60 research outputs found

    Group Decision Algorithm for Aged Healthcare Product Purchase Under q-Rung Picture Normal Fuzzy Environment Using Heronian Mean Operator

    Get PDF
    With the intensification of the aging, the health issue of the elderly is arousing public concern increasingly. Various healthcare products for the elderly are emerging from the market, thus how to select suitable aged healthcare product is critical to the well-being of the elderly. In the literature, nonetheless, a comprehensive and standardized evaluation framework to support healthcare product purchase decision for the aged is currently lacking. This paper proposes a novel group decision-making method to aid the decision-making of aged healthcare product purchase based on q-rung picture normal fuzzy Heronian mean (q-RPtNoFHM) operators. In it, firstly, a new fuzzy variable called the q-rung picture normal fuzzy set (q-RPtNoFS) is defined to reasonably describe different responses to healthcare product evaluation, for which, some definitions including operational laws, a score function, and an accuracy function of q-RPtNoFSs are introduced. Then, two q-RPtNoFHM operators are presented to aggregate group decision information. In addition, some properties of q-RPtNoFHM operators, such as monotonicity, commutativity, and idempotency, are discussed. Finally, an example on antihypertensive drugs purchase is gave to illustrate the practicality of the proposed method, and conduct sensitivity analysis to analyze the effectiveness and flexibility of proposed methods

    Power Muirhead Mean Operators for Interval-Valued Linear Diophantine Fuzzy Sets and Their Application in Decision-Making Strategies

    Get PDF
    It is quite beneficial for every company to have a strong decision-making technique at their disposal. Experts and managers involved in decision-making strategies would particularly benefit from such a technique in order to have a crucial impact on the strategy of their company. This paper considers the interval-valued linear Diophantine fuzzy (IV-LDF) sets and uses their algebraic laws. Furthermore, by using the Muirhead mean (MM) operator and IV-LDF data, the IV-LDF power MM (IV-LDFPMM) and the IV-LDF weighted power MM (IV-LDFWPMM) operators are developed, and some special properties and results demonstrated. The decision-making technique relies on objective data that can be observed. Based on the multi-attribute decision-making (MADM) technique, which is the beneficial part of the decision-making strategy, examples are given to illustrate the development. To demonstrate the advantages of the developed tools, a comparative analysis and geometrical interpretations are also provided.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli

    T-spherical linear Diophantine fuzzy aggregation operators for multiple attribute decision-making

    Get PDF
    This paper aims to amalgamate the notion of a T-spherical fuzzy set (T-SFS) and a linear Diophantine fuzzy set (LDFS) to elaborate on the notion of the T-spherical linear Diophantine fuzzy set (T-SLDFS). The new concept is very effective and is more dominant as compared to T-SFS and LDFS. Then, we advance the basic operations of T-SLDFS and examine their properties. To effectively aggregate the T-spherical linear Diophantine fuzzy data, a T-spherical linear Diophantine fuzzy weighted averaging (T-SLDFWA) operator and a T-spherical linear Diophantine fuzzy weighted geometric (T-SLDFWG) operator are proposed. Then, the properties of these operators are also provided. Furthermore, the notions of the T-spherical linear Diophantine fuzzy-ordered weighted averaging (T-SLDFOWA) operator; T-spherical linear Diophantine fuzzy hybrid weighted averaging (T-SLDFHWA) operator; T-spherical linear Diophantine fuzzy-ordered weighted geometric (T-SLDFOWG) operator; and T-spherical linear Diophantine fuzzy hybrid weighted geometric (T-SLDFHWG) operator are proposed. To compare T-spherical linear Diophantine fuzzy numbers (T-SLDFNs), different types of score and accuracy functions are defined. On the basis of the T-SLDFWA and T-SLDFWG operators, a multiple attribute decision-making (MADM) method within the framework of T-SLDFNs is designed, and the ranking results are examined by different types of score functions. A numerical example is provided to depict the practicality and ascendancy of the proposed method. Finally, to demonstrate the excellence and accessibility of the proposed method, a comparison analysis with other methods is conducted

    Solving renewable energy source selection problems using a q-rung orthopair fuzzy-based integrated decision-making approach

    Full text link
    This paper proposes an integrated decision-making framework for the systematic selection of a renewable energy source (RES) from a set of RESs based on sustainability attributes. A real case study of RES selection in Karnataka, India, using the framework is demonstrated, and the results are compared with state-of-the-art methods. The main reason for developing this framework is to handle uncertainty and vagueness effectively by reducing human intervention. Systematic selection of RESs also reduces inaccuracies and promotes rational decision-making. In this paper, q-rung orthopair fuzzy information is adopted to minimize subjective randomness by providing a flexible and generalized preference style. Further, the study found systematic approaches for imputing missing values, calculating attributes’ and decision-makers’ weights, aggregation or preferences, and prioritizing RESs, which are integrated into the framework. Comparing the proposed framework with state-of-the-art-methods shows that (i) biomass and solar are suitable RESs for the process under consideration in Karnataka, (ii) the proposed framework is consistent with state-of-the-art methods, (iii) the proposed framework is sufficiently stable even after weights of attributes and decision makers are altered, and (iv) the proposed framework produces broad and sensible rank values for efficient backup management. These results validate the significance of the proposed framework

    A new rough ordinal priority-based decision support system for purchasing electric vehicles.

    Get PDF
    This study proposes a novel multi-criteria decision-making (MCDM) model based on a rough extension of the Ordinal Priority Approach (OPA) to determine the order of importance of users' perspectives on Electric Vehicle (EV) purchases. Unlike conventional methods that rely on predefined ranks for criteria weighting coefficients, the proposed rough OPA method employs an aggregated rough linguistic matrix, enabling a more precise and unbiased calculation of interval values. Moreover, the model addresses inherent uncertainties by incorporating nonlinear aggregation functions, accommodating decision makers' risk attitudes for flexible decision-making. To validate the model's efficacy, a large-scale post-EV test drive survey is conducted, enabling the determination of relative criterion importance. Sensitivity analysis confirms the robustness of the model, demonstrating that marginal changes in parameters do not alter the ranking order. The results unveil the significance of the reliability criterion and reveal that vehicle-related characteristics outweigh economic and environmental attributes in the decision-making process. Overall, this innovative MCDM model contributes to a more accurate and objective analysis, enhancing the understanding of users' preferences and supporting informed decision-making in EV purchases

    Multiple-Criteria Decision Making

    Get PDF
    Decision-making on real-world problems, including individual process decisions, requires an appropriate and reliable decision support system. Fuzzy set theory, rough set theory, and neutrosophic set theory, which are MCDM techniques, are useful for modeling complex decision-making problems with imprecise, ambiguous, or vague data.This Special Issue, “Multiple Criteria Decision Making”, aims to incorporate recent developments in the area of the multi-criteria decision-making field. Topics include, but are not limited to:- MCDM optimization in engineering;- Environmental sustainability in engineering processes;- Multi-criteria production and logistics process planning;- New trends in multi-criteria evaluation of sustainable processes;- Multi-criteria decision making in strategic management based on sustainable criteria

    Disaster decision-making with a mixing regret philosophy DDAS method in Fermatean fuzzy number

    Get PDF
    In this paper, the use of the Fermatean fuzzy number (FFN) in a significant research problem of disaster decision-making by defining operational laws and score function is demonstrated. Generally, decision control authorities need to brand suitable and sensible disaster decisions in the direct conceivable period as unfitting decisions may consequence in enormous financial dead and thoughtful communal costs. To certify that a disaster comeback can be made, professionally, we propose a new disaster decision-making (DDM) technique by the Fermatean fuzzy Schweizer-Sklar environment. First, the Fermatean fuzzy Schweizer-Sklar operators are employed by decision-makers to rapidly analyze their indefinite and vague assessment information on disaster choices. Then, the DDM technique based on the FFN is planned to identify highly devastating disaster choices and the best available choices. Finally, the proposed regret philosophy DDM technique is shown functional to choose the ideal retort explanation for a communal fitness disaster in Pakistan. The dominance and realism of the intended technique are further defensible through a relative study with additional DDM systems

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc
    • …
    corecore