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Abstract

A vertex-magic group edge labeling of a graph G(V,E) with |E| = n is an injection from

E to an abelian group Γ of order n such that the sum of labels of all incident edges of

every vertex x ∈ V is equal to the same element µ ∈ Γ. We completely characterize all

Cartesian products Cn�Cm that admit a vertex-magic group edge labeling by Z2nm, as

well as provide labelings by a few other finite abelian groups.
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Chapter 1

Introduction

A graph labeling is an assignment of values, traditionally integers, to the edges, vertices,

or both, of a graph. Formally stated, given a graph G = (V,E), a labeling of G is a

function from V , E, or both, to a set of labels. In the above definition, a graph is

understood to be a finite undirected simple graph. However, the notion of a graph

labeling has been extended to many other generalizations of graphs. There are also

many different types of graph labelings. For instance, a vertex labeling is function from

V to a set of labels, and similarly, an edge labeling is a function from E to a set of

labels.

Most graph labelings trace their origins to labelings presented by Alex Rosa in his

1967 paper. Rosa identified three types of labelings, which he called α-, β-, and ρ-

labelings [22]. β-labelings were later renamed graceful by S.W. Golomb. This naming

has remained popular to this day.

Over the years many papers have been written on a vast array of graph labeling

methods. Due to the nature of the subject, there are few general results on graph

labelings. Instead, many of the papers focus on particular classes of graphs and labeling

methods. It is common in these papers to be given a specific construction that will

ensure the given type of labeling is satisfied. It is also frequent that the same classes

of graphs and labeling methods have been written about by several authors leading to
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some terminology being used to represent more than one concept, or different termi-

nology meant to represent the same ideas. A thorough compilation of various graph

labelings is being maintained by Gallian in his Dynamic Survey of Graph Labelings [15].

In this project we discuss a major graph labeling method known as magic labelings and

its variations. We then provide our own magic labelings of a particular class of graphs

using finite abelian groups instead of the traditional integer labels. Motivated by the

notion of magic squares in number theory, magic labelings were introduced by Sedlacek

in 1963 [23]. In general, a magic-type labeling is a labeling in which we require the

sum of labels related to a vertex (for a vertex magic labeling) or to an edge (for an

edge magic labeling) to be constant throughout the entire graph. This sum of labels is

referred to as the weight of a vertex or an edge depending on the type of labeling.

We are motivated to look at various graph labelings by group elements because of the

similar structure many graphs and groups share. The most obvious example of such

being cycles and cyclic groups. In this project, we use the structure of cyclic subgroups

and cosets of the group Z2nm to construct vertex-magic edge labelings for Cartesian

products of cycles Cn�Cm. A vertex-magic group edge labeling of a graph G(V,E)

with |E| = n is an injection from E to an abelian group Γ of order n such that the sum

of labels of all incident edges of every vertex x ∈ V is equal to the same element µ ∈ Γ.

We completely characterize all Cartesian products Cn�Cm that admit a vertex-magic

group edge labeling by Z2nm.

We give definitions and describe magic labelings in more detail in Chapter 2, before

delving into our own results on vertex-magic group edge labelings.



Chapter 2

Known Results

We focus on magic-type labelings that relate to our problem in some way, shape, or

form, whether that be they use group elements as labels, or are related to a product of

cycles. There are many different types of products of graphs that will be discussed. We

give definitions of such products here. The first and most important for our research is

that of the Cartesian product.

Definition 2.0.1. The Cartesian graph product G = G1�G2 of graphs G1 and G2 with

disjoint vertex and edge sets V1, V2, and E1, E2 respectively, is the graph with vertex

set V = V1 × V2 where any two vertices u = (u1, u2) ∈ G and v = (v1, v2) ∈ G are

adjacent in G if and only if either u1 = v1 and u2 is adjacent with v2 in G2 or, u2 = v2

and u1 is adjacent with v1 in G1.

Figure 2.1: Cartesian Graph Product

A Cartesian product of cycles is then simply a Cartesian graph product where each
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graph is a cycle of varying length. Some other types of graph products that show up in

our discussion of magic labelings are the following.

Definition 2.0.2. The direct product (also known as the tensor product) G = G1 ×G2

of graphs G1 and G2 with disjoint vertex and edge sets V1, V2, and E1, E2 respectively,

is the graph with vertex set V = V1 × V2 where any two vertices u = (u1, u2) ∈ G and

v = (v1, v2) ∈ G are adjacent in G if and only if u1 is adjacent to v1 in G1 and u2 is

adjacent with v2 in G2.

Definition 2.0.3. The lexicographic product G = G1 ◦ G2 of graphs G1 and G2 with

disjoint vertex and edge sets V1, V2, and E1, E2 respectively, is the graph with vertex set

V = V1 × V2 where any two vertices u = (u1, u2) ∈ G and v = (v1, v2) ∈ G are adjacent

in G if and only if either u1 is adjacent to v1 in G1 or u1 = v1 and u2 is adjacent with

v2 in G2.

2.1 Vertex Magic Total Labelings

Definition 2.1.1. Let G(V,E) be a graph with vertex set V and edge set E. A one-

to-one mapping λ : V ∪ E → {1, . . . , |V | + |E|} is called a vertex magic total labeling

if there is a constant k such that for every vertex v ∈ V , λ(v) +
∑
λ(uv) = k where

the sum is over all vertices u adjacent to vertex v. The constant k is called the magic

constant for λ.

In [14], Froncek, Kovar, and Kovarova proved the following about vertex magic total

labelings of a product of cycles:

Theorem 2.1.2. For each m,n ≥ 3 and n odd, there exists a vertex magic total labeling

of Cm�Cn with magic constant k = 1
2m(15n+ 1) + 2.

2.2 Distance Magic Labelings

Definition 2.2.1. A distance magic labeling of a graph G(V,E) with |V | = n is an

injection from V to the set {1, 2, . . . , n} such that the sum of the labels of all neighbors

of every vertex x ∈ V , called the weight of x is equal to the same magic constant µ.
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Distance magic labelings of graphs have been studied by many authors. This labeling

has also been called a 1-vertex magic vertex labeling or a
∑

-labeling. Rao, Singh, and

Parameswaran proved in [21] the following result on Cartesian products of cycles.

Theorem 2.2.2. The graph Ck�Cm is distance magic if and only if k = m and k,m ≡ 2

(mod 4).

Based on this notion of distance magic graphs, Froncek introduced the concept of group

distance magic labeling defined in [13]. This leads us to our discussion of magic labelings

by group elements.

Definition 2.2.3. A Γ-distance magic labeling of a graph G(V,E) with |V | = n is an

injection from V to an abelian group Γ of order n such that the sum of labels of all

neighbors of every vertex x ∈ V is equal to the same element µ ∈ Γ. If a graph G is

Γ-distance magic for every abelian group Γ, then G is said to be group-distance magic.

Many results on group distance magic labelings have been obtained by a variety of

authors, many of which have collaborated on numerous papers on the subject. A few

of their results are now provided.

Together, Cichacz and Froncek in [8] and [13] showed the following.

Theorem 2.2.4. For an r-regular distance magic graph G on n vertices, where r is

odd there does not exist an abelian group Γ of order n having exactly one involution (an

element that is its own inverse) that is Γ-distance magic.

Theorem 2.2.5. Cm�Cn is a Zmn-distance magic graph if and only if mn is even.

Theorem 2.2.6. C2n�C2n has a Z2n
2 -distance magic labeling.

Cichacz also showed some Γ-distance magic labelings for Cm�Cn where Γ 6≈ Zmn and

Γ 6≈ Z2n
2 .

In [5], Anholcer, Cichacz, Peterin, and Tepeh proved the following.

Theorem 2.2.7. If an r1-regular graph G1 is Γ1-distance magic and an r2-regular graph

G2 is Γ2-distance magic, then the direct product of G1 and G2 is Γ1×Γ2-distance magic.

Theorem 2.2.8. If G is an r-regular graph of order n and m = 4 or m = 8 and r is

even, then Cm�G is group distance magic.

Theorem 2.2.9. Cm × Cn is Zmn-distance magic if and only if m ∈ 4, 8, n ∈ 4, 8, or

m,n ≡ 0 (mod 4).
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Theorem 2.2.10. If m,n 6≡ 0 (mod 4) then Cm × Cn is not Γ-distance magic for an

abelian group Γ of order mn.

Cichacz [9] also gave necessary and sufficient conditions for complete k-partite graphs

of odd order p to be Zp-distance magic, as well as showed the following.

Theorem 2.2.11. If p ≡ 2 (mod 4) and k is even, then there does not exist a group

Γ of order p that admits a Γ-distance magic labeling for a k-partite complete graph of

order p.

Theorem 2.2.12. Km,n is a group distance magic graph if and only if n + m 6≡ 2

(mod 4).

Theorem 2.2.13. If G is an Eulerian graph, then the lexicographic product of G and

C4 is group distance magic.

Theorem 2.2.14. If m + n is odd, then the lexicographic product of Km,n and C4 is

group distance magic.

In yet another paper [10], Cichacz gave necessary and sufficient conditions for direct

product of Km,n and C4 for m+ n odd and for Km,n × C8 to be group distance magic.

Lastly Cichacz proved the following [10].

Theorem 2.2.15. For n even and r ≥ 2, the Cartesian product of the complete r-partite

graph Kn,n,...,n and C4 is group distance magic.

In [4], Anholcer, Chichacz, Peterin, and Tepeh introduced the notion of balanced distance

magic graphs, and proved the following theorems.

Definition 2.2.16. A distance magic graph G with an even number of vertices is

balanced if there exists a bijection f from V (G) to {1, 2, . . . , |V (G)|} such that for

every vertex w the following holds: If u ∈ N(w) with f(u) = i, then there exists

v ∈ N(w), u 6= v with f(v) = |V (G)| − i+ 1.

Theorem 2.2.17. A graph G is balanced magic if and only if G is regular and V (G)

can be partitioned in pairs (ui, vi), i ∈ {1, 2, . . . , |V (G)|/2}, such that N(ui) = N(vi) for

all i.

Using this characterization, they were able to prove the following theorems.

Theorem 2.2.18. If G is a regular graph and H is a graph not isomorphic to Kn where

n is odd, then G ◦H is a balanced distance magic graph if and only if H is a balanced
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distance magic graph.

Theorem 2.2.19. G×H is balanced distance magic if and only if one of G and H is

balanced distance magic and the other one is regular.

Theorem 2.2.20. Cm×Cn is distance magic if and only if n = 4 or m = 4 or m,n ≡ 0

(mod 4)

Theorem 2.2.21. Cm × Cn is balanced distance magic if and only if n = 4 or m = 4.

In [6] they proved the following:

Theorem 2.2.22. Every balanced distance magic graph is also group-distance magic.

Theorem 2.2.23. The direct product of C4 or C8 and a regular graph is group-distance

magic.

Theorem 2.2.24. C8 ×G is group-distance magic for any even-regular graph G.

Theorem 2.2.25. C4s ×C4t is A×B-distance magic for any Abelian groups A and B

of order 4s and 4t respectively.

This led them to conjecture that C4m × C4n is a group distance magic graph.

Theorem 2.2.26. Cm×Cn is Zmn-distance magic if and only if m ∈ {4, 8} or n ∈ {4, 8}
or both n and m are divisible by 4.

Theorem 2.2.27. Cm × Cn with orders not divisible by 4 is not Γ-distance magic for

any Abelain group Γ of order mn.

We now turn our attention to another type of magic labeling by group elements.

2.3 A-Magic Labelings

Definition 2.3.1. For any nontrivial abelian group A under addition, a graph G is

said to be A-magic if there exists a labeling f of the edges of G with nonzero elements

of A such that the vertex weight w(v) =
∑
f(vu) over all edges vu is constant.

Now at first glance, A-magic seems to be almost identical to our notion of vertex magic

group edge labeling. There is however a major difference in the two. In A-magic

labelings, there is no injection between the elements of A and the edges in the graph

being labeled. This makes the task of obtaining magic much easier, as can be seen by
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the many results obtained about this form of magic. In A-magic, there is also no 0

element.

In [27] and [28], Stanley noted that Z-magic graphs can be viewed more generally

by linear homogeneous diophantine equations. Shiu, Lam, and Sun have shown the

following in [24].

Theorem 2.3.2. The union of two edge disjoint A-magic graphs with the same vertex

set is A-magic.

Theorem 2.3.3. The Cartesian product of two A-magic graphs is A-magic.

Theorem 2.3.4. The lexicographic product of two A-magic connected graphs is A-

magic.

Theorem 2.3.5. For an abelian group A of even order, a graph is A-magic if and only

if the degrees of all of its vertices have the same parity.

Theorem 2.3.6. If G and H are connected and A-magic, G ◦H is A-magic.

Theorem 2.3.7. If Km,n is A-magic then m,n ≥ 2 and A has order at least 4.

Theorem 2.3.8. Kn with an edge deleted is A-magic when n ≥ 4 and A has order at

least 4.

Definition 2.3.9. A θ-graph is a block with two non-adjacent vertices of degree 3 and

all other vertices of degree 2.

Theorem 2.3.10. All generalized θ-graphs are A-magic when A has oder at least 4.

Theorem 2.3.11. Cn + Km is A-magic when n ≥ 3 and m ≥ 2 and A has order at

least 2.

Definition 2.3.12. A wheel graph is a graph formed by connecting a single vertex to

all vertices of a cycle

Theorem 2.3.13. Wheels are A-magic when A has order at least 4.

When the magic constant of an A-magic graph is zero, the graph is called a zero-sum

A-magic. Akbari, Ghareghani, Khosrovshahi, and Zare in [1] along with Akbari, Kano,

and Zare in [2] proved:

Theorem 2.3.14. The null set N(G) of a graph G (the set of all positive integers h

such that G is zero-sum Zh-magic) of an r-regular graph G, r ≥ 3, does not contain the

numbers 2, 3 or 4.

Akbari, Rahnati, and Zare proved the following in [3].
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Theorem 2.3.15. If G is an even regular graph then G is zero-sum Zh-magic for all

h.

Theorem 2.3.16. If G is an odd r-regular graph, r ≥ 3 and r 6= 5 then N(G) contains

all positive integers except 2 and 4.

Theorem 2.3.17. If an odd regular graph is also 2-edge connected then N(G) contains

all positive integers except 2.

Theorem 2.3.18. A 2-edge connected bipartite graph is zero-sum Zh-magic for h ≥ 6.

They also determined the null set of 2-edge connected bipartite graphs, described the

structure of some odd regular graphs, r ≥ 3, that are not zero-sum 4-magic, and de-

scribed the structure of some 2-edge connected bipartite graphs that are not zero-sum

Zh-magic for h = 2, 3, 4. They also conjectured that every 5-regular graph admits a

zero-sum 3-magic labeling.

In [20], Lee, Saba, Salehi, and Sun investigated graphs that are A-magic where A = V4

the Klein four-group. Many of the theorems in that paper are special cases of the

results mentioned above. They also proved that the following were V4-magic: a tree if

and only if every vertex has odd degree; the star K1,n if and only if n is odd; Km,n for

all m,n ≥ 2; the edge deleted Kn − e when n ≥ 3; even cycles with k pendant edges

if and only if k is even; odd cycles with k pendant edges if and only if k is a common

edge; and Cn + K2; generalized theta graphs; graphs that are copies of Cn that share a

common edge; and G+K2 whenever G is V4-magic.

In [12] Choi, Georges, and Mauro investigated Zk
2-magic graphs in terms of even edge-

coverings, graph parity, factorability, and nowhere-zero 4-flows. They proved the fol-

lowing.

Theorem 2.3.19. The minimum k such that bridgeless G is zero-sum Zk
2-magic is equal

to the minimum number of even subgraphs that cover the edges of G, known to be at

most 3.

Theorem 2.3.20. A bridgeless graph G is zero-sum Zk
2-magic for all k ≥ 2 if and only

if G has a nowhere-zero 4-flow.

Theorem 2.3.21. G is zero-sum Zk
2-magic for all k ≥ 2 if G is Hamiltonian, bridgeless

planar, or isomorphic to a bridgeless complete multipartite graph.
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They also established equivalent conditions for graphs of even order with bridges to be

Zk
2-magic for all k ≥ 4. In [16] Georges, Mauro, and Wang were able to use well-known

results about edge-colorings to construct infinite families that are V4-magic but not

Z4-magic.

2.4 Anti-Magic Labelings

A somewhat inverse notion to magic labelings was introduced in 1990 by Hartsfield and

Ringel [17]. This being the notion of anti-magic. Vaguely speaking, in an anti-magic

labeling, we want that the weight of every vertex is different rather than the weights all

being the same as in a magic labeling. We discuss anti-magic labelings here in hopes

that we can utilize the structure of these labelings to connect anti-magic components

in a way to make our entire labeling magic. An anti-magic labeling of a finite simple

undirected graph with p vertices and q edges is a bijection from the set of edges to the

set of integers {1, 2, . . . , q} such that the vertex sums are pairwise distinct, where the

vertex sum at one vertex is the sum of labels of all incident edges to that vertex. A

graph is called anti-magic if it admits and anti-magic labeling. A more formal definition

is as follows:

Definition 2.4.1. For a graph G(V,E) with p vertices and q edges and without any

isolated vertices, an anti-magic edge labeling is a bijection f : E → {1, 2, . . . , q}, such

that the induced vertex sum f+ : V → N given by f+(u) =
∑
{f(uv) : uv ∈ E} is

injective.

Hartsfield and Ringel proved that Pn(n ≥ 3), cycles, wheels, and Kn(n ≥ 3) are all

anti-magic. More closely related to our work are the results of Tao-Ming Wang [31]. He

provided the following results.

Theorem 2.4.2. The generalized toroidal grid graphs, i.e the Cartesian products of

cycles, Cn1�Cn2� . . .�Cnk
, are anti-magic.

Theorem 2.4.3. Graphs of the form G�Cn are anti-magic it G is an r-regular anti-

magic graph with r > 1.

In [11], Cheng proved the following.
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Theorem 2.4.4. All Cartesian products of two or more regular graphs of positive degree

are anti-magic.

2.5 Supermagic Labelings

In the mid 1960’s, Stewart introduced the following types of magic labelings very closely

related to our notion of vertex-magic group edge labelings.

Definition 2.5.1. A connected graph is called semi-magic if there is a labeling of the

edges with integers such that for each vertex v the sum of the labels of all edges incident

with v is the same for all v.

Definition 2.5.2. A semi-magic labeling where the edges are labeled with distinct

positive integers is called a magic labeling.

Definition 2.5.3. A graph is called supermagic if it admits a labeling of the edges by

pairwise different consecutive positive integers such that the sum of the labels of the

edges incident with a vertex is independent of the particular vertex.

First note that this notion of supermagic labeling is exactly the same as our notion

of vertex-magic edge labeling. Also note that any graph that admits a magic labeling

of any kind using consecutive positive integers can also be magically labeled using the

cyclic group of order n. This is because in the labeling by integers the weight of each

element in the graph is equal to the same magic constant, and thus all weights will also

be congruent modulo n when labeled the same way with the cyclic group of order n.

In [29] and [30], Stewart proved the following theorems.

Theorem 2.5.4. Kn is magic for n = 2 and all n ≥ 5.

Theorem 2.5.5. Kn,n is magic for all n ≥ 3.

Theorem 2.5.6. Fans Fn are magic if and only if n is odd and n ≥ 3.

Theorem 2.5.7. Wheels Wn are magic for n ≥ 4, and Wn with one spoke deleted is

magic for n = 4 and for n ≥ 6.

Theorem 2.5.8. Km,n is semi-magic if and only if m = n.

Theorem 2.5.9. Kn is supermagic for n ≥ 5 if and only if n > 5 and n 6≡ 0 (mod 4).

In [23], Sedlacek showed the following.
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Theorem 2.5.10. Mobius ladders Mn are supermagic when n ≥ 3 and n is odd.

Theorem 2.5.11. Cn × P2 is magic, but not supermagic, when n ≥ 4 and n is even.

Shiu, Lam, and Lee proved the following in [25].

Theorem 2.5.12. The composition of Cm and Kn is supermagic when m ≥ 3,m 6≡ 0

(mod 4).

Theorem 2.5.13. If G is an r-regular supermagic graph, then so is the composition of

G and Kn for n ≥ 3.

In [18], Ho and Lee proved the next result.

Theorem 2.5.14. The composition of Km and Kn is supergmagic for m = 3 or 5 and

n = 2 or n odd.

In [26], Shiu Lam, and Cheng proved the following.

Theorem 2.5.15. For n ≥ 2, mKn,n is supermagic if and only if n is even or both m

and n are odd.

In [19], Ivanco gives some constructions of supermagic labelings of regular graphs and

completely characterizes supermagic regular complete multipartite graphs and super-

magic cubes. We will discuss a few of his discoveries that are directly related to our

topic.

In section 4 of his paper [19], Ivanco discusses supermagic labelings of the Cartesian

products of cycles. He provides proof for the following theorems.

Theorem 2.5.16. Cn�Cn is a supermagic graph for any n ≥ 3.

Theorem 2.5.17. Let n ≥ 2, k ≥ 2 be integers. Then C2n�C2k is a supermagic graph.

As mentioned above, this gave us that the Cartesian product of two cycles of even length

is not only a supermagic graph, but it is also a vertex-magic group edge label-able graph.

The previous two theorems led Ivanco to suggest the following conjecture:

Conjecture 2.5.1. Cn�Ck is a supermagic graph for any n, k ≥ 3.

This conjecture led us to look at the perhaps easier problem of labeling the product

of two cycles using group elements, which we will discuss in the next chapter. Ivanco

concludes his paper by characterizing supermagic cubes, but in doing so he first gives

the following:
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Theorem 2.5.18. C4�C4�C4 is a supermagic graph.

If C4�C4�C4 is a supermagic graph, then it must also be vertex-magic group edge

label-able. This result in turn made us consider the possibility that any product of any

number of cycles could have a group edge labeling that produces vertex-magic.



Chapter 3

Vertex Magic Group Edge

Labelings

As mentioned above, we are motivated to look at various graph labelings by group

elements because of the similar structure many graphs and groups share. The most

obvious example of such being cycles and cyclic groups. In this section we show how

to utilize these similarities, and use the structure of cyclic subgroups and cosets of the

group Z2nm to construct vertex-magic edge labelings for Cartesian products of cycles

Cn�Cm.

3.1 Labeling Cartesian Products of Two Cycles by the

Cyclic Group Z2nm

Definition 3.1.1. A vertex-magic group edge labeling of a graph G(V,E) with |E| = n

is an injection from E to an abelian group Γ of order n such that the sum of labels of

all incident edges of every vertex x ∈ V is equal to the same element µ ∈ Γ.

We now set out to prove that any product of two cycles Cn�Cm has a vertex-magic

group edge labeling by the cyclic group Z2nm.

14
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Theorem 3.1.2. For n,m both odd, Cn�Cm can be labeled with group elements from

Z2nm to form a vertex-magic edge labeling.

Proof. Without loss of generality let m ≥ n. Let xij refer to the vertex with incident

edges from the i-th n-cycle, and the j-th m-cycle in our product. Cycle Cj
m then contains

vertices xkj for 1 ≤ k ≤ m, and cycle Ci
n contains vertices xik for 1 ≤ k ≤ n. We may

then label our n m-cycles, C1
m, C

2
m, . . . , C

n
m, as follows. Start by labeling any edge of

our first m-cycle, C1
m with 0 and proceed labeling every other edge with consecutive

even numbers. This results in every edge being labeled since our m-cycles have odd

length. We then proceed to label our cycle Ci
m in the same manner but starting with

0 + 2m(i − 1), see Figure 3.1. Note that together these m-cycles contain every even

number in Z2nm as labels.

Figure 3.1: The labels on the ith m-cycle

The j-th vertex in Ci
m, vertex xij has a temporary weight of (m−1)+2(j−1)+4m(i−1),

see Figure 3.2. Now each m-cycle has temporary vertex weights that contains one

element from every even coset of the subgroup generated by 2m, and together these m-

cycles contain every even coset of this subgroup. This follows from the above temporary
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Figure 3.2: The temporary weights on the ith m-cycle

weights and the property that the subgroup generated by 2m is isomorphic to the

subgroup generated by 4m in Z2nm since both n and m are odd.

Now consider labeling the m n-cycles as follows. Start by labeling any edge of our

first n-cycle, C1
n with 1 and proceed labeling consecutive edges with 1 + 2m(i − 1) for

1 ≤ i ≤ n. We may then proceed to label our k-th n-cycle, Ck
n, with (2k−1)+2m(i−1)

for 1 ≤ i ≤ n, see Figure 3.3.

The j-th vertex in Ck
n, xjk, has temporary weight 2(2k − 1) + 2m(2j − 1), see Figure

3.4. Each n-cycle has partial weights forming an even coset of the subgroup generated

by 2m.

We now consider the following method to label Cn�Cm. To simplify notation, let

l =
n+ 3

2
. Start by labeling the horizontal m-cycles with C1

m labeled above, then the

l-th labeled m-cycle, C l
m then C2

m followed by C l+1
m and so on. Each time alternating

between Ci
m and C l+i

m , 1 ≤ i ≤ n− 1

2
. This method of labeling ensures that the partial

weight (due to the m-cycle labels) of each vertex in a given n-cycle is a coset ascending

in order by 2m, and that the partial weights of vertices in an m-cycle are increasing by
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Figure 3.3: The labels on the kth n-cycle

2 as we move from left to right.

In order to make the weight of each vertex congruent to 0 (mod 2nm), choose the n-cycle

with partial weight 2nm−(m−1) to have edges incident on x00, where the partial weight

of the vertex due to the m-cycle is (m − 1). For the i-th n-cycle, Ci
n, in the cartesian

product, choose the n-cycle labeled with partial weight 2nm−((m−1)+2i), and have the

edges corresponding to this partial weight be the edges incident on the vertex x0i. (This

can indeed be done since every possible even weight is found on one of our n-cycles)

Also note that this ensures a constant weight on this entire n-cycle since our n-cycle

has labels decreasing (in one direction) by 2m and as stated above, the partial weights

on our n-cycles due to our m-cycles are increasing by 2m. Given this labeling, vertex

xij has partial weight due to the horizontal m-cycle, wh(xij) = (m− 1) + 2i+ 2mj, and

partial weight due to the vertical n-cycle, wv(xij) = 2mn−2mj−(m−1+2i). This gives

a total weight of vertex xij , w(xij) = (m−1)+2i+2mj−2mj−(m−1+2i) = 2nm ≡ 0

(mod 2nm). Thus the weight of every vertex is congruent to 0, and we have shown that

by this construction, for n,m both odd, Cn�Cm can be labeled with group elements
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Figure 3.4: The temporary weights on the kth n-cycle

from Z2nm to form a vertex-magic edge labeling.

Theorem 3.1.3. For n odd and m even, Cn�Cm can be labeled with group elements

from Z2mn to form a vertex-magic edge labeling.

Proof. The method of labeling Cn�Cm for n odd and m even is similar to that when

both n and m are odd. Let xij refer to the vertex with incident edges from the i-th

n-cycle, and the j-th m-cycle in our product.

Start by labeling the first edge of our first m-cycle, C1
m, with 0 and proceed labeling

every edge with consecutive even numbers. We then proceed to label Ci
m in the same

manner but starting with 0+2m(i−1), see Figure 3.5. Note that together these m-cycles

contain every even number in Z2nm as labels.

Now each m-cycle has temporary vertex weights that contain one element from an even

coset of the subgroup generated by 2m. Note that these m-cycles may not contain every

even coset of this subgroup, and some cosets may be repeated. In fact, half of the even

cosets are used, and they are used exactly twice since 4m generates only half of the
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subgroup generated by 2m in Z2nm when m is even. The j-th vertex in Ci
m, xij has

temporary weight 2 + 4(j − 1) + 4m(i− 1), see Figure 3.6.

Figure 3.5: The labels on the ith m-cycle

Now consider labeling the m n-cycles. Start by labeling the first edge of our first n-cycle,

C1
n, with 1 and proceed labeling consecutive edges with 1 + 2m(i− 1) for 1 ≤ i ≤ n. We

then proceed to label our Ck
n with (2k − 1) + 2m(i− 1) for 1 ≤ i ≤ n. The j-th vertex

in Ck
n, xjk has temporary weight 2(2k − 1) + 2m(2j − 1), and each n-cycle has partial

weights forming an even coset of the subgroup generated by 4m.

We now consider the following method to label Cn�Cm. To simplify notation, let

s =
n+ 3

2
. Begin by labeling the horizontal m-cycles with C1

m labeled above, then Cs
m,

then C2
m, followed by the Cs+1

m and so on alternating between the Ci
m and C

s+(i−1)
m ,

1 ≤ i ≤ n− 1

2
. This method of labeling ensures that the partial weight (due to the

m-cycle labels) of each vertex in a given n-cycle is a coset ascending in order by 2m,

and that the partial weights of vertices in an m-cycle are increasing by 4 as we move

from left to right.

Now, in order to again make the weight of each vertex congruent to 0 (mod 2mn),

choose the n-cycle with partial weight 2mn− 2 to match up in the first spot, where the
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Figure 3.6: The partial weights due to the ith m-cycle

partial weight of the vertex due to the m-cycle is 2. For the i-th n-cycle in the Cartesian

product, choose the n-cycle labeled with partial weight 2nm− (2 + 4(i− 1)). (This can

indeed be done since the every possible even weight of our m-cycle is found on one of

our n-cycles, since both are generated by 4m) Also note that this ensures a constant

weight on this entire n-cycle since our n-cycle has labels decreasing (in one direction)

by 2m and as stated above, the partial weights on our n-cycles due to our m-cycles are

increasing by 2m.

Given this labeling, vertex xij has partial weight due to the horizontal m-cycle,

wh(xij) = 2 + 4(j − 1) + 2mi, and partial weight due to the vertical n-cycle,

wv(xij) = 2nm − 2mi − (2 + 4(j − 1)). This gives a total weight of vertex xij ,

w(xij) = 2 + 4(j − 1) + 2mi + 2nm − 2mi − (2 + 4(j − 1)) ≡ 0 (mod 2nm). Thus

the weight of every vertex is congruent to 0, and we have shown that by this construc-

tion, for n odd and m even, Cn�Cm can be labeled with group elements from Z2nm to

form a vertex-magic edge labeling.

By Ivanco’s results [19], we know that for integers k ≥ 2 and t ≥ 2, C2k�C2t can be

labeled with consecutive positive integers to form a vertex-magic labeling. It is easy to
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Figure 3.7: The labels on the kth n-cycle

see that this same labeling will then produce a vertex-magic labeling in the cyclic group

Z2nm since all vertex weights are equal and therefore congruent mod 2nm. Thus we

obtain the following theorem. We do, however, provide our own construction similar to

the ones above.

Theorem 3.1.4. For n,m both even, Cn�Cm can be labeled with group elements from

Z2nm to form a vertex-magic edge labeling.

Proof. Without loss of generality, suppose m ≥ n. Let xij refer to the vertex with

incident edges from the i-th n-cycle, and the j-th m-cycle in our product. We

begin by labeling the n m-cycles as follows: label C1
m with consecutive odd inte-

gers 1, 3, 5, . . . , 2m− 1, and continue to label Ci
m with the consecutive odd integers

1 + 2m(i− 1), 3 + 2m(i− 1), 5 + 2m(−1), . . . , (2m− 1) + 2m(i− 1), 1 ≤ i ≤ n. This

causes the partial weights in a n-cycle, due to the m-cycles, to be increasing downward

by 4m.

Now to label our n-cycles, choose a subgroup of order n/2, call it H. Note this can

always be done since n is even, and n/2 divides the order of our group 2mn. This

subgroup is generated by 4m, since 2mn/(n/2) = 4m. Now consider pairing even cosets
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Figure 3.8: The partial weights due to the kth n-cycle

(i.e the cosets H + 2k, 0 ≤ k ≤ 2m − 1), as such: H + 2k,H + 2m + 2k, 1 ≤ k ≤ m,

where 2k and 2m+ 2k are considered modulo 4m. Together, each pair of cosets will be

used to label one n-cycle.

We label each edge of Ck
n by alternating between increasing elements of the coset

H + 2k and H + 2m + 2k, 1 ≤ k ≤ m. That is, label every other edge

with increasing elements of H + 2k. Then starting on the edge directly follow-

ing the first edge labeled, we label the remaining edges with increasing elements

of H + 2m + 2k, see Figure 3.7. Then C1
n is labeled in order with edge la-

bels 2, 2m, 2 + 4m, 2m+ 4m, 2 + 2 · 4m, 2m+ 2 · 4m, . . . , 2m+ (m/2) · 4m. This en-

sures that the partial weight of the vertices in an n-cycles is increasing (or decreasing)

by 4m as we move through the cycle, see Figure 3.8.

Now to label Cn�Cm, label the i-th m-cycle with the labels we used for Ci
m 1 ≤

i ≤ n, beginning with the smallest label used in Ci
m on the left most edge of

the torus grid representing Cn�Cm (Here the m-cycles are horizontal cycles). In

this torus grid representation, we consider the vertical n-cycles to be numbered
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0

2mn-2

2mn-4m

...

...2(m-1)

2mn-4

2mn-2(m-1)

...

1 3 5 ... 2m-1

1+2m 3+2m 5+2m ... (2m-1)+2m

...

1+2m(i-1) 3+2m(i-1) 5+2m(i-1) ...

(2m-

1)+2m(i-1)

Figure 3.9: General Labeled Product of Two Even Cycles

1, 2, 3, . . . ,m− 1,m from left to right. Using this numbering of n-cycles, we then la-

bel (m/2) with the labels used to label Cm
n , and 1, 2, 3, . . . , (m/2)− 2, (m/2)− 1 with

labels from Cm−1
n , Cm−2

n , Cm−3
n , . . . , C

(m/2+2
n , C

(m/2)+1
n respectively. Then label m with

the labels used to label C
(m/2)
n , and (m/2) + 1, (m/2) + 2, . . . ,m− 1 with labels from

C
(m/2)−1
n , C

(m/2)−2
n , C

(m/2)−3
n , . . . , C1

n respectively. When labeling these n-cycles on our

torus grid however, we label them in the reverse cyclic order, top to bottom, then we did

when we first considered labeling the n-cycles. That is, label them in counter clockwise

fashion starting with 2k with regards to Figure 3.7.

This method of labeling Cn�Cm ensures that the partial weights due to the m-cycles,

going from top to bottom in a column of vertices, xij for some fixed j and i ranging
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from 1 to n, is increasing by 4m while the partial weights due to the n-cycles in these

same vertices will be decreasing by 4m. Note also that the partial weights due to the

m-cycles going left to right in a row of vertices, xij for some fixed i and j ranging from

1 to m, is increasing by 4, while the partial weight due to an n-cycle on these vertices is

decreasing by 4, see Figure 3.1. This ensures us that the vertex weights are congruent

along each row and column of vertices. Thus all vertex weights must be congruent mod

2nm. We have thus have shown that by this construction, for n and m even, Cn�Cm

can be labeled with group elements from Z2nm to form a vertex-magic edge labeling.

By combining Theorems 3.1.2, 3.1.3, and 3.1.4, we obtain the following result.

Theorem 3.1.5. For integers n and m, Cn�Cm can be labeled with group elements of

Z2nm to form a vertex-magic edge labeling.

3.2 Alternative Labeling Method by the Cyclic Group

Z2nm

Together, the previous three theorems prove that Cn�Cm has a vertex-magic group

edge labeling by the cyclic group Z2nm. The following theorem gives one construction

that allows for a magic labeling of Cn�Cm regardless of the parity of n and m. We

will see later that, even though this construction works for all Cn�Cm, it is intrinsically

different from the three given above, and in some cases may not be as useful.

Theorem 3.2.1. For integers n and m, Cn�Cm can be labeled with group elements of

Z2nm to form a vertex-magic edge labeling.

Proof. Let us assume that m ≥ n unless stated otherwise and denote the vertices of

Cn�Cm by vi,j with 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1. By a diagonal of Cn�Cm

we are referring to a sequence of vertices (v0,j , v1,j+1, . . . , vn−1,j+n−1, v0,j+n, v1,j+n+1,

. . . , vn−1,j−1) of length l and their corresponding labeled edges. It is easy to observe

that l = lcm(n,m), the least common multiple of n and m. Let Cj
n(i), 0 ≤ i ≤ n − 1,

1 ≤ j ≤ m, be the i-th edge from the top in the j-th n-cycle in the lattice grid

representation of Cn�Cm, and let Ct
m(s), 0 ≤ s ≤ m − 1, 1 ≤ t ≤ n, be the s-th edge
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from the left in the t-th m-cycle in the lattice grid representation of Cn�Cm. (This

lattice grid representation can be seen in Figure 3.1).

Consider Z2nm. Since the converse of Lagrange’s Theorem is true for finite abelian

groups, there exists a cyclic subgroup H of order l = lcm(n,m). Since H is cyclic, it

can be generated by a single element, call it a. Then H =< a >. We know that there are

an even number of cosets of this subgroup since the index [G : H] = (2nm/lcm(n,m)) =

2 · gcd(n,m).

Without loss of generality, consider the lattice grid representation of Cn�Cm where

the vertical cycles are of length n and the horizontal cycles are of length m. Label

the first vertical edge of the left-most n-cycle, C1
n(0) with the element 0 and pro-

ceed down the diagonal labeling the top vertical edges of the n-cycles in this diagonal,

C2
n(1), C3

n(2), C4
n(3), . . . with the consecutive elements of H.

Now label the horizontal edge, C1
m(1), the edge down and to the right of the vertical edge

labeled 0 of the topm-cycle, with the element−1 and proceed down the diagonal labeling

the right horizontal edges of the m-cycles in this diagonal, C2
m(2), C3

m(3), C4
m(4), . . . with

consecutive elements of the coset H − 1 in decreasing order. That is, in the opposite

order of the previous labeled diagonal in the n-cycles.

If all 2 · gcd(n,m) = 2 cosets have been used as labels, we are done. If not, we continue

by labeling the first edge of the next n-cycle from the left, C2
n(0) with the element 1

and again proceed down the diagonal, C3
n(1), C4

n(2), C5
n(3), . . . labeling the edges of the

n-cycles in this diagonal with consecutive elements of the coset H + 1. We then have at

least one more coset, H − 2. We label the next edge from the left in the top m-cycle,

C1
m(2) with the element −2 and proceed down the diagonal labeling the edges of the

m-cycles in this diagonal, C2
m(3), C3

m(4), C4
m(5), . . . with consecutive elements of the

coset H − 2 in decreasing order.

Repeat this process until all edges have been labeled, that is, we have used all 2·gcd(n,m)

cosets.

By this construction, given any vertex, the partial weight due to the vertical and hor-

izontal edges forming a right angle facing up and to the left is (i + k · a) + (−(i +

1) − k · a) = −1, and those forming a right angle facing down and to the right is
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Figure 3.10: Diagonal Labeling Method
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(i+ k · a) + (−(i+ 1)− (k− 1) · a) = −1 + a, where 0 ≤ i ≤ gcd(n,m), is obtained from

the coset H + i from which the vertical edges of a given right angle were produced.

The weight of every vertex is thus −2 + a, and we obtain a magic labeling of Cn�Cm

with group elements from Z2nm.

Theorem 3.2.2. The construction given in 3.2.1 is different than those in 3.1.2, 3.1.3,

and 3.1.4, when gcd(n,m) ≥ 2.

Proof. Note that due to the nature of construction 3.2.1, if the gcd(n,m) ≥ 2, that is,

there is more than one diagonal in our product, then we have some vertical edges that

have even labels and yet others that are odd. See Figure 3.2.

Now in construction 3.1.2, 3.1.3, and 3.1.4, this could never happen since all horizontal

(or vertical) cycles were labeled with even (or odd) labels. Thus no vertical and hori-

zontal edge could have labels of the same parity showing that the previous constructions

where intrinsically different.

However, if gcd(n,m) = 1, then there is only one diagonal. Vertical edges are then

labeled with the even elements of the subgroup H =< a >, and the horizontal edges are

labeled with the odd elements of the coset H − 1. It is clear to see that the labels in a

vertical n-cycle are elements of a particular coset of 2m. In this case, this labeling is the

same (up to a permutation of the labels) as those given in 3.1.2, 3.1.3, and 3.1.4.



Chapter 4

Future Work

In this chapter we present some conjectures and partial results obtained on the road to

proving them.

4.1 Labeling Cartesian Product of More Than Two Cycles

by the Cyclic Group Z2nm

We had hoped that we would be able to label the Cartesian product of any number of

cycles with the cyclic group of order 3nmk to form a vertex-magic group edge labeling.

To such an end we tried many different approaches. We had hoped we would be able

to label a product of three cycles of any parity. If we could do so, we would be able

to inductively combine our results for products of two and three cycles to obtain the

product of any number of cycles. Note that the product of any number of cycles can

be decomposed into a combination of products of three or two cycles. This led us to

propose the following conjectures.

Conjecture 4.1.1. Cn�Cm�Ck has a vertex-magic group edge labeling for any n,m

and k with labels from the cyclic group of order 3nmk.

Conjecture 4.1.2. Cn1�Cn2� . . .�Cnt has a vertex-magic group edge labeling for any

n1, n2, . . . , nt with labels from the cyclic group of the correct order.

28
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The following are partial results obtained during our attempts to obtain a magic labeling

of a product of three cycles.

4.2 Labeling Cartesian Product of Two Cycles by the

Cyclic Group Z2nm to Form a Vertex-Anti-Magic

Group Edge Labeling

We now give a construction to label a product of two cycles with the group Z2nm in

such a way as to obtain anti-magic. Recall that in an anti-magic labeling, we want the

weight of every vertex to be different rather than the weights all being the same as in

a magic labeling.

An anti-magic labeling of a finite simple undirected graph with p vertices and q edges is

a bijection from the set of edges to the set of integers {1, 2, . . . , q} such that the vertex

sums are pairwise distinct, where the vertex sum at one vertex is the sum of labels of

all incident edges to that vertex. A graph is called anti-magic if it admits an anti-magic

labeling.

Theorem 4.2.1. For odd integers n and m, Cn�Cm can be labeled with group elements

of Z2nm to form a vertex-anti-magic edge labeling.

Proof. Let us assume that n ≤ m unless stated otherwise and denote the vertices of

Cn�Cm by vi,j with 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1. By a diagonal of Cn�Cm we

are again referring to a sequence of vertices (v0,j , v1,j+1, . . . , vn−1,j+n−1, v0,j+n, v1,j+n+1,

. . . , vn−1,j−1) of length l and their corresponding labeled edges. It is easy to observe

that l = lcm(n,m), the least common multiple of n and m. Let Cj
n(i), 0 ≤ i ≤ n − 1,

1 ≤ j ≤ m, be the i-th edge from the top in the j-th n-cycle in the lattice grid

representation of Cn�Cm, and let Ct
m(s), 0 ≤ s ≤ m − 1, 1 ≤ t ≤ n, be the s-th edge

from the left in the t-th m-cycle in the lattice grid representation of Cn�Cm. (This

lattice grid representation can be seen in Figure 3.1).

Consider Z2nm. Since the converse of Lagrange’s theorem is true for finite abelian

groups, there exists a cyclic subgroup H of order l = lcm(n,m). Since H is cyclic, it
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can be generated by a single element, call it a. Then H =< a >. We know that there are

an even number of cosets of this subgroup since the index [G : H] = (2nm/lcm(n,m)) =

2 · gcd(n,m).

Without loss of generality, consider the lattice grid representation of Cn�Cm where

the vertical cycles are of length n and the horizontal cycles are of length m. Label

the first vertical edge of the left-most n-cycle, C1
n(0) with the element 0 and pro-

ceed down the diagonal labeling the top vertical edges of the n-cycles in this diagonal,

C2
n(1), C3

n(2), C4
n(3), . . . with the consecutive elements of H.

Now it may be that all vertical edges have been labeled. Note that this depends on

the index of H in G, [G : H] = (2nm/lcm(n,m)) = 2 · gcd(n,m), which gives the

total number of cosets. If not, continue to label the first vertical edge of the next n-

cycle not labeled, C2
n(0), with the element 1 and proceed down the diagonal labeling

the top vertical edges of the n-cycles in this diagonal, C3
n(1), C4

n(2), C5
n(3), . . . with the

consecutive elements of H + 1. Continue in this fashion until all vertical edges have

been labeled.

Now label the left-most horizontal edge of the top m-cycle, C1
m(0), with the next

available element k. Note, this element may be as large as m, and proceed down

the diagonal labeling the left horizontal edges of the m-cycles in this diagonal,

C2
m(1), C3

m(2), C4
m(3), . . . with consecutive elements of the coset H + k in increasing

order (or the same consecutive order that the n-cycles were labeled).

If all horizontal edges have been labeled, we are done. If not, continue by labeling

the first edge not having a label in the first m-cycle with the next available label t, and

proceed down the diagonal labeling the horizontal edges in the diagonal with consecutive

elements of the coset H + t.

When all 2 · gcd(n,m) cosets have been used as labels, we are done.

By this construction, the weights of the vertices traversing down a diagonal are increas-

ing by 4a.

Recall that given an additive group of order o, and an element a, | < ia > | = | < ja > |
if and only if gcd(o, i) = gcd(o, j). Now since m and n are both odd, l = lcm(n,m) must
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Figure 4.1: Anti-magic Labeling
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be odd since l divides nm which is odd. This also implies however that 1 = gcd(1, l) =

gcd(4, l). Thus the subgroup generated by a and the subgroup generated by 4a have

the same order l.

The weight of the vertices in a diagonal then form a coset of the subgroup generated by

4a (or a as we explained above), and are thus all distinct. It can easily be seen that by

this construction, each of the diagonals is a different coset, and thus each vertex has a

distinct weight. We then have an anti-magic labeling of Cn�Cm with group elements

from Z2nm.

4.3 Example of Vertex-Magic Group Edge Labeled Prod-

uct of Three Cycles by Z3nmk

After many months of trial and error in labeling a product of three cycles, we were

able to successfully label C5�C3�C3 with group elements from Z135. We hope that the

following method of labeling this product can be generalized to any product of three

cycles.

Note that the partial weights on the nine 5-cycles directly correspond to those of a given

vertex in the five different copies of C3�C3. Thus connecting these five copies of C3�C3

by the correct ordering of the nine 5-cycles gives us a vertex magic group edge labeling

of C5�C3�C3.
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0 15 30

75 45 60

105 120 90

31 1 16

61 76 46

91 106 121

107 77 2

47 17 122

32 92 62

3 18 33

78 48 63

108 123 93

109 79 94

4 19 124

34 49 64

134 104 29

74 44 14

59 119 89

6 21 36

81 51 66

111 126 96

52 22 37

82 97 67

112 127 7

26 131 56

101 71 41

86 11 116

9 24 39

84 54 69

114 129 99

130 100 115

25 40 10

55 70 85

53 23 83

128 98 68

113 38 8

12 27 42

87 57 72

117 132 102

73 43 58

103 118 88

133 13 28

80 50 110

20 125 95

5 65 35
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4.4 Labeling Cartesian Products of Two Cycles by Non-

Cyclic Groups

We now turn our attention to labeling the product of cycles Cn�Cm with noncyclic

groups of order 2nm. We first give a construction of how to obtain a magic labeling

with the group Zm×Zn×Z2, and make note that when 2,m,and n are relatively prime,

Zm × Zn × Z2 is isomorphic to the group Z2nm. Also note that if one of n,m is odd,

say n, then Zm × Zn × Z2 is isomorphic to Zm × Z2n.

Theorem 4.4.1. For integers m ≥ 2 and n ≥ 2, Cm�Cn can be labeled with group

elements from the group Zm × Zn × Z2 to form a vertex-magic edge labeling.

Proof. Without loss of generality consider m ≥ n, and let G be the group Zm×Zn×Z2.

Let H ≤ G be the subgroup of order n generated by (0, 1, 0). Let cosets of the subgroup

H in which the 3rd coordinate is a 0 be known as ‘even cosets’, and let those cosets in

which the 3rd coordinate is a 1 be known as ‘odd cosets’. We can thus define the even

coset H + i to be the elements of H plus (i, 0, 0) for 0 ≤ i < m. Let H be the the set

containing the elements of H + (0, 0, 1). We can then define the odd coset H + j to be

the elements of H plus (j, 0, 0) for 0 ≤ j < m.

Begin by labeling the first n-cycle with the elements of H, and continue by labeling the

i-th n-cycle with the elements of the even coset H + i. Now when labeling the m-cycles

we want to place the first element of H on the first m-cycle, and continue placing the

j-th element of H on the j-th m-cycle. We then continue placing the k-th element of

H + k onto the k-th m-cycle. The labelings of i-th n-cycle and j-th m-cycle can be

seen in Figures 4.2 and 4.3 respectively. The temporary weights associated with each

cycle are as seen in Figures 4.4 and 4.5. The previous discussion gives us an ordered

representation of our cycles that we will refer to in our construction.

We now show how to label the product of cycles: Begin by fixing a vertex x00 in our

product of Cm�Cn. Let the vertex x00 be the intersection of the 0-th n-cycle and the

0-th m-cycle such that the partial weight due to the n-cycle is (0, 1, 0) and the partial

weight due to the m-cycle is (1, 0, 0). Have the vertex x0j be the intersection of the

0-th n-cycle and the (n − j)-th m-cycle in such a way that the partial weight due to
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the m-cycle is (1, n− 2j, 0). This weight indeed exists since the (n− j)-th m-cycle has

a vertex with partial weight (1, 2(n − j), 0) which is congruent to (1, n − 2j, 0). Note

that here the labelings and thus partial weights of the n-cycle have already been fixed

when we fixed the vertex x00. Similarly have the vertex xi0 be the intersection of the

(m− i)th n-cycle and the 0th m-cycle in such a way that the partial weight due to the

n-cycle is (2i, 1, 0). Note that we have thus fixed the partial weights and labelings at

every vertex in our product. The vertex xij is then the intersection of the (m − i)-th
n-cycle and the (n − j)-th m-cycle in such a way that the partial weight due to the

n-cycle is (2i, 2j + 1, 0) and the partial weight due to the m-cycle is (1− 2i, n− 2j, 0).

This gives us a total weight at each vertex of (2i, 2j+1, 0)+(1−2i, n−2j, 0) = (1, 1, 0).

Thus we have a magic labeling of Cm�Cn with magic constant µ = (1, 1, 0).

Python code to label Cm�Cn with group elements from the group Zm×Zn×Z2 to form

a vertex-magic edge labeling can be found in the appendix.

Figure 4.2: The labels on the ith n-cycle
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Figure 4.3: The labels on the jth m-cycle

Figure 4.4: Partial weights on the ith n-cycle
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Figure 4.5: Partial weights on the jth m-cycle

Throughout our research we have been able to label various products of cycles with

other noncyclic group ableian groups of order 2nm. Most methods of labeling these

products have been similar to the constructions given in 3.1.2, 3.1.3, and 3.1.4, making

use of a cyclic subgroup and its cosets. These findings lead us to pose the following

conjecture.

Open Problem 4.4.2. Does Cn�Cm has a vertex-magic group edge labeling for any n

and m with labels from any finite abelian group of order 2nm?

Combining the topic of this section with our discussion of the magic labeling of any

number of cycles, some natural questions arise:

Open Problem 4.4.3. Does Cn�Cm�Ck has a vertex-magic group edge labeling for

any n,m and k with labels from any finite abelian group of order 3nmk?

Open Problem 4.4.4. Does Cn1�Cn2� . . .�Cnt has a vertex-magic group edge labeling

for any n1, n2, . . . , nt with labels from any finite abelian group of the correct order?

We have not found enough significant evidence for or against these claims to bolster a

conjecture of them. They do however provide interesting questions for future research

in this area, and are thus left to peak the interest of any researcher(s) interested in

vertex magic group edge labelings.
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Appendix A

Computer Code

A.1 Code for Labeling Cn�Cm by Zm × Zn × Z2

The following is python code to produce a vertex magic group edge labeling of Cn�Cm

with group elements of Zm × Zn × Z2.

from pprint import pprint

import sys

# trying to label Cm cross Cn with Zm x Zn x Z2

# def vectMod(v,mods):

# l = []

# for i,x in enumerate(v):

# l.append(x % mods[i])

# return tuple(l)

def vectSum(a,b,mods=None):

l = []

assert len(a) == len(b)

42



43

for x in range(len(a)):

if mods:

l.append((a[x]+b[x]) % mods[x])

else:

l.append(a[x]+b[x])

return tuple(l)

def rotateCycle(cycle,n):

return cycle[n:]+cycle[:n]

try:

m = int(sys.argv[1])

n = int(sys.argv[2])

except IndexError:

m = int(raw_input("m: "))

n = int(raw_input("n: "))

mods = [m,n,2]

MAGIC = (1,1,0)

h = [[(i,j,0) for j in range(n)] for i in range(m)]

hb = [[(i,j,1) for j in range(n)] for i in range(m)]

nCycles = h

mCycles = [[hb[i][j] for i in range(len(hb))] for j in range(n)]

mCycles = [mCycles[-i] for i in range(len(mCycles))]

nCycles = [nCycles[-i] for i in range(len(nCycles))]

nPartialWeights = [[vectSum(nCycles[j][i],nCycles[j][i-1],mods=mods) for i in range(n)] for j in range(m)]

mPartialWeights = [[vectSum(mCycles[j][i],mCycles[j][i-1],mods=mods) for i in range(m)] for j in range(n)]
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# t = nCycles[1]

# nCycles[1] = nCycles[2]

# nCycles[2] = t

#

# t = nPartialWeights[1]

# nPartialWeights[1] = nPartialWeights[2]

# nPartialWeights[2] = t

# set up (0,0)

breakBool = False

for i,x in enumerate(nPartialWeights[0]):

for j,y in enumerate(mPartialWeights[0]):

if vectSum(x,y,mods=mods) == MAGIC:

nCycles[0] = rotateCycle(nCycles[0],i)

nPartialWeights[0] = rotateCycle(nPartialWeights[0],i)

mCycles[0] = rotateCycle(mCycles[0],j)

mPartialWeights[0] = rotateCycle(mPartialWeights[0],j)

breakBool = True

break

if breakBool:

break

# set up (0,x)

for j,cycle in enumerate(mPartialWeights):

breakBool = False

for i,x in enumerate(cycle):

if vectSum(x,nPartialWeights[0][j],mods=mods) == MAGIC:

print "rotating m-cycle {} by {}".format(j,i)

mCycles[j] = rotateCycle(mCycles[j],i)
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mPartialWeights[j] = rotateCycle(mPartialWeights[j],i)

breakBool = True

break

if not breakBool:

print "unable to set up (0,{})".format(j)

# set up (x,0)

for i,cycle in enumerate(nPartialWeights):

breakBool = False

for j,y in enumerate(cycle):

if vectSum(y,mPartialWeights[0][i],mods=mods) == MAGIC:

print "rotating n-cycle {} by {}".format(i,j)

nCycles[i] = rotateCycle(nCycles[i],j)

nPartialWeights[i] = rotateCycle(nPartialWeights[i],j)

breakBool = True

break

if not breakBool:

print "unable to set up ({},0)".format(i)

nCycles = [rotateCycle(nCycles[i],-1) for i in range(len(nCycles))]

mCycles = [rotateCycle(mCycles[i],-1) for i in range(len(mCycles))]

magicMatrix = [vectSum(nPartialWeights[i][j],mPartialWeights[j][i],mods=mods) for i in range(m) for j in range(n)]

print "------------------------------------------------------------------------"

print "n cycles:"

pprint(nCycles)

print "------------------------------------------------------------------------"

print "m cycles:"

pprint(mCycles)
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print "------------------------------------------------------------------------"

print "n partial weights:"

pprint(nPartialWeights)

print "------------------------------------------------------------------------"

print "m partial weights:"

pprint(mPartialWeights)

print "------------------------------------------------------------------------"

print "magic matrix:"

pprint(magicMatrix)
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