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Abstract: This paper aims to amalgamate the notion of a T-spherical fuzzy set (T-SFS) and a
linear Diophantine fuzzy set (LDFS) to elaborate on the notion of the T-spherical linear Diophantine
fuzzy set (T-SLDFS). The new concept is very effective and is more dominant as compared to T-SFS
and LDFS. Then, we advance the basic operations of T-SLDFS and examine their properties. To
effectively aggregate the T-spherical linear Diophantine fuzzy data, a T-spherical linear Diophantine
fuzzy weighted averaging (T-SLDFWA) operator and a T-spherical linear Diophantine fuzzy weighted
geometric (T-SLDFWG) operator are proposed. Then, the properties of these operators are also
provided. Furthermore, the notions of the T-spherical linear Diophantine fuzzy-ordered weighted
averaging (T-SLDFOWA) operator; T-spherical linear Diophantine fuzzy hybrid weighted averaging
(T-SLDFHWA) operator; T-spherical linear Diophantine fuzzy-ordered weighted geometric (T-
SLDFOWG) operator; and T-spherical linear Diophantine fuzzy hybrid weighted geometric (T-
SLDFHWG) operator are proposed. To compare T-spherical linear Diophantine fuzzy numbers (T-
SLDFNs), different types of score and accuracy functions are defined. On the basis of the T-
SLDFWA and T-SLDFWG operators, a multiple attribute decision-making (MADM) method within
the framework of T-SLDFNs is designed, and the ranking results are examined by different types of
score functions. A numerical example is provided to depict the practicality and ascendancy of the
proposed method. Finally, to demonstrate the excellence and accessibility of the proposed method, a
comparison analysis with other methods is conducted.
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Abbreviations

The following abbreviations are used in this manuscript:

AF Accuracy Function
ESF Expected Score Function
FS Fuzzy Set
F-grade Falsity-Membership Grade
I-grade Indeterminacy Grade
IFS Intuitionistic Fuzzy Set
LDFWG Linear Diophantine Fuzzy Weighted Geometric
LDFS Linear Diophantine Fuzzy Set
MADM Multiple Attribute Decision-Making
PFS Picture Fuzzy Set
PyFS Pythagorean Fuzzy Set
q-LDFWA q-Linear Diophantine Fuzzy Weighted Averaging
q-LDFWG q-Linear Diophantine Fuzzy Weighted Geometric
q-LDFS q-Rung Linear Diophantine Fuzzy Set
q-ROFS q-Rung Orthopair Fuzzy Set
QAF Quadratic Accuracy Function
QSF Quadratic Score Function
RPs Reference Parameters
SF Score Function
SLDFWA Spherical Linear Diophantine Fuzzy Weighted Averaging
SLDFWG Spherical Linear Diophantine Fuzzy Weighted Geometric
SFS Spherical Fuzzy Set
SLDFS Spherical Linear Diophantine Fuzzy Set
T-grade Truth-Membership Grade
T-SFS T-spherical fuzzy set
T-SLDFHWA T-spherical Linear Diophantine Fuzzy Hybrid Weighted Averaging
T-SLDFHWG T-spherical Linear Diophantine Fuzzy Hybrid Weighted Geometric
T-SLDFNs T-spherical Linear Diophantine Fuzzy Numbers
T-SLDFOWA T-spherical Linear Diophantine Fuzzy-Ordered Weighted Averaging
T-SLDFOWG T-spherical Linear Diophantine Fuzzy-Ordered Weighted Geometric
T-SLDFS T-spherical Linear Diophantine Fuzzy Set
T-SLDFWA T-spherical Linear Diophantine Fuzzy Weighted Averaging
T-SLDFWG T-spherical Linear Diophantine Fuzzy Weighted Geometric

1. Introduction

The fuzzy set (FS), coined by Zadeh [1], is a pioneering notion that has a great strides on the
classical decision-making (DM) theory. It has been successfully utilized to address ambiguous and
misleading information in complicated decision-making processes. However, the modeling parameters
of FS have been limited to tackling fuzzy and obscure data where two or more sources of uncertainty
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arise simultaneously. Consequently, many variations and generalizations of FS have been proposed.
One of the uttermost significant and acclaimed generalizations is the intuitionistic FS (IFS) [2]. IFS is
constructed by a truth-membership grade (T-grade) and falsity-membership grade (F-grade) fulfilling
the constraint that their sum is limited to one, which confines the options to the satisfaction and
dissatisfaction classes. To eradicate such problem, the principle of the Pythagorean FS (PyFS) has been
settled by Yager [3], where the sum of the squares of its T-grade and F-grade is limited to one. Yager [4]
again put forward that for some cases, the constraint of the PyFS structure may be violated and thus
elaborated the q-rung orthopair FS (q-ROFS) characterized by a T-grade and an F-grade, providing the
following condition: The sum of the qth power of the T-grade and F-grade is not exceed one.

The above-mentioned uncertainty sets have seen a great deal of investigations and applications in
real-life [5–10]. However, these models have various strict restrictions on their membership grades. To
overcome this difficulty, Riaz and Hashmi [11] initiated the new framework of the linear Diophantine
fuzzy (LDF) set (LDFS). The LDFS extends IFS and PyFS by assigning reference parameters (RPs)
associated to the T-grades and F-grades. This paradigm is the most appropriate structure for DM where
the users can freely choose the grades. In this direction, Almagrabi et al. [12] designed the flexible
model of q-rung LDFS (q-LDFS), that involves the addition of RPs to the structure of the q-ROFS
to make it more effectual and adaptable than other methods. Some aggregation operators have been
developed based on LDFSs and q-LDFS [11–20]. In [11], the authors presented the LDF weighted
geometric (LDFWG) operator and proposed a new method for MADM based on LDF topological
space and LDFWG operator. Almagrabi et al. [12] defined a series of averaging and geometric
aggregation operators under q-LDFS. Riaz et al. presented LDF prioritized weighted (LDFPW)
average (LDFPWA) and LDFPW geometric (LDFPWG) operators in [13]. Iampan et al. [14] developed
the LDF Einstein weighted averaging (LDFEWA) and LDF Einstein weighted geometric (LDFEWG)
operators. Mahmood et al. [15] introduced the interval LDF power Muirhead mean (IV-LDFMM)
and interval LDF weighted power Muirhead mean (IV-LDFWPMM) operators. Several types of
linear Diophantine, uncertain linguistic power Einstein (LDULPE) operator were elaborated in [16],
including the LDULPE averaging (LDULPEA) operator, LDULPE weighted averaging (LDULPEWA)
operator, LDULPE geometric (LDULPEG) operator and LDULPE weighted geometric (LDULPEWG)
operator. Izatmand et al. [17] proposed LD uncertain linguistic generalized Hamacher (LDULGH)
averaging and LDULGH hybrid averaging operators. Qiyas et al. [18] proposed some new q-LDFS
distances and similarity measures, including Jaccard, exponential, and cosine similarity measures. In
the complex space, Ali et al. [19] explained the complex LDULPEA, complex LDULPEWA, complex
LDULPEG, and complex LDULPEWG operators. Kamaci [20] introduced the cosine distances and
similarity measures among the complex LDFSs. The proposed cosine measures for complex LDFSs
are used in medical diagnoses. Differently, Kamaci [21] investigated the theoretical LDFS approaches
to algebraic structures, and Ayub et al. [22] formulated the LDF relation and its application in DM.
Riaz et al. [23] also developed the LDF rough sets, followed by LDF graph by Prakash et al. [24] and
the Dijkstra algorithm to solve an LDF environment by Parimala et al. [25].

By incorporating the indeterminacy grade (I-grade) into the above-mentioned sets consisting
of T-grades and F-grades, various versions and generalizations were proposed. Apart from these
generalizations, the principle of the picture FS (PFS) is introduced, which has been presented by
Cuong [26]. A PFS is expressed by a T-grade (L), an I-grade (M) and a F-grade (N) such that
0 ≤ L + M + N ≤ 1. Many researchers have created PFS methods and applications in various
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disciplines based on this idea [27–29]. However, it is noticed that this condition of the PFS does not
enable us to determine grades for L,M, and N freely. In other words, the domain of a PFS is restricted.
Consequently, the novel structure of the spherical FS (SFS) [30,31] is suggested, which gives flexibility
to the structure of the PFS by expanding the space of its grades in the interval [0, 1] with a constraint
0 ≤ L2 + M2 + N2 ≤ 1. Further, Mahmood et al. [31] empowered the concept of the SFS, and he
developed the framework of T-SFS, including a new constraint 0 ≤ Lq +Mq + Nq ≤ 1, provided that
q ∈ Z and q ≥ 1. The SFS and T-SFS have diverse applications in decision making problems [32–44],
but they have some strict restrictions for their T-grades, I-grades and F-grades. The conditions of SFSs
and T-SFSs reveal that their grades are not independent. To eliminate this limitation, Riaz et al. [45]
launched the notion of spherical LDFS (SLDFS) under the prominent constraints 0 ≤ aL+bM+cN ≤ 1
and 0 ≤ a + b + c ≤ 1, such that a, b and c are RPs associated with the T-grade, I-grade and F-
grade, respectively, and picked from [0, 1]. The beauty of this new thought is that all grades can be
taken independently from [0, 1]. This paper aims to continue investigating SLDFS, T-SFS and their
combinations by introducing the novel theory of T-SLDFS and its aggregation operators.

1.1. Motivation and interpretation for T-SLDFS

Zadeh [1] assigned T-grade say L to the crisp set by coining the theory of FSs. Atanassov [2]
expanded the notion of FSs to IFSs by adding F-grade N to a T-grade L with a condition 0 ≤ L+N ≤ 1.
Under some circumstances, the sum of T-grade and F-grade is sometimes greater than 1, for example
0.5 + 0.6 ≥ 1. To handle this situation, Yager [3] come up with a theory of PyFS under condition
0 ≤ L2 + N2 ≤ 1. Thus, according to this condition 0.52 + 0.62 = 0.25 + 0.36 = 0.61 ≤ 1. However,
in the situation 0.72 + 0.82 = 0.49 + 0.64 = 1.13 ≥ 1, IFS and PyFS are unusable. To remove this
limitation, q-ROFS [4] on the basis of PyFS was developed. The main advantage of q-ROFS is that it
replaces the constraints of PyFS with requirement 0 ≤ Lq + Nq ≤ 1. For this, if we choose q = 3, then
by using the condition of q-ROFS, we obtain 0.73 + 0.83 = 0.343 + 0.512 = 0.855 ≤ 1. Nevertheless,
in the actual process of solving the DM problem, it may happen that the opinion of the decision-maker
does not satisfy the q-ROFS constraint. By way of illustration, if L given by the decision maker is 1 and
N is 0.3. It is clearly that pair (1, 0.3) cannot be expressed by q-ROFS since 1q + 0.3q ≥ 1 for any value
of q. In this situation, the theories of IFS, PyFS and q-ROFS fail to work when solving DM problems
under these circumstances. To model such situations, Riaz and Hashmi [11] introduced LDFS under
conditions 0 ≤ aL + bN ≤ 1, and 0 ≤ a + b ≤ 1. For this, if we choose RPs a = 0.1 and b = 0.2, then
the LDFS technique delivers (0.1)(1) + (0.2)(0.3) = 0.16 ≤ 1 and 0.1 + 0.2 = 0.3 ≤ 1. But here again,
the sum of the RPs in LDFS is sometimes larger than 1, i.e., a + b ≥ 1. To remove such restriction,
Almagrabi et al. [12] came with q-LDFS, in which 0 ≤ (a)qL + (b)qN ≤ 1, and 0 ≤ (a)q + (b)q ≤ 1.
However, The neutrality is not given consideration in the above mentioned uncertainty models. To
keep up with this situation, the notion of PFS [26] was introduced in the form of (L,M,N) under the
condition 0 ≤ L+M+N ≤ 1. In a PFS, when L,M and N are assigned as 0.5, 0.4 and 0.3, respectively,
since 0.5+0.4+0.3 = 1.2 ≥ 1, condition 0 ≤ L+M+N ≤ 1 does not hold. To manage such a situation,
a SFS was proposed by [30, 31] as a generalization of the PFS under condition 0 ≤ L2 +M2 + N2 ≤ 1.
Thus, according to this condition 0.52 + 0.42 + 0.32 = 0.5 ≤ 1. Thus, SFS extends PFS but only to
some range, for example when L,M and N are taken as 0.7, 0.6 and 0.8, then even squaring is not
enough as 0.72 + 0.52 + 0.62 = 1.1 ≥ 1. Therefore, T-SFS [31] is constructed under the restriction
0 ≤ Lq +Mq + Nq ≤ 1. For example, in our case when L = 0.7,M = 0.5 and N = 0.6, then for q = 3,
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we have 0.73 + 0.53 + 0.63 = 0.684 ≤ 1. In some particular cases, the PFS, SFS and T-SFS are failed,
if a decision maker provides (L,M,N) = (1, 0.5, 0.3), i.e., 1q + 0.5q + 0.3q ≥ 1 for any value of q,
the PFS, SFS and T-SFS cannot characterize effectively such kinds of information. To precisely cope
with such kind of problems, Riaz et al. [45] established the idea of SLDFS whose restriction is that
0 ≤ aL+ bM+ cN ≤ 1, with 0 ≤ a+ b+ c ≤ 1. Obviously, the SLDFS can present effectively such kinds
of information, i.e., 0 ≤ (0.2)(1) + (0.4)(0.5) + (0.1)(0.3) ≤ 1, with 0 ≤ 0.2 + 0.4 + 0.1 = 0.7 ≤ 1, where
(a, b, c) = (0.2, 0.4, 0.1) are RPs associated with the grades L,M and N, respectively. But here again,
the sum of RPs provided by decision maker is often larger than one i.e., a+b+ c ≥ 1, which violates the
restriction of SLDFS related to RPs. The SLDFS has its own limitations related to the RPs. In order to
remove such limitation and motivated by the idea from LDFS to q-LDFS in two-dimensional space, it
is necessary to extend SLDF to T-SLDFS in three-dimensional space. In T-SLDFS we introduce the qth
power of RP which cover the space of existing structure and cover the space of the membership grades
with the help of qth power of RPs. The PFS, SFS, T-SFS and SLDFS all are the special cases of T-
SLDFS. For example, in the environment of T-SLDFS, if q = 1 and each RP equals 1, then T-SLDFS is
converted to PFS. If q = 2 and each RP equals 1, then T-SLDFS is converted to SFS. If each RP equals
1 for any q, then T-SLDFS is converted to T-SFS. If q = 1 and each RP is freely chosen, then T-SLDFS
is converted to SLDFS. From the above discussions, it is clear that the T-SLDFS is more versatile
and more superior to PFS, SFS, T-SFS and SLDFS to describe awkward and complication information
in real-decision. The advantages of the proposed method and the drawbacks of the existing methods
discussed above served as the motivation for this paper. Therefore, the contributions of this paper are
shown as follows. Firstly, we establish the notion of the T-SLDFS, which generalizes the theories of
the PFS, SFS, T-SFS, and SLDFS. Secondly, we explore the notions of T-SLDFWA and T-SLDFWG
operators on the basis of the operational laws of T-SLDFNs. Thirdly, we define several types of SFs
and AFs for the ranking process. Fourthly, we solve a MADM problem based on T-SLDFNs by using
T-SLDFWA and T-SLDFWG operators. Lastly, a comprehensive comparative analysis and geometrical
interpretations are presented to reveal the advantages of the suggested methods. Figure 1 represents
the contributions graphically.

The rest of this manuscript is summarized as follows: In Section 2, we review some background on
the IFS, PyFS, LDFS, q-ROFS, qRLDFS, SFS, SLDFS, and T-SFS. Throughout Section 3, we give the
definition of the T-SLDFS and study its operations. Several types of SFs and AFs are also introduced
in this section. In Section 4, we conceptualize the T-SLDFWA and T-SLDFWG operators and discuss
their properties. Section 5 exhibits a MADM method using the proposed operators. In Section 6,
We present an illustrative example to show the application of the proposed models. We also analyze
the results of the proposed method in this section. Section 7 provides a comprehensive comparative
analysis to depict the superiority of the proposed methods.
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Figure 1. Graphical representation of the contributions.

2. Preliminaries

This section, briefly provides the preliminary knowledge of the IFS, PyFS, LDFS, q-ROFS, q-
LDFS, SFS, SLDFS, and T-SFS, before defining T-SLDFS in the next section.
Definition 2.1. [2] Suppose a universe D. An IFS B is defined on D as

B = {
(
t, 〈TB(t),FB(t)〉

)
: t ∈ D},

where TB and FB ∈ [0, 1] are, respectively, the T-grade and F-grade, such that 0 ≤ TB(t) + FB(t) ≤ 1,
∀t ∈ D.

The IFS fails in situations when the sum of the T-grade and F-grade is larger than 1. Thus, Yager [3]
generalized the IFS to PyFS, whose main characteristic is that the square sum of the T-grade and F-
grade cannot exceed 1.
Definition 2.2. [3] A PyFS K in a universe of discourse D is given as

K = {
(
t, 〈TK(t),FK(t)〉

)
: t ∈ D},

where TK : D −→ [0, 1] denotes the T-grade and FK : D −→ [0, 1] denotes the F-grade with the
condition that 0 ≤ (TK(t))2 + (FK(t))2 ≤ 1.

Riaz and Hashmi [11] developed the LDFS by combining the grades of RPs with the T-grade and
F-grade in the definitions of the IFS and PyFS.
Definition 2.3. [11] A LDFS BH on the reference set C is defined as

BH = {
(
s, 〈RH(s),TH(s)〉, 〈a(s), b(s)〉

)
: s ∈ C},
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where RH(s),TH(s), a(s), b(s) ∈ [0, 1] are, respectively, the T-grade, F-grade and reference parameters.
These functions fulfill the constraint 0 ≤ aRH(s) + bTH(s) ≤ 1, ∀s ∈ C, with 0 ≤ a + b ≤ 1.

Definition 2.4. [11] Let EH =
(
〈RH,TH〉, 〈a, b〉

)
be a LDFN on the reference set C and LDFN(C) be

the collection of LDFNs on C. Then:

(1) The score function (SF) is characterized through the transformation L : LDFN(C) −→ [−1, 1]
which formalized as LEH = L(EH) = 1

2 [(RH − TH) + (a − b)].

(2) The accuracy function (AF) is determined by the transformation M : LDFN(C) −→ [0, 1] and
defined byMEH = M(EH) = 1

2 [RH−TH
2 + (a + b)].

(3) The quadratic score function (QSF) is a transformation N : LDFN(C) −→ [−1, 1] which is written
as NEH = N(EH) = 1

2 [(R2
H − T

2
H) + (a2 − b2)].

(4) The quadratic accuracy function (QAF) is a transformation O : LDFN(C) −→ [0, 1] which is
formalized by OEH = O(EH) = 1

2 [R
2
H−T

2
H

2 + (a2 + b2)].

(5) The expected score function (ESF) determined by P : LDFN(C) −→ [0, 1] and defined by PEH =

P(EH) = 1
2 [ (RH−TH+1)

2 +
(a−b+1)

2 ].

Definition 2.5. [11] Let EHκ
= {

(
〈κRH,

κ TH〉, 〈
κa,κ b〉

)
: κ = 1, 2, ..., r} be a assembling of LDFNs

on the universe C and τ = (τ1, τ2, ..., τr) be the weight vector such that
r∑
κ=1

τκ = 1. Then, the

mapping ϕ : LDFN(C) −→ LDFN(C) is called the LDFWG operator and portrayed as LDFWG

(EH1 ,EH2 , ...,EHr ) =

r∏
κ=1

E
ϕκ
Hκ

= (〈
r∏
κ=1

κ
R
ϕκ
H , 1 −

r∏
κ=1

(1 −κ TH)ϕκ〉, 〈
r∏
κ=1

κ
a
ϕκ , 1 −

r∏
κ=1

(1 −κ b)ϕκ〉).

The IFS and PFS have been developed also into the q-ROFS [4], which is more adaptable than the
IFS and PYFS since the sum of the qth power of the T-grade and F-grade is less than 1.

Definition 2.6. [4] Let D be a universal set. Then, the q-ROFS R on D is formalized as

R = {(t,TL(t),FL(t)) : t ∈ D},

where TL(t) and FL(t)) stand for the T-grade and F-grade, respectively, where TL(t) and FL(t)) lie
in [0, 1] and 0 ≤ (TL(t))q + (FL(t))q ≤ 1 (q ≥ 1),∀t ∈ D. The refusal part is given as:

BL(t) =
(
(TL(t))q + (FL(t))q − (TL(t))q(FL(t))q

)1/q
.

Almagrabi et al. [12] introduced the q-LDFS with the addition of RPs to the construction of the
q-ROFS to be more effective and versatile than other approaches.
Definition 2.7. [12] A q-LDFS QM on the reference U is determined by

QM = {
(
t, 〈YM(t),XM(t)〉, 〈f, g〉

)
: t ∈ U},

where YM(t),XM(t), f, g ∈ [0, 1] are the T-grade, F-grade and RPs, respectively. These grades satisfy
the restriction 0 ≤ (f)qYM(t) + (g)qXM(t) ≤ 1, ∀t ∈ U (q ≥ 1), with 0 ≤ (f)q + (g)q ≤ 1.
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Apart from the above sets, the notion of the SFSs has been introduced by [30, 31], which
encompasses three membership degrees where the sum of squares of all degrees is less than one.
Definition 2.8. [30, 31] A SFS K on the set Z is characterized by

K = {(h,TK(h),IK(h),FK(h)) : h ∈ Z},

where TK(h),IK(h) and FK(h) ∈ [0, 1] represent , T-grade, I-grade and F-grade, respectively, and 0 ≤
(TK(h))2 + (IK(h))2 + (FK(h))2 ≤ 1, for all h ∈ Z. The refusal degree of h to Z is determined by

BK(h) =
(
1 −

[
(TK(h))2 + (IK(h))2 + (FK(h))2])1/2

.
Riaz et al. [45] characterized the SLDFS by taking the RPs into account in SFSs.

Definition 2.9. [45] A SLDFSWD on the reference set Z is defined as

WD = {
(
ε, 〈LD(ε),MD(ε),ND(ε)〉, 〈a, b, c〉

)
: ε ∈ Z},

such that LD(ε),MD(ε),ND(ε), a, b, c ∈ [0, 1] are the T-grade, I-grade, F-grade and RPs, respectively.
These grades satisfy the condition 0 ≤ aLD(ε) + bMD(ε) + cND(ε) ≤ 1, ∀ε ∈ Z, with 0 ≤ a + b + c ≤ 1.

Mahmood et al. [31] extended the SFSs to the T-SFSs, where there are no restrictions on their
constraints.
Definition 2.10. [31] A T-SFS L on the finite set Q is portrayed as follows.

L = {(a,TL(a),IL(a),FL(a)) : a ∈ Q},

where TL(a),IL(a) and FL(a) ∈ [0, 1] are T-grade, I-grade, F-grade, respectively, and 0 ≤ (TL(a))q +

(IL(a))q + (FL(a))q ≤ 1 (q ≥ 1),∀a ∈ Q. The refusal part is determined by

BL(a) =
(
1 −

[
(TL(a))q + (IL(a))q + (FL(a))q])1/q

.

In this paper, we formalize the T-SLDFS by combining the grades of RPs to the T-grade, I-grade,
and F-grade in the constructions of TSFS.

3. T-spherical linear Diophantine fuzzy set

In this section, we propose the concept of T-SLDFS, SFs and AFs of T-SLDFNs and some
operations on T-SLDFS.
Definition 3.1. Let X be a fixed non-empty reference set. The T-SLDFS S Λ over X can be defined as

S Λ = {
(
t, 〈TΛ(t), IΛ(t), FΛ(t)〉, 〈µ(t), ν(t), ω(t)〉

)
: t ∈ X},

where TΛ(t), IΛ(t), FΛ(t) ∈ [0, 1] denote respectively, the reality grades, abstinence grades and falsity
grades. µ(t), ν(t), ω(t) ∈ [0, 1] are RPs associated with the grades TΛ(t), IΛ(t) and FΛ(t), respectively,
and they satisfy the following conditions:

0 ≤ µq(t)TΛ(t) + νq(t)IΛ(t) + ωq(t)FΛ(t) ≤ 1, ∀t ∈ X, q ≥ 1, with
0 ≤ µq(t) + νq(t) + ωq(t) ≤ 1. The refusal part is given by

θMΛ =
(
1 − (µq(t)TΛ(t) + νq(t)IΛ(t) + ωq(t)FΛ(t))

) 1
q ,

where θ represents the RP associated with the refusal degree.
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Definition 3.2. A collection of Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉
)

is called T-SLDFN with

0 ≤ µqTΛ + νqIΛ + ωqFΛ ≤ 1 and 0 ≤ µq + νq + ωq ≤ 1, (q ≥ 1).

Remark 3.3. In the above definition,

(1) If q = 1, then the T-SLDFN is reduced to SLDFN.

(2) If IΛ = ν = 0, then the T-SLDFN is reduced to q-LDFN.

Remark 3.4. (1) Any PFS is an SLDFS and any SLDFS is a T-SLDFS for q = 1, but the converse is
not true.

(2) Any SFS is a SLDFS and any SLDFS is a T-SLDFS for q = 1, but the converse is not
true.

Now we put forward the definition of absolute T-SLDFS and the definition of null T-SLDFS.
Definition 3.5. Let S Λ = {

(
t, 〈TΛ(t), IΛ(t), FΛ(t)〉, 〈µ(t), ν(t), ω(t)〉

)
: t ∈ X} be a T-SLDFS over X.

Then, S Λ is said to be an absolute T-SLDFS denoted by Ψ̃ if TΛ(t) = µ(t) = 1 and FΛ(t) = IΛ(t) =

ν(t) = ω(t) = 0, ∀t ∈ X , i.e., Ψ̃ = (〈1, 0, 0〉, 〈1, 0, 0〉).
Definition 3.6. Let S Λ = {

(
t, 〈TΛ(t), IΛ(t), FΛ(t)〉, 〈µ(t), ν(t), ω(t)〉

)
: t ∈ X} be a T-SLDFS over X.

Then, S Λ is said to be a null T-SLDFS denoted by Φ̃ if TΛ(t) = µ(t) = 0 and FΛ(t) = IΛ(t) = ν(t) =

ω(t) = 1, ∀t ∈ X, i.e., Φ̃ = (〈0, 1, 1〉, 〈0, 1, 1〉).

3.1. Score functions

In this section, we define the SF, QSF, ESF, AF, and QAF.
Definition 3.1.1. Let Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉) be a T-SLDFN; then the SF on Ω is determined by
the transformation κ : T − S LDFN(X) −→ [−1, 1] and defined as

κΩ = κ(Ω) =
1
2

[(TΛ − IΛ − FΛ) + (µq − νq − ωq)], q ≥ 1,

where T − S LDFN(X) is the collection of T-SLDFNs on the reference set X.
Definition 3.1.2. The AF ξ is determined by the transformation ξ : T − S LDFN(X) −→ [0, 1] and
defined as

ξΩ = ξ(Ω) =
1
2

[ (TΛ + IΛ + FΛ)
3

+ (µq + νq + ωq)
]
, q ≥ 1,

where T − S LDFN(X) is the collection of T-SLDFNs on the reference set X.
Definition 3.1.3. Let Ω1 and Ω2 be two T-SLDFNs. By using Definitions 3.1.1 and 3.1.2, we can
compare the T-SLDFNs Ω1 and Ω2 as follows.

(1) If κΩ1 < κΩ2 , then Ω1 < Ω2.

(2) If κΩ1 > κΩ2 , then Ω1 > Ω2.

(3) If κΩ1 = κΩ2 , and ξΩ1 < ξΩ2 , then Ω1 < Ω2.

(4) If κΩ1 = κΩ2 , and ξΩ1 > ξΩ2 , then Ω1 > Ω2.
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(5) If κΩ1 = κΩ2 , and ξΩ1 = ξΩ2 , then Ω1 = Ω2.

The next definition is QSF.
Definition 3.1.4. The mapping π : T − S LDFN(X) −→ [−1, 1] represents the QSF for the T-SLDFN
Ω, which can be given as

πΩ = π(Ω) =
1
2

[(
T 2

Λ − I2
Λ − F2

Λ

)
+

(
(µq)2 − (νq)2 − (ωq)2)], q ≥ 1.

Definition 3.1.5. The mapping Φ : T − S LDFN(X) −→ [0, 1] represents the QAF for the T-SLDFN
Ω, which can be given as

ΦΩ = Φ(Ω) =
1
2

[ (T 2
Λ

+ I2
Λ

+ F2
Λ

)
3

+ ((µq)2 + (νq)2 + (ωq)2)
]
, q ≥ 1.

The QSF and QAF are used to compare the T-SLDFNs as follows.
Definition 3.1.6. If Ω1 and Ω2 are two T-SLDFNs. By using Definitions 3.1.4 and 3.1.5, we can
compare the T-SLDFNs Ω1 and Ω2 as follows.

(1) If πΩ1 < πΩ2 , then Ω1 < Ω2.

(2) If πΩ1 > πΩ2 , then Ω1 > Ω2.

(3) If πΩ1 = πΩ2 , and ΦΩ1 < ΦΩ2 , then Ω1 < Ω2.

(4) If πΩ1 = πΩ2 , and ΦΩ1 > ΦΩ2 , then Ω1 > Ω2.

(5) If πΩ1 = πΩ2 , and ΦΩ1 = ΦΩ2 , then Ω1 = Ω2.

In the following, we present a generalized form of the SF called the ESF.
Definition 3.1.7. Let Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉) be a T-SLDFN; then, a ESF on Ω is determined by
the transformation Γ : T − S LDFN(X) −→ [0, 1] and defined as

ΓΩ = Γ(Ω) =
1
3

[ (TΛ − IΛ − FΛ + 2)
2

+
(µq − νq − ωq + 2)

2

]
, q ≥ 1.

3.2. Operations of T-SLDFNs

In this part, we provide some operations on T-SLDFNs.
Definition 3.2.1. Let Ω1 = (〈1TΛ,

1 IΛ,
1 FΛ〉, 〈

1µ,1 ν,1 ω〉) and Ω2 = (〈2TΛ,
2 IΛ,

2 FΛ〉, 〈
2µ,2 ν,2 ω〉) be two

T-SLDFNs over X and λ > 0; then,

(1) Ωc
1 = (〈1FΛ, 1 −1 IΛ,

1 TΛ〉, 〈
1ω, 1 −1 ν,1 µ〉),

(2) Ω1 = Ω2 ⇐⇒
1TΛ =2 TΛ,

1 IΛ =2 IΛ,
1 FΛ =2 FΛ,

1 µ =2 µ,1 ν =2 ν,1 ω =2 ω,

(3) Ω1 ⊆ Ω2 ⇐⇒
1TΛ ≤

2 TΛ,
1 IΛ ≥

2 IΛ,
1 FΛ ≥

2 FΛ,
1 µ ≤2 µ,1 ν ≥2 ν,1 ω ≥2 ω,
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(4) Ω1 ∪Ω2 =
(
〈max(1TΛ,

2 TΛ),min(1IΛ,
2 IΛ),min(1FΛ,

2 FΛ)〉, 〈max(1µΛ,
2 µΛ),min(1νΛ,

2 νΛ),
min(1ωΛ,

2 ωΛ)〉
)
,

(5) Ω1 ∩Ω2 =
(
〈min(1TΛ,

2 TΛ),max(1IΛ,
2 IΛ),max(1FΛ,

2 FΛ)〉, 〈min(1µΛ,
2 µΛ),max(1νΛ,

2 νΛ),
max(1ωΛ,

2 ωΛ)〉
)
,

(6) Ω1 ⊕Ω2 =

(〈(
(1TΛ)q + (2TΛ)q − (1TΛ)q(2TΛ)q

) 1
q
, (1IΛ

2IΛ), (1FΛ
2FΛ)

〉
,
〈(

(1µ)q + (2µ)q−

(1µ)q(2µ)q
) 1

q
,
(

1ν 2ν
)
,
(

1ω 2ω
)〉)
, q ≥ 1,

(7) Ω1 ⊗ Ω2 =

(〈
(1TΛ

2TΛ),
(
(1IΛ)q + (2IΛ)q − (1IΛ)q(2IΛ)q

) 1
q
,
(
(1FΛ)q + (2FΛ)q −

(1FΛ)q(2FΛ)q
) 1

q
〉
,
〈
(1µ 2µ),

(
(1ν)q + (2ν)q− (1ν)q(2ν)q

) 1
q
,
(
(1ω)q + (2ω)q− (1ω)q(2ω)q

) 1
q
〉)
,

q ≥ 1,

(8) λΩ1 =

(〈(
1 −

(
1 − (1TΛ)q)λ) 1

q
,
(1

IΛ

)λ
,
(1

FΛ

)λ〉
,
〈(

1 −
(
1 − (1µ)q)λ) 1

q
,
(1
ν
)λ
,
(1
ω
)λ〉)

λ > 0, q ≥ 1,

(9) Ωλ
1 =

(〈(1
TΛ

)λ
,
(
1 −

(
1 − (1IΛ)q)λ) 1

q
,
(
1 −

(
1 − (1FΛ)q)λ) 1

q
,
〉
,
〈(1
µ
)λ
,
(
1 −

(
1 − (1ν)q)λ) 1

q
,
(
1 −

(
1 −

(1ω)q)λ) 1
q
,
〉)

, λ > 0, q ≥ 1.

Remark 3.2.2. If 1IΛ =2 IΛ =1 ν =2 ν = 0, then all operations in Definition 3.2.1 reduce to the
operations of q-LDFNs.
Proposition 3.2.3. Let Ωδ = (〈δTΛ,

δ IΛ,
δ FΛ〉, 〈

δµ,δ ν,δ ω〉) for δ ∈ ∆ (indexing Set) be a collection of T-
SLDFNs over X and λ > 0. Then,

⋃
δ∈∆

Ωδ,
⋂
δ∈∆

Ωδ,Ω
C
δ ,

⊕
δ∈∆

Ωδ,
⊗
δ∈∆

Ωδ,Ω
λ
δ and λΩ are also T-SLDFNs.

Proof. The proof is accomplished using Definition 3.2.1. �

Example 3.2.4. If Ω1 = (〈0.6, 0.82, 0.4〉, 〈0.1, 0.42, 0.55〉) and Ω2 = (〈0.96, 0.78, 0.1〉, 〈0.6, 0.3, 0.43〉)
be two 3-SLDFNs. If λ = 5, then

(1) ΩC
1 = (〈0.4, 0.18, 0.6〉, 〈0.55, 0.58, 0.1〉),

(2) Ω1 ⊆ Ω2 as 0.6 ≤ 0.96, 0.82 ≥ 0.78, 0.4 ≥ 0.1 and 0.1 ≤ 0.6, 0.42 ≥ 0.3, 0.55 ≥ 0.43,

(3) Ω1 ∪Ω2 = (〈0.96, 0.78, 0.1〉, 〈0.6, 0.3, 0.43〉) = Ω2,

(4) Ω1 ∩Ω2 = (〈0.6, 0.82, 0.4〉, 〈0.1, 0.42, 0.55〉) = Ω1,

(5) Ω1 ⊕Ω2 = (〈0.97, 0.64, 0.04〉, 〈0.6, 0.13, 0.24〉),

(6) Ω1 ⊗Ω2 = (〈0.58, 0.91, 0.4〉, 〈0.06, 0.46, 0.62〉),

(7) λΩ1 = (〈0.89, 0.37, 0.01〉, 〈0.17, 0.01, 0.05〉),

(8) Ωλ
1 = (〈0.078, 0.99, 0.66〉, 〈0, 0.68, 0.84〉).
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Proposition 3.2.5. Let Ω1,Ω2 and Ω3 be three T-SLDFNs. Then, the following properties hold.

(1) Ω1 ∪Ω2 = Ω2 ∪Ω1,

(2) Ω1 ∩Ω2 = Ω2 ∩Ω1,

(3) Ω1 ∪ (Ω2 ∩Ω3) = (Ω1 ∪Ω2) ∩ (Ω1 ∪Ω3),

(4) Ω1 ∩ (Ω2 ∪Ω3) = (Ω1 ∩Ω2) ∪ (Ω1 ∩Ω3),

(5) (Ω1 ∪Ω2)c = Ωc
1 ∩Ωc

2,

(6) (Ω1 ∩Ω2)c = Ωc
1 ∪Ωc

2,

(7) Ω1 ⊕Ω2 = Ω2 ⊕Ω1,

(8) Ω1 ⊗Ω2 = Ω2 ⊗Ω1,

(9) λ(Ω1 ⊕Ω2) = λΩ1 ⊕ λΩ2,

(10) (Ω1 ⊗Ω2)λ = Ωλ
1 ⊗Ωλ

2.

Proof. We just give the proof of (5), (7) and (9), as the proof of the other items is trivial.
(5). According to (1) and (4) in Definition 3.2.1, we can obtain, for the left side of the equation,
(Ω1 ∪Ω2)c =

(
〈min(1FΛ,

2 FΛ), 1−min(1IΛ,
2 IΛ),max(1TΛ,

2 TΛ)〉, 〈min(1ωΛ,
2 ωΛ), 1−min(1νΛ,

2 νΛ),
max(1µΛ,

2 µΛ)〉
)
.

For the right-hand side, consider
Ωc

1 = (〈1FΛ, 1 −1 IΛ,
1 TΛ〉, 〈

1ω, 1 −1 ν,1 µ〉), Ωc
2 = (〈2FΛ, 1 −2 IΛ,

2 TΛ〉, 〈
2ω, 1 −2 ν,2 µ〉), then

Ωc
1∩Ωc

2 =
(
〈min(1FΛ,

2 FΛ),max(1−1 IΛ, 1−2 IΛ),max(1TΛ,
2 TΛ)〉, 〈min(1ωΛ,

2 ωΛ),max(1−1 νΛ, 1−2

νΛ), max(1µΛ,
2 µΛ)〉

)
=

(
〈min(1FΛ,

2 FΛ), 1 − min(1IΛ,
2 IΛ),max(1TΛ,

2 TΛ)〉, 〈min(1ωΛ,
2 ωΛ), 1 − min(1νΛ,

2 νΛ),
max(1µΛ,

2 µΛ)〉
)

= (Ω1 ∪Ω2)c. This gives (5). (7). Based on Definition 3.2.1,

Ω1 ⊕ Ω2 =

(〈(
(1TΛ)q + (2TΛ)q − (1TΛ)q(2TΛ)q

) 1
q
, (1IΛ

2IΛ), (1FΛ
2FΛ)

〉
,
〈(

(1µ)q + (2µ)q−

(1µ)q(2µ)q
) 1

q
,
(

1ν 2ν
)
,
(

1ω 2ω
)〉)
, q ≥ 1,

=

(〈(
(2TΛ)q + (1TΛ)q − (2TΛ)q(1TΛ)q

) 1
q
, (2IΛ

1IΛ), (2FΛ
1FΛ)

〉
,
〈(

(2µ)q + (1µ)q−

(2µ)q(1µ)q
) 1

q
,
(

2ν 1ν
)
,
(

2ω 1ω
)〉)
, q ≥ 1,

= Ω2 ⊕Ω1. This gives (7).
(9). According to (6) and (8) in Definition 3.2.1, we can obtain, for the left side of the equation:

λ(Ω1 ⊕ Ω2) = λ
((〈(

(1TΛ)q + (2TΛ)q − (1TΛ)q(2TΛ)q
) 1

q
, (1IΛ

2IΛ), (1FΛ
2FΛ)

〉
,
〈(

(1µ)q + (2µ)q−

(1µ)q(2µ)q
) 1

q
,
(

1ν 2ν
)
,
(

1ω 2ω
)〉))

, q ≥ 1,

=

(〈(
1−

[
1−

(
(1TΛ)q + (2TΛ)q − (1TΛ)q(2TΛ)q)]λ) 1

q
, (1I2

Λ
IΛ)λ, (1F2

Λ
FΛ)λ

〉
,
〈(

1−
[
1−

(
(1µΛ)q + (2µΛ)q −

(1µΛ)q(2µΛ)q)]λ) 1
q
, (1ν2

Λ
νΛ)λ, (1ω2

Λ
ωΛ)λ

〉)
,
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=

[〈(
1 − (1 −1 T q

Λ
)λ(1 −2 T q

Λ
)λ
) 1

q
, (1IΛ)λ(2IΛ)λ, (1FΛ)λ(2FΛ)λ

〉
,
〈(

1 − (1 −1 µq)λ(1 −2

µq)λ
) 1

q
, (1ν)λ(2ν)λ, (1ω)λ(2ω)λ

〉]
. For the right side of the equation, we have

λΩ1 =

(〈(
1 −

(
1 − (1TΛ)q)λ) 1

q
,
(1

IΛ

)λ
,
(1

FΛ

)λ〉
,
〈(

1 −
(
1 − (1µ)q)λ) 1

q
,
(1
ν
)λ
,
(1
ω
)λ〉)

λ > 0, q ≥ 1,

λΩ2 =

(〈(
1 −

(
1 − (2TΛ)q)λ) 1

q
,
(2

IΛ

)λ
,
(2

FΛ

)λ〉
,
〈(

1 −
(
1 − (2µ)q)λ) 1

q
,
(2
ν
)λ
,
(2
ω
)λ〉)

λ > 0, q ≥ 1; moreover, since

λΩ1 ⊕ λΩ2 =

[〈(
1 − (1 −1 T q

Λ
)λ + 1 − (1 −2 T q

Λ
)λ − [1 − (1 −1 T q

Λ
)λ][1 − (1 −2

T q
Λ

)λ]
) 1

q
, (1IΛ)λ(2IΛ)λ, (1FΛ)λ(2FΛ)λ

〉
,
〈(

1 − (1 −1 µq)λ + 1 − (1 −2 µq)λ − [1 − (1 −1 µq)λ][1 − (1 −2

µq)λ]
) 1

q
, (1ν)λ(2ν)λ, (1ω)λ(2ω)λ

〉]
,

=

[〈(
1 − (1 −1 T q

Λ
)λ(1 −2 T q

Λ
)λ
) 1

q
, (1IΛ)λ(2IΛ)λ, (1FΛ)λ(2FΛ)λ

〉
,
〈(

1 − (1 −1 µq)λ(1 −2

µq)λ
) 1

q
, (1ν)λ(2ν)λ, (1ω)λ(2ω)λ

〉]
. Thus, we have λ(Ω1 ⊕Ω2) = λΩ1 ⊕ λΩ2.

�

4. T-SLDF aggregation operators

This section explores the notions of T-SLDFWA and T-SLDFWG operators on the basis of
operational laws of T-SLDFNs.

4.1. T-SLDFWA operator

In this section, we define the T-SLDFWA perator, T-SLDFOWA operator, and T-SLDFHWA
operator.

Definition 4.1.1. Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be a collection of T-SLDFNs.

The T-SLDFWA operator is a transformation T-SLDFWA: T-SLDFN(X)−→ T-SLDFN(X), defined by

T − S LDFWA(Ω1,Ω2, ...,Ωn) = ϕ1Ω1 ⊕ ϕ2Ω2 ⊕ ... ⊕ ϕnΩn,

where ϕ = (ϕ1, ϕ2, ..., ϕn) is the weight vector of Ωδ(δ = 1, 2, ..., n), 0 ≤ ϕδ ≤ 1 and
n∑
δ=1

ϕδ = 1.

Theorem 4.1.2. Suppose that Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} is the collection of

T-SLDFNs. Let us consider the weight vector ϕ = (ϕ1, ϕ2, ..., ϕn) of Ωδ. Then,

T − S LDFWA(Ω1,Ω2, ...,Ωn) =
〈(

1 −
n∏
δ=1

(
1 −δ T q

Λ

)ϕδ) 1
q
,

n∏
δ=1

(δIΛ)ϕδ ,
n∏
δ=1

(δFΛ)ϕδ
〉
,
〈(

1 −
n∏
δ=1

(
1 −δ

µq)ϕδ) 1
q
,

n∏
δ=1

(δν)ϕδ ,
n∏
δ=1

(δω)ϕδ
〉
, q ≥ 1. (1)

Proof. We will use the mathematical induction method to prove this theorem.
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(1) For n = 2, since ϕ1Ω1 =

(〈(
1−

(
1−(1TΛ)q)ϕ1

) 1
q
,
(1IΛ

)ϕ1 ,
(1FΛ

)ϕ1
〉
,
〈(

1−
(
1−(1µ)q)ϕ1

) 1
q
,
(1
ν
)ϕ1 ,

(1
ω
)ϕ1

〉)
,

ϕ2Ω2 =

(〈(
1 −

(
1 − (2TΛ)q)ϕ2

) 1
q
,
(2IΛ

)ϕ2 ,
(2FΛ

)ϕ2
〉
,
〈(

1 −
(
1 − (2µ)q)ϕ2

) 1
q
,
(2
ν
)ϕ2 ,

(2
ω
)ϕ2

〉)
,

T-SLDFWA(Ω1,Ω2) = ϕ1Ω1 ⊕ ϕ2Ω2 =

[〈(
1 − (1 −1 T q

Λ
)ϕ1 + 1 − (1 −2 T q

Λ
)ϕ2 − [1 − (1 −1 T q

Λ
)ϕ1][1 −

(1−2 T q
Λ

)ϕ2]
) 1

q
, (1IΛ)ϕ1(2IΛ)ϕ2 , (1FΛ)ϕ1(2FΛ)ϕ2

〉
,
〈(

1− (1−1µq)ϕ1 +1− (1−2µq)ϕ2 − [1− (1−1µq)ϕ1][1−

(1 −2 µq)ϕ2]
) 1

q
, (1ν)ϕ1(2ν)ϕ2 , (1ω)ϕ1(2ω)ϕ2

〉]
=

[〈(
1 − (1 −1 T q

Λ
)ϕ1(1 −2 T q

Λ
)ϕ2

) 1
q
, (1IΛ)ϕ1(2IΛ)ϕ2 , (1FΛ)ϕ1(2FΛ)ϕ2

〉
,
〈(

1 − (1 −1 µq)ϕ1(1 −2

µq)ϕ2
) 1

q
, (1ν)ϕ1(2ν)ϕ2 , (1ω)ϕ1(2ω)ϕ2

〉]
=

[〈(
1 −

2∏
δ=1

(
1 −δ T q

Λ

)ϕδ) 1
q
,

2∏
δ=1

(δIΛ)ϕδ ,
2∏
δ=1

(δFΛ)ϕδ
〉
,
〈(

1 −
2∏
δ=1

(
1 −δ µq)ϕδ) 1

q
,

2∏
δ=1

(δν)ϕδ ,
2∏
δ=1

(δω)ϕδ
〉]

;

obviously, Eq (1) holds for n = 2.

(2) If Eq (1) holds for K = n, then

T − S LDFWA(Ω1,Ω2, ...,Ωn) =
〈(

1 −
n∏
δ=1

(
1 −δ T q

Λ

)ϕδ) 1
q
,

n∏
δ=1

(δIΛ)ϕδ ,
n∏
δ=1

(δFΛ)ϕδ
〉
,
〈(

1 −
n∏
δ=1

(
1 −δ

µq)ϕδ) 1
q
,

n∏
δ=1

(δν)ϕδ ,
n∏
δ=1

(δω)ϕδ
〉
, q ≥ 1.

When δ = n + 1, and according to the operational laws of the T-SLDFNs, we have

T − S LDFWA(Ω1,Ω2, ...,Ωn+1) = T − S LDFWA(Ω1,Ω2, ...,Ωn) ⊕ ϕn+1Ωn+1

=

[〈(
1 −

n∏
δ=1

(
1 −δ T q

Λ

)ϕδ) 1
q
,

n∏
δ=1

(δIΛ)ϕδ ,
n∏
δ=1

(δFΛ)ϕδ
〉
,
〈(

1 −
n∏
δ=1

(
1 −δ µq)ϕδ) 1

q
,

n∏
δ=1

(δν)ϕδ ,
n∏
δ=1

(δω)ϕδ
〉]
⊕[〈(

1 −
(
1 − (n+1TΛ)q)ϕn+1

) 1
q
,
(n+1IΛ

)ϕn+1 ,
(n+1FΛ

)ϕn+1
〉
,
〈(

1 −
(
1 − (n+1µ)q)ϕn+1

) 1
q
,
(n+1

ν
)ϕn+1 ,

(n+1
ω
)ϕn+1

〉]
,

=

[〈((
1 −

n∏
δ=1

(
1 −δ T q

Λ

)ϕδ) +
(
1 −

(
1 −n+1 T q

Λ

)ϕn+1
)
−

(
1 −

n∏
δ=1

(
1 −δ T q

Λ

)ϕδ)(1 − (
1 −n+1

T q
Λ

)ϕn+1
)) 1

q

,
( n∏
δ=1

(δIΛ)ϕδ
)(n+1

Iϕn+1
Λ

)
,
( n∏
δ=1

(δFΛ)ϕδ
)(n+1

Fϕn+1
Λ

)〉
,
〈((

1 −
n∏
δ=1

(
1 −δ µq)ϕδ) +

(
1 −

(
1 −n+1

µq)ϕn+1
)
−

(
1 −

n∏
δ=1

(
1 −δ µq)ϕδ)(1 − (

1 −n+1 µq)ϕn+1
)) 1

q

,
( n∏
δ=1

(δν)ϕδ
)(n+1

νϕn+1
)
,
( n∏
δ=1

(δω)ϕδ
)(n+1

ωϕn+1
)〉]

,

for δ = 1, 2, ..., n.

=

[〈(
1 −

n∏
δ=1

(
1 −δ T q

Λ

)ϕδ(1 −n+1 T q
Λ

)ϕn+1

) 1
q

,

n+1∏
δ=1

(δIΛ)ϕδ ,
n+1∏
δ=1

(δFΛ)ϕδ
〉
,
〈(

1 −
n∏
δ=1

(
1 −δ µq)ϕδ(1 −n+1

µq)ϕn+1

) 1
q

,

n+1∏
δ=1

(δν)ϕδ ,
n+1∏
δ=1

(δω)ϕδ
〉]
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=

[〈(
1 −

n+1∏
δ=1

(
1 −δ T q

Λ

)ϕδ) 1
q
,

n+1∏
δ=1

(δIΛ)ϕδ ,
n+1∏
δ=1

(δFΛ)ϕδ
〉
,
〈(

1 −
n+1∏
δ=1

(
1 −δ µq)ϕδ) 1

q
,

n+1∏
δ=1

(δν)ϕδ ,
n+1∏
δ=1

(δω)ϕδ
〉]

,

k = 1, 2, ..., n + 1. That is, Eq (1) holds for k = n + 1. Based on steps (1) and (2), we have that
Eq (1) holds for any k.

�

The following are the properties of the T-SLDFWA operator.

(1) Idempotency

Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be a set of T-SLDFNs. If Ωδ =

Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉), ∀δ = 1, ..., n. Then, T − S LDFWA(Ω1,Ω2, ...,Ωn) = Ω =

(〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉).

(2) Boundedness

Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be a set of T-SLDFNs. If Ω− =

(〈T−
Λ
, I+

Λ
, F+

Λ
〉, 〈µ−, ν+, ω+〉) and Ω+ = (〈T +

Λ
, I−

Λ
, F−

Λ
〉, 〈µ+, ν−, ω−〉), where, T−

Λ
= min

δ
{δTΛ}, I+

Λ
=

max
δ
{δIΛ}, F+

Λ
= max

δ
{δFΛ}, µ− = min

δ
{δµ}, ν+ = max

δ
{δν}, ω+ = max

δ
{δω} and T +

Λ
= max

δ
{δTΛ},

I−
Λ

= min
δ
{δIΛ}, F−

Λ
= min

δ
{δFΛ}, µ+ = max

δ
{δµ}, ν− = min

δ
{δν}, ω− = min

δ
{δω}. Then,

Ω− ≤ T − S LDFWA(Ω1,Ω2, ...,Ωn) ≤ Ω+.

(3) Monotonicity

Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} and Ω∗δ = {(〈δT ∗

Λ
,δ I∗

Λ
,δ F∗

Λ
〉,

〈δµ∗,δ ν∗,δ ω∗〉) : δ = 1, ..., n} be two collections of T-SLDFNs. If δTΛ ≤
δT ∗

Λ
, δIΛ ≥

δI∗
Λ
, δFΛ ≥

δF∗
Λ

and δµ ≤ δµ∗, δν ≥ δν∗, δω ≥ δω∗ ∀δ = 1, ..., n. Then, T − S LDFWA(Ω1,Ω2, ...,Ωn) ≤
T − S LDFWA(Ω∗1,Ω

∗
2, ...,Ω

∗
n).

Proof. (1) According to Theorem 4.1.2, since Ωδ = Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉) ∀δ = 1, ..., n, then,

T − S LDFWA(Ω1,Ω2, ...,Ωn) =
〈(

1 −
n∏
δ=1

(
1 − T q

Λ

)ϕδ) 1
q
,

n∏
δ=1

(IΛ)ϕδ ,
n∏
δ=1

(FΛ)ϕδ
〉
,
〈(

1 −
n∏
δ=1

(
1 −

µq)ϕδ) 1
q
,

n∏
δ=1

(ν)ϕδ ,
n∏
δ=1

(ω)ϕδ
〉

=
〈(

1 −
(
1 − T q

Λ

)∑n
δ=1 ϕδ

) 1
q
, (IΛ)

∑n
δ=1 ϕδ , (FΛ)

∑n
δ=1 ϕδ

〉
,
〈(

1 −
(
1 − µq)∑n

δ=1 ϕδ
) 1

q
, (ν)

∑n
δ=1 ϕδ , (ω)

∑n
δ=1 ϕδ

〉
=

〈(
1 −

(
1 − T q

Λ

)) 1
q
, IΛ, FΛ

〉
,
〈(

1 −
(
1 − µq)) 1

q
, ν, ω

〉
= (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉) = Ω.

(2) For q ≥ 1, since T−
Λ
≤ δTΛ ≤ T +

Λ
, then

(T−
Λ

)q ≤ δT q
Λ
≤ (T +

Λ
)q, 1−(T−

Λ
)q ≥ 1− δT q

Λ
≥ 1−(T +

Λ
)q, (1−(T−

Λ
)q)ϕδ ≥ (1− δT q

Λ
)ϕδ ≥ (1−(T +

Λ
)q)ϕδ ,

n∏
δ=1

(
1−(T−Λ)q

)ϕδ
≥

n∏
δ=1

(
1− δT q

Λ

)ϕδ
≥

n∏
δ=1

(
1−(T +

Λ)q
)ϕδ

, 1−
n∏
δ=1

(
1−(T−Λ)q

)ϕδ
≤ 1−

n∏
δ=1

(
1− δT q

Λ

)ϕδ
≤

AIMS Mathematics Volume 8, Issue 5, 12257–12286.
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1−
n∏
δ=1

(
1−(T +

Λ)q
)ϕδ

,
(
1−

n∏
δ=1

(1−(T−Λ)q)ϕδ
) 1

q
≤

(
1−

n∏
δ=1

(1− δT q
Λ

)ϕδ
) 1

q
≤

(
1−

n∏
δ=1

(1−(T +
Λ)q)ϕδ

) 1
q
. Thus,

T−
Λ
≤

(
1−

n∏
δ=1

(1− δT q
Λ

)ϕδ
) 1

q
≤ T +

Λ. Similarly, as µ− ≤δ µ ≤ µ+, we have µ− ≤
(
1−

n∏
δ=1

(
1−µq)ϕδ) 1

q
≤

µ+,

As I−
Λ
≤ δIΛ ≤ I+

Λ
, then (I−

Λ
)ϕδ ≤ (δIΛ)ϕδ ≤ (I+

Λ
)ϕδ ,

n∏
δ=1

(I−Λ)ϕδ ≤
n∏
δ=1

(δIΛ)ϕδ ≤
n∏
δ=1

(I+
Λ)ϕδ . Thus,

I−
Λ
≤

n∏
δ=1

(δIΛ)ϕδ ≤ I+
Λ.

In the same way, as F−
Λ
≤ δFΛ ≤ F+

Λ
, ν−

Λ
≤ δνΛ ≤ ν+

Λ
and ω−

Λ
≤ δωΛ ≤ ω+

Λ
, we obtain

F−
Λ
≤

n∏
δ=1

(δFΛ)ϕδ ≤ F+
Λ, ν

−
Λ
≤

n∏
δ=1

(δνΛ)ϕδ ≤ ν+
Λ and ω−

Λ
≤

n∏
δ=1

(δωΛ)ϕδ ≤ ω+
Λ.

Now, let T − S LDFWA(Ω1,Ω2, ...,Ωn) = Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉). Then,

κ(Ω) = 1
2 [(TΛ− IΛ−FΛ) + (µq− νq−ωq)] ≥ 1

2 [(T−
Λ
− I+

Λ
−F+

Λ
) + ((µ−)q− (ν+)q− (ω+)q)] = κ(Ω−) and

κ(Ω) = 1
2 [(TΛ − IΛ − FΛ) + (µq − νq − ωq)] ≤ 1

2 [(T +
Λ
− I−

Λ
− F−

Λ
) + ((µ+)q − (ν−)q − (ω−)q)] = κ(Ω+).

This implies Ω− ≤ T − S LDFWA(Ω1,Ω2, ...,Ωn) ≤ Ω+.

(3) Since δTΛ ≤
δT ∗

Λ
, ∀δ = 1, 2, ..., n. Then,

δT q
Λ
≤ (δT ∗

Λ
)q, 1 − δT q

Λ
≥ 1 − (δT ∗

Λ
)q, (1 − δT q

Λ
)ϕδ ≥ (1 − (δT ∗

Λ
)q)ϕδ ,

n∏
δ=1

(
1 − δT q

Λ

)ϕδ
≥

n∏
δ=1

(
1 −

(δT ∗Λ)q
)ϕδ
, 1 −

n∏
δ=1

(
1 − δT q

Λ

)ϕδ
≤ 1 −

n∏
δ=1

(
1 − (δT ∗Λ)q

)ϕδ
,
(
1 −

n∏
δ=1

(
1 − δT q

Λ

)ϕδ) 1
q
≤

(
1 −

n∏
δ=1

(
1 −

(δT ∗Λ)q
)ϕδ) 1

q . Similarly, as δµ ≤ δµ∗, ∀δ = 1, 2, ..., n, we have
(
1−

n∏
δ=1

(
1− δµ

q
Λ

)ϕδ) 1
q
≤

(
1−

n∏
δ=1

(
1−

(δµ∗Λ)q
)ϕδ) 1

q .

As δIΛ ≥
δI∗

Λ
, ∀δ = 1, 2, ..., n. Then, (δIΛ)ϕδ ≥ (δI∗

Λ
)ϕδ ,

n∏
δ=1

(δIΛ)ϕδ ≥
n∏
δ=1

(δI∗Λ)ϕδ . In the same way as

δFΛ ≥
δF∗

Λ
, δνΛ ≥

δν∗
Λ
, δωΛ ≥

δω∗
Λ

, we obtain
n∏
δ=1

(δFΛ)ϕδ ≥
n∏
δ=1

(δF∗Λ)ϕδ ,
n∏
δ=1

(δνΛ)ϕδ ≥
n∏
δ=1

(δν∗Λ)ϕδ

and
n∏
δ=1

(δωΛ)ϕδ ≥
n∏
δ=1

(δω∗Λ)ϕδ .

Let T − S LDFWA(Ω1,Ω2, ...,Ωn) = Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉) and T −

S LDFWA(Ω∗1,Ω
∗
2, ...,Ω

∗
n) = Ω∗ = (〈T ∗

Λ
, I∗

Λ
, F∗

Λ
〉, 〈µ∗, ν∗, ω∗〉). Then,

κ(Ω) = 1
2 [(TΛ − IΛ − FΛ) + (µq − νq − ωq)] ≤ 1

2 [(T ∗
Λ
− I∗

Λ
− F∗

Λ
) + ((µ∗)q − (ν∗)q − (ω∗)q)] = κ(Ω∗).

This implies T − S LDFWA(Ω1,Ω2, ...,Ωn) ≤ T − S LDFWA(Ω∗1,Ω
∗
2, ...,Ω

∗
n).

�

In this part, we define the T-SLDFOWA operator.
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Definition 4.1.3. Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be a collection of T-SLDFNs

on the fixed set X and the weight vector ϕ = (ϕ1, ϕ2, ..., ϕn) such that ϕδ ≥ 0 (δ ∈ N) with
n∑
δ=1

ϕδ = 1

and q ≥ 1; then, the mapping T − S LDFOWA : T − S LDFN(X) −→ T − S LDFN(X) is called the
T-SLDFOWA operator and defined as

T −S LDFOWA(Ω1,Ω2, ...,Ωn) =

n∏
δ=1

(ϕδΩδ(ε)) =
〈(

1−
n∏
δ=1

(
1−δT q

Λ(ε)
)ϕδ) 1

q
,

n∏
δ=1

(δIΛ(ε))ϕδ ,
n∏
δ=1

(δFΛ(ε))ϕδ

〉
,
〈(

1−
n∏
δ=1

(
1−δµq

(ε)
)ϕδ) 1

q
,

n∏
δ=1

(δν(ε))ϕδ ,
n∏
δ=1

(δω(ε))ϕδ
〉
, q ≥ 1, (2)

where ε(1), ε(2), ..., ε(n) is the arrangement of (δ ∈ N), for which Ωε(δ−1) ≥ Ωε(δ), ∀(δ ∈ N).

Here, we examine the traits of the T-SLDFOWA operator.

(1) Idempotency : If Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} is a set of T-SLDFNs and

Ωδ = Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉), ∀δ ∈ N. Then, T − S LDFOWA(Ω1,Ω2, ...,Ωn) = Ω =

(〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉).

(2) Boundedness: Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be a set of T-SLDFNs. If

Ω− = (〈T−
Λ
, I+

Λ
, F+

Λ
〉, 〈µ−, ν+, ω+〉) and Ω+ = (〈T +

Λ
, I−

Λ
, F−

Λ
〉, 〈µ+, ν−, ω−〉), where, T−

Λ
= min

δ
{δTΛ},

I+
Λ

= max
δ
{δIΛ}, F+

Λ
= max

δ
{δFΛ}, µ− = min

δ
{δµ}, ν+ = max

δ
{δν}, ω+ = max

δ
{δω} and T +

Λ
= max

δ
{δTΛ},

I−
Λ

= min
δ
{δIΛ}, F−

Λ
= min

δ
{δFΛ}, µ+ = max

δ
{δµ}, ν− = min

δ
{δν}, ω− = min

δ
{δω}. Then,

Ω− ≤ T − S LDFOWA(Ω1,Ω2, ...,Ωn) ≤ Ω+.

(3) Monotonicity: Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} and Ω∗δ = {(〈δT ∗

Λ
,δ I∗

Λ
,δ F∗

Λ
〉,

〈δµ∗,δ ν∗,δ ω∗〉) : δ ∈ N} be two collections of T-SLDFNs. If δTΛ ≤
δT ∗

Λ
, δIΛ ≥

δI∗
Λ
, δFΛ ≥

δF∗
Λ

and δµ ≤ δµ∗, δν ≥ δν∗, δω ≥ δω∗, ∀δ ∈ N. Then, T − S LDFOWA(Ω1,Ω2, ...,Ωn) ≤ T −
S LDFOWA(Ω∗1,Ω

∗
2, ...,Ω

∗
n).

Next, we define the T-SLDFHWA operator.

Definition 4.1.4. Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be the collection of T-SLDFNs

on the reference set X and the weight vector ϕ = (ϕ1, ϕ2, ..., ϕn) such that ϕδ ≥ 0 (δ ∈ N) with
n∑
δ=1

ϕδ = 1

and q ≥ 1; then the mapping T − S LDFHWA : T − S LDFN(X) −→ T − S LDFN(X) is called the
T-SLDFHWA operator and defined as

T − S LDFHWA(Ω1,Ω2, ...,Ωn) =

n∏
δ=1

(ϕδΩ�ε(δ)) =

〈(
1 −

n∏
δ=1

(
1 − ε(δ)T q�

Λ

)ϕδ) 1
q
,

n∏
δ=1

(ε(δ)IΛ)�ϕδ ,
n∏
δ=1

(ε(δ)FΛ)�ϕδ
〉
,
〈(

1 −
n∏
δ=1

(
1 −ε(δ) µq�)ϕδ) 1

q
,

n∏
δ=1

(ε(δ)ν)�ϕδ ,

n∏
δ=1

(ε(δ)ω)�ϕδ
〉
, q ≥ 1, (3)

AIMS Mathematics Volume 8, Issue 5, 12257–12286.



12274

where Ω�ε(δ) represents the δth biggest weighted T-spherical linear Diophantine fuzzy values Ω�δ(Ω
�
δ =

(Ωδ)nϕδ , δ ∈ N) and ϕ = (ϕ1, ϕ2, ..., ϕn) is the weight vector by mean of ϕδ ≥ 0 (δ ∈ N) with
n∑
δ=1

ϕδ = 1.

If ϕ = ( 1
ϕ
, 1
ϕ
, ..., 1

ϕ
), then T-SLDFWA and T-SLDFOWA operators are considered to be specific

cases of T-SLDFHWA. Thus, we conclude that the generalized form of T-SLDFWA and T-SLDFOWA
operators is the T-SLDFHWA operator.

We next discuss the properties of the T-SLDFHWA operator.

(1) Idempotency : If Ωδ is a set of T-SLDFNs and Ωδ = Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉), ∀δ ∈ N. Then,
T − S LDFHWA(Ω1,Ω2, ...,Ωn) = Ω.

(2) Boundedness: Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be a set of T-SLDFNs. If

Ω− = (〈T−
Λ
, I+

Λ
, F+

Λ
〉, 〈µ−, ν+, ω+〉) and Ω+ = (〈T +

Λ
, I−

Λ
, F−

Λ
〉, 〈µ+, ν−, ω−〉), where, T−

Λ
= min

δ
{δTΛ},

I+
Λ

= max
δ
{δIΛ}, F+

Λ
= max

δ
{δFΛ}, µ− = min

δ
{δµ}, ν+ = max

δ
{δν}, ω+ = max

δ
{δω} and T +

Λ
= max

δ
{δTΛ},

I−
Λ

= min
δ
{δIΛ}, F−

Λ
= min

δ
{δFΛ}, µ+ = max

δ
{δµ}, ν− = min

δ
{δν}, ω− = min

δ
{δω}. Then,

Ω− ≤ T − S LDFHWA(Ω1,Ω2, ...,Ωn) ≤ Ω+.

(3) Monotonicity: Let Ωδand Ω∗δ be two collections of T-SLDFNs. If Ωδ ≤ Ω∗δ, ∀δ ∈ N. Then,
T − S LDFHWA(Ω1,Ω2, ...,Ωn) ≤ T − S LDFHWA(Ω∗1,Ω

∗
2, ...,Ω

∗
n).

4.2. T-SLDFWG operator

We define the T-SLDFWG operator, T-SLDFOWG operator, and T-SLDFHWG operator as follows.
Definition 4.2.1. Let Ωδ = {(〈δTΛ,

δ IΛ,
δ FΛ〉, 〈

δµ,δ ν,δ ω〉) : δ = 1, ..., n} be a collection of T-SLDFNs.
The T-SLDFWG operator is a transformation T-SLDFWG: T-SLDFN(X)−→ T-SLDFN(X), defined by

T − S LDFWG(Ω1,Ω2, ...,Ωn) = Ω
ϕ1
1 ⊗Ω

ϕ2
2 ⊗ ... ⊗Ωϕn

n ,

where ϕ = (ϕ1, ϕ2, ..., ϕn) is the weight vector of Ωδ(δ = 1, 2, ..., n), 0 ≤ ϕδ ≤ 1 and
n∑
δ=1

ϕδ = 1.

Theorem 4.2.2. Suppose that Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} is the collection of

T-SLDFNs. Let us consider the weight vector ϕ = (ϕ1, ϕ2, ..., ϕn) of Ωδ. Then,

T − S LDFWG(Ω1,Ω2, ...,Ωn) =
〈 n∏
δ=1

(δTΛ)ϕδ ,
(
1 −

n∏
δ=1

(
1 −δ Iq

Λ

)ϕδ) 1
q
,
(
1 −

n∏
δ=1

(
1 −δ Fq

Λ

)ϕδ) 1
q
〉
,
〈 n∏
δ=1

(δµ)ϕδ ,
(
1 −

n∏
δ=1

(
1 −δ νq)ϕδ) 1

q
,
(
1 −

n∏
δ=1

(
1 −δ ωq)ϕδ) 1

q
,
〉
, q ≥ 1. (4)

Proof. The proof is like that of Theorem 4.1.2. �

Similar to T-SLDFWA operator, the T-SLDFWG operator also possess the certain characteristics
which are stated (without proof) as follows.

(1) Idempotency

Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be a set of T-SLDFNs. If Ωδ =

Ω = (〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉), ∀δ = 1, ..., n. Then, T − S LDFWG(Ω1,Ω2, ...,Ωn) = Ω =

(〈TΛ, IΛ, FΛ〉, 〈µ, ν, ω〉).
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(2) Boundedness

Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be a set of T-SLDFNs. If Ω− =

(〈T−
Λ
, I+

Λ
, F+

Λ
〉, 〈µ−, ν+, ω+〉) and Ω+ = (〈T +

Λ
, I−

Λ
, F−

Λ
〉, 〈µ+, ν−, ω−〉), where, T−

Λ
= min

δ
{δTΛ}, I+

Λ
=

max
δ
{δIΛ}, F+

Λ
= max

δ
{δFΛ}, µ− = min

δ
{δµ}, ν+ = max

δ
{δν}, ω+ = max

δ
{δω} and T +

Λ
= max

δ
{δTΛ},

I−
Λ

= min
δ
{δIΛ}, F−

Λ
= min

δ
{δFΛ}, µ+ = max

δ
{δµ}, ν− = min

δ
{δν}, ω− = min

δ
{δω}. Then,

Ω− ≤ T − S LDFWG(Ω1,Ω2, ...,Ωn) ≤ Ω+.

(3) Monotonicity

Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} and Ω∗δ = {(〈δT ∗

Λ
,δ I∗

Λ
,δ F∗

Λ
〉,

〈δµ∗,δ ν∗,δ ω∗〉) : δ = 1, ..., n} be two collections of T-SLDFNs. If δTΛ ≤
δT ∗

Λ
, δIΛ ≥

δI∗
Λ
, δFΛ ≥

δF∗
Λ

and δµ ≤ δµ∗, δν ≥ δν∗, δω ≥ δω∗ ∀δ = 1, ..., n. Then, T − S LDFWG(Ω1,Ω2, ...,Ωn) ≤
T − S LDFWG(Ω∗1,Ω

∗
2, ...,Ω

∗
n).

Now, we define the T-SLDFOWG operator.

Definition 4.2.3. Let Ωδ = {(〈δTΛ,
δ IΛ,

δ FΛ〉, 〈
δµ,δ ν,δ ω〉) : δ = 1, ..., n} be the collection of T-SLDFNs

on the reference set X and the weight vector ϕ = (ϕ1, ϕ2, ..., ϕn) such that ϕδ ≥ 0 (∀δ ∈ N) with
n∑
δ=1

ϕδ = 1 and q ≥ 1; then, the mapping T − S LDFOWG : T − S LDFN(X) −→ T − S LDFN(X) is

called the T-SLDFOWG operator and defined as

T − S LDFOWG(Ω1,Ω2, ...,Ωn) =

n∏
δ=1

Ω
ϕδ
δ(ε) =

〈 n∏
δ=1

(δTΛ(ε))ϕδ ,
(
1 −

n∏
δ=1

(
1 − δIq

Λ(ε)
)ϕδ) 1

q
,
(
1 −

n∏
δ=1

(
1 − δFq

Λ(ε)
)ϕδ) 1

q
〉
,
〈 n∏
δ=1

(δµ(ε))ϕδ ,
(
1 −

n∏
δ=1

(
1 −

δν
q
(ε)

)ϕδ) 1
q
,
(
1−

n∏
δ=1

(
1− δω

q
(ε)

)ϕδ) 1
q
,
〉
, q ≥ 1, (5)

where ε(1), ε(2), ..., ε(n) is the arrangement of (δ ∈ N), for which Ωε(δ−1) ≥ Ωε(δ), ∀(δ ∈ N).
Remark 4.2.4. The T-SLDFOWG operator satisfies the similar properties as those of T-SLDFOWA
operator.

The following is the definition of the T-SLDFHWG operator.
Definition 4.2.5. Let Ωδ = {(〈δTΛ,

δ IΛ,
δ FΛ〉, 〈

δµ,δ ν,δ ω〉) : δ = 1, ..., n} be the collection of T-SLDFNs
on the reference set X and the weight vector ϕ = (ϕ1, ϕ2, ..., ϕn) such that ϕδ ≥ 0 (∀δ ∈ N) with

n∑
δ=1

ϕδ = 1 and q ≥ 1; then, the mapping T − S LDFHWG : T − S LDFN(X) −→ T − S LDFN(X) is

called the T-SLDFHWG operator and defined as

T − S LDFHWG(Ω1,Ω2, ...,Ωn) =

n∏
δ=1

Ω
�ϕδ
ε(δ) =

〈 n∏
δ=1

(ε(δ)TΛ)�ϕδ ,
(
1 −

n∏
δ=1

(
1 − ε(δ)Iq�

Λ

)ϕδ) 1
q
,
(
1 −

n∏
δ=1

(
1 − ε(δ)Fq�

Λ

)ϕδ) 1
q
〉
,
〈 n∏
δ=1

(ε(δ)µ)�ϕδ ,
(
1 −

n∏
δ=1

(
1 −

ε(δ)νq�)ϕδ) 1
q
,
(
1−

n∏
δ=1

(
1− ε(δ)ωq�)ϕδ) 1

q
,
〉
, q ≥ 1, (6)
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where Ω�ε(δ) is the δth biggest weighted, T-spherical linear Diophantine fuzzy values
Ω�δ(Ω

�
δ = (Ωδ)nϕδ , δ ∈ N) and ϕ = (ϕ1, ϕ2, ..., ϕn) is the weight vector by mean of ϕδ ≥ 0 (∀δ ∈ N) with

n∑
δ=1

ϕδ = 1.

If ϕ = ( 1
ϕ
, 1
ϕ
, ..., 1

ϕ
), then T-SLDFWG and T-SLDFOWG operators are considered to be specific

cases of the T-SLDFHWG operator. Thus, we conclude that the generalized form of T-SLDFWG and
T-SLDFOWG operators is the T-SLDFHWG operator.
Remark 4.2.6. The T-SLDFHWG operator satisfies the similar properties as those of T-SLDFHWA
operator.

5. MADM approach in a T-SLDF environment

To adeptly highlight the reliability and usefulness of the proposed work, we display a MADM
problem in terms of T-SLDFNs by using T-SLDFWA and T-SLDFWG operators. For this, let P =

{P1, P2, ..., Pn} be a family of n alternatives, G = {G1,G2, ...,Gk} be a family of attributes and ϕ =

(ϕ1, ϕ2, ..., ϕk) be the weight vector of the attributes where
n∑
δ=1

ϕδ = 1 and ϕδ ≥ 0. The detailed process

of the decision making is displayed as follows.

Algorithm 1:

Step 1: The value of the alternative Pi corresponding to attribute G j is stated by the decision maker
in terms of the T-SLDFNs and summarized as a matrix called the decision matrix.

Step 2: Normalization: Generally, there are two attribute types of MADM problems: Cost-type
and benefit-type. To maintain consistency of the types, it is necessary to normalize the input data as
follows.

Ωδ =

{
(〈δTΛ,

δ IΛ,
δ FΛ〉, 〈

δµ,δ ν,δ ω〉) for beneficial types
(〈δFΛ, 1 −δ IΛ,

δ TΛ〉, 〈
δω,δ ν,δ µ〉) for cost types

(7)

Step 3: Aggregate all the attribute values denoted by Li using the T-SLDFWA operator or T-
SLDFWG operator.

Step 4: Calculating the score values for the aggregated alternatives values, by using
Definition 3.1.1.

Step 5: Ranking and sorting the alternatives based on their scores and selecting the best choice.

6. Illustrative example

To exhibit the practicality of the proposed methods, we carry out the following study about the
ranking of several kinds of a certain product.
Example 6.1. Assume that a company intends to examine four kinds of a certain product from a
manufacturer to choose the most suitable one. Let P = {P1, P2, P3, P4} be a universe consisting
of four kinds of products. The proposed methods are employed to evaluate these products based
on the following features: G1 : Price, G2 : Quality, G3 : Aesthetics, G4 : Functionality and
G5 : Easy to use. For this, the weights for these features are as follows: 0.3, 0.3, 0.2, 0.1, 0.1.
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Assume that the characteristics of the alternative Pi under attribute G j are expressed by T-SLDFNs
with q = 3. Additionally, we consider the reference parameters µ : the degree of attractiveness, ν : the
indeterminate degree of attractiveness, and ω: the degree of repulsion. Then, we can rank the products
utilizing Algorithm 1 as follows.

Step 1: The input data are applied to this algorithm. The decision maker evaluates the four kinds
of product, Pi(i = 1, 2, 3, 4), according to five attributes, G j( j = 1, 2, 3, 4, 5), and the decision matrix is
constructed as shown in Table 1.

Table 1. Original decision matrix.
Feature P1 P2 P3 P4

G1 (〈0.6, 0.8, 0.4〉, 〈0.5, 0.4, 0.1〉)(〈0.5, 0.1, 0.6〉, 〈0.7, 0.7, 0.6〉) (〈0, 0.9, 0.8〉, 〈0.2, 0.6, 0.3〉) (〈0.1, 0.3, 0.9〉, 〈0.9, 0.5, 0.4〉)

G2 (〈0.9, 0.1, 0.6〉, 〈0.6, 0.8, 0.3〉)(〈0.2, 0.5, 0.4〉, 〈0.6, 0.5, 0.4〉)(〈0.9, 0.1, 0.2〉, 〈0.8, 0.4, 0.3〉)(〈0.4, 0.5, 0.7〉, 〈0.2, 0.3, 0.5〉)

G3 (〈0.8, 0.4, 0.4〉, 〈0.2, 0.4, 0.6〉)(〈0.1, 0.4, 0.2〉, 〈0.7, 0.4, 0.6〉)(〈0.7, 0.8, 0.9〉, 〈0.8, 0.7, 0.5〉)(〈0.9, 0.9, 0.8〉, 〈0.5, 0.8, 0.3〉)

G4 (〈0.7, 0.3, 0.5〉, 〈0.7, 0.5, 0.2〉)(〈0.4, 0.2, 0.9〉, 〈0.2, 0.5, 0.3〉) (〈0.9, 0, 0〉, 〈0.9, 0.1, 0.1〉) (〈0.1, 0.4, 0.9〉, 〈0.1, 0.3, 0.5〉)

G5 (〈0.4, 0.6, 0.5〉, 〈0.3, 0.6, 0.5〉)(〈0.9, 0.8, 0.7〉, 〈0.8, 0.2, 0.5〉)(〈0.7, 0.1, 0.3〉, 〈0.4, 0.5, 0.6〉)(〈0.3, 0.1, 0.7〉, 〈0.5, 0.4, 0.4〉)

Step 2: Obtain the normalized T-SLDF information of Table 1 by taking the complement of G1 =

Price, which is the cost type attribute in this example. The normalized decision matrix is shown in
Table 2.

Table 2. Normalized decision matrix.
Feature P1 P2 P3 P4

G1 (〈0.4, 0.2, 0.6〉, 〈0.1, 0.4, 0.5〉)(〈0.6, 0.9, 0.5〉, 〈0.6, 0.7, 0.7〉) (〈0.8, 0.1, 0〉, 〈0.3, 0.6, 0.2〉) (〈0.9, 0.7, 0.1〉, 〈0.4, 0.5, 0.9〉)

G2 (〈0.9, 0.1, 0.6〉, 〈0.6, 0.8, 0.3〉)(〈0.2, 0.5, 0.4〉, 〈0.6, 0.5, 0.4〉)(〈0.9, 0.1, 0.2〉, 〈0.8, 0.4, 0.3〉)(〈0.4, 0.5, 0.7〉, 〈0.2, 0.3, 0.5〉)

G3 (〈0.8, 0.4, 0.4〉, 〈0.2, 0.4, 0.6〉)(〈0.1, 0.4, 0.2〉, 〈0.7, 0.4, 0.6〉)(〈0.7, 0.8, 0.9〉, 〈0.8, 0.7, 0.5〉)(〈0.9, 0.9, 0.8〉, 〈0.5, 0.8, 0.3〉)

G4 (〈0.7, 0.3, 0.5〉, 〈0.7, 0.5, 0.2〉)(〈0.4, 0.2, 0.9〉, 〈0.2, 0.5, 0.3〉) (〈0.9, 0, 0〉, 〈0.9, 0.1, 0.1〉) (〈0.1, 0.4, 0.9〉, 〈0.1, 0.3, 0.5〉)

G5 (〈0.4, 0.6, 0.5〉, 〈0.3, 0.6, 0.5〉)(〈0.9, 0.8, 0.7〉, 〈0.8, 0.2, 0.5〉)(〈0.7, 0.1, 0.3〉, 〈0.4, 0.5, 0.6〉)(〈0.3, 0.1, 0.7〉, 〈0.5, 0.4, 0.4〉)

Step 3: Using the T-SLDFWA operator, aggregate all the attribute values for each alternative. The
aggregated attributes’ values are given below.

L1 = (〈0.77, 0.22, 0.53〉, 〈0.48, 0.52, 0.41〉), L2 = (〈0.58, 0.55, 0.43〉, 〈0.64, 0.48, 0.51〉),L3 =

(〈0.78, 0, 0〉, 〈0.63, 0, 0.64〉), L4 = (〈0.79, 0.52, 0.41〉, 〈0.39, 0.44, 0.53〉).
Step 4: Find the score value κ(Li) of each of the aggregated attribute values. We obtained κ(L1) =

−0.0395, κ(L2) = −0.1905, κ(L3) = 0.384 and κ(L4) = −0.3147.
Step 5: We obtained the ranks of the four alternatives as P3 > P1 > P2 > P4.
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6.1. Result and discussion

In this part, we will analyze the results of the proposed method by setting different value q to show
the sensitivity of parameter q. We will also solve the same problem by using different types of the
proposed aggregation operators . Furthermore, we will show the influences of the proposed SFs on the
results.

6.1.1. Sensitivity analysis

In order to better discuss the influence of different q values, in this part, we take different values for
the parameter q. The ranking results are shown in Table 3.

Table 3. Ranking results based on T-SLDFWA operator by using the different q.
q The Score Function Ranking Results

q = 2 κ(P1) = −0.1188, κ(P2) = −0.2677, κ(P3) = 0.5557, κ(P4) = −0.2444 P3 > P1 > P4 > P2

q = 3 κ(P1) = −0.0395, κ(P2) = −0.1905, κ(P3) = 0.5662, κ(P4) = −0.3147 P3 > P1 > P2 > P4

q = 5 κ(P1) = 0.0159, κ(P2) = −0.1372, κ(P3) = 0.5352, κ(P4) = −0.0784 P3 > P1 > P4 > P2

q = 8 κ(P1) = 0.0336, κ(P2) = −0.1188, κ(P3) = 0.4901, κ(P4) = −0.048 P3 > P1 > P4 > P2

q = 10 κ(P1) = 0.0379, κ(P2) = −0.1113, κ(P3) = 0.4714, κ(P4) = −0.0412 P3 > P1 > P4 > P2

q = 12 κ(P1) = 0.0412, κ(P2) = −0.1044, κ(P3) = 0.4592, κ(P4) = −0.0372 P3 > P1 > P4 > P2

q = 15 κ(P1) = 0.0454, κ(P2) = −0.0951, κ(P3) = 0.4487, κ(P4) = −0.0333 P3 > P1 > P4 > P2

q = 20 κ(P1) = 0.0507, κ(P2) = −0.0833, κ(P3) = 0.4414, κ(P4) = −0.0292 P3 > P1 > P4 > P2

From Table 3, we can see that the aggregation results are slightly different with parameter q
increasing in the T-SLDFWA operator and the ranking of the alternatives is still the same. So the
method based on the T-SLDFWA operator is stable. Further, we can find that for alternative P3 (The
optimal alternative) with the increase of parameter q, the score function becomes smaller in general,
while for the other alternatives the score function becomes larger with the increase of parameter q.
In general, different decision makers can set different values to parameter q on the basis of their
preferences.

6.1.2. Performances of the proposed operators

We tested the performances of the proposed operators by using the information from Example 6.1.
The ranking results by the proposed operators are shown in Table 4.

From Table 4, we can see that there are slight differences between the ranking results derived from
the proposed operators, but the best and the first choice were the same for all methods.
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Table 4. Comparative analysis of the proposed operators.

Operators Ranking Optimal Alternative
T-SLDFWA P3 > P1 > P2 > P4 P3

T-SLDFOWA P3 > P1 > P2 > P4 P3

T-SLDFHWA P3 > P1 > P4 > P2 P3

T-SLDFWG P3 > P1 > P2 > P4 P3

T-SLDFOWG P3 > P2 > P1 > P4 P3

T-SLDFHWG P3 > P1 > P4 > P2 P3

6.1.3. Influences of the score functions

Three types of SFs were proposed in Section 3.1, namely, the SF, QSF, and ESF. For each SF, an
AF has been provided to compare the T-SLDFNs. To depict the influence of the proposed SFs, we
used them to rank the alternative products in Example 6.1. The ranking orders using the T-SLDFWA
operator and T-SLDFWG operator are shown in Tables 5 and 6.

In Table 5, it is clear that the ranking results generated by using all the SFs are almost the same, and
their optimal selections are the same.

In Table 6, we can observe that the ranking results are the same for all SFs. Additionally, it should be
noted that for all SFs, the results from both operators are almost equivalent, which proves the validity
of the proposed SFs very well. The column charts of the SF, QSF, and ESF values based on T-SLDFWA
and T-SLDFWG operators are given in Figures 2 and 3.

Table 5. Ranking order using the T-SLDFWA operator.
Score Function Score Values Ranking Results

κ κ(P1) = −0.0395, κ(P2) = −0.1905, κ(P3) = 0.5662, κ(P4) = −0.3147 P3 > P1 > P2 > P4

π π(P1) = 0.1229, π(P2) = −0.0547, π(P3) = 0.4196, π(P4) = 0.0803 P3 > P1 > P4 > P2

Γ Γ(P1) = 0.6532,Γ(P2) = 0.6034,Γ(P3) = 0.8551,Γ(P4) = 0.613 P3 > P1 > P4 > P2

Table 6. Ranking order using the T-SLDFWG operator.
Score Function Score Values Ranking Results

κ κ(P1) = −0.3071, κ(P2) = −0.6078, κ(P3) = −0.1887, κ(P4) = −0.7207 P3 > P1 > P2 > P4

π π(P1) = −0.058, π(P2) = −0.42, π(P3) = 0.0028, π(P4) = −0.4558 P3 > P1 > P2 > P4

Γ Γ(P1) = 0.5639,Γ(P2) = 0.4649,Γ(P3) = 0.6038,Γ(P4) = 0.4284 P3 > P1 > P2 > P4
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Figure 2. The comparison of SF, QSF, and ESF under the T-SLDFWA operator.

Figure 3. The comparison of the SF, QSF, and ESF under the T-SLDFWG operator.
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7. Comparative study

The above section displays the method and detailed calculation processes of the proposed
operators. Besides the proposed operators, there are many aggregation operators to solve quantitative
MADM problems. Among them, we underline, for their relevance in this comparison, the LDFWG
operator [11], q-LDF weighted averaging (q-LDFWA) operator [12], q-LDF weighted geometric (q-
LDFWG) operator [12], SLDF weighted averaging (SLDFWA) operator [45] and SLDF weighted
geometric (SLDFWG) operator [45]. To accomplish the comparison, we used the above operators to
aggregate the same data presented in Example 6.1.

It is noteworthy that the q-LDFS only has two membership grades, T-grade and F-grade,
accompanied by two RPs. The T-SLDFS is characterized by three membership grades, which are
T-grade, I-grade, and F-grade, and three RPs. Thus, the q-LDFS is a special case of the T-SLDFS
and can be easily written in the form of a T-SLDFS. Therefore, to compare the proposed model with
those in [12], we set I-grade to 0 in the proposed operator and assigned two RPs instead of three.
The LDFS and SLDFS are also considered special cases of the T-SLDFS. In particular, we put q = 1
and I-grade= 0 in the suggested operators when we compare the LDFS with the suggested operators
and q = 1 while comparing SLDFS operators with the proposed operators. The computed results are
summarized in Table 7, and the geometrical interpretation of the results is shown in Figure 4.

Table 7. Comparative analysis of the proposed operators with existing operators.
Methods Operators Score Values Ranking Results

Riaz and Hashmi [11]
IΛ=0,ν=0 (q = 1) WG κ(P1) = −0.0528, κ(P2) = −0.1052, κ(P3) = 0.2992, κ(P4) = −0.2547 P3 > P1 > P2 > P4

Almagrabi et al. [12]
IΛ=0,ν=0 (q = 3) WA κ(P1) = 0.1402, κ(P2) = 0.1391, κ(P3) = 0.6117, κ(P4) = 0.1461 P3 > P4 > P1 > P2

Almagrabi et al. [12]
IΛ=0,ν=0 (q = 3) WG κ(P1) = −0.01, κ(P2) = −0.2957, κ(P3) = 0.154, κ(P4) = −0.2707 P3 > P1 > P4 > P2

Riaz et al. [45] (q = 1) WA κ(P1) = −0.1619, κ(P2) = −0.4433, κ(P3) = 0.3882, κ(P4) = −0.4207 P3 > P1 > P4 > P2

Riaz et al. [45] (q = 1) WG κ(P1) = −0.4416, κ(P2) = −0.6728, κ(P3) = 0.0463, κ(P4) = −0.8015 P3 > P1 > P2 > P4

Proposed operators
(q = 3) WA κ(P1) = −0.0395, κ(P2) = −0.1905, κ(P3) = 0.5662, κ(P4) = −0.3147 P3 > P1 > P2 > P4

Proposed operators
(q = 3) WG κ(P1) = −0.3071, κ(P2) = −0.6078, κ(P3) = −0.1887, κ(P4) = −0.7207 P3 > P1 > P2 > P4
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Figure 4. Geometrical representation of the information given in Table 7.

It is clear from Table 7 that the best alternatives obtained by using the methods of Riaz and
Hashmi [11], Almagrabi et al. [12] and Riaz et al. [45] remained our proposed operators. This implies
that the suggested methods are authentic and applicable. As mentioned above, LDFNs and q-LDFNs
do not have the I-grade, which represents neutrality, which will lead to the lack of some information.
The proposed T-SLDFNs include T-grade, I-grade, and F-grade, and give decision makers a more
flexible environment to avoid information loss in the decision-making process. The method of Riaz et
al. [45] is based on SLDFNs, and the rung q in SLDFNs equals 1. Therefore, under this circumstance,
some decision evaluation information cannot be effectively expressed.

It should be noted that as the parameter q increases, the allowable area of the evaluated information
escalates and we can continue to increase the value of parameter q to satisfy the required information
range. This is what happened while applying the T-SLDFNs, as the parameter q in T-SLDFNs is not
restricted by a certain value. As a result, the T-SLDFNs are more flexible and can express a wider
range of fuzzy information than the SLDFNs.

8. Conclusions

This manuscript briefly described how the proposed theory of T-SLDFS generalizes all of the
existing methods. T-SLDFS can express fuzzy information and simulate realistic DM problem
scenarios more accurately through the assignment of variable parameter q to the construction of the
SLDFS. The formal definition of the T-SLDFS was stated. The operations laws were developed, and
some aggregation operators were defined under the T-SLDF environment. Some roperties of these
operators were verified. Furthermore, a MADM method was designed on the basis of the proposed
operators and SFs. A case study was provided to rank some alternative products. A T-SLDFN is
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formulated to portray the performance of each alternative product concerning each feature. Then, T-
SLDFWA, T-SLDFOWA, T-SLDFHWA, T-SLDFWG, T-SLDFOWG and T-SLDFHWG operators are
utilized to aggregate the attribute values. Several types of score functions are used to obtain the ranking
results. We see slight differences between the ranking results derived from the proposed operators, but
the best and the first choice were the same for all proposed operators. Further, the results demonstrate a
great similarity and compatibility while using other evaluation methods such as LDFWG, q-LDFWA,
q-LDFWG, SLDFWA and SLDFWG operators. In this study we attempt to handle more complicated
MADM problems, however, there are still some limitations in the proposed work. We have only
taken into consideration the evaluation information given by T-SLDFS, whereas in factual MADM
problems, decision makers can use hybrid evaluation methods by employing the features of soft sets,
complex numbers, bipolarity, hesitancy and interval-based membership to better capture the vagueness
and uncertainties in some complicated data. In addition, this study addressed only two aggregation
operators with their variations, namely, T-SLDFWA, T-SLDFOWA, T-SLDFHWA, T-SLDFWG, T-
SLDFOWG and T-SLDFHWG operators. In the future, our targets are to study other generalizations
of T-SLDFS such as T-spherical linear Diophantine fuzzy soft set, T-spherical linear Diophantine
hesitant fuzzy set, T-spherical linear Diophantine bipolar fuzzy set and interval-valued T-spherical
linear Diophantine fuzzy sets. Also, the proposed operators could be extended to Heronian mean,
power mean, Hamacher, Bonferroni mean and Dombi’s aggregation operators.
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