7,941 research outputs found

    Symmetry based Structure Entropy of Complex Networks

    Full text link
    Precisely quantifying the heterogeneity or disorder of a network system is very important and desired in studies of behavior and function of the network system. Although many degree-based entropies have been proposed to measure the heterogeneity of real networks, heterogeneity implicated in the structure of networks can not be precisely quantified yet. Hence, we propose a new structure entropy based on automorphism partition to precisely quantify the structural heterogeneity of networks. Analysis of extreme cases shows that entropy based on automorphism partition can quantify the structural heterogeneity of networks more precisely than degree-based entropy. We also summarized symmetry and heterogeneity statistics of many real networks, finding that real networks are indeed more heterogenous in the view of automorphism partition than what have been depicted under the measurement of degree based entropies; and that structural heterogeneity is strongly negatively correlated to symmetry of real networks.Comment: 7 pages, 6 figure

    Walk entropies on graphs

    Get PDF
    Entropies based on walks on graphs and on their line-graphs are defined. They are based on the summation over diagonal and off-diagonal elements of the thermal Green’s function of a graph also known as the communicability. The walk entropies are strongly related to the walk regularity of graphs and line-graphs. They are not biased by the graph size and have significantly better correlation with the inverse participation ratio of the eigenmodes of the adjacency matrix than other graph entropies. The temperature dependence of the walk entropies is also discussed. In particular, the walk entropy of graphs is shown to be non-monotonic for regular but non-walk-regular graphs in contrast to non-regular graphs

    On the Von Neumann Entropy of Graphs

    Full text link
    The von Neumann entropy of a graph is a spectral complexity measure that has recently found applications in complex networks analysis and pattern recognition. Two variants of the von Neumann entropy exist based on the graph Laplacian and normalized graph Laplacian, respectively. Due to its computational complexity, previous works have proposed to approximate the von Neumann entropy, effectively reducing it to the computation of simple node degree statistics. Unfortunately, a number of issues surrounding the von Neumann entropy remain unsolved to date, including the interpretation of this spectral measure in terms of structural patterns, understanding the relation between its two variants, and evaluating the quality of the corresponding approximations. In this paper we aim to answer these questions by first analysing and comparing the quadratic approximations of the two variants and then performing an extensive set of experiments on both synthetic and real-world graphs. We find that 1) the two entropies lead to the emergence of similar structures, but with some significant differences; 2) the correlation between them ranges from weakly positive to strongly negative, depending on the topology of the underlying graph; 3) the quadratic approximations fail to capture the presence of non-trivial structural patterns that seem to influence the value of the exact entropies; 4) the quality of the approximations, as well as which variant of the von Neumann entropy is better approximated, depends on the topology of the underlying graph

    Horizontal Visibility graphs generated by type-I intermittency

    Get PDF
    The type-I intermittency route to (or out of) chaos is investigated within the Horizontal Visibility graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct, according to the Horizontal Visibility algorithm, their associated graphs. We show how the alternation of laminar episodes and chaotic bursts has a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values of several network parameters. In particular, we predict that the characteristic power law scaling of the mean length of laminar trend sizes is fully inherited in the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of the block entropy over the degree distribution. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization group framework, where the fixed points of its graph-theoretical RG flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibit extremal entropic properties.Comment: 8 figure
    • 

    corecore