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VŠB – Technical University of Ostrava

708 33 Ostrava-Poruba, Czech Republic

e-mail: petr.kovar@vsb.cz

and
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Abstract

Let G = (V,E) be a graph with n vertices and e edges. A supermagic
labeling of G is a bijection f from the set of edges E to a set of consecutive
integers {a, a + 1, . . . , a + e − 1} such that for every vertex v ∈ V the sum
of labels of all adjacent edges equals the same constant k. This k is called a
magic constant of f , and G is a supermagic graph.

The existence of supermagic labeling for certain classes of graphs has
been the scope of many papers. For a comprehensive overview see Gallian’s
Dynamic survey of graph labeling in the Electronic Journal of Combinatorics.
So far, regular or almost regular graphs have been studied. This is natural,
since the same magic constant has to be achieved both at vertices of high
degree as well as at vertices of low degree, while the labels are distinct
consecutive integers.
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1. Definitions and Known Results

Let G be a simple graph with vertex set V and edge set E. We denote the number
of vertices by n and the number of edges by e.

Let f be an injective mapping of E to N. The weight of a vertex v from V
is the sum of labels of all edges incident to v and is denoted by w(v). Thus,

w(v) =
∑

uv

v∈uv

f(uv).

If the weight of every vertex v ∈ V is the same, then f is a magic labeling. The
concept of magic labeling was introduced by Sedláček in [13]. Moreover, if the
set of labels in f consists of consecutive integers {a, a + 1, a + e − 1}, then f is
a supermagic labeling and every graph that allows such labeling is a supermagic

graph.
Supermagic graphs were first introduced by Stewart. In [16] it is shown that

the classic concept of an n×n magic square corresponds to a supermagic labeling
of Kn,n. In [17] Stewart characterized supermagic complete graphs.

Sedláček [12] showed that Möbius ladders Mn are supermagic when n ≥ 3
and n is odd, and that Cn×P2 is not supermagic when n ≥ 4 and n is even. Bača,
Holländer, and Lih described two special classes of supermagic quartic graphs [1].

In [15] it is shown that if G is an r-regular supermagic graph, then so is the
composition of G and Kn for n ≥ 3. The complete m-partite graph Kn,n,...,n is
supermagic when n ≥ 3, m > 5 and m 6≡ 0 (mod 4), and also the composition of
Cm and Kn is supermagic if m ≥ 3 and n ≥ 2. Ho and Lee [4] showed that the
graph Km[Kn] is supermagic if m = 3 or m = 5 and n = 2 or n is odd. Shiu,
Lam, and Cheng [14] proved that mKn,n is supermagic for n ≥ 2 if and only
if n is even or both m and n are odd. In [7] Ivančo characterized supermagic
regular complete multipartite graphs and supermagic cubes. He showed that Qn

is supermagic if and only if n = 1 or n is even and n > 2. He also proved
that Cn × Cn and C2m × C2n are supermagic and conjectured that Cm × Cn is
supermagic for all m and n. In [2] some lower and upper bounds for numbers of
edges in supermagic graphs are established. Ivančo, Lastivková, and Semaničová
[8] characterized magic line graphs of general graphs and supermagic line graphs
of regular bipartite graphs.

Hartsfield and Ringel in [5] presented a simple construction of non-regular
supermagic graphs. They proved that in an r-regular supermagic graph there
exists an edge e such that G − e is supermagic. In [9] Ivančo and Polláková
proved that complete multipartite graphs K1,n,n are supermagic if and only if
n ≥ 2 and K1,2,...,2 is supermagic.

Some examples of infinite classes of non-regular supermagic graphs have al-
ready been presented by Hartsfield, Ringel, and Stewart in [6] and [16]. Further
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examples have been provided by Drajnová, Ivančo, and Semaničová in [2], and
Ivančo and Semaničová in [10] and [11]. All the non-regular supermagic graphs
in papers [2, 5, 6, 10, 11] and [16] have only two different degrees of vertices.
A comprehensive overview on supermagic graphs is in [3].

Tomáš Madaras in a personal communication pointed out a very natural
question: how irregular can a supermagic graph be? In this paper we try to
answer that question. We give a construction of supermagic graphs with an arbi-
trarily high difference of degrees and another construction with arbitrarily many
different degrees.

Let G, H be two graphs. The composition G[H], also called the lexicographic
product of G and H, is the graph with vertex set V (G) × V (H), and the edges
between (u1, u2) and (v1, v2) of G[H] are connected by an edge if u1v1 ∈ E(G) or
if u1 = v1 and u2v2 ∈ E(H). The results in Section 2 are based on compositions.

Let G be a graph and let H be a bipartite graph with both partite sets
consisting of r vertices. A bipartite composition BC(G,H) is a graph that arises
by replacing each vertex of G with r vertices and each edge of G with a copy
of H. The structure of BC(G,H) is determined uniquely only if H is vertex
transitive. Otherwise, the structure of BC(G,H) depends on which vertex of
H is mapped to which vertex in BC(G,H). However, this ambiguity will be
essential in constructing supermagic graphs with many different degrees. The
results in Section 3 are based on bipartite compositions.

2. Difference Between Maximal and Minimal Degrees

Surprisingly, the difference between the highest and the lowest degree in a su-
permagic graph can be arbitrarily high. Here we provide a direct construction of
such graphs along with the idea on which the construction is based. First we show
that for odd n the graph consisting of t copies of Kn,n allows an edge labeling
such that the vertex weights in the i-th copy equal id for some fixed integer d.

Lemma 2.1. The graph tKn,n, where n is odd, allows an edge labeling by con-

secutive integers such that the vertex weight in the i-th copy of Kn,n is in3.

Proof. In [16] it was shown that Kn,n allows a supermagic labeling f for any
n ≥ 3. Since Kn,n is regular, without loss of generality, we assume that the
smallest label in f is 1 and thus the magic constant is k = n(n2 + 1)/2. Now
adding (n2 − 1)/2 to each edge label we obtain a supermagic labeling f1 of the
first copy Kn,n with the magic constant k1 = n(n2 + 1)/2 + n(n2 − 1)/2 = n3.

Now assigning the next n2 integers to the second copy of Kn,n by adding yet
another n2 to each edge label we obtain a supermagic labeling f2 of the second
copy Kn,n with the magic constant k2 = n3 + n · n2 = 2n3. Similarly, the i-th
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copy labeled by integers in2+(1−n2)/2, in2+(1−n2)/2+1, . . . , in2+(n2−1)/2
has a supermagic labeling fi with the magic constant ki = in3.

Clearly, all the tn2 labels used in labeling tKn,n are consecutive integers
starting at (n2 − 1)/2 + 1 and the vertex weight in the i-th copy of Kn,n is in3.
Thus, the union f =

⋃t
i=1

fi is the desired labeling.

Consider the supermagic graph G in Figure 1 on the left with magic con-
stant k = 12. It is isomorphic to K3,3 − uv. When multiplying each label by d,
the vertex weight in the resulting graph is 12d (Figure 1 on the right).
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4d

Figure 1. Supermagic labeling of G and G with labels multiplied by d.

The composition G[Kn] can be considered as replacing each edge labeled i
by the i-th copy of Kn,n with vertex weight in3. Taking 8 copies of Kn,n as in
Lemma 2.1 we construct the composition G[Kn]. Each edge labeled i is replaced
by Kn,n with the vertex weight in3 as in Lemma 2.1. The resulting graph is
supermagic (Figure 2).

H3

H2

H7

H1

H6

H5

H8

H4

Figure 2. Supermagic labeling of G[Kn], G ≃ K3,3 − uv.

Lemma 2.2. Let G = K3,3−uv. The composition G[Kn] is supermagic for every

odd integer n and ∆(G[Kn])− δ(G[Kn]) = n.

We omit the formal proof, since the claim is a special case of Theorem 2.3.
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2.1. Generalization

An analogous construction yields a supermagic labeling for any supermagic
graph G. Previously, in [15] and [4] compositions G[H] were considered for regu-
lar graphs G only. The composition G[Kn] is supermagic also if G is not regular,
however n must be odd.

Theorem 2.3. Let G be any supermagic graph. The composition G[Kn] is su-

permagic for every odd integer n.

Proof. Let G be any supermagic graph with e edges and consecutive labels
a, a+1, . . . , a+ e− 1. In the composition G[Kn] replace each edge labeled i with
the i-th copy of Kn,n and label the edges with the labeling f from Lemma 2.1.
The set of labels in G consits of consecutive integers, so the set of labels in G[Kn]
are consecutive integers an2+(1−n2)/2, an2+(1−n2)/2+1, . . . , (a+ e−1)n2+
(n2 − 1)/2. The weight k of every vertex of degree d in G is obtained as a sum
of some d integers a1, a2, . . . , ad. Let f =

⋃a+e−1

i=a fi be the labeling of edges in
G[Kn]. Then the weight of every vertex in G[Kn] is obtained as the sum of nd
integers: n edges in the a1-st copy of Kn,n contribute the sum a1n

3, the next n
edges in the a2-nd copy contribute the sum a2n

3 and so on. Thus, the weight is
a1n

3 + a2n
3 + · · ·+ adn

3 = kn3. Hence, f is a supermagic labeling of G[Kn].

Now, the highest degree ∆(G[Kn]) = 3n and the smallest degree δ(G[Kn]) =
2n. Immediately we have the following.

Corollary 2.4. The difference between the highest and lowest degree in a super-

magic graph can be arbitrarily high.

Remark 2.5. The same approach for even n is not possible. The construction
described in the proof of Theorem 2.3 requires the weights of copies of Kn,n to
form an arithmetic sequence with difference n3 and first element in3, where i is
the smallest weight used in G. Hence, the first copy has to have vertex weights
equal to in3, which can be achieved only by adding ((2i − 1)n2 − 1)/2 to every
label (due to Lemma 2.1). Yet, for even n, that is not an integer.

3. Supermagic Graphs with Many Different Degrees

Our main goal is to show that a supermagic graph can have arbitrarily many
different degrees. First we construct graph H — a building block that has the
following properties: H is bipartite with equal-sized partite sets, H has at least
two different degrees, and tH is supermagic for any positive odd integer t. Then
taking a suitable regular graphG, constructing a bipartite composition BC(G,H)
using a proper number of copies of H (Figure 3) we obtain a larger supermagic
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graph J . The resulting graph J can have several different degrees depending on
the degrees of vertices shared by different copies of H at each vertex of J .

H

H

H

Figure 3. A bipartite composition J obtained by gluing copies of H.

3.1. The building block

First we label edges of tk 4-cycles with consecutive integers a, a+1, . . . , a+4tk−1
as in Figure 4. To construct each building block H we take a subset of any k
4-cycles among the tk 4-cycles. Notice, that the edge-labeling is a bijection. Each
cycle has one vertex of small weight 2a+ 2tk − 1 (drawn in white), two vertices
of medium weight 2a+4tk− 1 (gray) and one vertex of high weight 2a+6tk− 1
(black).

a+ 4tk − 1

a
a+ 2tk − 1

a+ 2tk
a+ 4tk − 2

a+ 1
a+ 2tk − 2

a+ 2tk + 1
a+ 3tk

a+ tk − 1
a+ tk

a+ 3tk − 1

Figure 4. k copies of C4.

Suppose p, q, and r are integers, p + q = r, and p < q < r. Now the
supermagic bipartite graph H is obtained by gluing together k 4-cycles as in
Figure 5. Each 4-cycle will have the vertex with the smallest weight with respect
to the cycle among p vertices of high degree, two vertices with the middle weight
among r vertices of medium degree, and the vertex with the highest weight among
q vertices of small degree. The vertex degrees correspond to the number of 4-
cycles glued together at each vertex. There are x 4-cycles meeting at every vertex
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in P , z 4-cycles at every vertex in Q, and y 4-cycles at every vertex in R. If 2x
are the degrees in P , 2z are the degrees in Q, and 2y are the degrees in R, then
comparing the number of 4-cycles and the number of edges in each set we have

2k = 2xp, 4k = 2yr, 2k = 2zq.(1)

The weight of every vertex of the resulting graph H has to be the same integer M .
This yields the following equalities for vertex weight:

M = x(2a+ 2tk − 1), M = y(2a+ 4tk − 1), M = z(2a+ 6tk − 1).(2)
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Figure 5. Structure of graph H.

Under the assumption that H is a simple graph and t = 1, the smallest
values satisfying equations (1) and (2) we were able to find are k = 735, a = 368,
p = 21, q = 49, r = 70, x = 35, y = 21, z = 15, and M = 77 175. Even though
there are smaller integral solutions of the equations (1) and (2), the corresponding
graph H cannot have multiedges, therefore the number of edges leaving P must
satisfy 2px ≥ r. The inequality 2qy ≥ r is satisfied because q ≥ p and 2ry ≥ p+q
holds because p+ q = r. Notice that there are 735 different 4-cycles having one
vertex in P , so each vertex in P has 2x = 70 neighbors, so the bipartite subgraph
induced on P ∪R is complete.

We choose the structure of H as follows. We denote vertices in P by pi for
i = 0, 1, . . . , 20, vertices in Q by qj for j = 0, 1, . . . , 48, and vertices in R by rm
and r′m for m = 0, 1, . . . , 34. Every pair of vertices rm, r′m, for m = 0, 1, . . . , 34 we
join to all 21 vertices in P and to 21 vertices qj in Q, where j ≡ (21m+ i)mod 49
for i = 0, 1, . . . , 20 (21 consecutive subscripts modulo 49). Hereby we construct 21
4-cycles sharing rm and r′m (see Figure 5). Altogether we construct 21 · 35 = 735
4-cycles rmpir

′

mqj . These are edge-disjoint, since every edge between P and
R appears in exactly one 4-cycle and no edge between Q and R is repeated,
since every vertex rm (or r′m, respectively) is joined to 21 different vertices in Q.
Clearly, the degrees of vertices in P are 2x = 70 and in R are 2y = 42. It
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is not difficult to see that the degrees of all vertices in Q are 2z = 30, since
between 21 · 35 = 735 consecutive integers j = 21m + i, for i = 0, 1, . . . , 20 and
m = 0, 1, . . . , 34, are 15 integers congruent modulo 49, so each vertex in Q is
joined to 15 pairs of vertices in R.

We have the following lemma.

Lemma 3.1. Graph H is supermagic, bipartite with equal-sized partite sets and

three distinct degrees. Moreover, for every odd positive integer t the graph tH is

supermagic.

Proof. Suppose H is labeled as described above. We call the labeling f . Clearly,
the resulting graphH has p+q = r = 70 vertices in each partite set. The labels are
distinct consecutive integers starting at a = 368. GraphH is supermagic, because
the weight of each vertex is M = 77 175, since x(2a+2k− 1) = y(2a+4k− 1) =
z(2a+ 6k − 1) = 77 175. The vertices in P are of degree 2x = 70, the vertices in
Q are of degree 2z = 30, and the vertices in R are of degree 2y = 42.

Finally, to show that t copies of H are also supermagic for positive odd t, we
construct the following labeling f ′ of tH. Choosing a = (735t+1)/2 and tk = 735t
we label all tk 4-cycles as in Figure 4 with consecutive integers starting at a. Each
4-cycle has the smallest weight 2a+2tk−1, the medium weight 2a+4tk−1, and
the highest weight 2a + 6tk − a. Now, we glue every copy of H from a different
set of k 4-cycles as was shown above for t = 1 and we obtain tH in which each
vertex has the weight M = x(2a+2tk− 1) = 35(735t+1+2 · 735t− 1) = 77175t.
Similarly, y(2a+ 4tk − 1) = 77175t and z(2a+ 6tk − 1) = 77175t. The resulting
graph tH is supermagic.

Remark 3.2. The graph H described above was the smallest we were able to
find. It has 140 vertices with different degrees in equal-sized partite sets (70
vertices of degree 42 in one partite set and 21 vertices of degree 70 along with 49
vertices of degree 30 in the second partite set). It has 2940 edges and therefore
we provide no detailed figure of the graph.

If a smaller non-regular graph H satisfying the above requirements is found,
the construction in the following section will not be affected.

3.2. Combining the blocks

In the previous subsection we constructed a supermagic graph tH with three
different degrees 2x > 2y > 2z. Now we glue together copies of H to construct a
supermagic graph with arbitrarily many different degrees as in Figure 3.

Theorem 3.3. For every positive integer k there exist supermagic graphs with

at least k different degrees.
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Proof. Let G be an s-regular graph with t edges, where t is some odd integer.
We denote the bipartite composition BC(G,H) by J . The parameters p, q, r, x,
y, and z follow the notation in Lemma 3.1. Notice, that J can be obtained by
gluing together copies of H; at every vertex of J always s vertices from different
copies of H are glued together. Clearly, if tH is a supermagic graph with magic
constant M , then J is supermagic as well with the magic constant sM . The
degrees in J can vary from 2sz (obtained by gluing together s vertices of the
smallest degree z) to 2sx (obtained by gluing together s vertices of the highest
degree x), depending on which vertices in the bipartite composition J are glued
together.

In particular, for every positive integer k there exist supermagic graphs with
k different degrees. One can take a complete graph Kl, where l ≥ k and l ≡ 2, 3
(mod 4) and construct a suitable bipartite composition BC(Kl, H). Again, we
denote it by J . For such l the number of edges in Kl is odd, thus J obtained
by gluing together an odd number of copies of H is always a supermagic graph.
Every vertex vi of Kl corresponds to r vertices of J ; by Vi we denote the set of
them. Each vertex in Vi is shared by l − 1 bipartite graphs H and without loss
of generality we construct BC(Kl, H) so that one particular vertex in Vi is of
degree 2x in i copies of H and of degree 2z in the remaining l−1− i copies of H.
Hence, there are vertices of at least l different degrees 2(l − 1)x, 2(l − 2)x + 2z,
. . . ,2(l − 1)z in J . Since l ≥ k, the claim follows.

Notice that the resulting graph is a bipartite composition, not a composition,
since no H is a complete bipartite graph.

4. Conclusion

We constructed an infinite class of supermagic graphs with an arbitrary differ-
ence between the highest and lowest degree, and an infinite class of graphs with
arbitrarily many different degrees. Since the set of labels by definition has to
consist of consecutive integers, such graphs are huge. However, there may exist
smaller examples. Moreover, all the graphs constructed in Section 3 have all ver-
tices of even degrees. This comes from convenience of the construction, yet we
believe that supermagic graphs with many different degrees are not restricted to
even degrees only. For example the graph G in Figure 1 has both odd and even
degrees, K3,3 is supermagic and has only odd degrees. We post the following
open problem.

Problem 4.1. Can a supermagic graph have arbitrarily many different odd de-
grees?
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[7] J. Ivančo, On supermagic regular graphs , Math. Bohem. 125 (2000) 99–114.
https://doi.org/10.21136/MB.2000.126259
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