699 research outputs found

    Current Trends in Symmetric Polynomials with their Applications

    Get PDF
    This Special Issue presents research papers on various topics within many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theories, methods, and their application based on current and recently developed symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and includes the most recent advances made in the area of symmetric functions and polynomials

    Crystal constructions in Number Theory

    Full text link
    Weyl group multiple Dirichlet series and metaplectic Whittaker functions can be described in terms of crystal graphs. We present crystals as parameterized by Littelmann patterns and we give a survey of purely combinatorial constructions of prime power coefficients of Weyl group multiple Dirichlet series and metaplectic Whittaker functions using the language of crystal graphs. We explore how the branching structure of crystals manifests in these constructions, and how it allows access to some intricate objects in number theory and related open questions using tools of algebraic combinatorics

    The Zagier polynomials. Part II: Arithmetic properties of coefficients

    Full text link
    The modified Bernoulli numbers \begin{equation*} B_{n}^{*} = \sum_{r=0}^{n} \binom{n+r}{2r} \frac{B_{r}}{n+r}, \quad n > 0 \end{equation*} introduced by D. Zagier in 1998 were recently extended to the polynomial case by replacing BrB_{r} by the Bernoulli polynomials Br(x)B_{r}(x). Arithmetic properties of the coefficients of these polynomials are established. In particular, the 2-adic valuation of the modified Bernoulli numbers is determined. A variety of analytic, umbral, and asymptotic methods is used to analyze these polynomials

    Weinstein's functions and the Askey-Gasper identity

    Full text link
    In his 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result of special functions which follows from an identity about Jacobi polynomial sums that was found by Askey and Gasper in 1973, published in 1976. In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also using a special function system which (by Todorov and Wilf) was realized to be the same as de Branges'. In this article, we show how a variant of the Askey-Gasper identity can be deduced by a straightforward examination of Weinstein's functions which intimately are related with a L\"owner chain of the Koebe function, and therefore with univalent functions

    Rotation method for accelerating multiple-spherical Bessel function integrals against a numerical source function

    Get PDF
    A common problem in cosmology is to integrate the product of two or more spherical Bessel functions (sBFs) with different configuration-space arguments against the power spectrum or its square, weighted by powers of wavenumber. Naively computing them scales as Ngp+1N_{\rm g}^{p+1} with pp the number of configuration space arguments and NgN_{\rm g} the grid size, and they cannot be done with Fast Fourier Transforms (FFTs). Here we show that by rewriting the sBFs as sums of products of sine and cosine and then using the product to sum identities, these integrals can then be performed using 1-D FFTs with NglogNgN_{\rm g} \log N_{\rm g} scaling. This "rotation" method has the potential to accelerate significantly a number of calculations in cosmology, such as perturbation theory predictions of loop integrals, higher order correlation functions, and analytic templates for correlation function covariance matrices. We implement this approach numerically both in a free-standing, publicly-available \textsc{Python} code and within the larger, publicly-available package \texttt{mcfit}. The rotation method evaluated with direct integrations already offers a factor of 6-10×\times speed-up over the naive approach in our test cases. Using FFTs, which the rotation method enables, then further improves this to a speed-up of \sim10003000×1000-3000\times over the naive approach. The rotation method should be useful in light of upcoming large datasets such as DESI or LSST. In analysing these datasets recomputation of these integrals a substantial number of times, for instance to update perturbation theory predictions or covariance matrices as the input linear power spectrum is changed, will be one piece in a Monte Carlo Markov Chain cosmological parameter search: thus the overall savings from our method should be significant

    The large-NN limit of the 4d N=1\mathcal{N}=1 superconformal index

    Full text link
    We systematically analyze the large-NN limit of the superconformal index of N=1\mathcal{N}=1 superconformal theories having a quiver description. The index of these theories is known in terms of unitary matrix integrals, which we calculate using the recently-developed technique of elliptic extension. This technique allows us to easily evaluate the integral as a sum over saddle points of an effective action in the limit where the rank of the gauge group is infinite. For a generic quiver theory under consideration, we find a special family of saddles whose effective action takes a universal form controlled by the anomaly coefficients of the theory. This family includes the known supersymmetric black hole solution in the holographically dual AdS5_5 theories. We then analyze the index refined by turning on flavor chemical potentials. We show that, for a certain range of chemical potentials, the effective action again takes a universal cubic form that is controlled by the anomaly coefficients of the theory. Finally, we present a large class of solutions to the saddle-point equations which are labelled by group homomorphisms of finite abelian groups of order NN into the torus.Comment: 58 pages; v2: minor changes, published versio
    corecore