22 research outputs found

    COMPLEX INTUITIONISTIC FUZZY DOMBI PRIORITIZED AGGREGATION OPERATORS AND THEIR APPLICATION FOR RESILIENT GREEN SUPPLIER SELECTION

    Get PDF
    One of the main problems faced by resilient supply chain management is how to solve the problem of supplier selection, which is a typical multi-attribute decision-making (MADM) problem. Given the complexity of the current decision-making environment, the primary influence of this paper is to propose the theory of Dombi operational laws based on complex intuitionistic fuzzy (CIF) information. Moreover, we examined the theory of CIF Dombi prioritized averaging (CIFDPA) and CIF weighted Dombi prioritized averaging (CIFWDPA), where these operators are the modified version of the prioritized aggregation operators and Dombi aggregation operators for fuzzy, intuitionistic fuzzy, complex fuzzy and complex intuitionistic fuzzy information. Some reliable properties for the above operators are also established. Furthermore, to state the art of the proposed operators, an application example in the presence of the invented operators is evaluated for managing resilient green supplier selection problems. Finally, through comparative analysis with mainstream technologies, we provide some mechanism explanations for the proposed method to show the supremacy and worth of the invented theory

    Multiple attribute decision-making based on Fermatean fuzzy number

    Get PDF
    Multiple attribute decision-making concerns with production significant in our everyday life. To resolve the problems that decision makers might feel uncertain to choose the suitable assessment values among several conceivable ideals in the procedure. Fuzzy model, and its extensions are extensively applied to MADM problems. In this study, we proposed an innovative Schweizer-Sklar t-norm and t-conorm operation of FFNs, Fermatean fuzzy Schweizer-Sklar operators. They were used as a framework for the development of an MCDM method, which was illustrated by an example to demonstrate its effectiveness and applicability. Finally, a complete limitation study, rational examination, and comparative analysis of the presented approaches has been exhibited, we originate that our technique is superior in offering DMs a better decision-making choice and reducing the restrictions on stating individual partialities

    Circular Pythagorean fuzzy sets and applications to multi-criteria decision making

    Full text link
    In this paper, we introduce the concept of circular Pythagorean fuzzy set (value) (C-PFS(V)) as a new generalization of both circular intuitionistic fuzzy sets (C-IFSs) proposed by Atannassov and Pythagorean fuzzy sets (PFSs) proposed by Yager. A circular Pythagorean fuzzy set is represented by a circle that represents the membership degree and the non-membership degree and whose center consists of non-negative real numbers μ\mu and ν\nu with the condition μ2+ν21\mu^2+\nu^2\leq 1. A C-PFS models the fuzziness of the uncertain information more properly thanks to its structure that allows modelling the information with points of a circle of a certain center and a radius. Therefore, a C-PFS lets decision makers to evaluate objects in a larger and more flexible region and thus more sensitive decisions can be made. After defining the concept of C-PFS we define some fundamental set operations between C-PFSs and propose some algebraic operations between C-PFVs via general tt-norms and tt-conorms. By utilizing these algebraic operations, we introduce some weighted aggregation operators to transform input values represented by C-PFVs to a single output value. Then to determine the degree of similarity between C-PFVs we define a cosine similarity measure based on radius. Furthermore, we develop a method to transform a collection of Pythagorean fuzzy values to a PFS. Finally, a method is given to solve multi-criteria decision making problems in circular Pythagorean fuzzy environment and the proposed method is practiced to a problem about selecting the best photovoltaic cell from the literature. We also study the comparison analysis and time complexity of the proposed method

    INVESTIGATION OF INDUSTRY 5.0 HURDLES AND THEIR MITIGATION TACTICS IN EMERGING ECONOMIES BY TODIM ARITHMETIC AND GEOMETRIC AGGREGATION OPERATORS IN SINGLE VALUE NEUTROSOPHIC ENVIRONMENT

    Get PDF
    Industry 5.0 acceptance is accelerating, but research is still in its infancy, and existing research covers a small subset of context-specific obstacles. This study aims to enumerate all potential obstacles, quantitatively rank them, and assess interdependencies at the organizational level for Industry 5.0 adoption. To achieve this, we thoroughly review the literature, identify obstacles, and investigate causal relationships using a multi-criteria decision-making approach called single value Neutrosophic TODIM. Single-valued Neutrosophic sets (SVNS) ensembles are employed in a real-world setting to deal with uncertainty and indeterminacy. The suggested strategy enables the experts to conduct group decision-making by focusing on ranking the smaller collection of criterion values and the comparison with the decision-making trial and evaluation laboratory method (DEMATEL). According to the findings, the most significant hurdles are expenses and the funding system, capacity scalability, upskilling, and reskilling of human labor. As a result, a comfortable atmosphere is produced for decision-making, enabling the experts to handle an acceptable amount of data while still making choices

    Disaster decision-making with a mixing regret philosophy DDAS method in Fermatean fuzzy number

    Get PDF
    In this paper, the use of the Fermatean fuzzy number (FFN) in a significant research problem of disaster decision-making by defining operational laws and score function is demonstrated. Generally, decision control authorities need to brand suitable and sensible disaster decisions in the direct conceivable period as unfitting decisions may consequence in enormous financial dead and thoughtful communal costs. To certify that a disaster comeback can be made, professionally, we propose a new disaster decision-making (DDM) technique by the Fermatean fuzzy Schweizer-Sklar environment. First, the Fermatean fuzzy Schweizer-Sklar operators are employed by decision-makers to rapidly analyze their indefinite and vague assessment information on disaster choices. Then, the DDM technique based on the FFN is planned to identify highly devastating disaster choices and the best available choices. Finally, the proposed regret philosophy DDM technique is shown functional to choose the ideal retort explanation for a communal fitness disaster in Pakistan. The dominance and realism of the intended technique are further defensible through a relative study with additional DDM systems

    Modified EDAS Method Based on Cumulative Prospect Theory for Multiple Attributes Group Decision Making with Interval-valued Intuitionistic Fuzzy Information

    Full text link
    The Interval-valued intuitionistic fuzzy sets (IVIFSs) based on the intuitionistic fuzzy sets combines the classical decision method is in its research and application is attracting attention. After comparative analysis, there are multiple classical methods with IVIFSs information have been applied into many practical issues. In this paper, we extended the classical EDAS method based on cumulative prospect theory (CPT) considering the decision makers (DMs) psychological factor under IVIFSs. Taking the fuzzy and uncertain character of the IVIFSs and the psychological preference into consideration, the original EDAS method based on the CPT under IVIFSs (IVIF-CPT-MABAC) method is built for MAGDM issues. Meanwhile, information entropy method is used to evaluate the attribute weight. Finally, a numerical example for project selection of green technology venture capital has been given and some comparisons is used to illustrate advantages of IVIF-CPT-MABAC method and some comparison analysis and sensitivity analysis are applied to prove this new methods effectiveness and stability.Comment: 48 page

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Systematic review of decision making algorithms in extended neutrosophic sets

    Get PDF
    The Neutrosophic set (NS) has grasped concentration by its ability for handling indeterminate, uncertain, incomplete, and inconsistent information encountered in daily life. Recently, there have been various extensions of the NS, such as single valued neutrosophic sets (SVNSs), Interval neutrosophic sets (INSs), bipolar neutrosophic sets (BNSs), Refined Neutrosophic Sets (RNSs), and triangular fuzzy number neutrosophic set (TFNNs). This paper contains an extended overview of the concept of NS as well as several instances and extensions of this model that have been introduced in the last decade, and have had a significant impact in literature. Theoretical and mathematical properties of NS and their counterparts are discussed in this paper as well. Neutrosophic-set-driven decision making algorithms are also overviewed in detail

    A New Type of Neutrosophic Set in Pythagorean Fuzzy Environment and Applications to Multi-criteria Decision Making

    Get PDF
    In this paper, we introduce the concepts of Pythagorean fuzzy valued neutrosophic set (PFVNS) and Pythagorean fuzzy valued neutrosophic (PFVNV) constructed by considering Pythagorean fuzzy values (PFVs) instead of numbers for the degrees of the truth, the indeterminacy and the falsity, which is a new extension of intuitionistic fuzzy valued neutrosophic set (IFVNS). By means of PFVNSs, the degrees of the truth, the indeterminacy and the falsity can be given in Pythagorean fuzzy environment and more sensitive evaluations are made by a decision maker in decision making problems compared to IFVNSs. In other words, such sets enable a decision maker to evaluate the degrees of the truth, the indeterminacy and the falsity as PFVs to model the uncertainty in the evaluations
    corecore