 206, July 2000. 

[4] Paxson V., "Fast, approximate synthesis of fractional Gaussian noise for 

generating self-similar network traffic, " ACM SIGCOMM, Computer Com­

munication Review, vo!. 27, no. 5, pp. 518, Oct. 1997. 

[5] Jeong H., McNickle D., Pawlikowski K., "A Comparative study of gen­

erators of synthetic self-similar Teletraffic," HSNMC 2003, LNCS 2720, pp. 

571-580, 2003. 

[6] Guo 1., Crovella M. and Matta I., "How does TCP generate pseudo-self­

similarity?" Proc. of the International Workshop on Modelling, Analysis and 

Simulation of Computer and Telecommunications Systems, Cincinnati, OH, 

Aug. 2001. 

[7] Paxson V., "Fast approximation of self-similar network traffic," Lawrence 

Berkeley National Lab., Tech. Rep., LBL-36750, Berkeley, USA, Apr. 1995. 

[8] Sergio L. and Derong L., "A Fast method for generating self-similar network 

traffic," Comm. Technology Proc., vo!. 1, pp. 54-61, Aug. 2000. 

195 



----------- ---- --

[9} Veitch D., Backar J., Wall J., Yates J., and Roughan M., "On-line genera­

tion of fractal and multi-fractal traffic," In Proc. of the Workshop on Passive 

and Active Measurement (PAM 2000), 2000. 

[1O} Ledesma S. and Liu D., "Synthesis of fractional Gaussian noise using linear 

approximation for generating self-similar network traffic," Computer Commu­

nication Review, vo!. 30, no. 3, pp. 4-17, 2000. 

[ll} David A. , "Improved fast, approximate synthesis of fractional Gaussian 

noise," Proc. of the Hawaii International Conference on Statistics and Related 

Fields, Honolulu, Hawaii, June. 2002. 

196 



----- - - ------------------

Chapter 7 

Software Development and Test 

Results 

7.1 Introduction 

In previous chapters we have considered the overall methodology developed for 

the work of this thesis. This chapter provides a 'sketch' of the basic modules 

and source code involved and has been designed to provide the reader with 

the essential features of the system designed for this thesis in terms of the 

theoretical and modeling issues discussed. The functions and modules have 

been prototyped in MATLAB and the m-code is discussed further in Appendix 

A which in turn relates to the complete m-code given in the CD at the back 

of this thesis. 

The principal issue of this thesis is the design of a secure transmit ion system 

to transmit an encrypted or otherwise file covertly using Internet traffic noise 

197 



as a form of fractal camouflage. Such files could be text, image or audio files 

for example. To do this, two transmission systems have been considered. 

The first system is based on transmission of digital data through wireless com­

munications, whose background theory is given in Chapter 3 and Chapter 4. 

The second system considered is for transferring a digital file over the the 

Internet as an email attachment. 

In this chapter, we highlight the structural operations of the two systems 

referring to the m-code that is sourced in its entirety on the CD. 

7.2 Wireless Transmission System 

In this system, to transmit a file of digital data, we use a way of encoding a 

binary form of the file by modulating parameter values of a proposed fractal 

model. To restore the data file the process of demodulating the received sig­

nals is applied. The modulation and demodulation process takes place in the 

following sequence: 

Sender 

Firstly, the sender encrypts the plaintext file using Crypstic™; then, the bi­

nary form of the ciphertext is encoded as a contiguous stream of fmctaJ signals. 

The system developed for application of this process is based on the following 

user dependent operations: 

• Select the fmetal model to be used for encoding . 

• Choose initial values for generating a white noise signal. 

198 



• Choose values of the model parameters. 

• Choose values of the Cut Off Points (COPs). 

• Encode the binary bit stream version of the ciphertext. 

• Create a watermark of the COPs. 

• Embed the watermark in the fractal modulated signal. 

• Save the watermarked signal in a file to send later. 

Recipient 

• Run the Cut-Off points extraction module. 

• Run the Demodulation module. 

• Run the Decryption module (Crypstic™). 

7.3 Encoding and Decoding of a bit stream 

using a fractal model 

This module permits the user to choose either the Random Scaling Fractal 

(RSF) model or the Generalised Random Scaling Fractal (GRSF) model for 

encoding a bit stream and then to choose which parameter(s) is used for the 

modulation process. If the sender chose the RSF model then the encoding 

process will take place through modulating the parameter g. If a GRSF model 

is chosen, then either value of the parameter 9 or/and g can be modulated. 

The parameters that the user requires to consider are itemised as follows: 

199 



• Initial values 

- RSF model : N, seed 

- GRSF model: N, seed, KO 

• Parameter sets 

- RSF model : c, q 

* Modulate q: (ql,c1), (q2,c2), (q3,c3) and (q4,c4). 

- GRSF model: c, g, q 

* Modulate g: (gl,cl), (g2,c2), (g3,c3) and (g4,c4). 

* Modulate q: (ql,c1), (q2,c2), (q3,c3) and (q4,c4). 

* Modulate g and q: (gl,cl), (g2,c2), (ql,cl) and (q2,c2) 

The basic m-code for reading a file and its conversion to binary form is as 

follows: 

• Open and read a ciphertext file 

fid = fopen('ciphertext.bin','rb'); 

[INtext]=fread(fid); 

status=fclose(fid); 

• Convert the given text into binary form 

for i=1:1ength(INtext) 

bin_bits=dec2bin(INtext(i),8); 

Stream_bits=[Stream_bits bin_bits]; 

end 

200 



7.3.1 Modulation Module 

The theoretical background to the design of this module has been explained 

in detail in Chapter 3. Herein, we present the m-code for the modulation 

module. The demodulation module is given in the following section. In case 

of the RSF model, this module inputs four values for each of the parameters q 

and c together with the binary stream to be encode. For each bit-pair in the 

given stream, 00, 01, 10 and 11, it assigns a value for q and another value for 

c and then generates a fractal signal of size N=1024 by filtering a white noise 

field using the fractal filter :,. Finally, it concatenates all the fractal signals 

generated to produce a contiguous stream of modulated signals. 

for i=1:2:1ength(Stream_bits) 

bit=Stream_bits(i:i+l); 

switch bit 

case '00' 

ry=GenFractlq(N,ql,cl); fs=[fsry]; 

case '01 ' 

ry=GenFractlq(N,q2,c2); fs=[fs ry]; 

case '10' 

ry=GenFractlq(N,q3,c3); fs=[fs ry]; 

case ' 11' 

ry=GenFractlq(N,q4,c4); fs= [fs ry]; 

end 

end 

201 



7.3.2 Watermarking module 

To exchange the Cut-Off Points (COPs), namely CPl, CP2, and CP3, between 

the sender/receiver, this program embeds a watermark into the modulated 

signal; the watermark is a chirp coded signal of these COPs. 

Chirp Coding 

• Inputs the COPs: CP1, CP2 and CP3. 

• Converts COPs into binary form and concatenate them. 

for i=1:3 

cp=dec2bin(CP(i),lO); 

CP_bin=[CP_bin cp); 

end 

• Initialise chirp 

t=O:1/441:99/441; 

y=chirp(t,OO,lOO/441,lOO); 

Once the COPs have been input converted to binary form a chirp is 

initialized. Each binary bit is multiplied by the chirp. A bit 1 produces 

a positive chirp (starts with +1) and a bit 0 produces a negative chirp 

(starts with -1). These chirps are then concatenated together to produce 

a coded signal of a certain size depending on the number of bits and the 

length of the chirp signal. 

202 



for i=1:30 

end 

if str2num(CP_bin(i»==O 

x(i)=-l; 

else 

x(i)=l; 

end 

for j=1:30 

z=x(j)*y; 

- - ---------- -- ----

znew=cat(2,znew,z); %Concatenate the chirp coded signals. 

end 

Watermarking Insertion 

- The program scales the chirp coded signal and computes the water­

mark signal. 

znewl=znew./div_fac; 

fsl=fs(l:length(znewl»; 

wmark_sig=znewl+fsl; 

- The watermarked signal is rescaled and concatenated to the original 

(fractal modulated) signal. 

wmark_sigl=wmark_sig*max(fsl)/max(wmark_sig); 

Send_Signal=cat(2,wmark_sigl,fs); 

203 



Flags and Writing to a File 

For the receiver to be able to recognize which model has been used in the 

modulation process flags are introduced into the data. These flags consist of 

spike(s) of unit amplitude. The sender introduces a number of spikes depend­

ing on which fractal model is used and which parameter value(s) has been 

modulated in the encoding process. In the RSF model case, the modulation 

process is based on the parameter q alone and so one spike is added. 

If the GRSF is used then there are three alternatives associated with modula­

tion process, i.e. modulate g or/and q parameter. In this model one of the two 

parameters is fixed when the other is modulated. Two spikes are added when 

the modulation is based on g, while three spikes are added if the modulation 

is based on q. When both g and q are used for modulation, four spikes are 

added. 

switch parameter % adding spikes of amplitude 1. 
case 1 %modulate g. 

Send_Signal=Send2g; 

Send_Signal=[l 1 Send_Signal]; 
case 2 %modulate q. 

Send_Signal=Send2q; 
Send_Signal=[ll 1 Send_Signal]; 

case 3 %modulate g and q. 
Send_Signal=Send2gq; 
Send_Signal=[l 1 1 1 Send_Signal]; 

otherwise 
error_message; 

break 
end % end switch of parametr. 

204 



The modulated signal is then saved after adding the flags. 

fid=fopen('C:\MATLAB6p5\work\Multi-Fractal Modulation\ ... 

Signal_File.dat','w'); 

c=fwrite(fid,Send_Signal,'float'); 

fclose(fid); 

7.4 Selection of Parameter Values 

The program comes with pre-configured (hard-wired) parameter values. These 

parameters are used for encoding binary bits and include the scaling parame­

ter(s), seed value and Fourier dimension for the RSF model. 

For the GRSF model the parameters include the scaling parameter(s), charac­

teristic frequency ko, seed value and the Fourier dimensions 9 and q. In both 

models there are a number of Cut Off Points (COPs) associated with such 

parameters of the given models which are also pre-configured. 

The pre-configured parameter values have been chosen through executing the 

program 'Main_Fractal.m' to obtain the tables for these values as given in 

Chapter 3. The automated-optimise selection of parameters is the subject of 

future work which lies beyond the scope of this thesis. 

205 



- -------------------

The chirp function (associated with the method explained in Chapter 4) in 

MATLAB needs four parameters to run, i.e. 

y = chirp( t, fo,tj,Jd 

The value of t determines the length (period) of the chirp itself. The values of 

fa, t j , and h are explained later in this chapter. 

7.4.1 Demodulation Module 

This module is the reverse of the modulation module in which restoration of 

the encoded bits present in the received signal is considered. The principal 

aspects of the MATLAB code associated with this module are as follows: 

• Open and read the file of the received signal 

fid=fopen('C:\MATLAB6p5\work\Multi-Fractal Modulation\ ... 

Signal_File.dat','w'); 

Recv_Signal=fread(fid,'float'); 

fclose(fid); 

• Determine the used model and parameter. To decode the binary bits 

from the received signal it is necessary to determine which model and 

parameters have been used in the modulation module. 

206 



-- _. - - --------------------------------

7.4.2 Cut-Off Points (COPs) Extraction Module 

In this module, the embedded COPs are extracted and then passed on to 

the demodulation module. In order to extract the COPs, the user must 

have a copy of the exact parameters used by the sender to reconstruct 

the chirp. Once the chirp is reconstructed, it is then correlated with 

the modulated signal for COPs extraction. The principal source code 

associated with the module is itemised below. 

1. Initialize chirp function. 

t=0:1/441:99/441; 

y=chirpCt,00,100/441,100); 

2. Correlate to recover the COPs from the chirp coded signal. The 

COPs are recovered in terms of a set of positive and negative in­

tegers. The interest does not lie in the integers themselves, but in 

their sign; positive values are denoted by 1 and negative numbers 

by -1. 

for i=1:30 

yzcorr=xcorr(Chirp_Signal(100*(i-l)+1:100*i),y,O); 

r(i)=sign(yzcorr); 

end 

3. Recover bit stream. Assign 1 to a positive number and 0 to a 

negative number. 

for i=1:30 

if r(i)==-l 

207 



end 

rec(i)=O; 

else 

rec(i)=l ; 

end 

4. Restore the cut-off points 

recov=(num2str(rec,-8»; 

CP1=bin2dec(recov(1:10»/100; 

CP2=bin2dec(recov(11:20»/100; 

CP3=bin2dec(recov(21:30»/100; 

7.4.3 Bit Decoding 

After separating the watermarked signal form the received signal and 

restoring the COPs it is necessary to demodulate the rest of the signal 

to recover the encoded bits. This can be done through estimating the 

values of the used parameters from the received signal. To do this a 

window of size N = 1024 is moved over the signal and for each window 

position the Power Spectrum Method is used to estimate the parameter 

value that was used in the modulation process. The m-code required for 

this is as follows: 

- Estimate the Modulated Parameter 

for j=l:N:length(fs); 

Cl=Cl+l; 

FS=fft(fs(j:N*Cl»; a=real(FS); b=imag(FS); 

208 



%Compute the emperical power spectrum. 

for i=1:N/2-1 

p(i)=a(i)"2+b(i)"2; 

end 

all=O; a12=0; al=O; a2=0; 

for i=1:N/2-1 

k=abs (i -m) ; 

end 

al=al+log(k); 

a2=a2+ log(p(i» ; 

a12=a12+log(k)*log(p(i»; 

all=all+log(k)*log(k); 

% estimate the value of q. 

estm_q=«N/2-1)*a12-al*a2)/(al"2-(N/2-1)*all); 

% Concatenate the estimated values of q. 

recv_param=[recv_param estm_q]; 

end 

- Apply Thresholding Technique. 

Herein, the estimated values of the used parameters in the encod­

ing process are compared with the restored COPs values and the 

encoded bit-pairs recovered. 

for i=l:length(recv_parm) 

if recv_parm(i) < CPl 

recv_bits=[recv_bits '00']; 

elseif recv_parm(i) > CPl & recv_parm(i) < CP2 

recv_bits=[recv_bits '01']; 

209 



end 

elseif recv_parm(i) > CP2 & recv_parm(i)< CP3 

recv_bits=[recv_bits '10'J; 

else 

end 

- Recover the cipher text 

for i=1:8:length(recv_bits) 

end 

c=c+l ; 

Text=char(bin2dec(recv_bits(i:c*8))); 

OUtext=[OUtext TextJ; 

fid=fopen('ciphertext.bin' ,'wb'); 

cpunt = fwrite(fid,DUtext); 

status=fclose(fid); 

7.4.4 Chirp Function 

The chirp function in MATLAB generates a swept-frequency cosine (chirp) 

signal. The chirp block outputs a swept-frequency cosine (chirp) signal 

with unity amplitude and continuous phase. To specify the desired out­

put chirp signal, its instantaneous frequency function must be defined, 

also known as the output frequency sweep. The frequency sweep can be 

linear, quadratic, or logarithmic, and repeats once every sweep time by 

default. 

We can obtain a variety of chirps which can be implemented differently. 

210 



---------1 

Here the main use of a chirp is to embed COPs. Thus, given a chirp 

function with certain parameters, the recipient needs to recover the same 

parameters in order for him/her to recover the COPs. The sender has a 

wide range of parameter values to use which the recipient must have a 

priori. 

The MATLAB chirp function used here has the general form 

y = chirp( t, fa, t l , h) 

and generates samples of a linear swept-frequency cosine signal at the 

time instances defined in array t where t is time instance (sec), fa is the 

instantaneous frequency at time t = 0 (Hz) and fl is the instantaneous 

frequency at time tl (Hz). The chirp function can be set to run in three 

different modes - linear, quadratic and logarithmic as follows: 

Linear: I;(t) = fa + (3 (instantaneous frequency sweep) where (3 = 

(f - 1 - fo)/II which ensures that the desired frequency breakpoint h 
at time I1 is maintained. 

Quadratic: j;(t) = fa + (3t2 where (3 = (fl - fa)/t;' If fa :::: h, the 

output waveform is a downsweep, with a default shape that is convex. If 

fa < fl, the output waveform is an upsweep, with a default shape that 

is concave. 

Logarithmic: j;(t) = fa + 10~t where (3 = (¥a)1I 

211 



7.5 FracNet: Transferring a File via the 

Internet 

The developed software is called 'FracNet' by which we transfer a digital 

data file through splitting the binary form of the given file into a number 

of binary files of different sizes. At the same time a 'time table' of 

timestamps is constructed where each of resulting files from the splitting 

process is sent via the Internet as an e-mail attachment. The main steps 

in sending and receiving of the digital file are summarized as follows: 

Sending Procedure 

- Capture real Internet traffic. 

- Estimate the [ractal parameter from this traffic. 

Generate a synthetic fractal trace. 

- Encrypt the given plaintext file. 

Covert the ciphertext to binary file. 

Split the file into a number of binary files of fractal size. 

- Generate a list of timestamps of fractal times. 

- Attach each file in an e-mail and send each attachment for specific 

timestamp. 

Receiving Procedure 

- Concatenate the received binary files in one file. 

Convert to ASCII and then to ciphertext file 

- Decrypt the resultant file. 

212 



--------------------------------------------------------------------------------

Note that most of the work is to be done by the sender. 

Comma Separated Value (CSV) files. 

We assume that a trace of Internet traffic has been captured using the 

tcpdump utility, which is widely available in Unix environments. The 

captured trace consists of the sizes of the arrived packets and the corre­

sponding timestamps of their arrival. This data set is saved as a Comma 

Separated Value (CSV) file, say, 'Tracel.txt' 

Read the Traffic Trace 

RNG~[O,O,5000000,4]; 

Trace~dlmread('C:\Documents and Settings\ ... 

Desktop\HR-Traces\Tracel.txt' , ',',RNG); 

The code here describes the reading of the first 5x106 lines of numeric 

data form the ASCII delimited file 'Tracel.txt'. The array Trace contains 

5 columns, the first four columns are of the times tamps and the last 

column is for the sizes of packets that arrived at these timestamps. 

For example, the following segment represent the data that have been 

read using the above code from the file 'Tracel.txt'. The first four 

columns are the timestamps and the last column is the packet size. For 

example, the first line means that a packet of size 1460 bytes has arrived 

at '10:30:01.560108' 

213 



Trace = 

10 30 1 560108 1460 

10 30 1 560118 588 

10 30 1 560126 588 

10 30 1 560171 1452 

10 30 1 560334 1460 

10 30 1 560392 588 

10 30 1 560409 596 

10 30 1 560424 0 

10 30 1 561199 0 

10 30 1 562322 1024 

10 30 1 562329 0 

Aggregating of a Time Series of Packets or Bytes 

The program permits the sender to enter a time unit which is used to 

aggregate the packets or bytes that arrived in the time unit. The time 

unit can be 1 sec (1000 ms), 100 ms, 10 ms or 1 ms. However, there is 

an option for the user to either aggregate the number of packets or bytes 

that have arrived in a given time unit. 

Estimation of the Fourier Dimension 

Once the packets or the bytes are aggregated in a time series, then the 

following MATLAB code is used to estimate fractal parameter q (the 

Fourier Dimension) from this series. The estimated value of q reveals 

the degree of self-affinity in the aggregat.ed t.raffic. The results of the 

estimation for such paramet.ers is present.ed in Chapter 5. 

214 



Result=[]; 

Number=Packet_Series; 

format short 

if length(Number) < 1024 

disp('This size of data should 1024 or more ... '); 

return; 

else 

D=fix(length(Number)./1024); 

Trc=Number(1:D*1024); 

N=1024; %size of the signal that we need. 

m=N/2+1; 

C2=0;jj=0; 

for Cl=l:N:length(Trc) 

jj=jj+l; 

C2=C2+1; 

fs=Trc(Cl:C2*N); % Extract only signal of size 1024. 

fs=fs/max(fs); % Normalize the signal. 

FS=fft(fs); % Calculate the FFT. 

FS=fftshift(FS); % Apply shifting. 

ps=abs(FS)."2; % Calculate the power spectrum. 

p=ps(1:N/2); % Take the left halve of power spectrum. 

%calculations to recover the estimated q (estmt_q). 

xl =0; %sum[log(k)] 

x2 =0; %sum[log(p)] 

x12=0; %sum[log(k)*log(p)] 

215 



xll=O; %suro[log(k)"2] 

for i= 1:N/2 

k=abs (i -m) ; % k=frequency. 

if«p(i)-=O) & (k-=O)) 

xl=x1+log(k) ; 

x2=x2+log(p(i)); 

x12=x12+log(k)*log(p(i)); 

xll=xll+log(k)*log(k); 

else 

N=N; 

end 

end 

estm_q=[(N/2)*x12-xl*x2]/[xl"2-(N/2)*xll]; 

Result (1 ,jj )=C2; 

Result(2,jj)=estm_q; 

end % end of windowing. 

end 

--------- - ---------

216 



7.5.1 Generation of a Synthetic Fractal Trace 

A synthetic fraetal trace is a sequence of integer numbers which repre­

sents the sizes of the split files. 

Generate a fractal noise sequence 

Here, the user enters a value for the fractal parameter q; this value can 

be an estimated value of q from real internet traffic. The fractal noise 

sequence is generated by filtering a white noise sequence using the fractal 

model ~q 

N=1024; 

m=N/2+1 ; 

seed=4; 

%size of the signal requiered. 

%Calculate the mid-point, say m, of the signal. 

%Locate the seed. 

randn('seed',seed); 

s=randn (1, N) ; 

y=fft (s) ; 

for i=l:N 

k=abs (i -m) ; 

%Generate GWN signal s of size N. 

%Take FFT of the signal s. 

if k==O 

y(i)=y(i) ; 

%Exclude the DC, where K=O. 

else 

PS=l/k-q; %Calulate the fractal filter. 

y(i)=y(i)*PS; %Aplly the Fractal Filter on the signal. 

end 

end 

x=ifft(y) ; 

fs=real(x) ; 

%Take inverse FFT of y. 

%The fractal signal. 

217 



The following steps are then implemented: 

- Generate a fmctal trace. 

- Encrypt the given file. 

Split the encrypted file. 

Produce a tabulated list of timestamps. 

- Attach each file to an e-mail and send each attachment at a specific 

timestamp. 

Manipulating the Generated Fractal Sequence. 

This module manipulates the generated sequence of decimal numbers to 

produce an equivalent sequence of an integer numbers which is composed 

of the sizes of the split files. In the following code there is a multiplication 

by scaler parameter which being a power of 2. 

H=hilbert(fs) ; 

%Take the Modulus of H, to obtain Md. 

Md=abs(H) ; 

%Normalize Mdh, to obtain Mdhl. 

Mdl=Md'/max(Md) ; 

%Multiply Mdhl by 256, to be the scale from 0 to 256. 

Md2=(256*Mdl); 

%Round to the nearest integer num. 

Trace=round(Md2); 

218 



File Splitting 

The file is split into a number of smaller files. All the split files are saved 

in an archive called 'Send-Files'. The mechanism of splitting starts by 

taking the binary stream of the given file and the generated fractal trace 

of integer numbers. The number of split files is equal to the length of 

the generated traffic trace. The program counts a number of bits in the 

stream that is equal to the value of elements in the trace. However, if the 

sum of numbers in the integer trace is greater than the length of bits in 

the stream then the program continues to split the stream until there are 

no more bits in the stream and neglects the rest of the elements in the 

trace sequence that are not used. If the length of the bit stream is more 

than the sum of numbers in the integer trace then the program saves the 

last sub-stream in the last file regardless of the value of the last element 

in integer trace. This process is the basis for the following m-code. 

NUM ~length(R); 

for i~l:NUM 

C2~C2+R(i); 

if length(Bn)-C2<O 

C2~length(Bn); 

end 

%This when the length of Bn is more than sum of numbers in R. 

if length(Bn»sum(R) & i~~1024 

C2~length(Bn); 

end 

219 



- - -- - - --- - - - - --------------------- I 

substrem=Bn(C1:C2); 

C1=C1+R(i); 

file = strcat('Send-Files\file' ,num2str(i) ,'.txt'); 

fid = fopen(file,'wt'); 

fwrite(fid,substrem); 

fclose(fid); 

end 

7.5.2 Generation of a Table List of Timestamps 

This module generates a list of timestamps where the split files are to be 

sent at times specified by this list. To generate this list we first estimate 

the fractal parameter from the real packets inter-arrival times sequence. 

This obtained by subtracting the consecutive timestamps of packets in 

the captured trace of internet traffic. 

Hour=Trace (: ,1) ; 

Minute=Trace(:,2); 

Second=Trace(:,3); 

Msec=Trace (: ,4) ; 

Tim=360*Hour+60*Minute+Second+Msec./1000000; 

for i=2:1ength(Trace) 

Intr(i)=Tim(i)-Tim(i-1);% Inter-arrival times sequence. 

end 

The timestamps generated are in military form, Le. 'hh:mm:ss', where 

hh, mm, and ss denote hours, minutes, and seconds, respectively. 

220 



--- - - -- ---------------------, 

7.5.3 Defragmentation of Received Files 

Once the attached binary files have arrived at the recipients site, then 

its contents of bits are concatenated to form a contiguous stream which 

is converted into text and saved in a file. This file is the ciphertext file 

which is then decrypted using Crypstic™ to restore the plaintext file. 

Note that the security associated with this software is compounded in 

the following points: 

- The generated fractal trace depending on the used fractal parameter 

and this is based on the estimated values from real Internet traffic 

trace around the time the data is sent. 

- The scaling parameter which adjusts the maximum number of bits 

in the split files of generated trace; which takes a value being of 

power 2. 

- The generated list of timestamps which depends on both the esti­

mated parameters from a real traffic trace and on the initial time 

that is chosen for executing the program; these are not fixed but 

change from time to time. 

221 



Chapter 8 

Summary of Work and 

Conel us ions 

This thesis has discussed cryptography in the context of the transmission of 

encrypted information using a covert approach. This has been achieved by 

considering the noise characteristics of the environment in which information 

is transmitted and has involved a study of random scaling fractal fields for the 

purpose of modelling such environments (e.g. Internet Traffic). The object of 

this study has been to develop a system in which the transmission of encrypted 

data is difficult to track by a potential interceptor thereby reducing the risk 

of an attack initiated by observing a communication that includes encrypted 

data. 

The method of en crypt ion can be based on the use of any commercially avail­

able product, e.g., Crypstic™ originally developed at Loughborough Univer­

sity and marketed by Crypstic Limited. 

222 



Details relating to this system are provided on the CD that accompanies this 

thesis. Crypstic™ is a dynamic multi-algorithmic system that performs an 

iterative nonlinear transformation of information in an unpredictable but de­

terministic manner. In terms of chaos theory, the sensitivity to the initial 

conditions together with the mixing property ensures cryptographic confusion 

and diffusion. 

The work in this thesis has been designed to extend the Crypstic ™ system so 

that the encrypted information it produces can be transmitted covertly using 

the fractal models for Radio and Internet Traffic considered for this thesis. 

8.1 Cryptography using Chaotic Systems 

Chaotic systems are algorithmically random and thus cannot be predicted 

by a deterministic Turing machine even with infinite power. However, chaotic 

systems are predictable by a probabilistic Turing machine. Finding probabilis­

tically unpredictable chaotic systems is a central problem for chaos based cryp­

tography. A rarefied sample Xk, X2k, •.. Xnk,'" from a time series Xl, X2, X3,"" 

produced by a chaotic and mixing system, is asymptotically independent: for 

any n, elements X(n-l)k and Xnk will be more and more independent as k in­

creases. 

Chaotic systems with analytical solutions of the form Xn = W (xo, n) say and 

multi-valued maps Xn+l = f(xn) can, theoretically, deliver computationally 

unpredictable (pseudo-random) sequences. The advantage of such a generator 

is the random access, i.e. any element Xn can be computed directly from the 

initial condition (seed) Xo. 

223 



The cryptographic secrecy is kept in the seed and the solution IJr (xQ, n). All 

conventional cryptographic systems (encryption schemes, pseudo-random gen­

erators, hash functions) are binary pseudo-chaotic systems, defined on a finite 

space of strings. Such systems are periodical but have a limited sensitivity to 

the initial conditions, i.e. the Lyapunov exponents are positive only if mea­

sured at the beginning of the process (before one can see the cycles). This 

mixing property leads to pseudo-randomness. 

Iterative block ciphers can be viewed as a combination of two linked pseudo­

chaotic systems: data and round-key systems. The iterated function of the 

data system includes: nonlinear substitutions, row shifts, column mixing etc. 

The round-key system is a pseudo-random generator providing the sensitive 

dependence of the ciphertext on the key. 

Technically, most pseudo-random generators are based on a stretch-and-fold 

transformation: first, the state is stretched over a large space (e.g, multiply­

ing or raising in power), then folded into the original state space (using an 

appropriate periodical function). In mathematical chaos, the stretch-and-fold 

transformation forms the basis of the majority of iterated functions. 

Like all modern encryption systems that depend on the exploitation of pseudo 

random sequence generators (use pseudo random or pseudo chaotic methods), 

there can be no total guarantee that the information is not 'open' to a successful 

attack. This fact is the principal issue upon which this thesis has indirectly 

focused. 

The transmission of encrypted data using the covert techniques discussed in 

this thesis provides a greater level of security, not in terms of the 'strength' of 

the encrypted data, which has been attempted by Crypstic Limited through 

224 



application of a multi-algorithmic approach using deterministic chaos, but in 

terms of the 'weakness' of an interceptor to recognise that a transmission has 

taken place. 

8.2 Multi-fractal Modulation 

Current wireless communication systems rely on two principal modulation 

techniques, namely, frequency modulation and phase modulation coupled with 

the use of techniques for increasing the temporal complexity of a transmission 

such as frequency hopping or spread spectrum. 

Fractal modulation has a synergy with frequency modulation in the sense that 

it is based on modulating the value of the fractal dimension using just two 

states. Multi-fractal modulation, as developed in this thesis, is based on using 

four values of the fractal dimension to encode four bit-pairs (i.e. 00, 11, 01 

and 10). 

However, unlike frequency or phase modulation, fractal and multi-fractal mod­

ulation both attempt to generate a signal from a given bit stream that has 

characteristics that are indistinguishable from the background noise of a wire­

less (or wirebased) environment. In this thesis, we have not only shown that 

multi-fractal modulation can be applied in a practical sense for a standard 

random scaling fractal model (involving a two parameter problem - the scaling 

constant c and Fourier dimension q) but have extended the method to include a 

generalised random scaling fractal model (involving a four parameter problem 

- the scaling constant c, the carrier frequency Wo and the Fourier dimensions q 

and g). 

225 



8.3 Internet Traffic Noise 

The work reported in this thesis has included an extensive study of Inter­

net traffic noise which has been shown, through the many publications now 

available, to have fractal properties. The principal objective of this thesis has 

been, by application of the methods developed for multi-fractal modulation, 

to design a practical approach to transmitting information (encrypted or oth­

erwise) that is characterised by the fractal properties inherent in the Internet 

at or around the time a transmission is to occur. This has been achieved by 

generating Internet compatible fractal parameters for the segmentation of a 

file attachment into a sequence of files which are then sent at specified times 

through a series of multiple email transmissions (with associated attachments). 

A variety of models have been considered for this process. 

8.4 Self-authentication 

The material discussed in Chapter 4 introduces a novel method for the covert 

transmission of data by watermarking such data using chirp coding. In prin­

ciple, this approach can be used to embedded any bit stream in any signal. 

This requires the conversion of any data type into a bit stream either directly 

or through some transformation appropriate to the application. For applica­

tions in which the bit stream is a direct or indirect representation of the signal 

to be watermarked, a process can be implemented that provides a method of 

self-authentication, i.e. where the signal authenticates itself. This process has 

a number of potential applications including digital rights management. 

226 



Further, most watermarking methods require access to the original data in 

order to verify the existence or otherwise of a watermark, especially when 

the watermark is a deterministic signature rather than a statistical signature. 

The self-authentication technique discussed in Chapter 4 and applied to audio 

.wav files does not require access to the original data. However, the principal 

application of this technique with regard to the remit of this thesis has been 

to transmit the cut-off points that are needed to recover the ciphertext from a 

fractal modulated signal. But since the ciphertext (and thus the plaintext) can 

not be recovered from a fractal modulated signal without access to the cut-off 

points, the approach used for their covert transmission from sender to receiver, 

indirectly represents a form of data authentication but not self-authentication, 

as discussed in Chapter 4. 

8.5 Software Development 

The development of the software used to investigate the methods developed 

for this thesis and the design of a prototype package has formed a major 

part of the work undertaken. The MATLAB source code developed has been 

packaged into a simple user interface that allows the user to implement covert 

transmissions through the Internet. This can be accomplished with or without 

application of Crypstic™, i.e. either the plaintext can be transmitted or the 

Crypstic™ ciphertext. The next obvious stage in the software development of 

this system is to integrate the procedures into Crypstic™ This requires the 

object library developed to be re-written in C++ and an appropriate system 

integration to be implemented. 

227 



8.6 Further Development and Extensions 

8.6.1 Fractal Modulation 

The extension of fractal modulation to multi-fractal modulation for bit-pair 

encoding and the successful implementation of this process for a conventional 

random scaling fractal model, leads us to consider the case when multi-value 

Fourier dimensions are used to encode bit-triplets, bit-quartets, i.e. using 

slight changes in the value of the Fourier dimension to encode the sequences 

000, 111, 011, 110, 010, 101, ... and 0000, 1100, 1011, 0011, 1010, 0001, ... If 

successfully applied, such an approach could yield smoother transitions from 

one bit sequence to another. In the method considered here, application of 

appropriate scaling values have been required in order to produce a contigu­

ous stream of fractal noise with a constant amplitude envelope. These scaling 

parameters have then been required to recover the information required. Ex­

tending multi-fractal modulation to include multiple bit-sets may provide a 

method that does not necessitate re-scaling. However, this approach must be 

off-set with the accuracy available through application of the Power Spectrum 

Method to recover the Fourier dimension using a conventional moving window 

principle. 

8.6.2 Watermarking 

Watermarking appropriate data with hidden (encrypted) data has a number 

of benefits with regard to covert transmission. The most important feature 

concerns the transmission of covertly encrypted data which should be avoided 

228 



- -------------------------------------------

if possible. The reason for this is that it demonstrates to an interceptor that 

the information being transmitted may have some importance and that it is 

therefore worth attacking the transmission. This aspect of data analysis can of 

course be used to propagate disinformation, i.e. encrypting information that 

you want the enemy to know and to be confident of especially when they have 

had to put work into extracting it from a relative strong (but not too strong!) 

ciphertext. 

On the other hand, it is often very useful to transmit sensitive information by 

embedding it in non-sensitive information. The chirp coding method discussed 

in Chapter 4 provides a way of hiding information in a data file composed of 

a signal that can be of any appropriate form and type. For example one can 

watermark an audio file with chirp coded data without distorting the audio 

output in any way. Transmission of a watermarked audio file therefore provides 

a way transferring sensitive data that looks 'normal'. In this sense the audio 

data can be used as a form of camouflage. The same idea can be applied to 

fractal signals. 

In the case of fractal and/or multi-fractal modulation, the modulation method 

can be used convey one type of data and the watermarking method discussed 

in Chapter 4 used to convey another type of data; the data types being either 

independent or inter-dependent, encrypted or otherwise. Thus, the introduc­

tion of fractal modulation and chirp based watermarking introduced in this 

thesis provides a range of combination that can be used for the covert trans­

mission of sensitive data that lie beyond the scope of this thesis and form the 

basis for interesting future work. 

229 



Appendix A 

MATLAB Prototyping 

A.I Introduction 

This appendix provides details of the MATLAB functions developed for this 

thesis. MathWorks Inc MATLAB is an ideal platform for numerical work 

and is routinely used for rapid prototyping, i.e. the rapid development of 

MATLAB code for testing new algorithms. This includes use of the large 

library of intrinsic functions offered by MATLAB and the increasingly wide 

range of specialist toolboxes offered by the system. 

There are two main sections in this appendix, in the first one we describe the 

software programs that were developed for the purpose of transmitting data. 

in wireless communications. The other section includes a description of the 

software programs that were developed for the purpose of transferring data via. 

a. non-secure channel, like the Internet. 

230 



The MATLAB functions (full MATLAB code) are given in the accompanying 

CD at the back of this thesis. 

A.2 Wireless Communications: Multi-Fractal 

Modulation and Demodulation 

This section describes both processes of encoding a plaintext file that is to be 

sent in the form of a modulated fractal signal and demodulating the received 

signal to recover the plaintext file. The plaintext could be a text, an image or 

an audio file. 

A.2.1 Main_Sending 

The Main_Sending folder contains all the developed MATLAB programs used 

for sending data. 

MainSend.m 

This is the main program that is execute by the sender, which calls all other 

functions that are necessary for encoding a stream of binary bits. This program 

contains two phases, the first is the encryption and the other is the modulation 

phase. In this program the complete contiguous stream of fractal modulated 

signals is saved as a data file 'SignaLFile.dat'. 

This stream constitutes the watermark formed by the chirp signa.! of the Cut­

Off Points and a number of spikes positioned at the start. 

231 



The sender's program is launched by running 'MainSend.m'. The receiver 

mode is 'MainReceive.m' The following two phases and the programs in each 

of them are then executed sequentially depending on the following selection: 

Phase One: Encryption 

In this phase the function 'crypstic.exe' is executed to encrypt a plaintext file 

and produces a ciphertext file, say 'ciphertext.bin'. 

Phase Two: Modulation 

In this phase the program prompts the sender to choose either the RSF(q, c) 

or the GRSF(g, q, c) model to generate a fractal signal. If the sender chose the 

RSF , this means the encoding process of the binary bit will be modulated using 

the value of the parameter q and the program 'Sendlq.m' will be executed. 

If the sender has chosen the GRSF model, then the encoding process of the 

binary bits will be through modulating four different values of the parameter 

9 or parameter q; it may also modulates two different values for each of 9 and 

q at the same time. However, if the modulation is for values of g, q or 9 and 

q then the programs 'Send2g.m', 'Sendlq.m' and 'Send2gq.m' are executed, 

respectively. 

Choosing the Model: RSF(q,c) 

Here we shall describe the main programs that are executed when the sender 

chooses the RSF model for the purpose of modulation. 

232 



Sendlq.m 

This program opens and reads the 'ciphertext.bin' file and then converts its 

contents into a stream of binary bits. After that it calls the program 'Modu­

late1q.m' to encode this stream. The program 'Send1q.m' prompts the sender 

to input four different values of parameters q, and q4 and also four different 

values of scaler parameter c, that corresponds to the values of the parameter. 

Here the size of signal is fixed, N = 1024. The Cut-Off Points (COPs), 

e PI, e P2 and e P3 are also entered in this program by the sender. These 

values are pre-defined depending on the values of q, so it changes as the values 

of parameter change. 

For the purpose of exchanging the COPs between the sender and the receiver, 

this program embeds the watermark signal of these points in a modulated 

fractal signal. The watermark signal is the chirp coded signal of the binary 

representation of the COPs. The watermarked signal is then concatenated 

with the modulated fractal signal. 

Modulatelq.m 

This program receives the binary bits stream and all values of the parameters, 

and start to encode each bit-pair,(OO, 01, 10 and 11) by generating a fractal 

signal of size N = 1024 corresponding to the parameter values qi> q2, q3 and 

q4' It concatenates all the signals into one contiguous stream of modulated 

signals. The generation of a fractal signal is executed by calling the program 

'GenFractlq.m'. 

233 



GenFractlq.m 

This program generates a white Gaussian noise (WGN) signal of size N = 1024 

and applies the fractal filter, c/wq to the signal, where q is ql, q2, q3 or q4 and 

c equals to Cl, c2, c3 or C4. The benefit of the scaling parameters is to adjust 

all the modulated signals to be similar. 

This program takes the COPs, CPl, CP2, and CP3 , as decimal values and 

binarize them then encode the resultant binary stream using chirp function, 

chirp(t,OO,100/44I,100), to produce a chirp coded signal of that COPs. 

Choosing the Model: GRSF(g, q, c) 

In case the sender chose the GRSF(g,q,c) model to encode the stream of binary 

bits, then the modulation will be either for value of 9 or/and q. 

Send2g.m and Send2q.m 

These programs do the same thing as in 'Send Iq' but the fractal filter that is 

used by both programs is c (W5~~2)q. 

Modulate2g.m and Modulate2q.m 

The two program modulate four different values for each of parameter 9 and q, 

respectively. Each of such programs open and read the 'Ciphertext' file and one 

of the two programs calls 'GenFract2g.m' and the other calls 'GenFract2q.m' 

to generate a fractal signal with the given values of the parameter q, g, c, kO, 

where in case of modulating value of 9 then value of q is fixed but we fix q 

when the modulation is in 9 value. 

234 



GenFract2g.m and GenFract2q.m 

These programs generate a fractal signal corresponding to the given values of 9 

and q, respectively. On the other hand, if the sender chose the two parameters 

9 and q in the encoding of bits then the program 'Send2gq.m' is executed in 

which it the function 'Modulate2gq.m' is called to encode a two bit-pair in the 

binary bits stream by modulating two values of each 9 and q, namely, gl, g2 

and ql, q2· 

The generation of a fractal signal is through calling the function 'GenFract2gq.m'. 

In this case the sender need to enter four Cut-Off Points, say CPI, CP2, CP3 

and CP4 and the function 'Chirp_Cod4.m' is called by the function 'Send2gq' 

to produce the chirp signal form of these COPs. 

In all of the programs described above, and to be the receiver able recognize 

which model and parameter(s) have been used in encoded the binary bits, 

there are flags of spikes of length one have been positioned at the beginning of 

the modulated signal. 

A.2.2 Main_Receiving 

The Main_Receiving folder contains all the developed MATLAB programs that 

used for restoring original data form the modulated signal in which it was 

transmitted. 

MainReceive.m 

'MainReceive.m' program is used by the recipient and calls all functions needed 

for decoding and recovering the plaintext form the received signal. The re-

235 



ceiver's program is launched by running 'MainReceive.m'. The following two 

phases and the programs in each of them executed sequentially. 

Demodulation Phase: 

In particular, in this phase of this program it is decided, depending on the 

number of spikes at the beginning of the received signal, which model and 

parameter have been used by the sender in the modulation process. Once it 

is decided so one of the functions (Receivelq.m, Receive2g.m, Receive2q.m, or 

Receive2gq.m) is called after removing the spike(s). 

Receivelq.m, Receive2g.m, Receive2q.m, or Receive2gq.m 

One of these functions is called by the 'MainReceive' depending on the number 

of spikes. In the called function the extraction of COPs takes place by calling 

the function 'Chirp_Decod3.m' or the function 'Chirp_Decod4' in case of there 

being four Cut-Off Points. 

In each of these receiving functions recovers values of the parameters that are 

used in the encoding process are obtained from calling either Demodulatelq.m, 

Demodulate2g.m, Demodulate2q.m or Demodulate2gq.m. These values are 

compare with the COPs to restore the binary bit stream. 

Chirp_Decod3.m or Chirp_Decod4 

This program takes the watermarked segment of the received signal and cor­

relate it with a chirp signal identical to that used for chirp coding at the side 

of sender, i.e., chirp(t,OO,lOOj441,IOO). After that the COPs are restored. 

236 



Demodulatelq.m, Demodulate2g.m, Demodulate2q.m or Demodu­

late2gq.m 

After removing the added flags of spikes and the embedded watermark signal 

of COPs, one of these programs receives the modulated signal and uses the 

move window principle with a window size of N = 1024 to move over each 

signal to estimate the required parameters from each segment, using the Power 

Spectrum Method, and then concatenates the estimated values to recover the 

vector. 

Decryption Phase 

In this phase and in the program 'MainReceive.m', the recovered cipher text 

is taken and the 'Crypstic' software is used to decrypt 'ciphertext.bin' file to 

obtain the recovered 'plaintext.txt' file. 

A.3 FracNet: Internet Communications 

In this section we describe the software programs, that is called FracNet, de­

veloped for the secure transferring of a digital data file via Internet commu­

nications. Here, there are two folders, the first one is 'ReaLFracNet' and the 

other is 'Synth_FracNet'. 

A.3.1 ReaLFracNet 

This folder contains all the MATLAB programs that are required to analyse 

the real Internet traffic. 

237 



This is the main program in which the captured real internet traffic data is 

read as a text file. This data represents packets sizes (in bytes) with the 

corresponding timestamps for a resolution of 1 microsecond. This main pro­

gram calls three functions, namely, 'NUM_PACKET.m' , 'NUM_BYTE. m' and 

'EstmA·m' 

NUM_PACKETS.m 

This function aggregates the number of packets that arrive in a given time 

interval. There is an option in the function to choose on of the time intervals, 

namely, 1 sec., 100 ms, 10 ms, and 1 ms. So the input of this function is the 

captured trace of real internet traffic and the required time interval, whereas, 

the output is a time series of the number of packets that arrived in a time 

interval. 

This function does the same job as 'NUM_PACKETS.m' but it aggregates the 

number of bytes. 

Estm_q.m 

This module measures the fractal behavior of the time series of aggregated 

bytes (or packets) and of the sequence of inter-arrival times. This is done by 

estimating the fractal parameter q using the Power Spectrum Method (PSM), 

in which we adopted the RSF model which is assumed as the theoretical power 

spectrum of aggregated time series. 

238 



A.3.2 Synth_FracNet 

This folder contains the required programs to generate a synthetic fractal trace 

that is used to split an input plaintext file into a number of binary files; it also 

contains the programs to generate a table list of timestamps. 

The 'Main_Synth.m' program calls the required functions to accomplish these 

tasks. The functions are, RSF.m, FracLTrace.m, Fragm-File.m, DeFragm_Files, 

and Gen_Timestamp. 

RSF.m 

In this function a fractional Gaussian sequence is generated with an option for 

the value of the fractal parameter q. 

FracCI'race.m 

This function manipulates the generated fractional sequence of floating points 

to produce a fractal trace of integer numbers. These numbers represent the 

sizes of the split files. 

Fragm_File.m 

In this program a ciphertext file, in its binary form, is split into a number of 

binary files. This ciphertext results from the encryption of an input plain text 

in the main program, and the en crypt ion is done by the 'Crypstic' engine. 

Herein, the split files are saved as text files of binary bits in the 'Send_Files' 

folder; these files are sent later as attachments according to a list of timestamps 

which is generated by the function 'Gen_Timestamp.m'. 

239 



Gen_Timestamp.m 

To send the fragmented files as attachments we require the times (timestamps). 

This function generates a fractal sequence of inter-arrival times, with an op­

tion on the fractal parameter q. This sequence, with an option on the initial 

timestamp, is used to produce a table of timestamps in military form. 

DeFragm_Files.m 

This function does the job of defragmentation (concatenation) for the received 

binary files at the recipients site. Once the binary files are concatenated into 

one contiguous binary stream, the stream is converted into text and saved in a 

file, 'Rec-Ciphertext.txt'. This file is the ciphertext file which is then decrypted 

using Crypstic™ to restore the plaintext file 'Rec-Plaintext.txt'. 

240 






