7 research outputs found

    Swap-Robust and Almost Supermagic Complete Graphs for Dynamical Distributed Storage

    Full text link
    To prevent service time bottlenecks in distributed storage systems, the access balancing problem has been studied by designing almost supermagic edge labelings of certain graphs to balance the access requests to different servers. In this paper, we introduce the concept of robustness of edge labelings under limited-magnitude swaps, which is important for studying the dynamical access balancing problem with respect to changes in data popularity. We provide upper and lower bounds on the robustness ratio for complete graphs with nn vertices, and construct O(n)O(n)-almost supermagic labelings that are asymptotically optimal in terms of the robustness ratio.Comment: 27 pages, no figur

    Supermagic graphs with many different degrees

    Get PDF
    Let G = (V, E) be a graph with n vertices and e edges. A supermagic labeling of G is a bijection f from the set of edges E to a set of consecutive integers {a, a + 1,..., a + e - 1} such that for every vertex v is an element of V the sum of labels of all adjacent edges equals the same constant k. This k is called a magic constant of f, and G is a supermagic graph. The existence of supermagic labeling for certain classes of graphs has been the scope of many papers. For a comprehensive overview see Gallian's Dynamic survey of graph labeling in the Electronic Journal of Combinatorics. So far, regular or almost regular graphs have been studied. This is natural, since the same magic constant has to be achieved both at vertices of high degree as well as at vertices of low degree, while the labels are distinct consecutive integers.Web of Science4141050104

    Vertex Magic Group Edge Labelings

    Get PDF
    A project submitted to the faculty of the graduate school of the University of Minnesota in partial fulfillment of the requirements for the degree of Master of Science. May 2017. Major: Mathematics and Statistics. Advisor: Dalibor Froncek. 1 computer file (PDF); vi, 46 pages, appendix A, Ill. (some col.)A vertex-magic group edge labeling of a graph G(V;E) with |E| = n is an injection from E to an abelian group ᴦ of order n such that the sum of labels of all incident edges of every vertex x ϵ V is equal to the same element µ ϵ ᴦ. We completely characterize all Cartesian products Cn□Cm that admit a vertex-magic group edge labeling by Z2nm, as well as provide labelings by a few other finite abelian groups

    Magic and antimagic labeling of graphs

    Get PDF
    "A bijection mapping that assigns natural numbers to vertices and/or edges of a graph is called a labeling. In this thesis, we consider graph labelings that have weights associated with each edge and/or vertex. If all the vertex weights (respectively, edge weights) have the same value then the labeling is called magic. If the weight is different for every vertex (respectively, every edge) then we called the labeling antimagic. In this thesis we introduce some variations of magic and antimagic labelings and discuss their properties and provide corresponding labeling schemes. There are two main parts in this thesis. One main part is on vertex labeling and the other main part is on edge labeling."Doctor of Philosoph

    Structural properties and labeling of graphs

    Get PDF
    The complexity in building massive scale parallel processing systems has re- sulted in a growing interest in the study of interconnection networks design. Network design affects the performance, cost, scalability, and availability of parallel computers. Therefore, discovering a good structure of the network is one of the basic issues. From modeling point of view, the structure of networks can be naturally stud- ied in terms of graph theory. Several common desirable features of networks, such as large number of processing elements, good throughput, short data com- munication delay, modularity, good fault tolerance and diameter vulnerability correspond to properties of the underlying graphs of networks, including large number of vertices, small diameter, high connectivity and overall balance (or regularity) of the graph or digraph. The first part of this thesis deals with the issue of interconnection networks ad- dressing system. From graph theory point of view, this issue is mainly related to a graph labeling. We investigate a special family of graph labeling, namely antimagic labeling of a class of disconnected graphs. We present new results in super (a; d)-edge antimagic total labeling for disjoint union of multiple copies of special families of graphs. The second part of this thesis deals with the issue of regularity of digraphs with the number of vertices close to the upper bound, called the Moore bound, which is unobtainable for most values of out-degree and diameter. Regularity of the underlying graph of a network is often considered to be essential since the flow of messages and exchange of data between processing elements will be on average faster if there is a similar number of interconnections coming in and going out of each processing element. This means that the in-degree and out-degree of each processing element must be the same or almost the same. Our new results show that digraphs of order two less than Moore bound are either diregular or almost diregular.Doctor of Philosoph

    Algebraic Combinatorics of Magic Squares

    Full text link
    We describe how to construct and enumerate Magic squares, Franklin squares, Magic cubes, and Magic graphs as lattice points inside polyhedral cones using techniques from Algebraic Combinatorics. The main tools of our methods are the Hilbert Poincare series to enumerate lattice points and the Hilbert bases to generate lattice points. We define polytopes of magic labelings of graphs and digraphs, and give a description of the faces of the Birkhoff polytope as polytopes of magic labelings of digraphs.Comment: Ph.D. Thesi
    corecore