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Abstract 

 

Entropies based on walks on graphs and on their line-graphs are defined. They are based on 

the summation over diagonal and off-diagonal elements of the thermal Green’s function of a 

graph also known as the communicability. The walk entropies are strongly related to the walk 

regularity of graphs and line-graphs. They are not biased by the graph size and have 

significantly better correlation with the inverse participation ratio of the eigenmodes of the 

adjacency matrix than other graph entropies. The temperature dependence of the walk 

entropies is also discussed. In particular, the walk entropy of graphs is shown to be non-

monotonic for regular but non-walk-regular graphs in contrast to non-regular graphs. 
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1. Introduction 

With recent surge of interest in complex networks in various fields including statistical 

physics and mathematical physics, many quantities have been proposed to characterize the 

structural properties of graphs [1, 2]. The study of a graph invariant in one field may also be a 

result of relevant importance in other areas of physics. This is because graphs are nowadays 

ubiquitous in many areas of physics such as in problems associated with the Ising, Potts and 

Hubbard models, in the solution of Feynman integrals in perturbative field theory, in 

quantum information theory such as quantum error correcting codes (graph states) or 

arrangements of interacting quantum mechanical particles (spin networks) [3-7], and in many 

other fields (see [8] and references therein). 

Among various graph invariants, a special role has been played by the concept of 

entropy. Entropy measures for graphs have been used for a long time in different fields [9-

12]. Inspired by connections between quantum information and graph theory, Passerini and 

Severini [10] have defined the von Neumann entropy for graphs, which in general depends on 

the regularity, the number of connected components, the shortest-path distance and nontrivial 

symmetries in the graph. This entropy is defined on the basis of the eigenvalues of the 

discrete Laplacian matrix L  of a graph: j

n

j jS  log
1 

 , where j  is an eigenvalue of 

L . Previously, Estrada and Hatano [11] have defined the Shannon entropy of a network by 

using a tight-binding Hamiltonian of the form AH  , where A  is the adjacency matrix of 

the graph. That entropy is based on the probability   Zp jj /exp   of finding the graph in a 

state with energy given by j , where j  is an eigenvalue of A  and   


n

j jZ
1
exp  .  

Here, we define graph entropies based on walks in a graph. Walks in graphs play a 

fundamental role in the analysis of the structure and dynamical processes in networks [13]. 

The new graph entropies, namely the walk entropies, account for the amount of uncertainty in 

selecting a walk that started (and ended) at a given node or edge of the graph. The walk 

entropies thereby characterize the spread of a walk among the vertices or edges of the graph; 

in other words, we understand by the walk entropies how much the walk is concentrated, or 

“localized” in just a few nodes. We show that the behavior of the walk entropies is 

remarkably different for walk-regular, regular and non-regular graphs. The walk entropies 

have their maximum for the walk-regular graphs, which include important graphs such as 

vertex-transitive graphs, distance-regular graphs and strongly regular graphs [14]. Some of 

these graphs, namely distance-regular and strongly-regular ones, have been studied in the 
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context of quantum information theory with different interesting properties [15-20]. We also 

analyze the effects of the temperature on the walk entropies and the localization in different 

types of graphs. We introduce the walk entropy for a graph in Sec. 2 and for the line graph of 

a graph in Sec. 3. In Sec. 4, we relate the walk entropies to the localization of a walker on the 

nodes and edges of a graph. Section 5 further argues the temperature effect on the relation 

between the walk entropies and the localization. 

Before proceeding, we summarize a few definitions which are necessary to make this 

paper self-contained. Let us consider here simple graphs  EVG ,  with nV   nodes and 

mE   edges; no multiedges or self-loops are allowed. A walk of length k is a sequence of 

(not necessarily distinct) nodes 0 1 1, , , ,k kv v v v  such that for each 1,2 ,i k  there is a link 

from 1iv   to iv . If kvv 0 , the walk is named a closed walk. The number of walks of length 

k  from node p  to node q  is given by  pq

kA , where A  is the adjacency matrix of the graph. 

A graph is said to be regular if every node has the same degree. The degree of the node p , 

denoted by pk , is the number of edges incident to it. A walk-regular graph is a graph for 

which   pp

kA  for any k  and for all nodes of the graph, where   is a certain integer 

number. In other words, the number of the closed walks is the same for any p and k . It is 

known that a walk-regular graph is also regular.  

In order to define graph entropies based on the walks, we consider a random walker 

which walks from one node to another by using the edges of the graph. This consideration is 

similar to the ones previously used in Ref. [15] and more recently in several works [16-18]. 

We identify the negative adjacency matrix as a Hamiltonian of the walker and consider the 

thermal Green’s function of the graph as previously described by Estrada and Hatano [21] 

Gpp b( ) = p e-bH p = p ebA p , (1) 

where   1
 TkB  is the inverse temperature. The partition function for the graph is then 

defined by [11, 13] 

   AetrZ   . (2) 

Since we can expand the matrix Ae  in the form 

   






0 !k

pq

kk

pq

A

k

A
e


 , (3) 
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it counts all walks from one node to another in the graph in a way that the walks of length k  

are penalized by the inverse of the factorial of its length and hence the shorter walks receive 

more weight than the longer ones. 

2. Walk Entropies 

We start by defining the probability of selecting at random a closed walk that has 

started (and ended) at the node i , among all the closed walks in the graph. That is, 

   
Z

e
p ii

Adef

i



  . (4) 

Using the Shannon formula we now define the walk entropy based on the nodes of the graph 

as follow 

     

    .loglog

log,

22

2









i

ii

Aii

A

ii

A

i

ii

Adef
V

Ze

Z

e

Z

e

Z

e
GS








 (5) 

We calculate the walk entropy for all possible 11,117 connected graphs with 8 nodes. 

In contrast with the von Neumann entropy [10] and the Shannon entropy previously 

developed [11], the walk entropy is not correlated with the number of edges in the graphs. 

For instance, the walk entropy displays a poor correlation coefficient of 0.14, while the von 

Neumann and Shannon display very high correlation coefficients, 84.0  and 94.0 , 

respectively. In other words, the walk entropy is free of a strong dependence with the number 

of edges in the graph, which may be important for analyzing the structure of much larger 

networks. 

It is straightforward to realize that for  0  a graph G  with n  nodes has the 

maximum entropy   nGSV

n
2log,max   if it is walk-regular. We may conjecture that if 

  nGSV

2log,   the graph is walk-regular.  

Let us now consider the i th entry of the principal eigenvector of the adjacency matrix 

 i1 . This index was introduced by Bonacich as the eigenvector centrality node i  in a social 

network [22, 23] and it has found important applications in the study of node centrality in 

complex networks. The following result allows a relationship between the eigenvector 

centrality and the walk entropy of graphs. When   we have that     12

1

  eie ii

A   and 

1
eZ  , such that    ipi

2

1lim 





. This means that the square of the eigenvector 
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centrality represents the probability of selecting at random a closed walk starting (and 

ending) at node i  at the zero temperature limit of the graph, i.e., when  . 

Consequently, the walk entropy for the zero temperature limit is given in terms of the 

eigenvector centrality 

     iiGS
i

V 2

12

2

1 log,   . (6) 

From the properties of the principal eigenvector of the adjacency matrix it is straightforward 

to realize that max
n
SV Gn,b ®¥( ) = log2 n  is attained for any regular graph. On the other 

hand, when the temperature tends to infinite the walk entropy of any graph attains its 

maximum. That is,   nGSV

2log0,  .  

A graph transformation which has received great attention in the mathematical physics 

literature is the tensor product of graphs [24-27]. The tensor product (also known as the 

Kronecker product) HG  of graphs G  and H  is the graph whose adjacency matrix is

     HAGAHGA   [28].  Godsil and McKay [14] have proved the following result 

about the tensor product of two walk-regular graphs. 

Theorem 1 [14]. Let G  and H  be walk-regular graphs. Then, HG  is walk-regular. 

Using this result we prove an additive property for the walk entropy of the tensor 

product of two graphs. 

Proposition 1. Let G  and H  be walk-regular graphs. Then, 

     HSGSHGS VVV  . (7) 

Proof: Because G  and H  are walk-regular graphs, HG  is also walk-regular. Then, 

                HSGSHnGnHnGnHGnHGS VVV  2222 loglogloglog . □ 

3. Walk entropy of line graphs 

The line graph of a graph has been used in several areas of mathematical physics 

ranging from the Hubbard model to finding partitions in complex networks [29-33]. The line 

graph  GL  of the graph G  is the graph obtained using the following graph transformation. 

A node of  GL  represents an edge of G , and two nodes in  GL  are connected if and only if 

the corresponding two edges in G  shares a common node, i.e., they are adjacent. In short, the 

line graph  GL  represents the adjacency relationships between the edges in the original 

graph G . For instance, let the nodes i  and j  be adjacent in G , that is, they form an edge 

 jiv ,   in G . Then, v  is represented as a node in  GL  and its degree vk
~

 is related to the 
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degrees of the nodes i  and j  in G  by 2
~

 qpv kkk . Some well-known examples of line 

graphs are the kagome and checkerboard lattices, which are the line graphs of the honeycomb 

and square lattices, respectively. 

The walk-entropy of the line graph  GL  of the graph G  is defined by 

      
Z

e

Z

e
GLS ii

A

i

ii

Adef
V

~
log

~
,

~

2

~


  , (8) 

where A
~

 is the adjacency matrix of  GL  and   AtrZ
~

exp
~
 . Because  GL  represents the 

adjacency between the edges in G  we can express the walk entropy of the line graph in terms 

of the adjacency matrix of the graph by using the following expression: 

  
 
  

 
 






ij

ij

A

ij

A

Eji

ij

ij

A

ij

A

V

e

e

e

e
GLS










,

2log, , (9) 

where   Eji ,  indicates that the nodes i  and j  are adjacent in G . 

Our first result in this section is to show that the probability of finding a walk located at 

a node of the line graph is related to the average energy of the whole graph. Let the 

probability that a walk selected at random from the set of all walks in  GL  is located at the 

node v  of  GL  be denoted by vp~ . Then, ijv pp ~
 and we have the following result. 

Proposition 2. The probability     ijv pp ~
 is related to the average energy E  of the 

graph by 

   
 

Z

e

E

pp
ij

A

ijv




2~  . (10) 

Proof: Let     ijv pp ~
 be written as 

   
 
 

 

 
 A

ij

A

Eij

ij

A

ij

A

ijv

Aetr

e

e

e
pp










2~ 




. (11) 

The average energy E  of the graph is defined by 






Z

Z

E
def 1

. (12) 

Because    AA Aetretr 








, we have that 
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.      □ (13) 

In the following results we describe some properties of the walk entropy of the line 

graph. The first result is trivial and account for the maximum walk entropy in the line graph. 

The maximum entropy of the line graph  GL  of G  is attained when  GL  is walk-regular. 

The entropy is then    mGLSV

m
2logmax  , where m  is the number of edges in G . Another 

trivial result is that 

      
 

   



jiji
GLS

Eji

V 11

,

2
11 log,


 



 , (14) 

where 11  A  is sometime called the graph Lagrangian. It attains the maximum 

   mGLS mn

V

m
log,max ,   when the line graph is regular. 

We now prove a result analogous to that of Godsil and McKay [14] (Theorem 3) for the 

case of walk-regular line graphs. First, we need the following auxiliary result. 

Proposition 3. Let BA  and DC  be two matrices of the same size. Then 

       DCBADCBA   , 

where   represents the Schur (also known as Hadamard or entrywise) product. 

Proof: Let 






is
aA  and 






 sjcC . By the definition of the Kronecker product, 





 B

is
aBA  and 






 DsjcDC . Then, the  ji, th block of    DCBA    is 

       BDcaDcBa sjissjis   . Also the  ji, th block of CA  is sjisca , which implies that 

       DCBADCBA    as required. □ 

Theorem 2. If  GL  and  HL  are walk-regular line graphs, then the line graph of the tensor 

product of  GL  and  HL ,     HLGLL   is also walk-regular. 

Proof: Let GA  designates the adjacency matrix of the graph G . Then,  GL  is walk-regular 

if and only if 

G

k

GG AAA  , (15) 

for all k , where   is a certain integer number. Then, for HG  we have  
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 (16) 

Because  GL  and  HL  are walk-regular line graphs we have 
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k
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AAAAAA













    □ (17) 

Consequently, we have the following result concerning the walk entropy of the tensor 

product of two walk-regular line graphs. 

Proposition 4. Let  GL  and  HL  be walk-regular line graphs. Then, 

           1 HLSGLSHLGLS VVV . (18) 

Proof: Because  GL  and  HL  are walk-regular line graphs,     HLGLL   is also walk-

regular. Then, 

              
   

      .1

loglog2log

2loglog

222

22







HLSGLS

HmGm

HmGmHLGLmHLGLS

VV

V

 □ 

4. Extremal graphs for the walk entropy  

In this section we calculate the walk entropy for all connected graphs with at most 8 

nodes (~12,000 graphs) and find those graphs with the minimum walk entropy for a given 

number of nodes. For instance, for 8n  the graphs with the minimum walk entropy consist 

of a clique of 5 nodes and three pendant nodes attached at different positions of the clique 

(see Figure 1). Similar results are obtained for 7n , where the graphs minimizing  GSV  

have a 5-nodes clique and two pendant nodes. 

   

A B C 

Figure 1. The graphs with 8n  that have the minimum walk entropies. 
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The main characteristic of these graphs is that they consist of two types of nodes with 

very different probabilities of finding a random walker at them. The nodes in the clique 

display very high values of ppG , i.e. high probability of finding the random walker on them, 

while the pendant nodes display very low probabilities of finding the walker. In fact, the 

probability of finding the walker on the clique is 10 times bigger than that for the nodes in the 

the pendant ones. In other words, the walker is very much localized on those nodes of the 

clique (see Figure 2). As a consequence of this ‘localization’ of the walker, the walk entropy 

is very small because it is relatively easy to find the random walker in a specific region of the 

graph. In fact,  GSV  displays a Pearson correlation coefficient of 0.43 with the inverse 

participation ratio (IPR), which is a widely used criterion for the localization of states. In 

contrast, the von Neumann entropy of the graph displays only a Pearson correlation 

coefficient of 0.27 with IPR. We remind the reader that the inverse participation ratio jI   for 

the j th eigenstate is defined by 

 
1

4
















 

p

jj pI  , (19) 

where a fully localized state is characterized by 1jI , values close to unity indicates strong 

on-site localization of the j th eigenstate, and 1jI  indicates no localization. This index 

can be averaged over all eigenstates to obtain: 





n

j

jInIPR
1

1
. (20) 
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Figure 2. Plot of the communicabilities pqG  for pairs of nodes in the graph displayed in the 

Figure 1A. 

We now consider the graphs whose line graphs display the minimum walk entropies. In 

Figure 3 we illustrate these graphs with 8 nodes and 7, 8, 9 and 10 edges, respectively.  

 

 
 

7m  8m  

 

 

9m  10m  

Figure 3. The graphs with 8n  and different number of edges whose line graphs have the 

minimum walk entropies. 

When these graphs are transformed into their line graphs, a few nodes (representing 

edges of G ) display very large localization of the random walker, while the rest of the nodes 

in  GL  remain with low localization of the walker. As a consequence, the walk entropy of 

the line graphs of these graphs is very small. Because the nodes of the line graph represent 
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the edges of the graph we can imagine that those nodes with high localization in  GL  

correspond to the hypotentical case in which we trap the random walker just between two 

nodes in the graph, i.e. in an edge of G . 

5. Modulating the walk entropy and localization 

In this section we study how the walk entropies, and accordingly the degree of 

localization of a random walker, change with the change in the temperature. We concentrate 

now on the walk entropy of the graphs as the results for the line graphs are quite similar. As 

we have previously shown   nGSV log0,  , which is the maximum that the walk 

entropy can attain for a graph. Then, by decreasing the temperature from 0  the walk 

entropy will not increase. However, different behaviours are expected for different kinds of 

graphs. For the purposes of the current study we can divide the graphs into three different 

classes. The first class is the class of the walk-regular graphs, here designated as 0W . Let R  

be the class of the regular graphs which are not walk-regular. The rest of the graphs are 

simply non-regular. Then, let us now analyze the variation of the walk entropy with the 

inverse temperature for these classes of graphs. 

The walk-regular graphs are characterized by the fact that their walk entropy does not 

change with any change (increase of decrease) of the temperature. In other words, the 

localization of a random walker in a walk-regular graph is not affected by the changes in the 

temperature. For these graphs, the probability of finding the walker at a given node is always 

equal to the inverse of the size of the graph.  

Let us now consider the case of the non-regular graphs. These graphs are characterized 

by the fact that      ,1, GSGS VV , which means that they display greater 

delocalization of the walker at 1  than when  . That is, for a non-regular graph at 

1  a decrease of the temperature (  ) will increase the localization of the walker at 

certain nodes of the graph. That is, the walker is ‘frozen’ at certain nodes of the graph where 

the probability of finding it is relatively large in comparison with that in the rest of the nodes 

of the graph. Consequently, the walk entropy of the graph drops to the value given by 

   ii
i

2

12

2

1 log  , after which it remains constant (see Figures 4 and 5).  

Now, we analyze the behavior of regular graphs which are not walk-regular, 

., 0WGRG   Regular graphs are characterized by the fact that 

       iiSS
i

VV 2

12

2

1 log0    and        VVV SSS 01 . This 
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implies that if we increase   from 0  the walk entropy decreases as in the case of non-

regular graphs, but after a certain point at which the entropy is minimum, it will increase 

again up to reaching its maximum when  . That is, at 0  ( T ) the graph 

consists of isolated nodes, and the probability of finding the particle at each site is 

independent of the vertex. As the temperature decreases some localization starts to appear in 

the regular graph due to its lack of walk regularity. As a consequence, the walk entropy of the 

graph decreases. Eventually, at a given  , which depends on the structure of the regular 

graph, the entropy reaches a minimum. At this point the regular graph displays the highest 

difference in the localization of the random walker in the nodes of a regular graph. After this 

point an increase in   makes that the first eigenmode (eigenvector associated with the 

maximum eigenvalue) has a dominant contribution to the probability of finding the walker at 

a given node. Because the graph is regular all the entries of this eigenvector are the same, 

which means that the entropy starts to increase again up to reaching its maximum at 

    nii
i

loglog 2

12

2

1    (see Figures 4 and 5).  

Non-regular Regular  

  

 

 

Figure 4. Change of the walk entropy with the increase of the inverse temperature for (left) 

three non-regular graphs and (right) three cubic graphs (regular graphs of degree 3). The 

structures of the six graphs are illustrated in Figure 5. The plots of the non-regular graphs are: 

continuous red line (graph A), broken green line (graph B) and dotted blue line (graph C). For 

the regular graphs the plots are: continuous blue line (graph D), broken green line (graph E), 

dotted red line (graph F). 
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A B C 

   

D E F 

Figure 5. Illustration of the graphs for which the change of the walk entropy versus the 

inverse temperature are plotted in Figure 4. 

6. Summary 

In the present article, we defined the walk entropy for graphs and their line graphs. The 

walk entropies are defined on the basis of the summation over diagonal and off-diagonal 

elements of the exponentiated adjacency matrix. One of their notable properties is that it does 

not depend on the graph size. 

The walk entropies indicate how much localized a random walker is on the nodes or 

edges of a graph, respectively. The maximum delocalization and consequently maximum 

walk entropy, is attained for walk-regular graphs/line-graphs. 

We prove some relations between the walk entropy of graphs/line graphs and those of 

their tensor products. We also showed the temperature dependence of the walk entropies. 

Though the walk entropy for walk-regular graphs does not depend on the temperature, it does 

for other graphs. Particularly interesting is the behavior of the walk entropy of regular, but 

non-walk-regular graphs, for which the entropy is non-monotonic, taking its maximum at 

zero temperature as well as at infinite temperature and a minimum at a temperature in 

between. This means that the walker is delocalized over the graph both at zero and infinite 

temperature, while it is relatively localized at moderate temperatures.  
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