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Preface to ”Current Trends in Symmetric Polynomials

with their Applications”

Special numbers and polynomials play an extremely important role in various applications

within such diverse areas as mathematics, probability and statistics, mathematical physics,

and engineering. Due to their powerful expressions, the combinations of special numbers and

polynomials can be almost ubiquitously seen as the solutions for differential equations in the

diverse fields of orthogonality condition, generating functions, recurrence relations, and bosonic and

fermionic p-adic integrals, to name but a few. Furthermore, their importance can be also seen in

the developments of classical analysis, number theory, mathematical analysis, mathematical physics,

symmetric functions, combinatorics, and other sections of the natural sciences. A great amount

of effort has been exerted by a multitude of researchers over the years in attempting to find new

representations of families of special functions and polynomials along with associated practical

applications. This Special Issue will cover the modern trends in the fields of special functions and

orthogonal polynomials (or q-special functions and orthogonal polynomials).

Taekyun Kim

Special Issue Editor
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Fluctuation Theorem of Information Exchange
between Subsystems that Co-Evolve in Time
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Abstract: Sagawa and Ueda established a fluctuation theorem of information exchange by
revealing the role of correlations in stochastic thermodynamics and unified the non-equilibrium
thermodynamics of measurement and feedback control. They considered a process where a
non-equilibrium system exchanges information with other degrees of freedom such as an observer
or a feedback controller. They proved the fluctuation theorem of information exchange under the
assumption that the state of the other degrees of freedom that exchange information with the system
does not change over time while the states of the system evolve in time. Here we relax this constraint
and prove that the same form of the fluctuation theorem holds even if both subsystems co-evolve
during information exchange processes. This result may extend the applicability of the fluctuation
theorem of information exchange to a broader class of non-equilibrium processes, such as a dynamic
coupling in biological systems, where subsystems that exchange information interact with each other.

Keywords: fluctuation theorem; thermodynamics of information; stochastic thermodynamics; mutual
information; non-equilibrium free energy; entropy production

1. Introduction

Biological systems possess information processing mechanisms for their survival and
heredity [1–3]. They, for example, sense external ligand concentrations [4,5], transmit information
through signaling networks [6–8], and coordinate gene expressions [9] by secreting and sensing
signaling molecules [10]. Cells even implement time integration by copying states of environment
into molecular states inside the cells to reduce their sensing errors [11,12]. Therefore it is crucial
to reveal the role of information in thermodynamics to properly understand complex biological
information processes.

Historically, information has entered into the realm of thermodynamics by the name of Maxwell’s
demon. The demon observes the speed of molecules in a box that is divided into two portions by
a partition in which there is a small hole, and lets the fast particles pass from the lower-half of the
box to the upper-half, and only the slow particles pass from the upper-half to the lower-half by
opening/closing the hole without expenditure of work (see Figure 1a). This results in raising the
temperature of the upper-half of the box and lower that of the lower-half, indicating that the second
law of thermodynamics, which implies heat flows spontaneously from hotter to colder places, might
hypothetically be violated [13]. This paradox shows that information can affect thermodynamics of a
physical system, or information is a physical element [14].

Szilard has devised a much simpler model that carries the essential role of information in
Maxwell’s thought experiment. The Szilard engine consists of a single particle in a box which is
surrounded by a heat reservoir of constant temperature. A cycle of the engine begins with inserting
a partition in the middle of the box. Depending on whether the particle is in the left-half or in the
right-half of the box, one controls a lever such that a weight can be lifted during the wall moves

Symmetry 2019, 11, 433; doi:10.3390/sym11030433 www.mdpi.com/journal/symmetry1
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quasi-statically in the direction that the particle pushes (see Figure 1b). If the partition reaches an end
of the box, the partition is removed and a new cycle begins again with inserting a partition at the center.
Since the energy required for lifting the weight comes from the heat reservoir, this engine corresponds
to a perpetual-motion machine of the second kind, where the single heat reservoir is spontaneously
cooled and the corresponding thermal energy is converted into mechanical work cyclically, which is
prohibited by the second-law of thermodynamics [15].

Figure 1. Paradox in thermodynamics of information (a) Maxwell’s demon (orange cat) uses
information on the speed of the particles in the box: He opens/closes the small hole (orange line)
without expenditure of energy such that fast particles (red filled circles) are gathered in the upper-half
of the box and slow particles (blue filled circles) are gathered in the lower-half of the box. Since
temperature is the average velocity of the particles, the demon’s action results in spontaneous flow of
heat from colder places to hotter places, which violates the second-law of thermodynamics. (b) A cycle
of Szilard’s engine is represented. A lever (green curved arrow) is controlled such that a weight can
be lifted during the wall moves quasi-statically in the direction that the particle pushes. This engine
harnesses heat from the heat reservoir (yellow region around each boxes) and convert it into mechanical
work, cyclically, and thus corresponds to a perpetual-motion engine of the second kind, which is
prohibited by the second-law of thermodynamics.

Szilard interprets the coupling between the location of the particle and the direction of the lever as
a sort of memory faculty and points out that the coupling is the main cause that enables an amount of
work to be extracted from the heat reservoir. He infers, therefore, that establishing the coupling must be
accompanied by a production of entropy (dissipation of heat into the environment) which compensates
for the lost heat in the reservoir. In [16], Sagawa and Ueda have proved this idea in the form of a
fluctuation theorem of information exchange, generalizing the second-law of thermodynamics by
taking information into account: 〈

e−σ+ΔI
〉
= 1, (1)

where σ is the entropy production of a system X, and ΔI is the change of mutual information between
the system X and another system Y, such as a demon, during a process λt for 0 ≤ t ≤ τ. Here the
bracket indicates the ensemble average over all microscopic trajectories of X and over all states of Y.
By Jensen’s inequality [17], Equation (1) implies

〈σ〉 ≥ 〈ΔI〉 . (2)

2
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This tells indeed that establishing a correlation between the two subsystems, 〈ΔI〉 > 0,
accompanies an entropy production, 〈σ〉 > 0, and expenditure of this correlation, 〈ΔI〉 < 0, serves
as a source of entropy decrease, 〈σ〉 < 0. In proving this theorem, they have assumed that the
state of system Y does not evolve in time. This assumption causes no problem for simple models
of measurement and feedback control. However, in biological systems, it is not unusual that both
subsystems that exchange information with each other co-evolve in time. For example, transmembrane
receptor proteins transmit signals through thermodynamic coupling between extracellular ligands
and conformation of intracellular parts of the receptors during a dynamic allosteric transition [18,19].
In this paper, we relax the constraint that Sagawa and Ueda have assumed, and generalize the
fluctuation theorem of information exchange to be applicable to more involved situations, where the
two subsystems can influence each other so that the states of both systems co-evolve in time.

2. Results

2.1. Theoretical Framework

We consider a finite classical stochastic system composed of subsystems X and Y that are in
contact with a heat reservoir of inverse temperature β ≡ 1/(kBT) where kB is the Boltzmann constant
and T is the temperature of the reservoir. We allow both systems X and Y to be driven far from
equilibrium by changing external parameter λt during time 0 ≤ t ≤ τ [20–22]. We assume that time
evolutions of subsystems X and Y are described by a classical stochastic dynamics from t = 0 to t = τ

along trajectories {xt} and {yt}, respectively, where xt (yt) denotes a specific microstate of X (Y) at
time t for 0 ≤ t ≤ τ on each trajectory. Since both trajectories fluctuate, we repeat the process λt with
appropriate initial joint probability distribution p0(x, y) over all microstates (x, y) of systems X and Y.
Then the joint probability distribution pt(x, y) would evolve for 0 ≤ t ≤ τ. Let pt(x) :=

∫
pt(x, y) dy

and pt(y) :=
∫

pt(x, y) dx be the corresponding marginal probability distributions. We assume

p0(x, y) �= 0 for all (x, y) (3)

so that we have pt(x, y) �= 0, pt(x) �= 0, and pt(y) �= 0 for all x and y during 0 ≤ t ≤ τ.
Now, the entropy production σ during process λt for 0 ≤ t ≤ τ is given by

σ := Δs + βQb, (4)

where Δs is the sum of changes in stochastic entropy along {xt} and {yt}, and Qb is heat dissipated
into the reservoir (entropy production in the reservoir) [23,24]. In detail, we have

Δs := Δsx + Δsy,

Δsx := − ln pτ(xτ) + ln p0(x0),

Δsy := − ln pτ(yτ) + ln p0(y0).

(5)

We note that the stochastic entropy s[pt(◦)] := − ln pt(◦) of microstate ◦ at time t can be
interpreted as uncertainty of occurrence of ◦ at time t: The greater the probability that state ◦ occurs,
the smaller the uncertainty of occurrence of state ◦.

Now we consider situations where system X exchanges information with system Y during process
λt. By this, we mean that trajectory {xt} of system X evolves depending on the trajectory {yt} of
system Y. Then, information It at time t between xt and yt is characterized by the reduction of
uncertainty of xt due to given yt [16]:

It(xt, yt) := s[pt(xt)]− s[pt(xt|yt)]

= ln
pt(xt, yt)

pt(xt)pt(yt)
,

(6)

3
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where pt(xt|yt) is the conditional probability distribution of xt given yt. We note that this is called the
(time-dependent form of) thermodynamic coupling function [19]. The larger the value of It(xt, yt) is,
the more information is being shared between xt and yt for their occurrence. We note that It(xt, yt)

vanishes if xt and yt are independent at time t, and the average of It(xt, yt) with respect to pt(xt, yt)

over all microstates is the mutual information between the two subsystems, which is greater than or
equal to zero [17].

2.2. Proof of Fluctuation Theorem of Information Exchange

Now we are ready to prove the fluctuation theorem of information exchange in this general
setup. We define reverse process λ′

t := λτ−t for 0 ≤ t ≤ τ, where the external parameter is
time-reversed [25,26]. Here we set the initial probability distribution p′0(x, y) for the reverse process as
the final (time t = τ) probability distribution for the forward process pτ(x, y) so that we have

p′0(x) =
∫

p′0(x, y) dy =
∫

pτ(x, y) dy = pτ(x),

p′0(y) =
∫

p′0(x, y) dx =
∫

pτ(x, y) dx = pτ(y).
(7)

Then, by Equation (3), we have p′t(x, y) �= 0, p′t(x) �= 0, and p′t(y) �= 0 for all x and y during
0 ≤ t ≤ τ. We also consider the time-reversed conjugate for each {xt} and {yt} for 0 ≤ t ≤ τ

as follows:

{x′t} := {x∗τ−t},

{y′t} := {y∗τ−t},
(8)

where ∗ denotes momentum reversal. The microscopic reversibility condition connects the
time-reversal symmetry of the microscopic dynamics to non-equilibrium thermodynamics, and reads
in this framework as follows [23,27–29]:

p({xt}, {yt}|x0, y0)

p′({x′t}, {y′t}|x′0, y′0)
= eβQb , (9)

where p({xt}, {yt}|x0, y0) is the conditional joint probability distribution of paths {xt} and {yt}
conditioned at initial microstates x0 and y0, and p′({x′t}, {y′t}|x′0, y′0) is that for the reverse process.
Now we have the following:

p′({x′t}, {y′t})
p({xt}, {yt}) =

p′({x′t}, {y′t}|x′0, y′0)
p({xt}, {yt}|x0, y0)

· p′0(x′0, y′0)
p0(x0, y0)

(10)

=
p′({x′t}, {y′t}|x′0, y′0)
p({xt}, {yt}|x0, y0)

· p′0(x′0, y′0)
p′0(x′0)p′0(y′0)

· p0(x0)p0(y0)

p0(x0, y0)
· p′0(x′0)

p0(x0)
· p′0(y′0)

p0(y0)
(11)

= exp{−βQb + Iτ(xτ , yτ)− I0(x0, y0)− Δsx − Δsy} (12)

= exp{−σ + ΔI}. (13)

To obtain Equation (11) from Equation (10), we multiply Equation (10) by p′0(x′0)p′0(y′0)
p′0(x′0)p′0(y′0)

and
p0(x0)p0(y0)
p0(x0)p0(y0)

, which are 1. We obtain Equation (12) by applying Equations (5)–(7) and (9) consecutively to
Equation (11). Finally, we set ΔI := Iτ(xτ , yτ)− I0(x0, y0), and use Equation (4) to obtain Equation (13)
from Equation (12).

4
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We note that Equation (13) generalizes the detailed fluctuation theorem in the presence of
information exchange that is proved in [16]. Now we obtain the generalized version of Equation (1) by
using Equation (13) as follows:〈

e−σ+ΔI
〉
=
∫

e−σ+ΔI p({xt}, {yt}) d{xt}d{yt}

=
∫

p′({x′t}, {y′t}) d{x′t}d{y′t} = 1.
(14)

Here we use the fact that there is a one-to-one correspondence between the forward and the
reverse paths due to the time-reversal symmetry of the underlying microscopic dynamics such that
d{xt} = d{x′t} and d{yt} = d{y′t} [30].

2.3. Corollary

Before discussing a corollary, we remark one thing: we have used similar notation to that used
by Sagawa and Ueda in [16], but there is an important difference. Most importantly, their entropy
production σsu reads as follows:

σsu := Δssu + βQb,

where Δssu := Δsx. In [16], system X is in contact with the heat reservoir, but system Y is not. Nor does
system Y evolve over time. Thus they have considered entropy production in system X and the bath.
In this paper, both systems X and Y are in contact with the reservoir, and system Y also evolves in
time. Thus both subsystems X and Y as well as the heat bath contribute to the entropy production as
expressed in Equations (4) and (5). Keeping in mind this difference, we apply Jensen’s inequality to
Equation (14) to obtain

〈σ〉 ≥ 〈ΔI〉 . (15)

It tells us that firstly, establishing correlation between X and Y accompanies entropy production,
and secondly, established correlation serves as a source of entropy decrease.

Now as a corollary, we refine the generalized fluctuation theorem in Equation (14) by including
energetic terms. To this end, we define local free energy Fx of system X at xt and Fy of system Y at yt

as follows:

Fx(xt, t) := Ex(xt, t)− Ts[pt(xt)]

Fy(yt, t) := Ey(yt, t)− Ts[pt(yt)],
(16)

where Ex and Ey are internal energy of systems X and Y, respectively, and s[pt(◦)] := − ln pt(◦)
is stochastic entropy [23,24]. Here T is the temperature of the heat bath and argument t indicates
dependency of each terms on external parameter λt. During the process λt, work done on the systems
is expressed by the first law of thermodynamics as follows:

W := ΔE + Qb, (17)

where ΔE is the change in internal energy of the systems. If we assume that systems X and Y are
weakly coupled, in that interaction energy between X and Y is negligible compared to internal energy
of X and Y, we may have

ΔE := ΔEx + ΔEy, (18)

where ΔEx := Ex(xτ , τ)− Ex(x0, 0) and ΔEy := Ey(yτ , τ)− Ey(y0, 0) [31]. We rewrite Equation (12) by
adding and subtracting the change of internal energy ΔEx of X and ΔEy of Y as follows:

p′({x′t}, {y′t})
p({xt}, {yt}) = exp{−β(Qb + ΔEx + ΔEy) + ΔI + βΔEx − Δsx + βΔEy − Δsy} (19)

= exp{−β(W − ΔFx − ΔFy) + ΔI}, (20)

5
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where we have applied Equations (16)–(18) consecutively to Equation (19) to obtain Equation (20).
Here ΔFx := Fx(xτ , τ) − Fx(x0, 0) and ΔFy := Fy(yτ , τ) − Fy(y0, 0). Now we obtain fluctuation
theorem of information exchange with energetic terms as follows:〈

e−β(W−ΔFx−ΔFy)+ΔI
〉
=
∫

e−β(W−ΔFx−ΔFy)+ΔI p({xt}, {yt}) d{xt}d{yt}

=
∫

p′({x′t}, {y′t}) d{x′t}d{y′t} = 1,
(21)

which generalizes known relations in the literature [31–36]. We note that Equation (21) holds under the
weak-coupling assumption between systems X and Y during the process λt. By Jensen’s inequality,
Equation (21) implies

〈W〉 ≥
〈

ΔFx + ΔFy +
ΔI
β

〉
. (22)

We remark that 〈ΔFx〉+
〈
ΔFy

〉
in Equation (22) is the difference in non-equilibrium free energy,

which is different from the change in equilibrium free energy that appears in similar relations in the
literature [32–36].

3. Examples

3.1. Measurement

Let X be a device (or a demon) which measures the state of other system and Y be a measured
system, both of which are in contact with a heat bath of inverse temperature β (see Figure 2a).
We consider a dynamic measurement process, which is described as follows: X and Y are prepared
separately in equilibrium such that X and Y are not correlated initially, i.e., I0(x0, y0) = 0 for all x0 and
y0. At time t = 0, device X is put in contact with system Y so that the coupling of X and Y occurs due
to their (weak) interactions until time t = τ, at which a single measurement process finishes. We note
that system Y is allowed to evolve in time during the process. Since each process fluctuates, we repeat
the measurement many times to obtain probability distribution pt(x, y) for 0 ≤ t ≤ τ.

A distinguished feature of the framework in this paper is that mutual information It(xt, yt)

in Equation (6) enables us to obtain the time-varying amount of established information during
the dynamic coupling process, unlike other approaches where they either provide the amount of
information at a fixed time [31,36,37] or one of the system is fixed during the coupling process [16].
For example, let us assume that the probability distribution pt(xt, yt) at an intermediate time t is as
shown in Table 1.

Table 1. The joint probability distribution of x and y at an intermediate time t: Here we assume for
simplicity that both systems X and Y have two states, 0 (left) and 1 (right).

X\Y 0 (Left) 1 (Right)

0 (Left) 1/3 1/6
1 (Right) 1/6 1/3

Then we have the following:

It(xt = 0, yt = 0) = ln
1/3

(1/2) · (1/2)
= ln(4/3),

It(xt = 0, yt = 1) = ln
1/6

(1/2) · (1/2)
= ln(2/3),

It(xt = 1, yt = 0) = ln
1/6

(1/2) · (1/2)
= ln(2/3),

It(xt = 1, yt = 1) = ln
1/3

(1/2) · (1/2)
= ln(4/3),

(23)

6
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so that 〈ΔI〉 = (1/3) ln(4/3) + (1/6) ln(2/3) + (1/6) ln(2/3) + (1/3) ln(4/3) ≈ ln(1.06). Thus by
Equation (15) we obtain the lower bound of the average entropy production for the coupling that
has been established until time t from the uncorrelated initial state, as follows: 〈σ〉 ≥ 〈ΔI〉 ≈ ln 1.06.
If there is no measurement error at final time τ such that pτ(xτ = 0, yτ = 1) = pτ(xτ = 1, yτ = 0) = 0
and pτ(xτ = 0, yτ = 0) = pτ(xτ = 1, yτ = 1) = 1/2, then we may have 〈σ〉 ≥ 〈ΔI〉 = ln 2, which is
greater than ln 1.06.

Figure 2. Measurement and feedback control: system X is, for example, a measuring device and system
Y is a measured system. X and Y co-evolve, as they interact weakly, along trajectories {xt} and {yt},
respectively. (a) Coupling is being established during the measurement process so that It(xt, yt) for
0 ≤ t ≤ τ may be increased (not necessarily monotonically). (b) Established correlation is being used
as a source of work through external parameter λt so that It(xt, yt) for τ ≤ t ≤ τ′ may be decreased
(not necessarily monotonically).

3.2. Feedback Control

Unlike the case in [16], we need not to exchange subsystems X and Y to consider feedback
control after the measurement. Thus we proceed continuously to feedback control immediately
after each measurement process at time τ (see Figure 2b). We assume that correlation Iτ(xτ , yτ)

at time τ is given by the values in Equation (23) and final correlation at later time τ′ is zero, i.e.,
Iτ′(xτ′ , yτ′) = 0. By feedback control, we mean that external parameter λt for τ ≤ t ≤ τ′ is manipulated
in a pre-determined manner [16], while systems X and Y co-evolve in time, such that the established
correlation is used as a source of work while It(xt, yt) for τ ≤ t ≤ τ′ is decreased, not necessarily
monotonically. Equation (21) provides an exact relation on the energetics of this process. We rewrite its
corollary, Equation (22), with respect to extractable work Wext := −W as follows:

〈Wext〉 ≤ −
〈

ΔFx + ΔFy +
ΔI
β

〉
. (24)

Then the extractable work on top of the conventional bound, − 〈ΔFx + ΔFy
〉
, is additionally given by

−ΔI/β = ln(1.06), which comes from the consumption of the established correlation.

4. Conclusions

We have proved the fluctuation theorem of information exchange, Equation (14), which
holds even during the co-evolution of two systems that exchange information with each other.
Equation (14) tells us that establishing correlation between two systems necessarily accompanies

7
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entropy production which is contributed by both systems and the heat reservoir, as expressed
in Equations (4) and (5). We have also proved, as a corollary of Equation (14), the fluctuation
theorem of information exchange with energetic terms, Equation (21), under the assumption of
weak coupling between the two subsystems. Equation (21) reveals the exact relationship between
non-equilibrium free energy of both sub-systems and mutual information that is established/consumed
through their interactions. This more generalized framework than that in [16], enables us to apply
thermodynamics of information to biological systems, where molecules generate/consume correlations
through their information processing mechanisms [4–6]. Since the new framework is applicable to
fully non-equilibrium situations, thermodynamic coupling during a dynamic allosteric transition,
for example, may be analyzed based on this theoretical framework beyond current equilibrium
thermodynamic approach [18,19].
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1. Introduction

Let n be any non-negative integer. Then, Cn = 1
n+1 · (2n

n ) (n = 0, 1, 2, 3, · · · ) are defined as the
Catalan numbers. For example, the first several values of the Catalan numbers are C0 = 1, C1 = 1,
C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132, C7 = 429, C8 = 1430, · · · . The generating function of the
sequence {Cn} is:

2
1 +

√
1 − 4x

=
∞

∑
n=0

(2n
n )

n + 1
· xn =

∞

∑
n=0

Cn · xn. (1)

This sequence occupies a pivotal position in combinatorial mathematics, so lots of counting problems
are closely related to it. A great number of examples can be found in a study by Stanley [1]. Because of
these, plenty of scholars have researched the properties of Catalan numbers and obtained a large number
of vital and meaningful results. Interested readers can refer to the relevant references [2–26], which is not
an exhaustive list. Very recently, Zhang and Chen [27] researched the calculation problem of the following
convolution sums:

∑
a1+a2+···+ah=n

Ca1 · Ca2 · Ca3 · · ·Cah , (2)

where the summation has taken over all h-dimension non-negative integer coordinates (a1, a2, · · · , ah),
such that the equation a1 + a2 + · · ·+ ah = n.

They first introduced two new recursive sequences, C(h, i) and D(h, i), and after the elementary
and combinatorial methods, they proved the following two significant conclusions:

Theorem 1. For any positive integer h, one gets the identity:

∑a1+a2+···+a2h+1=n Ca1 · Ca2 · Ca3 · · ·Ca2h+1

= 1
(2h)! ∑h

i=0 C(h, i)∑
min(n,i)
j=0

(n−j+h+i)!·Cn−j+h+i
(n−j)! · (i

j) · (−4)j,

Symmetry 2019, 11, 371; doi:10.3390/sym11030371 www.mdpi.com/journal/symmetry10
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where the sequence C(h, i) is defined as C(1, 0) = −2, C(h, h) = 1, C(h + 1, h) = C(h, h − 1) − (8h +

2) · C(h, h), C(h + 1, 0) = 8 · C(h, 1) − 2 · C(h, 0), and for all integers 1 ≤ i ≤ h − 1, we acquire the
recursive formula:

C(h + 1, i) = C(h, i − 1)− (8i + 2) · C(h, i) + (4i + 4)(4i + 2) · C(h, i + 1).

Theorem 2. For any positive integer h and non-negative n, one can obtain:

∑a1+a2+···+a2h=n Ca1 · Ca2 · Ca3 · · ·Ca2h

= 1
(2h−1)! ∑h−1

i=0 ∑n
j=0 D(h, i + 1) · (i+ 1

2
j ) · (−4)j · (n−j+h+i)!·Cn−j+h+i

(n−j)! ,

where (
n+ 1

2
i ) =

(
n + 1

2

)
·
(

n − 1 + 1
2

)
· · ·
(

n − i + 1 + 1
2

)
/i!, the sequence D(k, i) are defined as

D(k, 0) = 0, D(k, k) = 1, D(k + 1, k) = D(k, k − 1) − (8k − 2), D(k + 1, 1) = 24D(k, 2) − 6D(k, 1),
and for all integers 1 ≤ i ≤ k − 1,

D(k + 1, i) = D(k, i − 1)− (8i − 2) · D(k, i) + 4i(4i + 2) · D(k, i + 1).

Meanwhile, through numerical observation, Zhang and Chen [27] also proposed the following
two conjectures:

Conjecture 1. Let p be a prime. Then, for any integer 0 ≤ i < p+1
2 , we obtain the congruence:

C
(

p + 1
2

, i
)
≡ 0 mod p(p + 1).

Conjecture 2. Let p be a prime. Then, for any integer 0 ≤ i < p+1
2 , we obtain the congruence:

D
(

p + 1
2

, i
)
≡ 0 mod p(p − 1).

For easy comparison, here we list some of the values of C(h, i) and D(h, i) with 1 ≤ h ≤ 6 and
0 ≤ i ≤ h in the following Tables 1 and 2.

Table 1. Values of C(k, i).

C(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6

k=1 −2 1
k=2 12 −12 1
k=3 −120 180 −30 1
k=4 1680 −3360 840 −56 1
k=5 −30,240 75,600 −25,200 2520 −90 1
k=6 665,280 −1,995,840 831,600 −110,880 5940 −132 1

Table 2. Values of D(k, i).

D(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6

k=1 0 1
k=2 0 −6 1
k=3 0 60 −20 1
k=4 0 −840 420 −42 1
k=5 0 15,120 −10,080 1512 −72 1
k=6 0 −332640 277,200 −55,440 3960 −110 1
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Based on these two tables and a large number of numerical calculations, we found that these
conjectures are not only correct, but also have generalized conclusions. Actually, they provide a simpler
and clearer representation.

In this paper, by using some notes from Zhang and Chen’s work [27] as well as some basic and
combinatorial methods, we are going to prove the following:

Theorem 3. Let h be a positive integer. Then, for any integer i with 0 ≤ i ≤ h, we acquire the identity:

C(h, i) = (−1)h−i · (2h)!
(h − i)! · (2i)!

.

Theorem 4. Let h be a positive integer. Then, for any integer i with 1 ≤ i ≤ h, we acquire the identity:

D(h, i) = (−1)h−i · (2h − 1)!
(h − i)! · (2i − 1)!

.

Based on the above two theorems, we may instantly deduce the following two corollaries:

Corollary 1. Let h be any positive integer. Then, for any integer 0 ≤ i ≤ h − 1, we gain the congruence:

C (h, i) ≡ 0 mod 2h(2h − 1).

Corollary 2. Let h be any positive integer. Then, for any integer 0 ≤ i ≤ h − 1, we gain the congruence:

D (h, i) ≡ 0 mod (2h − 1)(2h − 2).

Suppose that we consider p an odd prime, and that when h = p+1
2 in Corollary 1 and Corollary 2,

combined with the identities 2h(2h − 1) = p(p + 1) and (2h − 1)(2h − 2) = p(p − 1), our Corollary 1
and Corollary 2 proves Conjecture 1 and Conjecture 2, respectively. Practically, they prove two more
general conclusions.

Taking n = 0 in Theorem 1 and Theorem 2 and applying our theorems, we may instantly deduce
the following two identities:

Corollary 3. Let h be any positive integer. Then, we get the identity:

h

∑
i=0

(−1)h−i
(

h + i
2i

)
· Ch+i = 1.

Corollary 4. Let h be any positive integer. Then, we get the identity:

h

∑
i=1

(−1)h−i
(

h + i − 1
2i − 1

)
· Ch+i−1 = 1.

Some notes: If we replace C(h, i) ( D(h, i)) in Theorem 1 (Theorem 2) with the formula for C(h, i)
(D(h, i)) in our Theorem 3 (Theorem 4), then we can get a more accurate representation for convolution
sums (2).

The proof of the results in this paper is uncomplicated, but guessing their specific forms is not easy.

2. Proofs of the Theorems

Actually, the recursive form of the sequence C(h, i) or D(h, i) is more complex, but as long as
we are able to guess its accurate representation, it is not difficult to prove. First of all, combining the
mathematical induction method, we are going to prove:

12
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C(h, i) = (−1)h−i · (2h)!
(h − i)! · (2i)!

. (3)

According to Table 1, we know that C(1, 0) = −2, C(1, 1) = 1, C(2, 0) = −12, C(2, 1) = 12,
C(2, 2) = 1, C(3, 0) = −120, C(3, 1) = 180, C(3, 2) = −30, C(3, 3) = 1. This means that (3) is correct
for h = 1, 2, 3, and 0 ≤ i ≤ h.

Assume that (3) is correct for integer h = k and all 0 ≤ i ≤ k. That is,

C(k, i) = (−1)k−i · (2k)!
(k − i)! · (2i)!

, 0 ≤ i ≤ k. (4)

Then, for h = k + 1, if i = h + 1, applying the definition of C(h, i), we acquire C(k + 1, k + 1) = 1.
If i = 0, combining the inductive hypothesis (4) and noting that C(k + 1, 0) = 8C(k, 1) − 2C(k, 0),
we obtain:

C(k + 1, 0) = 8 · (−1)k−1 · (2k)!
(k − 1)! · 2!

− (−1)k · 2 · (2k)!
k!

= (−1)k+1 (2k + 2)!
(k + 1)!

. (5)

Suppose that 1 ≤ i ≤ k. From (4) and the recursive properties of C(h, i), we gain:

C(k + 1, i) = C(k, i − 1)− (8i + 2) · C(k, i) + (4i + 4)(4i + 2) · C(k, i + 1)
= (−1)k−i+1 (2k)!

(k−i+1)!(2i−2)! − (−1)k−i(8i + 2) (2k)!
(k−i)!(2i)!

+(−1)k−i−1(4i + 4)(4i + 2) · (2k)!
(k−i−1)!(2i+2)!

= (−1)k+1−i · (2k+2)!
(k+1−i!)·(2i)! .

(6)

According to (5) and (6), we know that the Formula (3) is correct for h = k + 1 and all integers
0 ≤ i ≤ k + 1. Theorem 3 can then be proved by mathematical induction.

In a similar way, we can also prove Theorem 4 by mathematical induction. Since the proof process
is the same as the proof of Theorem 3, it is omitted.

3. Conclusions

The main purpose of this paper was to give two specific expressions for the sequences C(h, i) and
D(h, i). As for some applications of our results, we proved two conjectures proposed by Zhang and
Chen in [27].

As a matter of fact, our results are more general and not subject to prime conditions. Meanwhile,
using our formulae for C(h, i) and D(h, i) in the theorems, we can simplify the variety of results that
appear in Reference [27].

This paper not only enriches the research content of the Catalan numbers, but can also be regarded
as a supplement and further improvement to Zhang and Chen’s work in [27].
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MSC: 11B68; 11A07

1. Introduction

As usual, for the real number x, if m ≥ 0 denotes any integer, the famous Bernoulli polynomials
Bm(x) (see [1–4]) and Euler polynomials Em(x) (see [2–5]) are decided by the coefficients of the series
of powers:

z · ezx

ez − 1
=

∞

∑
m=0

Bm(x)
m!

· zm (1)

and:

2ezx

ez + 1
=

∞

∑
m=0

Em(x)
m!

· zm. (2)

If x = 0, then Em = Em(0) and Bm = Bm(0) are known as the mth Euler numbers and mth

Bernoulli numbers, respectively. For example, some values of Bm and Em are B0 = 1, B1 = − 1
2 , B2 = 1

6 ,
B3 = 0, B4 = − 1

30 , B5 = 0, B6 = 1
42 and E0 = 1, E1 = − 1

2 , E2 = 0, E3 = 1
4 , E4 = 0, E5 = − 1

2 ,
E6 = 0, etc. These polynomials and numbers occupy a very important position in number theory
and combinatorics; this is not only because Bernoulli and Euler polynomials are well known, but also
because they have a wide range of theoretical and applied values. Because of this, many scholars have
studied the properties of these polynomials and numbers, and they also have obtained some valuable
research conclusions. For instance, Zhang Wenpeng [6] studied a few combinational identities. As a
continuation of the conclusion in [6], he showed that if p is a prime, one can obtain the congruence
expression:

(−1)
p−1

2 · 2p−1 · Ep−1

(
1
2

)
≡
{

0 mod p if p ≡ 1 mod 4;
−2 mod p if p ≡ 3 mod 4.

Hou Yiwei and Shen Shimeng [3] proved the identity:

E2n−1 = −
(
22n − 1

)
n

· B2n.

Symmetry 2019, 11, 365; doi:10.3390/sym11030365 www.mdpi.com/journal/symmetry15
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As some corollaries of [3], Hou Yiwei and Shen Shimeng obtained several interesting congruences.
For example, for p in an odd prime, one can obtain the expression:

E p−3
2

≡ 0 (mod p), if p ≡ 1 mod 8.

Zhao Jianhong and Chen Zhuoyu [7] obtained the following deduction: if m is a positive integer,
k ≥ 2, one obtains the equation:

∑
a1+a2+···+ak=m

Ea1

(a1)!
· Ea2

(a2)!
· · · Eak

(ak)!
=

2k−1

(k − 1)!
· 1

m!

k−1

∑
i=0

C(k − 1, i)Em+k−1−i,

for which the summation is taken over all k-dimensional nonnegative integer coordinates
(a1, a2, · · · , ak) such that the equation a1 + a2 + · · ·+ ak = m, and the sequence {C(k, i)} is decided as
follows: for any integers 0 ≤ i ≤ k, C(k, k) = k!, C(k, 0) = 1,

C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i), for all 0 ≤ i < k,

providing C(k, i) = 0, if i > k, and k is a positive integer.
T.Kim et al. did a good deal of research work and obtained a series of significant results;

see [5,8–14]. Specifically, in [5], T. Kim found many valuable results involving Euler numbers and
polynomials connected with zeta functions. Other papers in regard to the Bernoulli polynomials and
Euler polynomials can be found in [15–19]; we will not go into detail here.

Here, we will make use of the properties of the Euler numbers, Euler polynomials,
Bernoulli numbers, and Bernoulli polynomials to verify a special relationship between the Bernoulli
polynomials and Euler polynomials. As some of the applications of our conclusions, we also deduce
two unusual congruences involving the Bernoulli polynomials.

Theorem 1. For any positive integers m and h, the following identity should be obtained, that is:

2 · B2m+1(2h) = (2m + 1) ·
(

E2m(2h) + 2
2h−1

∑
i=0

E2m(i)

)
.

Theorem 2. For any positive integers m and h, we derive the identity as below:

B2m(2h)− B2n + m (E2m−1(2h)− E2m−1) = (2m) ·
2h

∑
i=1

E2m−1(i).

From these deductions, the following several corollaries can be inferred:

Corollary 1. Let m be a non-negative integer. Thus, for any integer h, we obtain the congruence:

B2m+1(2h) ≡ 0 mod (2m + 1),

where a
b ≡ 0 mod k implies (a, b) = 1 and k | a for any integers b(b �= 0) and a.

Corollary 2. For any positive integer m and integer h, 22m−1 · (B2m(2h)− B2m) must be an integer, and:

22m−1 · (B2m(2h)− B2m) ≡ 0 mod m.

Corollary 3. For any integer h, let p be an odd prime; as a result, we have:

Bp(2h) ≡ 0 mod p and B2p(2h) ≡ B2p mod p.
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Corollary 4. Let p be an odd prime. In this way, there exits an integer N with N ≡ 1 mod p such that the
polynomial congruence:

N · Bp(x) ≡ (x − 2)(x − 1)x · (x − p + 1) ≡ x ·
(

xp−1 − 1
)

mod p.

Some notes: It is well known that congruences regarding Bernoulli numbers have interesting
applications in number theory; in particular, for studying the class numbers of class-groups of number
fields. Therefore, our corollaries will promote the further development of research in this field.
Some important results in this field can also be found in [20–23]. Here, we will not list them one by one.

2. Several Lemmas

In this part, we will provide three straightforward lemmas. Henceforth, we will handle
certain mathematical analysis knowledge and the properties of the Euler polynomials and Bernoulli
polynomials, all of which can be discovered from [1–3]. Thus, they will not be repeated here.

Lemma 1. If m ≥ 0 is an integer, polynomial 2m · Em(x) denotes the integral coefficient polynomial of x.

Proof. First, from Definition 2 of the Euler polynomials Em(x), we have:

2exz = (ez + 1) · 2exz

ez + 1
=

(
1 +

∞

∑
m=0

1
n!

· zm

)(
∞

∑
m=0

Em(x)
m!

· zm

)
. (3)

On the other hand, we also have:

2exz = 2 ·
∞

∑
m=0

xm

m!
· zm. (4)

uniting (3) and (4), then comparing the coefficients of the power series, we obtain that:

2xm = Em(x) +
m

∑
k=0

(
m
k

)
Ek(x)

or identity:

2Em(x) = 2xm −
m−1

∑
k=0

(
m
k

)
Ek(x). (5)

Note that E0(x) = 1, E1(x) = x − 1
2 , so from (5) and mathematical induction, we may immediately

deduce that 2m · Em(x) is an integral coefficient polynomial of x.

Lemma 2. If m is a positive integer, the following equation can be obtained:

2m · Bm(x) = Bm(2x)− 1
2
· m · Em−1(2x).

Proof. From Definitions 1 and 2 of the Euler polynomials and Bernoulli polynomials, we discover the
identity as below:

2ze2xz

e2z − 1
=

∞

∑
m=0

2m · Bm(x)
m!

· zm =

(
z · e2xz

ez − 1
− z · e2xz

ez + 1

)
=

∞

∑
m=0

Bm(2x)
m!

· zm − 1
2

∞

∑
m=0

Em(2x)
m!

· zm+1. (6)
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Relating the coefficients of the power series in (6), we obtain:

2m · Bm(x) = Bm(2x)− m
2
· Em−1(2x).

This proves Lemma 2.

Lemma 3. If m is a positive integer, then for any positive integer M, we will be able to obtain the identities:

2m · (Bm (M)− Bm) = m ·
2M−1

∑
i=0

Em−1(i).

Proof. On the basis of Definition 2 of the Euler polynomials, we obtain:

N−1

∑
i=0

2zeiz

ez + 1
=

∞

∑
m=0

1
n!

(
N−1

∑
i=0

Em(i)

)
· zm+1. (7)

In another aspect, we also obtain:

N−1

∑
i=0

2zeiz

ez + 1
=

2z
(
eNz − 1

)
(ez + 1) (ez − 1)

=
2zeNz − 2z

e2z − 1

=
∞

∑
m=0

2m · Bm

(
N
2

)
m!

· zm −
∞

∑
m=0

2m · Bm

m!
· zm. (8)

Combining (7) and (8), then comparing the coefficients of the power series, we will obtain:

2m ·
(

Bm

(
N
2

)
− Bm

)
= m ·

N−1

∑
i=0

Em−1(i). (9)

Now, Lemma 3 follows from (9) with N = 2M.

3. Proofs of the Theorems

Applying three simple lemmas in Section 2, we can easily finish the proofs of our theorems.
Above all, we study Theorem 1. For any positive integer m, from Lemma 2, we have:

22m+1 · B2m+1(M) = B2m+1(2M)− 2m + 1
2

· E2m(2M). (10)

Note that B2m+1 = 0. From Lemma 3, we also have:

22m+1 · B2m+1 (M) = (2m + 1) ·
2M−1

∑
i=0

E2m(i). (11)

Combining (10) and (11), we have:

B2m+1(2M) =
2m + 1

2
· E2m(2M) + (2m + 1) ·

2M−1

∑
i=0

E2m(i).

Afterwards, we prove Theorem 2. According to Lemma 2 with x = M and x = 0, we have:

22m · B2m(M) = B2m(2M)− m · E2m−1(2M) (12)

and:
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22m · B2m = B2m − m · E2m−1. (13)

Applying Lemma 3, we also have:

22m · (B2m (M)− B2m) = (2m) ·
2M−1

∑
i=0

E2m−1(i). (14)

Combining (12), (13), and (14), we have the identity:

B2m (2M)− B2m = m · E2m−1(2M)− m · E2m−1 + 2m ·
2M−1

∑
i=0

E2m−1(i).

This proves Theorem 2.
From Lemma 1, we know that all 22m · E2m(i) (i = 0, 1, · · · , 2M) are integers, and (22m, 2m+ 1) = 1,

so on the basis of Theorem 1, we may directly deduce the congruence:

B2m+1(2M) ≡ 0 mod (2m + 1). (15)

Since B2m+1(x) is an odd function (that is, B2m+1(−x) = −B2m+1(x)), and B2m+1 = 0, so (15) also
holds for any integer M and non-negative integer m.

This completes the proof of Corollary 1.
Now, we study Corollary 2. On the basis of Lemma 1, we know that 22m−1 · E2m−1(i) is an integer

for all 1 ≤ i ≤ 2M, so from Theorem 1, we know that 22m−1 · (B2m (2M)− B2m) must be an integer,
and it can be divided by m, that is,

22m−1 · (B2m (2M)− B2m) ≡ 0 mod m. (16)

Note that B2m(x) is an even function, and if M = 0, after that, the left-hand side of (16) becomes
zero; thus, the congruence (16) is correct for all integers M.

This completes the proof of Corollary 2.
Corollary 3 is a special case of Corollary 1 with 2m + 1 = p and Corollary 2 with 2m = 2p.
Now, we prove Corollary 4. Since Bp(x) is a pth rational coefficient polynomial of x and its first

item is xp, from Lemma 3, we know that the congruence equation Bp(2x) ≡ 0 mod p has exactly p
different solutions x = 0, 1, 2, · · · p − 1, so there exits an integer N with N ≡ 1 mod p satisfied with
N · Bp(x), an integral coefficient polynomial of x. From [1] (see Theorem 5.23), we have the congruence:

N · Bp(x) ≡ x(x − 1)(x − 2) · (x − p + 1) mod p.

This completes the proofs of our all results.

4. Conclusions

As we all know, the congruences of Bernoulli numbers have important applications in number
theory; in particular, for studying the class numbers of class-groups of number fields. The main results
of this paper are two theorems involving Bernoulli and Euler polynomials and numbers and four
corollaries (or congruences). Two theorems gave some new equations regarding Bernoulli polynomials
and Euler polynomials. As some applications of these theorems, we gave four interesting congruences
involving Bernoulli polynomials. Especially, Corollaries 1 and 4 are very simple and beautiful. It is
clear that Corollary 4 is a good reference for further research on Bernoulli polynomials.
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Abstract: The purpose of this paper is to represent sums of finite products of Legendre and Laguerre
polynomials in terms of several orthogonal polynomials. Indeed, by explicit computations we express
each of them as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer and
Jacobi polynomials, some of which involve terminating hypergeometric functions 1F1 and 2F1.
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Gegenbauer polynomials; hypergeometric functions 1F1 and 2F1

1. Preliminaries

Here, after fixing some notations that will be needed throughout this paper, we will review briefly
some basic facts about orthogonal polynomials relevant to our discussion. As general references on
orthogonal polynomials, we recommend the reader to refer to [1,2].

As is well known, the falling factorial sequence (x)n and the rising factorial sequence 〈x〉n are
respectively defined by

(x)n = x(x − 1) . . . (x − n + 1), (n ≥ 1), (x)0 = 1, (1)

〈x〉n = x(x + 1) . . . (x + n − 1), (n ≥ 1), 〈x〉0 = 1. (2)

The two factorial sequences are related by

(−1)n(x)n = 〈−x〉n , (−1)n 〈x〉n = (−x)n. (3)

(2n − 2s)!
(n − s)!

=
22n−2s(−1)s

〈
1
2

〉
n〈

1
2 − n

〉
s

, (n ≥ s ≥ 0). (4)

(2n + 2s)!
(n + s)!

= 22n+2s
〈

1
2

〉
n

〈
n +

1
2

〉
s

, (n, s ≥ 0). (5)

Γ(n +
1
2
) =

(2n)!
√

π

22nn!
, (n ≥ 0), (6)

Γ(x + 1)
Γ(x + 1 − n)

= (x)n,
Γ(x + n)

Γ(x)
= 〈x〉n , (n ≥ 0), (7)

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt =

Γ(x)Γ(y)
Γ(x + y)

, (Re x, Re y > 0), (8)
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where Γ(x) and B(x, y) denote respectively the gamma and beta functions.
The hypergeometric function is defined by

pFq = (a1, . . . , ap; b1, . . . , bq; x) =
∞

∑
n=0

〈a1〉n . . .
〈

ap
〉

n
〈b1〉n . . .

〈
bq
〉

n

xn

n!
. (9)

Now, we are ready to recall some relevant facts about Legendre polynomials Pn(x), Laguerre
polynomials Ln(x), Hermite polynomials Hn(x), generalized (extended) Laguerre polynomials Lα

n(x),
Gegenbauer polynomials C(λ)

n (x), and Jacobi polynomials P(α,β)
n (x). All the facts stated here can also

be found in [3–8].Interested readers may refer to [1,2,9–13] for full accounts of orthogonal polynomials
and also to [14,15] for papers discussing relevant orthogonal polynomials.

The above-mentioned orthogonal polynomials are given, in terms of generating functions, by

F(t, x) = (1 − 2xt + t2)−
1
2 =

∞

∑
n=0

Pn(x)tn, (10)

G(t, x) = (1 − t)−1exp
(
− xt

1 − t

)
=

∞

∑
n=0

Ln(x)tn, (11)

e2xt−t2
=

∞

∑
n=0

Hn(x)
tn

n!
, (12)

(1 − t)−α−1exp
(
− xt

1 − t

)
=

∞

∑
n=0

Lα
n(x)tn, (13)

1
(1 − 2xt + t2)λ

=
∞

∑
n=0

C(λ)
n (x)tn, (λ > −1

2
, λ �= 0, |t| < 1, |x| ≤ 1), (14)

α + β

R(1 − t ++R)α(1 + t + R)β
=

∞

∑
n=0

P(α,β)
n (x)tn,

(R =
√

1 − 2xt + t2, α, β > −1).

(15)

In terms of explicit expressions, those orthogonal polynomials are given explicitly as follows:

Pn(x) = 2F1

(
−n, n + 1; 1;

1 − x
2

)

=
1
2n

[ n
2 ]

∑
l=0

(−1)l
(

n
l

)(
2n − 2l

n

)
xn−2l ,

(16)

Ln(x) = 1F1(−n; 1; x)

=
n

∑
l=0

(−1)n−l
(

n
l

)
1

(n − l)!
xn−l ,

(17)

Hn(x) = n!
[ n

2 ]

∑
l=0

(−1)l

l!(n − 2l)!
(2x)n−2l , (18)

Lα
n(x) =

〈α + 1〉n
n! 1F1(−n; α + 1; x)

=
n

∑
l=0

(−1)l(n+α
n−l )

l!
xl ,

(19)
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Cλ
n (x) =

(
n + 2λ − 1

n

)
2F1

(
−n, n + 2λ; λ +

1
2

;
1 − x

2

)

=
[ n

2 ]

∑
k=0

(−1)k Γ(n − k + λ)

Γ(λ)k!(n − 2k)!
(2x)n−2k,

(20)

P(α,β)
n (x) =

〈α + 1〉n
n! 2F1

(
−n, 1 + α + β + n; α + 1;

1 − x
2

)
=

n

∑
k=0

(
n + α

n − k

)(
n + β

k

)(
x − 1

2

)k ( x + 1
2

)n−k
.

(21)

For Legendre, Gegenbauer and Jacobi polynomials, we have Rodrigues’ formulas, and for Hermite
and generalized Laguerre polynomials, we have Rodrigues-type formulas.

Hn(x) = (−1)nex2 dn

dxn e−x2
, (22)

Lα
n(x) =

1
n!

x−αex dn

dxn (e
−xxn+α), (23)

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, (24)

(1 − x2)λ− 1
2 C(λ)

n (x) =
(−2)n

n!
〈λ〉n

〈n + 2λ〉n

dn

dxn (1 − x2)n+λ− 1
2 , (25)

(1 − x)α(1 + x)βP(α,β)
n (x) =

(−1)n

2nn!
dn

dxn (1 − x)n+α(1 + x)n+β. (26)

The orthogonal polynomials in Equations (22)–(26) satisfy the following orthogonality relations
with respect to various weight functions.∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx = 2nn!
√

πδm,n, (27)

∫ ∞

0
xαe−xLα

n(x)Lα
m(x)dx =

1
n!

Γ(α + n + 1)δm,n, (28)

∫ 1

−1
Pn(x)Pm(x)dx =

2
2n + 1

δm,n, (29)

∫ 1

−1
(1 − x2)λ− 1

2 C(λ)
n (x)C(λ)

m (x)dx =
π21−2λΓ(n + 2λ)

n!(n + λ)Γ(λ)2 δm,n, (30)

∫ 1

−1
(1 − x)α(1 + x)βP(α,β)

n (x)P(α,β)
m (x)dx =

2α+β+1Γ(n + α + 1)Γ(n + β + 1)
(2n + α + β + 1)Γ(n + α + β + 1)Γ(n + 1)

δm,n. (31)

2. Introduction

In this paper, we will consider two sums of finite products

γn,r(x) = ∑
i1+···+i2r+1=n

Pi1(x)Pi2(x) . . . Pi2r+1(x), (n, r ≥ 0), (32)

in terms of Legendre polynomials and

εn,r(x) = ∑
i1+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
. . . Lir+1

(
x

r + 1

)
, (n, r ≥ 0), (33)
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in terms of Laguerre polynomials. We represent each of them as linear combinations of Hermite,
extended Laguerre, Legendre, Gegenbauer, and Jacobi polynomials (see Theorems 1 and 2). It is
amusing to note here that, for some of these expressions, the coefficients involve certain terminating
hypergeometric functions 2F1 and 1F1. These representations are obtained by carrying out explicit
computations with the help of Propositions 1 and 2. We observe here that the formulas in Proposition 1
can be derived from the orthogonalities in Equation (27)–(31), Rodrigues’ and Rodrigues-type formulas
in Equation (22)–(26), and integration by parts.

Our study of such representation problems can be justified by the following. Firstly, the present
research can be viewed as a generalization of the classical connection problems. Indeed, the classical
connection problems are concerned with determining the coefficients in the expansion of a product of
two polynomials in terms of any given sequence of polynomials (see [1,2]).

Secondly, studying such kinds of sums of finite products of special polynomials can be well
justified also by the following example. Let us put

αm(x) =
m−1

∑
k=1

1
k(m − k)

Bk(x)Bm−k(x), (m ≥ 2),

where Bn(x) are the Bernoulli polynomials. Then we can express αm(x) as linear combinations of
Bernoulli polynomials, for example from the Fourier series expansion of the function closely related to
that. Indeed, we can show that

m−1

∑
k=1

1
2k (2m − 2k)

B2k (x) B2m−2k (x) +
2

2m − 1
B1 (x) B2m−1 (x) (34)

=
1
m

m

∑
k=1

1
2k

(
2m
2k

)
B2kB2m−2k (x) +

1
m

H2m−1B2m (x) +
2

2m − 1
B2m−1B1 (x) ,

where Hm = ∑m
j=1

1
j are the harmonic numbers.

Further, some simple modification of this gives us the famous Faber-Pandharipande-Zagier
identity and a slightly different variant of the Miki’s identity by letting respectively x = 1

2 and
x = 0 in (34). We note here that all the other known derivations of F-P-Z and Miki’s identity are
quite involved, while our proof of Miki’s and Faber-Pandharipande-Zagier identities follow from the
polynomial identity (34), which in turn follows immediately the Fourier series expansion of αm(x).
Indeed, Miki makes use of a formula for the Fermat quotient ap−a

p modulo p2, Shiratani-Yokoyama
employs p-adic analysis, Gessel’s proof is based on two different expressions for Stirling numbers
of the second kind S2 (n, k), and Dunne-Schubert exploits the asymptotic expansion of some special
polynomials coming from the quantum field theory computations. For some details on these, we let
the reader refer to the introduction in [16] and the papers therein.

The next two theorems are the main results of this paper.

Theorem 1. For any nonnegative integers n and r, we have the following representation.

∑
i1+i2+···+i2r+1=n

Pi1(x)Pi2(x) . . . Pi2r+1(x)

=
2r(n + r − 1

2 )n+r

(2r − 1)!!

[ n
2 ]

∑
j=0

1F1(−j; 1
2 − n − r;−1)

j!(n − 2j)!
Hn−2j(x)

(35)

=
1

(2r − 1)!!2n+r

n

∑
k=0

(−1)k

Γ(α + k + 1)

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r − 2l)!Γ(n − 2l + α + 1)
l!(n + r − l)!(n − k − 2l)!

Lα
k (x)

(36)

24



Symmetry 2019, 11, 317

=
2r−1(n + r − 1

2 )n+r

(2r − 1)!!

×
[ n

2 ]

∑
j=0

(2n + 1 − 4j)2F1(−j, j − n − 1
2 ; 1

2 − n − r; 1)

j!(n − j + 1
2 )n−j+1

Pn−2j(x)
(37)

=
2rΓ(λ)(n + r − 1

2 )n+r

(2r − 1)!!

×
[ n

2 ]

∑
j=0

(n + λ − 2j)2F1(−j, j − n − r; 1
2 − n − r; 1)

Γ(n + λ − j + 1)j!
C(λ)

n−2j(x)
(38)

=
(−1)n

(2r − 1)!!2n+r

n

∑
k=0

Γ(k + α + β + 1)(−2)k

Γ(2k + α + β + 1)

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r − 2l)!
l!(n + r − l)!(n − k − 2l)!

× 2F1(2l + k − n, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x).

(39)

Here (2r − 1)!! is the double factorial given by

(2r − 1)!! = (2r − 1)(2r − 3) . . . 1, (r ≥ 1), (−1)!! = 1. (40)

Remark 1. An alternative expression for (36) is given by

γn,r(x) =
1

Γ(α + 1)(2r − 1)!!2n+r

×
[ n

2 ]

∑
l=0

(−1)l(2n + 2r − 2l)!Γ(n − 2l + α + 1)
l!(n + r − l)!(n − 2l)!

n−2l

∑
k=0

〈2l − n〉k
〈α + 1〉k

Lα
k (x).

(41)

Theorem 2. For any nonnegative integers n and r, we have the following representation.

∑
i1+i2+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
. . . Lir+1

(
x

r + 1

)

= (n + r)!
n

∑
k=0

(− 1
2 )

k

k!

[ n−k
2 ]

∑
j=0

( 1
4 )

j

j!(n − k − 2j)!(r + k + 2j)!
Hk(x) (42)

= (n + r)!
n

∑
k=0

2F1(k − n, k + α + 1; r + k + 1; 1)
(n − k)!(r + k)!

Lα
k (x) (43)

=(n + r)!
n

∑
k=0

2k+1(2k + 1)

×
[ n−k

2 ]

∑
j=0

(k + j + 1)!
j!(n − k − 2j)!(r + k + 2j)!(2k + 2j + 2)!

Pk(x)

(44)

=(n + r)!Γ(λ)
n

∑
k=0

(
−1

2

)k
(k + λ)

×
[ n−k

2 ]

∑
j=0

( 1
4 )

j

j!(n − k − 2j)!(r + k + 2j)!Γ(k + j + λ + 1)
C(λ)

k (x)

(45)
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=(n + r)!
n

∑
k=0

Γ(k + α + β + 1)(−2)k

Γ(2k + α + β + 1)

×
n−k

∑
l=0

2F1(k − n + l, k + β + 1; 2k + α + β + 2; 2)
l!(n + r − l)!(n − k − l)!

P(α,β)
k (x).

(46)

Remark 2. An alternative expression for (42) is as follows:

εn,r(x) = (n + r)!
[ n

2 ]

∑
j=0

( 1
4 )

j

j!(n − 2j)!(r + 2j)!

n−2j

∑
k=0

( 1
2 )

k 〈2j − n〉k
k! 〈r + 2j + 1〉k

Hk(x). (47)

Before we move on to the next section, we would like to mention some of the related previous
works. In [16–18], sums of finite products of Bernoulli, Euler and Genocchi polynomials were
represented as linear combinations of Bernoulli polynomials. These were derived from the Fourier
series expansions for the functions closely related to those sums of finite products. In addition, in [9]
the same had been done for sums of finite products of Chebyshev polynomials of the second kind
and of Fibonacci polynomials.

On the other hand, in terms of all kinds of Chebyshev polynomials, sums of finite products of
Chebyshev polynomials of the second, third and fourth kinds and of Fibonacci, Legendre and Laguerre
polynomials were expressed in [11,12,19]. Further, by the orthogonal polynomials in Equations (16),
and (18)–(21), sums of finite products of Chebyshev polynomials of the second kind and Fibonacci
polynomials were represented in [13].

Finally, the reader may want to see [20,21] for some other aspects of Legendre and
Laguerre polynomials.

3. Proof of Theorem 1

We will first state Propositions 1 and 2 that will be needed in showing Theorems 1 and 2.
The results in the next proposition can be derived from the orthogonalities in (27)–(31), Rodrigues’

and Rodrigues-type formulas in (22)–(26), and integration by parts, as we mentioned earlier. The facts
(a), (b), (c), (d) and (e) in Proposition 1 are respectively from (3.7) of [5], (2.3) of [7] (see also (2.4) of [3]),
(2.3) of [6], (2.3) of [4] and (2.7) of [8].

Proposition 1. For any polynomial q(x) ∈ R[x] of degree n, the following hold.

(a)

q(x) =
n

∑
k=0

Ck,1Hk(x), where Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
q(x)

dk

dxk e−x2
dx,

(b)

q(x) =
n

∑
k=0

Ck,2Lα
k (x), where Ck,2 =

1
Γ(α + k + 1)

∫ ∞

0
q(x)

dk

dxk (e
−xxk+α)dx,

(c)

q(x) =
n

∑
k=0

Ck,3Pk(x), where Ck,3 =
2k + 1
2k+1k!

∫ 1

−1
q(x)

dk

dxk (x2 − 1)kdx,

(d)

q(x) =
n

∑
k=0

Ck,4C(λ)
k (x), where

Ck,4 =
(k + λ)Γ(λ)

(−2)k
√

πΓ(k + λ + 1
2 )

∫ 1

−1
q(x)

dk

dxk (1 − x2)k+λ− 1
2 dx,
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(e)

q(x) =
n

∑
k=0

Ck,5P(α,β)
k (x), where

Ck,5 =
(−1)k(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

×
∫ 1

−1
q(x)

dk

dxk (1 − x)k+α(1 + x)k+βdx.

Proposition 2. The following proposition was stated in [16].
For any nonnegative integers m and k, the following identities hold.

(a) ∫ ∞

−∞
xme−x2

dx =

⎧⎨⎩0, if m ≡ 1 (mod 2),
m!

√
π

(m
2 )!2m , if m ≡ 0 (mod 2),

(b) ∫ 1

−1
xm(1 − x2)kdx =

⎧⎨⎩0, if m ≡ 1 (mod 2),
22k+2k!m!(k+ m

2 +1)!
(m

2 )!(2k+m+2)!
, if m ≡ 0 (mod 2),

= 22k+1k!
m

∑
s=0

(
m
s

)
2s(−1)m−s (k + s)!

(2k + s + 1)!
,

(c) ∫ 1

−1
xm(1 − x2)k+λ− 1

2 dx =

⎧⎨⎩0, if m ≡ 1 (mod 2),
Γ(k+λ+ 1

2 )Γ(
m
2 +

1
2 )

Γ(k+λ+ m
2 +1) , if m ≡ 0 (mod 2),

(d) ∫ 1

−1
xm(1 − x)k+α(1 + x)k+βdx =22k+α+β+1

m

∑
s=0

(
m
s

)
(−1)m−s2s

× Γ(k + α + 1)Γ(k + β + s + 1)
Γ(2k + α + β + s + 2)

.

Differentiation of (10) gives us the following lemma.

Lemma 1. For any nonnegative integers n and r, we have the following identity.

∑
i1+i2+...i2r+1=n

Pi1(x), Pi2(x), . . . , Pi2r+1(x) =
1

(2r − 1)!!
P(r)

n+r(x), (48)

where the sum is over all nonnegative integers i1, i2, . . . , i2r+1, with i1 + i2 + . . . i2r+1 = n.
By taking rth derivative of (16), we have

P(r)
n (x) =

1
2n

[ n−r
2 ]

∑
l=0

(−1)l
(

n
l

)(
2n − 2l

n

)
(n − 2l)r xn−2l−r. (49)

Actually, we need the following particular case of (49).

P(r+k)
n+r (x) =

1
2n+r

[ n−k
2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r − 2l

n + r

)
× (n + r − 2l)r+k xn−2l−k.

(50)

Here we are going to show (35), (36) and (38), leaving the other two (37) and (39) as exercises.
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With γn,r(x) as in (32), let us put

γn,r(x) =
n

∑
k=0

Ck,1Hk(x). (51)

Then, from (a) of Proposition 1, (48), (50), and by integrating by parts k times, we have

Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
γn,r(x)

dk

dxk e−x2
dx

=
(−1)k

2kk!
√

π(2r − 1)!!

∫ ∞

−∞
P(r)

n+r(x)
dk

dxk e−x2
dx

=
1

2kk!
√

π(2r − 1)!!

∫ ∞

−∞
P(r+k)

n+r (x)e−x2
dx

=
1

2k+n+rk!
√

π(2r − 1)!!

×
[ n−k

2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r − 2l

n + r

)
(n + r − 2l)r+k

×
∫ ∞

−∞
xn−2l−ke−x2

dx.

(52)

From (52) and making use of (a) of Proposition 2, we obtain

Ck,1 =
1

2k+n+rk!
√

π(2r − 1)!!

×
[ n−k

2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r − 2l

n + r

)
(n + r − 2l)r+k

×
⎧⎨⎩0, if k �≡ n (mod 2),

(n−k−2l)!
√

π

2n−k−2l( n−k
2 −l)!

, if k ≡ n (mod 2).

(53)

Now, from (51) and (53) and after some simplifications,

γn,r(x) =
1

22n+r(2r − 1)!! ∑
0≤k≤n

k≡n (mod 2)

1
k!

×
[ n−k

2 ]

∑
l=0

(−4)l(2n + 2r − 2l)!
l!(n + r − l)!( n−k

2 − l)!
Hk(x)

=
1

22n+r(2r − 1)!!

[ n
2 ]

∑
j=0

1
j!(n − 2j)!

Hn−2j(x)

×
j

∑
l=0

(−4)l(j)l(2n + 2r − 2l)!
l!(n + r − l)!

=
2r(n + r − 1

2 )n+r

(2r − 1)!!

[ n
2 ]

∑
j=0

1
j!(n − 2j)!

Hn−2j(x)

×
j

∑
l=0

(−1)l 〈−j〉l

l!
〈

1
2 − n − r

〉
l

=
2r(n + r − 1

2 )n+r

(2r − 1)!!

[ n
2 ]

∑
j=0

1F1(−j; 1
2 − n − r;−1)

j!(n − 2j)!
Hn−2j(x).

(54)
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This shows (35) in Theorem 1.

Next, we put

γn,r(x) =
n

∑
k=0

Ck,2 Lα
k (x). (55)

Then, from (b) of Proposition 1, (48), (50) and integration by parts k times, we get

Ck,2 =
(−1)k

Γ(α + k + 1)(2r − 1)!!

∫ ∞

0
P(r+k)

n+r (x)e−xxk+αdx

=
(−1)k

Γ(α + k + 1)(2r − 1)!! 2n+r

[ n−k
2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r − 2l

n + r

)
× (n + r − 2l)r+k Γ(n − 2l + α + 1)

=
(−1)k

Γ(α + k + 1)(2r − 1)!! 2n+r

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r − 2l)!Γ(n − 2l + α + 1)
l!(n + r − l)!(n − k − 2l)!

.

(56)

Combining (55) and (56), and changing order of summation, we immediately have

γn,r(x) =
1

(2r − 1)!! 2n+r

n

∑
k=0

(−1)k

Γ(α + k + 1)

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r − 2l)! Γ(n − 2l + α + 1)
l!(n + r − l)!(n − k − 2l)!

Lα
k (x)

=
1

Γ(α + 1)(2r − 1)!! 2n+r

[ n
2 ]

∑
l=0

(−1)l(2n + 2r − 2l)!Γ(n − 2l + α + 1)
l!(n + r − l)!(n − 2l)!

×
n−2l

∑
k=0

〈2l − n〉k
〈α + 1〉k

Lα
k (x).

(57)

This yields (36) in Theorem 1.

Finally, we let

γn,r(x) =
n

∑
k=0

Ck,4C(λ)
k (x) (58)

Then, from (d) of Proposition 1, (48), (50), integration by parts k times and making use of (c) of Proposition 2,
we have

Ck,4 =
(k + λ) Γ(λ)(−1)k

(−2)k
√

π Γ(k + λ + 1
2 )(2r − 1)!!

×
∫ 1

−1
P(r+k)

n+r (x)(1 − x2)k+λ− 1
2 dx

=
(k + λ)Γ(λ)

2k+n+r
√

π Γ(k + λ + 1
2 )(2r − 1)!!

×
[ n−k

2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r − 2l

n + r

)
(n + r − 2l)r+k

×
⎧⎨⎩0, if k �≡ n (mod 2),

Γ(k+λ+ 1
2 ) Γ( n−k+1

2 −l)
Γ( n+k

2 +λ−l+1)
, if k ≡ n (mod 2).

(59)
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From (58) and (59), exploiting (3), (4), (6) and (7), and after some simplifications, we finally derive

γn,r(x) =
Γ(λ)√

π(2r − 1)!!2n+r ∑
0≤k≤n

k≡n (mod 2)

(k + λ)

2k

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r − 2l)! Γ( n−k+1
2 − l)

l!(n + r − l)!(n − k − 2l)!Γ( k+n
2 + λ − l + 1)

C(λ)
k (x)

=
Γ(λ)√

π(2r − 1)!!2n+r

[ n
2 ]

∑
j=0

(n − 2j + λ)

2n−2j

×
j

∑
l=0

(−1)l(2n + 2r − 2l)! Γ(j − l + 1
2 )

l! (n + r − l)! (2j − 2l)! Γ(n + λ − j − l + 1)
C(λ)

n−2j(x)

=
Γ(λ)

(2r − 1)!! 22n+r

[ n
2 ]

∑
j=0

(n − 2j + λ)

Γ(n + λ − j + 1)

×
j

∑
l=0

(−4)l(2n + 2r − 2l)! (n + λ − j)l
l! (n + r − l)! (j − l)!

C(λ)
n−2j(x)

(60)

=
2r Γ(λ)(n + r − 1

2 )n+r

(2r − 1)!!

[ n
2 ]

∑
j=0

(n − 2j + λ)

Γ(n + λ − j + 1) j!

×
j

∑
l=0

〈−j〉l 〈j − n − r〉l

l!
〈

1
2 − n − r

〉
l

C(λ)
n−2j(x)

=
2r Γ(λ)(n + r − 1

2 )n+r

(2r − 1)!!

×
[ n

2 ]

∑
j=0

(n − 2j + λ) 2F1(−j, j − n − r; 1
2 − n − r; 1)

Γ(n + λ − j + 1) j!
C(λ)

n−2j(x).

This completes the proof for (38) in Theorem 1.

4. Proof of Theorem 2

The proofs for (42), (43) and (45) are left to the reader as an exercise and we will show only (44)
and (46) in Theorem 2.

The following lemma is important for our discussion in this section and can be derived by
differentiating (11).

Lemma 2. Let n, r be nonnegative integers. Then we have the following identity.

∑
i1+i2+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
. . . Lir+1

(
x

r + 1

)
= (−1)rL(r)

n+r(x), (61)

where the sum runs over all nonnegative integers i1, i2, . . . , ir+1, with i1 + i2 + · · ·+ ir+1 = n.

From (17), it is immediate to see that the rth derivative of Ln(x) is given by

L(r)
n (x) =

n−r

∑
l=0

(−1)n−l
(

n
l

)
1

(n − l − r)!
xn−l−r. (62)
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In particular, we have

L(r+k)
n+r (x) =

n−k

∑
l=0

(−1)n+r−l
(

n + r
l

)
1

(n − k − l)!
xn−k−l . (63)

With εn,r(x) as in (33), let us set

εn,r(x) =
n

∑
k=0

Ck,3Pk(x). (64)

Then, from (c) of Proposition 1, (61), (63), by integration by parts k times and using (b) of Proposition 2,
we get

Ck,3 =
(2k + 1)(−1)r+k

2k+1k!

∫ 1

−1
L(r+k)

n+r (x)(x2 − 1)kdx

=
(−1)n+k(2k + 1)(n + r)!

2k+1 k!

n−k

∑
l=0

(−1)l

l! (n + r − l)! (n − k − l)!

×
⎧⎨⎩0, if l �≡ n − k (mod 2)

22k+2 k! (n−k−l)!( n+k−l
2 +1)!

( n−k−l
2 )!(n+k−l+2)!

, if l ≡ n − k (mod 2)

(65)

= (−1)n+k(2k + 1)2k+1(n + r)!

× ∑
0≤l≤n−k

l≡n−k (mod 2)

(−1)l ( n+k−l
2 + 1)!

l! (n + r − l)! ( n−k−l
2 )! (n + k − l + 2)!

= (n + r)! (2k + 1) 2k+1

×
[ n−k

2 ]

∑
j=0

(k + j + 1)!
j! (n − k − 2j)! (r + k + 2j)! (2k + 2j + 2)!

.

By combining (64) and (65) we get the following result.

εn,r(x) = (n + r)!
n

∑
k=0

(2k + 1) 2k+1

×
[ n−k

2 ]

∑
j=0

(k + j + 1)!
j! (n − k − 2j)! (r + k + 2j)! (2k + 2j + 2)!

Pk(x).

(66)

This completes the proof for (44).
Finally, we put

εn,r(x) =
n

∑
k=0

Ck,5 P(α,β)
k (x). (67)

Then, from (e) of Proposition 1, (61), (63), integration by parts k times and exploiting (d) of Proposition 2,
we have
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Ck,5 =
(−1)r (2k + α + β + 1) Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

×
∫ 1

−1
L(r+k)

n+r (x)(1 − x)k+α(1 + x)k+βdx

=
(−1)r(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

×
n−k

∑
l=0

(−1)n+r−l
(

n + r
l

)
1

(n − k − l)!

×
∫ 1

−1
xn−k−l(1 − x)k+α(1 + x)k+βdx

=
(n + r)! (−2)k(2k + α + β + 1)Γ(k + α + β + 1)

Γ(β + k + 1)

×
n−k

∑
l=0

1
l! (n + r − l)!

n−k−l

∑
s=0

(−2)s Γ(k + β + s + 1)
s! (n − k − l − s)! Γ(2k + α + β + s + 2)

=
(n + r)! (−2)kΓ(k + α + β + 1)

Γ(2k + α + β + 1)

×
n−k

∑
l=0

1
l! (n + r − l)! (n − k − l)!

n−k−l

∑
s=0

2s 〈k + l − n〉s 〈k + β + 1〉s
s! 〈2k + α + β + 2〉s

=
(n + r)! (−2)kΓ(k + α + β + 1)

Γ(2k + α + β + 1)

×
n−k

∑
l=0

2F1(k + l − n, k + β + 1; 2k + α + β + 2; 2)
l! (n + r − l)! (n − k − l)!

(68)

We now obtain

εn,r(x) = (n + r)!
n

∑
k=0

(−2)k Γ(k + α + β + 1)
Γ(2k + α + β + 1)

×
n−k

∑
l=0

2F1(k + l − n, k + β + 1; 2k + α + β + 2; 2)
l! (n + r − l)! (n − k − l)!

P(α,β)
k (x).

(69)

This verifies (46) in Theorem 2.

5. Conclusions

Let γm,r(x), εm,r(x), and αm(x) denote the following sums of finite products given by

γn,r(x) = ∑
i1+···+i2r+1=n

Pi1(x)Pi2(x) . . . Pi2r+1(x),

εn,r(x) = ∑
i1+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
. . . Lir+1

(
x

r + 1

)
,

αm(x) =
m−1

∑
k=1

1
k(m − k)

Bk(x)Bm−k(x), (m ≥ 2),

where Pn(x), Ln(x), Bn(x), (n ≥ 0) are respectively Legendre, Laguerre and Bernoulli polynomials.
In this paper, we studied sums of finite products of Legendre polynomials γm,r(x) and those of
Laguerre polynomials εm,r(x), and expressed them as linear combinations of the orthogonal
polynomials Hn(x), Lα

n(x), Pn(x), C(λ)
n (x), and P(α,β)

n (x). These have been done by carrying out explicit
computations. In recent years, we have obtained similar results for many other special polynomials.
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For example, we considered sums of finite products of Bernoulli, Euler and Genocchi polynomials and
represented them in terms of Bernoulli polynomials. In addition, as for Chebyshev polynomials of the
second, third, and fourth kinds, and Fibonacci, Legendre and Laguerre polynomials, we expressed
them not only in terms of Bernoulli polynomials but also of Chebyshev polynomials of all kinds and
Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials.

We gave twofold justification for studying such sums of finite products of special polynomials.
Firstly, it can be viewed as a generalization of the classical connection problem in which one wants to
determine the connection coefficients in the expansion of a product of two polynomials in terms of
any given sequence of polynomials. Secondly, from the representation of αm(x) in terms of Bernoulli
polynomials we can derive the famous Faber-Pandharipande-Zagier identity and a slightly different
variant of the Miki’s identity. We emphasized that these identities had been obtained by several
different methods which are quite involved and not elementary, while our previous method used only
elementary Fourier series expansions.

Along the same line of the present paper, we would like to continue to work on representing
sums of finite products of some special polynomials in terms of various kinds of special polynomials
and to find interesting applications of them in mathematics, science and engineering areas.
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Abstract: In this paper, we introduce central complete and incomplete Bell polynomials which can be
viewed as generalizations of central Bell polynomials and central factorial numbers of the second
kind, and also as ’central’ analogues for complete and incomplete Bell polynomials. Further, some
properties and identities for these polynomials are investigated. In particular, we provide explicit
formulas for the central complete and incomplete Bell polynomials related to central factorial numbers
of the second kind.

Keywords: central incomplete Bell polynomials; central complete Bell polynomials; central complete
Bell numbers

1. Introduction

In this paper, we introduce central incomplete Bell polynomials Tn,k(x1, x2, · · · , xn−k+1) given by

1
k!

( ∞

∑
m=1

1
2m (xm − (−1)mxm)

tm

m!

)k
=

∞

∑
n=k

Tn,k(x1, x2, · · · , xn−k+1)
tn

n!

and central complete Bell polynomials B(c)
n (x|x1, x2, · · · , xn) given by

exp
(

x
∞

∑
i=1

1
2i (xi − (−1)ixi)

ti

i!

)
=

∞

∑
n=0

B(c)
n (x|x1, x2, · · · , xn)

tn

n!

and investigate some properties and identities for these polynomials. They can be viewed as
generalizations of central Bell polynomials and central factorial numbers of the second kind, and also
as ‘central’ analogues for complete and incomplete Bell polynomials.

Here, we recall that the central factorial numbers T(n, k) of the second kind and the central Bell
polynomials B(c)

n (x) are given in terms of generating functions by

1
k!
(
e

t
2 − e−

t
2
)k

=
∞

∑
n=k

T(n, k)
tn

n!
, ex(e

t
2 −e−

t
2 ) =

∞

∑
n=0

B(c)
n (x)

tn

n!
,

so that Tn,k(1, 1, · · · , 1) = T(n, k) and B(c)
n (x|1, 1, · · · , 1) = B(c)

n (x).
The incomplete and complete Bell polynomials have applications in such diverse areas as

combinatorics, probability, algebra, modules over a ∗-algebra (see [1,2]), quasi local algebra and
analysis. Here, we recall some applications of them and related works. The incomplete Bell polynomials
Bn,k(x1, x2, · · · , xn−k+1) (see [3,4]) arise naturally when we want to find higher-order derivatives of
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composite functions. Indeed, such higher-order derivatives can be expressed in terms of incomplete
Bell polynomials, which is known as Faà di Bruno formula given as in the following (see [3]):

dn

dtn g( f (t)) =
n

∑
k=0

g(k)( f (t))Bn,k( f ′(t), f ′′(t), · · · , f (n−k+1)(t)).

For the curious history on this formula, we let the reader refer to [5].
In addition, the number of monomials appearing in Bn,k = Bn,k(x1, x2, · · · , xn−k+1) is the number

of partitioning a set with n elements into k blocks and the coefficient of each monomial is the number
of partitioning a set with n elements as the corresponding k blocks. For example,

B10,7 = 3150x3
2x4

1 + 2520x3x2x5
1 + 210x4x6

1

shows that there are three ways of partitioning a set with 10 elements into seven blocks, and 3150
partitions with blocks of size 2, 2, 2, 1, 1, 1, 1, 2520 partitions with blocks of size 3, 2, 1, 1, 1, 1, 1, and
210 partitions with blocks of size 4, 1,1, 1, 1, 1, 1. This example is borrowed from [4], which gives a
practical way of computing Bn,k for any given n, k (see [4], (1.5)).

Furthermore, the incomplete Bell polynomials can be used in constructing sequences of binomial
type (also called associated sequences). Indeed, for any given scalars c1, c2, · · · , cn, · · · the following
form a sequence of binomial type

sn(x) =
n

∑
k=0

Bn,k(c1, c2, · · · , cn−k+1)xk, (n = 0, 1, 2, · · · )

and, conversely, any sequence of binomial type arises in this way for some scalar sequence
c1, c2, · · · , cn · · · . For these, the reader may want to look at the paper [6].

There are certain connections between incomplete Bell polynomials and combinatorial Hopf
algebras such as the Hopf algebra of word symmetric functions, the Hopf algebra of symmetric
functions, the Faà di Bruno algebra, etc. The details can be found in [7].

The complete Bell polynomials Bn(x1, x2, · · · , xn) (see [3,8–10]) have applications to probability
theory. Indeed, the nth moment μn = E[Xn] of the random variable X is the nth complete Bell
polynomial in the first n cumulants. Namely,

μn = Bn(κ1, κ2, · · · , κn).

For many applications to probability theory and combinatorics, the reader can refer to the Ph. D.
thesis of Port [10].

Many special numbers, like Stirling numbers of both kinds, Lah numbers and idempotent
numbers, appear in many combinatorial and number theoretic identities involving complete and
incomplete Bell polynomials. For these, the reader refers to [3,8].

The central factorial numbers have received less attention than Stirling numbers. However,
according to [11], they are at least as important as Stirling numbers, said to be “as important as
Bernoulli numbers, or even more so”. A systematic treatment of these important numbers was
given in [11], including their properties and applications to difference calculus, spline theory, and to
approximation theory, etc. For some other related references on central factorial numbers, we let the
reader refer to [1,2,12–14]. Here, we note that central Bell polynomials and central factorial numbers of
the second kind are respectively ‘central’ analogues for Bell polynomials and Stirling numbers of the
second kind. They have been studied recently in [13,15].

The complete Bell polynomials and the incomplete Bell polynomials are respectively mutivariate
versions for Bell polynomials and Stirling numbers of the second kind. This paper deals with
central complete and incomplete Bell polynomials which are ’central’ analogues for the complete
and incomplete Bell polynomials. In addition, they can be viewed as generalizations of central Bell

36



Symmetry 2019, 11, 288

polynomials and central factorial numbers of the second kind (see [15]). The outline of the paper is
as follows. After giving an introduction to the present paper in Section 1, we review some known
properties and results about Bell polynomials, and incomplete and complete Bell polynomials in
Section 2. We state the new and main results of this paper in Section 3, where we introduce central
incomplete and complete Bell polynomials and investigate some properties and identities for them.
In particular, Theorems 1 and 3 give basic formulas for computing central incomplete Bell polynomials
and central complete Bell polynomials, respectively. We remark that the number of monomials
appearing in Tn,k(x1, 2x2, · · · , 2n−kxn−k+1) is the number of partitioning a set with n elements into k
blocks with odd sizes and the coefficient of each monomial is the number of partitioning a set with n
elements as the corresponding k blocks with odd sizes. This is illustrated by an example. Furthermore,
we give expressions for the central incomplete and complete Bell polynomials with some various
special arguments and also for the connection between the two Bell polynomials. We defer more
detailed study of the central incomplete and complete Bell polynomials to a later paper.

2. Preliminaries

The Stirling numbers of the second kind are given in terms of generating function by (see [3,16])

1
k!
(et − 1)k =

∞

∑
n=k

S2(n, k)
tn

n!
. (1)

The Bell polynomials are also called Tochard polynomials or exponential polynomials and defined
by (see [9,13,15,17])

ex(et−1) =
∞

∑
n=0

Bn(x)
tn

n!
. (2)

From Equations (1) and (2), we immediately see that (see [3,18])

Bn(x) = e−x
∞

∑
k=0

kn

k!
xk

=
n

∑
k=0

xkS2(n, k), (n ≥ 0).
(3)

When x = 1, Bn = Bn(1) are called Bell numbers.

The (exponential) incomplete Bell polynomials are also called (exponential) partial Bell
polynomials and defined by the generating function (see [9,15])

1
k!

( ∞

∑
m=1

xm
tm

m!

)k
=

∞

∑
n=k

Bn,k(x1, · · · , xn−k+1)
tn

n!
, (k ≥ 0). (4)

Thus, by Equation (4), we get

Bn,k(x1, · · · , xn−k+1) = ∑
n!

i1!i2! · · · in−k+1!

( x1

1!

)i1( x2

2!

)i2 × · · ·

×
( xn−k+1
(n − k + 1)!

)in−k+1
,

(5)

where the summation runs over all integers i1, · · · , in−k+1 ≥ 0 such that i1 + i2 + · · ·+ in−k+1 = k and
i1 + 2i2 + · · ·+ (n − k + 1)in−k+1 = n.
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From (1) and (4), we easily see that

Bn,k (1, 1, · · · , 1)︸ ︷︷ ︸
n−k+1−times

= S2(n, k), (n, k ≥ 0).
(6)

We easily deduce from (5) the next two identities:

Bn,k(αx1, αx2, · · · , αxn−k+1) = αkBn,k(x1, x2, · · · , xn−k+1) (7)

and

Bn,k(αx1, α2x2, · · · , αn−k+1xn−k+1) = αnBn,k(x1, x2, · · · , xn−k+1), (8)

where α ∈ R (see [15]).

From (4), it is not difficult to note that

∞

∑
n=k

Bn,k(x, 1, 0, 0, · · · , 0)
tn

n!
=

1
k!
(
xt +

t2

2
)k

=
tk

k!

k

∑
n=0

(
k
n

)( t
2

)n
xk−n

=
k

∑
n=0

(n + k)!
k!

(
k
n

)
1
2n xk−n tn+k

(n + k)!
,

(9)

and

∞

∑
n=k

Bn,k(x, 1, 0, 0, · · · , 0)
tn

n!
=

∞

∑
n=0

Bn+k,k(x, 1, 0, · · · , 0)
tn+k

(n + k)!
. (10)

Combining (9) with (10), we have

Bn+k,k(x, 1, 0, · · · , 0) =
(n + k)!

k!

(
k
n

)
1
2n xk−n, (0 ≤ n ≤ k). (11)

Replacing n by n − k in (11) yields the following identity

Bn,k(x, 1, 0, · · · , 0) =
n!
k!

(
k

n − k

)
x2k−n

(1
2

)n−k
, (k ≤ n ≤ 2k). (12)

We recall here that the (exponential) complete Bell polynomials are defined by

exp
( ∞

∑
i=1

xi
ti

i!

)
=

∞

∑
n=0

Bn(x1, x2, · · · , xn)
tn

n!
. (13)

Then, by (4) and (13), we get

Bn(x1, x2, · · · , xn) =
n

∑
k=0

Bn,k(x1, x2, · · · , xn−k+1). (14)
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From (3), (6), (7) and (14), we have

Bn(x, x, · · · , x) =
n

∑
k=0

xkBn,k(1, 1, · · · , 1)

=
n

∑
k=0

xkS2(n, k) = Bn(x), (n ≥ 0).
(15)

We recall that the central factorial numbers of the second kind are given by (see [19,20])

1
k!
(
e

t
2 − e−

t
2
)k

=
∞

∑
n=k

T(n, k)
tn

n!
, (16)

where k ≥ 0.
From (16), it is not difficult to derive the following expression

T(n, k) =
1
k!

k

∑
j=0

(
k
j

)
(−1)k−j(j − k

2
)n, (17)

where n, k ∈ Z with n ≥ k ≥ 0, (see [16,20]).
In [20], the central Bell polynomials B(c)

n (x) are defined by

B(c)
n (x) =

n

∑
k=0

T(n, k)xk, (n ≥ 0). (18)

When x = 1, B(c)
n = B(c)

n (1) are called the central Bell numbers.
It is not hard to derive the generating function for the central Bell polynomials from (18) as follows

(see [15]):

ex
(

e
t
2 −e−

t
2
)
=

∞

∑
n=0

B(c)
n (x)

tn

n!
. (19)

By making use of (19), the following Dobinski-like formula was obtained earlier in [15]:

B(c)
n (x) =

∞

∑
l=0

∞

∑
j=0

(
l + j

j

)
(−1)j 1

(l + j)!

( l
2
− j

2

)n
xl+j, (20)

where n ≥ 0.

Motivated by (4) and (13), we will introduce central complete and incomplete Bell polynomials
and investigate some properties and identities for these polynomials. Also, we present explicit formulas
for the central complete and incomplete Bell polynomials related to central factorial numbers of the
second kind.

3. On Central Complete and Incomplete Bell Polynomials

In view of (13), we may consider the central incomplete Bell polynomials which are given by

1
k!

( ∞

∑
m=1

1
2m (xm − (−1)mxm)

tm

m!

)k
=

∞

∑
n=k

Tn,k(x1, x2, · · · , xn−k+1)
tn

n!
, (21)

where k = 0, 1, 2, 3, · · · .
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For n, k ≥ 0 with n − k ≡ 0 (mod 2), by (4) and (5), we get

Tn,k(x1, x2, · · · , xn−k+1) = ∑
n!

i1!i2! · · · in−k+1!

( x1

1!

)i1( 0
2 · 2!

)i2

× (
x3

22 · 3!

)i3 · · ·
( xn−k+1

2n−k(n − k + 1)!

)in−k+1
,

(22)

where the summation is over all integers i1, i2, · · · , in−k+1 ≥ 0 such that i1 + · · ·+ in−k+1 = k and
i1 + 2i2 + · · ·+ (n − k + 1)in−k+1 = n.

From (5) and (22), we note that

Tn,k(x1, x2, · · · , xn−k+1) = Bn,k
(
x1, 0,

x3

22 , 0, · · · ,
xn−k+1

2n−k

)
, (23)

where n, k ≥ 0 with n − k ≡ 0 (mod 2) and n ≥ k.
Therefore, from (22) and (23), we obtain the following theorem.

Theorem 1. For n, k ≥ 0 with n ≥ k and n − k ≡ 0 (mod 2), we have

Tn,k(x1, x2, · · · , xn−k+1) = Bn,k
(
x1, 0,

x3

22 , 0, · · · ,
xn−k+1

2n−k

)
= ∑

n!
i1!i3! · · · in−k+1!

( x1

1!

)i1
(

x3

22 · 3!

)i3 × · · · ×
( xn−k+1

2n−k(n − k + 1)!

)in−k+1
,

(24)

where the summation is over all integers i1, i2, · · · , in−k+1 ≥ 0 such that i1 + i3 + · · · + in−k+1 = k and
i1 + 3i3 + · · ·+ (n − k + 1)in−k+1 = n.

Remark 1. Theorem 1 shows in particular that we have

Tn,k(x1, 2x2, · · · , 2n−kxn−k+1) = Bn,k
(

x1, 0, x3, 0, · · · , xn−k+1
)
.

From this, we note that the number of monomials appearing in Tn,k(x1, 2x2, · · · , 2n−kxn−k+1) is the
number of partitioning a set with n elements into k blocks with odd sizes and the coefficient of each monomial is
the number of partitioning a set with n elements as the corresponding k blocks with odd sizes. For example, from
the example in Section 3 of [4], we have

T13,7(x1, 2x2, 22x3, 23x4, 24x5, 25x6, 26x7) = 200, 200x3
3x4

1 + 72, 072x5x3x5
1 + 1716x7x6

1.

Thus, there are three ways of partitioning a set with 13 elements into seven blocks with odd sizes, and
200,200 partitions with blocks of size 3, 3, 3, 1, 1, 1, 1, 72,072 partitions with blocks of size 5, 3, 1, 1, 1, 1, 1, and
1716 partitions with blocks of size 7, 1, 1, 1, 1, 1, 1.
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For n, k ≥ 0 with n ≥ k and n − k ≡ 0 (mod 2), by (21), we get

∞

∑
n=k

Tn,k(x, x2, x3, · · · , xn−k+1)
tn

n!
=

1
k!

(
xt +

x3

22
t3

3!
+

x5

24
t5

5!
+ · · ·

)k

=
1
k!

(
e

x
2 t − e−

x
2 t
)k

=
1
k!

e−
kx
2 t
(

ext − 1
)k

=
1
k!

k

∑
l=0

(
k
l

)
(−1)k−l e(l−

k
2 )xt

=
1
k!

k

∑
l=0

(
k
l

)
(−1)k−l

∞

∑
n=0

(
l − k

2
)nxn tn

n!

=
∞

∑
n=0

( xn

k!

k

∑
l=0

(
k
l

)
(−1)k−l(l − k

2
)n
) tn

n!
.

(25)

Now, the next theorem follows by comparing the coefficients on both sides of (25).

Theorem 2. For n, k ≥ 0 with n − k ≡ 0 (mod 2), we have

xn

k!

k

∑
l=0

(
k
l

)
(−1)k−l(l − k

2
)n

=

{
Tn,k(x, x2, · · · , xn−k+1), if n ≥ k,
0, if n < k.

(26)

In particular,

1
k!

k

∑
l=0

(
k
l

)
(−1)k−l(l − k

2
)n

=

{
Tn,k(1, 1, · · · , 1), if n ≥ k,
0, if n < k.

(27)

For n, k ≥ 0 with n − k ≡ 0 (mod 2) and n ≥ k, by (17) and (27), we get

Tn,k(1, 1, · · · , 1) = T(n, k). (28)

Therefore, by (26)–(28) and Theorem 1, we obtain the following corollary

Corollary 1. For n, k ≥ 0 with n − k ≡ 0 (mod 2), n ≥ k, we have

Tn,k(x, x2, · · · , xn−k+1) = xnTn,k(1, 1, · · · , 1)

and

Tn,k(1, 1, · · · , 1) = T(n, k) = Bn,k
(
1, 0,

1
22 , · · · ,

1
2n−k

)
= ∑

n!
i1!i3! · · · in−k+1!

( 1
1!

)i1( 1
223!

)i3 · · ·
( 1

2n−k(n − k + 1)!

)in−k+1
,

where i1 + i3 + · · ·+ in−k+1 = k and i1 + 3i3 + · · ·+ (n − k + 1)in−k+1 = n.

For n, k ≥ 0 with n ≥ k and n − k ≡ 0 (mod 2), we observe that

∞

∑
n=k

Tn,k(x, 1, 0, 0, · · · , 0)
tn

n!
=

1
k!
(xt)k. (29)
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Thus, we have

Tn,k(x, 1, 0, · · · , 0) = xk
(

0
n − k

)
.

The next two identities follow easily from (24):

Tn,k(x, x, · · · , x) = xkTn,k(1, 1, · · · , 1), (30)

and

Tn,k(αx1, αx2, · · · , αxn−k+1) = αkTn,k(x1, x2, · · · , xn−k+1),

where n, k ≥ 0 with n − k ≡ 0 (mod 2) and n ≥ k.

Now, we observe that

exp
(

x
∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)
=

∞

∑
k=0

xk 1
k!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)k

= 1 +
∞

∑
k=1

xk 1
k!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)k

= 1 +
∞

∑
k=1

xk
∞

∑
n=k

Tn,k(x1, x2, · · · , xn−k+1)
tn

n!

= 1 +
∞

∑
n=1

( n

∑
k=1

xkTn,k(x1, x2, · · · , xn−k+1)
) tn

n!
.

(31)

In view of (13), it is natural to define the central complete Bell polynomials by

exp
(

x
∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)
=

∞

∑
n=0

B(c)
n (x|x1, x2, · · · , xn)

tn

n!
. (32)

Thus, by (31) and (32), we get

B(c)
n (x|x1, x2, · · · , xn) =

n

∑
k=0

xkTn,k(x1, x2, · · · , xn−k+1). (33)

When x = 1, B(c)
n (1|x1, x2, · · · , xn) = B(c)

n (x1, x2, · · · , xn) are called the central complete
Bell numbers.

For n ≥ 0, we have

B(c)
n (x1, x2, · · · , xn) =

n

∑
k=0

Tn,k(x1, x2, · · · , xn−k+1) (34)

and

B(c)
0 (x1, x2, · · · , xn) = 1.
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By (18) and (33), we get

B(c)
n (1, 1, · · · , 1) =

n

∑
k=0

Tn,k(1, 1, · · · , 1) =
n

∑
k=0

T(n, k) = B(c)
n , (35)

and

B(c)
n (x|1, 1, · · · , 1) =

n

∑
k=0

xkTn,k(1, 1, · · · , 1) =
n

∑
k=0

xkT(n, k) = B(c)
n (x). (36)

From (31), we note that

exp
( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)
= 1 +

∞

∑
n=1

1
n!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)n

= 1 +
1
1!

∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!
+

1
2!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)i

× xi)
ti

i!

)2
+

1
3!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)3
+ · · ·

= 1 +
1
1!

x1t +
1
2!

x2
1t2 +

1
3!

(
x3

1 +
1
22 x3

)
t3 + · · ·

=
∞

∑
n=0

(
∑

m1+2m2+···+nmn=n

n!
m1!m2! · · ·mn!

( x1

1!

)m1
( 0

2!2

)m2

×
( x3

3!22

)m3 · · ·
( xn
(
1 − (−1)n)

n!2n

)mn) tn

n!
.

(37)

Now, for n ∈ N with n ≡ 1 (mod 2), by (32), (34) and (37), we get

B(c)
n (x1, x2, · · · , xn) =

n

∑
k=0

Tn,k(x1, x2, · · · , xn−k+1)

= ∑
m1+3m3+···+nmn=n

n!
m1!m3! · · ·mn!

( x1

1!

)m1
( x3

3!22

)m3 · · ·
( xn

n!2n−1

)mn
.

(38)

Therefore, Equation (38) yields the following theorem.

Theorem 3. For n ∈ N with n ≡ 1 (mod 2), we have

B(c)
n (x1, x2, · · · , xn) =

n

∑
k=0

Tn,k(x1, x2, · · · , xn−k+1)

= ∑
m1+3m3+···+nmn=n

n!
m1!m3! · · ·mn!

( x1

1!

)m1
( x3

3!22

)m3 · · ·
( xn

n!2n−1

)mn
.

Example 1. Here, we illustrate Theorem 3 with the following example:

B(c)
5 (x1, 2x2, 22x3, 23x4, 24x5) =

5!
0!0!1!

( x1

1!

)0( x3

3!

)0( x5

5!

)1
+

5!
2!1!0!

( x1

1!

)2( x3

3!

)1( x5

5!

)0

+
5!

5!0!0!

( x1

1!

)5( x3

3!

)0( x5

5!

)0
= x5

1 + 10x2
1x3 + x5,
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T5,1(x1, 2x2, 22x3, 23x4, 24x5) =
5!

0!0!1!

( x1

1!

)0( x3

3!

)0( x5

5!

)1
= x5,

T5,3(x1, 2x2, 22x3) =
5!

2!1!

( x1

1!

)2( x3

3!

)1
= 10x2

1x3, T5,5(x1) =
5!
5!

( x1

1!

)5
= x5

1,

T5,0(x1, 2x2, 22x3, 23x4, 24x5, 25x6) = 0, T5,2(x1, 2x2, 22x3, 23x4) = 0, T5,4(x1, 2x2) = 0.

On the one hand, we have

exp
(

x
∞

∑
i=1

(1
2
)i(1 − (−1)i) ti

i!

)
= 1 +

∞

∑
k=1

xk

k!

( ∞

∑
n=k

(1
2
)i(1 − (−1)i) ti

i!

)k

= 1 +
∞

∑
k=1

xk
∞

∑
n=k

Tn,k(1, 1, · · · , 1)
tn

n!

= 1 +
∞

∑
n=1

( n

∑
k=1

xkTn,k(1, 1, · · · , 1)
) tn

n!
.

(39)

On the other hand, from (19), we have

exp
(

x
∞

∑
i=1

(1
2
)i(1 − (−1)i) ti

i!

)
= exp

(
x
(
t +

1
22 t3 +

1
24 t5 + · · · ))

= exp
(

x
(
e

t
2 − e−

t
2
))

=
∞

∑
n=0

B(c)
n (x)

tn

n!
.

(40)

Therefore, by (39) and (40), we obtain the following theorem.

Theorem 4. For n, k ≥ 0 with n ≥ k, we have

n

∑
k=0

xkTn,k(1, 1, · · · , 1) = B(c)
n (x).

We note from Theorem 4 the next identities:

n

∑
k=0

xkTn,k(1, 1, · · · , 1) =
n

∑
k=0

Tn,k(x, x, · · · , x) = B(c)
n (x, x, · · · , x). (41)

Thus, Theorem 4 and (41) together give us the following corollary.

Corollary 2. For n ≥ 0, we have

B(c)
n (x, x, · · · , x) = B(c)

n (x).

The Stirling numbers of the first kind are given in terms of the generating function by (see [3,21])

1
k!
(

log(1 + t)
)k

=
∞

∑
n=k

S1(n, k)
tn

n!
, (k ≥ 0). (42)
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In order to get the following result and using (42), we first observe that

1
k!

(
log
(

1 +
x

1 − x
2

))k
=

∞

∑
l=k

S1(l, k)
1
l!

( x
1 − x

2

)l

=
∞

∑
l=k

S1(l, k)
xl

l!
(
1 − x

2
)−l

=
∞

∑
l=k

1
l!

S1(l, k)
∞

∑
n=l

(
n − 1
l − 1

)(1
2
)n−l xn

=
∞

∑
n=k

( n

∑
l=k

1
l!

S1(l, k)
(

n − 1
l − 1

)(1
2
)n−l

)
xn.

(43)

The following equation can be derived from (21) and (43):

∞

∑
n=k

Tn,k(0!, 1!, 2!, · · · , (n − k)!
) tn

n!

=
1
k!

(
t +
(1

2
)2 t3

3
+
(1

2
)4 t5

5
+
(1

2
)6 t7

7
+ · · ·

)k

=
1
k!

(
log
(
1 +

t
2
)− log

(
1 − t

2
))k

=
1
k!

(
log
(1 + t

2

1 − t
2

))k

=
1
k!

(
log
(
1 +

t
1 − t

2

))k
=

∞

∑
n=k

( n

∑
l=k

S1(l, k)
l!

(
n − 1
l − 1

)(1
2
)n−l

)
tn.

(44)

Now, we obtain the following theorem by comparing the coefficients on both sides of (44).

Theorem 5. For n, k ≥ 0 with n ≥ k, we have

Tn,k
(
0!, 1!, 2!, · · · , (n − k)!

)
= n!

n

∑
l=k

S1(l, k)
l!

(
n − 1
l − 1

)(1
2
)n−l .

4. Conclusions

In this paper, we introduced central complete and incomplete Bell polynomials which can be
viewed as generalizations of central Bell polynomials and central factorial numbers of the second
kind, and also as ’central’ analogues for complete and incomplete Bell polynomials. As examples
and recalling some relevant works, we reminded the reader that the incomplete and complete Bell
polynomials appearing in a Faà di Bruno formula, which encode integer partition information, can be
used in constructing sequences of binomial type, have connections with combinatorial Hopf algebras,
have applications in probability theory and arise in many combinatorial and number theoretic identities.
One additional thing we want to mention here is that the Faà di Bruno formula has been proved to
be very useful in finding explicit expressions for many special numbers arising from many different
families of linear and nonlinear differential equations having generating functions of some special
numbers and polynomials as solutions (see [22]).

The main results of the present paper are stated in Section 3, in which we introduced
central incomplete and complete Bell polynomials and investigated some properties and identities.
In particular, in Theorems 1 and 3, we gave basic formulas for computing central incomplete Bell
polynomials and central complete Bell polynomials, respectively. We remarked that the number of
monomials appearing in Tn,k(x1, 2x2, · · · , 2n−kxn−k+1) is the number of partitioning n into k odd parts
and the coefficient of each monomial is the number of partitioning n as the corresponding k odd parts.
This was illustrated by an example. Furthermore, we gave expressions for the central incomplete and
complete Bell polynomials with some various special arguments and also for the connection between

45



Symmetry 2019, 11, 288

the two Bell polynomials. In the near future, we hope to find some further properties, identities and
various applications for central complete and incomplete Bell polynomials.
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1. Introduction

In literature, the Fibonacci and Lucas numbers have been studied extensively and some authors
tried to enhance and derive some directions to mathematical calculations using these special
numbers [1–3]. By favour of the Fibonacci and Lucas numbers, one of these directions verges on
the tribonacci and the tribonacci-Lucas numbers. In fact, M. Feinberg in 1963 has introduced the
tribonacci numbers and then derived some properties for these numbers in [4–7]. Elia in [4] has given
and investigated the tribonacci-Lucas numbers. The tribonacci numbers Tn for any integer n > 2 are
defined via the following recurrence relation

Tn = Tn−1 + Tn−2 + Tn−3 , (1)

with the initial values T0 = 0, T1 = 1, and T2 = 1. Similarly, by way of the initial values K0 = 3, K1 = 1,
and K2 = 3, the tribonacci-Lucas numbers Kn are given by the recurrence relation

Kn = Kn−1 + Kn−2 + Kn−3. (2)

By dint of the above extensions, the tribonacci and tribonacci-Lucas numbers are introduced with
the help of the following generating functions, respectively:

∞

∑
n=0

Tntn =
t

1 − t − t2 − t3 , (3)

and
∞

∑
n=0

Kntn =
3 − 2t − t2

1 − t − t2 − t3 . (4)
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Moreover, some authors define a large class of polynomials by using the Fibonacci and the
tribonacci numbers [6–9]. Firstly, the well-known Fibonacci polynomials are defined via the
recurrence relation

Fn+1(x) = xFn(x) + Fn−1(x) ,

with F0(x) = 0, F1(x) = 1. The well-known Lucas polynomials are defined with the help of the
recurrence relation

Ln+1(x) = xLn(x) + Ln−1(x) ,

with L0(x) = 2, L1(x) = x.
Fibonacci or Fibonacci-like polynomials have been studied by many mathematicians for many

years. Recently, in [10], Kim et al. kept in mind the sums of finite products of Fibonacci polynomials
and of Chebyshev polynomials of the second kind and obtained Fourier series expansions of functions
related to them. In [11], Kim et al. studied the convolved Fibonacci numbers by using the generating
functions of them and gave some new identities for the convolved Fibonacci numbers. In [12],
Wang and Zhang studied some sums of powers Fibonacci polynomials and Lucas polynomials. In [13],
Wu and Zhang obtained the several new identities involving the Fibonacci polynomials and Lucas
polynomials.

Afterwards, by giving the Pell and Jacobsthal polynomials, in 1973, Hoggatt and Bicknell [6]
introduced the tribonacci polynomials. The tribonacci polynomials are defined by the recurrence
relation for n ≥ 0,

tn+3(x) = x2tn+2(x) + xtn+1(x) + tn(x) , (5)

where t0(x) = 0, t1(x) = 1, and t2(x) = x2. The tribonacci-Lucas polynomials are defined by the
recurrence relation for n ≥ 0,

kn+3(x) = x2kn+2(x) + xkn+1(x) + kn(x) , (6)

where k0(x) = 3, k1(x) = x2, and k2(x) = x4 +2x, respectively. Here we note that tn(1) = Tn which
is the tribonacci numbers and kn(1) = Kn which is the tribonacci-Lucas numbers. Also for these
polynomials, we have the generating function as follows:

∞

∑
n=0

tn(x)tn =
t

1 − x2t − xt2 − t3 , (7)

and
∞

∑
n=0

kn(x)tn =
3 − 2x2t − xt2

1 − x2t − xt2 − t3 . (8)

On the other hand, some authors try to define the second and third variables of these polynomials
with the help of these numbers. For example [8], for integer n > 2, the recurrence relations of the
trivariate Fibonacci and Lucas polynomials are as follows:

Hn(x, y, z) = xHn−1(x, y, z) + yHn−2(x, y, z) + zHn−3(x, y, z) , (9)

with H0(x, y, z) = 0, H1(x, y, z) = 1, H2(x, y, z) = x and

Kn(x, y, z) = xKn−1(x, y, z) + yKn−2(x, y, z) + zKn−3(x, y, z) , (10)

with K0(x, y, z) = 3, K1(x, y, z) = x, K2(x, y, z) = x2 + 2y, respectively. Also for these, we have the
generating functions as follows:

∞

∑
n=0

Hn(x, y, z)tn =
t

1 − xt − yt2 − zt3 , (11)
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and
∞

∑
n=0

Kn(x, y, z)tn =
3 − 2xt − yt2

1 − xt − yt2 − zt3 . (12)

After that, Ozdemir and Simsek [14] give the family of two-variable polynomials, reducing
some well-known polynomials and obtaining some properties of these polynomials. In light of
these polynomials, we introduce the families of three-variable polynomials with the new generalized
polynomials reduced to the generating functions of the famous polynomials and numbers in literature.
Then, we obtain the explicit representations and partial differential equations for new polynomials.
The special cases of our polynomials are given in tables. Also the last section, we give the interesting
applications of these polynomials.

2. The New Generalized Polynomials: Definitions and Properties

Now, we introduce the original and wide generating functions reduce the well-known
polynomials and the well-known numbers such as the trivariate Fibonacci and Lucas polynomials,
the tribonacci and the tribonacci-Lucas polynomials, the tribonacci and the tribonacci-Lucas numbers,
and so on.

Firstly, some properties of these functions are investigated. Then, in the case of the new generating
function, we give some properties the particular well-known polynomials as tables.

Via the following generating functions, a new original and wide family of three-variable
polynomials denoted by Sj := Sj(x, y, z; k, m, n, c) is defined as follows:

T := M(t; x, y, z; k, m, n, c) =
∞

∑
j=0

Sjtj =
1

1 − xkt − ymtm+n − zctm+n+c , (13)

where k, m, n, c ∈ N − {0}, and
∣∣∣xkt + ymtm+n + zctm+n+c

∣∣∣ < 1. Now we derive the explicit
representation for polynomials Sj. By means of Taylor series of the generating function of the right
hand side of (13), we can write

T =
∞

∑
j=0

Sjtj =
∞

∑
j=0

(
xkt + ymtm+n + zctm+n+c

)j
.

After that, using the binomial expansion and taking j + s instead of j, we get

T =
∞

∑
j=0

∞

∑
s=0

(
j + s

s

)(
xkt
)j (

tm+n)s
(ym + zctc)s .

Lastly, using the expansion of (ym + zctc)s , taking u + s instead of s, taking j − (m + n + c)u instead
of j and taking j − (m + n)s instead of j, respectively, we have

T =
∞

∑
j=0

⌊
j

n+m

⌋
∑
s=0

⌊
j−(m+n)s

n+m+c

⌋
∑
u=0

(
j − (n + m − 1)s − (n + m + c − 1)u

s + u

)(
s + u

u

)(
xk
)j−(n+m)(s+u)−cu

zcuymstj.

Thus after the equalization of coefficients of tj, we obtain

Sj =

⌊
j

n+m

⌋
∑

s=0

⌊
j−(m+n)s

n+m+c

⌋
∑

u=0
(j−(n+m−1)s−(n+m+c−1)u

s+u )(s+u
u )
(

xk
)j−(n+m)(s+u)−cu

zcuyms. (14)

Note that for z = 0, our polynomials reduces to the polynomials Equation (4) [14] .
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Remark 1. As a similar to Theorem 2.3 in [14], we can write the following relation

Sj(2x,−1, 0; 1, 1, 1, c) =
j

∑
r=0

Pj−r(x)Pr(x),

where Pr(x) are the Legendre polynomials.

To obtain other wide family of well-known polynomials, we define the second new generating
function for the family of the polynomials Wj := Wj(x, y, z; k, m, n, c) as follows

R := R(t; x, y, z; k, m, n, c) = M(t; x, y, z; k, m, n, c)tn

=
tn

1 − xkt − ymtm+n − zctm+n+c

=
∞

∑
j=0

Wjtj, (15)

where k, m, n, c ∈ N− {0}, and
∣∣∣xkt + ymtm+n + zctm+n+c

∣∣∣ < 1. Similarly for z = 0, our polynomials
reduces to the polynomials in (5) in [14]. Now we give some special case. Firstly taking k = m = n =

c = 1 in (15), we give the generating function

t
1 − xt − yt2 − zt3 =

∞

∑
j=0

Wj(x, y, z; 1, 1, 1, 1)tj,

where Wj(x, y, z; 1, 1, 1, 1) = Hj(x, y, z), which are trivariate Fibonacci polynomials in (11). Secondly,
writing k = m = n = c = 1 and x → x2, y → x, z → 1, we have the generating function

t
1 − x2t − xt2 − t3 =

∞

∑
j=0

Wj(x2, x, 1; 1, 1, 1, 1)tj,

where Wj(x2, x, 1; 1, 1, 1, 1) = tj(x) which are the tribonacci polynomials in (7). In the above generating
function, for x = 1, we find the generating function of the tribonacci numbers in (3). Now, we give
other special cases as the following table related to (15).

Now, we define a new family of the polynomials denoted by Kj := Kj(x, y, z; k, m, n, c) via the
generating function

∞

∑
j=0

Kjtj =
α(t; x, y)− β(t; x, y)tn

1 − xkt − ymtm+n − zctm+n+c , (16)

where k, m, n, c ∈ N− {0}, α(t; x, y) and β(t; x, y) are arbitrary polynomials depending on t, x, y and∣∣∣xkt + ymtm+n + zctm+n+c
∣∣∣ < 1. Thirdly, via (16), we give

3M(t; x, y, z; 1, 1, 1, 1)− 2xR(t; x, y, z; 1, 1, 1, 1)− ytR(t; x, y, z; 1, 1, 1, 1) = 3−2xt−yt2

1−xt−yt2−zt3

=
∞

∑
j=0

Kj(x, y, z)tj,

where Kj(x, y, z) are the trivariate Lucas polynomials in (12). Due to the last equation, we have the
polynomial representation

3Sj(x, y, z; 1, 1, 1, 1)− 2xWj(x, y, z; 1, 1, 1, 1)− ytWj(x, y, z; 1, 1, 1, 1) = Kj(x, y, z). (17)

50



Symmetry 2019, 11, 264

In (17) substituting x → x2, y → x, z → 1, we get

3Sj(x2, x, 1; 1, 1, 1, 1)− 2xWj(x2, x, 1; 1, 1, 1, 1)− ytWj(x2, x, 1; 1, 1, 1, 1) = kj(x),

where kj(x) are the tribonacci-Lucas polynomials in (6). In the above representation, for x = 1, we find
the generating function of the tribonacci-Lucas numbers in (4).

Now, we give other special cases as Table 1 and Table 2 related to (15) and (16) respectively.

Table 1. Special cases of Wj.

x y z k m n c Special Case

x y z 1 1 1 1 Trivariate Fibonacci Polynomials [8]
x2 x 1 1 1 1 1 tribonacci Polynomials [8]
x y 0 1 1 1 c Bivariate Fibonacci Polynomials [9]
x 1 0 1 p 1 c Fibonacci p−Polynomials [9]
2x 1 0 1 p 1 c Pell p−Polynomials [9]
x 1 0 1 1 1 c Fibonacci Polynomials [9]
2x 1 0 1 1 1 c Pell Polynomials [9]
1 2y 0 k 1 1 c Jacobsthal Polynomials [9]
3x −2 0 1 1 1 c Fermat Polynomials [15]
x −2 0 1 1 1 c First kind of Fermat–Horadam Polynomials [16]
x −α 0 1 1 1 c Second kind of Dickson Polynomials [17]
x + 2 −1 0 1 1 1 c Morgan–Voyce Polynomials [18]
x + 1 −x 0 1 1 1 c Delannoy Polynomials [19]
h(x) 1 0 1 1 1 c h(x)−Fibonacci Polynomials [2]
p(x) q(x) 0 1 1 1 c (p, q)−Fibonacci Polynomials [15]
1 1 0 k 1 1 c Fibonacci Numbers [9]
2 1 0 1 1 1 c Pell Numbers [9]
1 2 0 k 1 1 c Jacobsthal Numbers [9]

Table 2. Special cases of Kj

α β x y z k m n c Special Case

3 2x + yt x y z 1 1 1 1 Trivariate Lucas Polynomials [8]
3 2x2 + xt x2 x 1 1 1 1 1 tribonacci-Lucas Polynomials [8]
2 xz x y 0 1 1 1 c Bivariate Lucas Polynomials [9]
p + 1 px x 1 0 1 p 1 c Lucas p−Polynomials [9]
0 −1 2x 1 0 1 p 1 c Pell Lucas p−Polynomials [9]
2 x x 1 0 1 1 1 c Lucas Polynomials [9]
2 2x 2x 1 0 1 1 1 c Pell Lucas Polynomials [9]
2 1 1 2y 0 k 1 1 c Jacobsthal Lucas Polynomials [9]
2 3x 3x −2 0 1 1 1 c Fermat Lucas Polynomials [15]
2 x x −2 0 1 1 1 c Second kind of Fermat–Horadam P. [16]
2 x x −α 0 1 1 1 c First kind of Dickson Polynomials [17]
2 x + 2 x + 2 −1 0 1 1 1 c Morgan–Voyce Polynomials [18]
2 x + 1 x + 1 −x 0 1 1 1 c Corona Polynomials [19]
2 h(x) h(x) 1 0 1 1 1 c h(x)−Lucas Polynomials [2]
2 p(x) p(x) q(x) 0 1 1 1 c (p, q)−Lucas Polynomials [15]
2 1 1 1 0 k 1 1 c Lucas Numbers [9]
2 2 2 1 0 1 1 1 c Pell–Lucas Numbers [9]
2 1 1 2 0 k 1 1 c Jacobsthal–Lucas Numbers [9]
t t 2 2 −1 1 1 1 1 Squares of Fibonacci Numbers [1]
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3. Partial Differential Equations for Polynomials in (13)

With the help of the derivatives of these generating functions with regard to some variable and
algebraic arrangements, we derive some partial differential equations for new polynomials. Taking the
derivative with regard to x, y, z, t of the generating function in (13), respectively, they hold

∂

∂x
M = kxk−1tM2, (18)

∂

∂y
M = mym−1tn+m M2, (19)

∂

∂z
M = czc−1tn+m+c M2, (20)

∂

∂t
M =

(
xk + ym(n + m)tn+m−1 + zc(n + m + c)tn+m+c−1

)
M2. (21)

From (13) and (18), we get the following theorem.

Theorem 1. For j ≥ 0, we have the first relation as follows:

∂

∂x
Sj = kxk−1

j−1

∑
l=0

Sj−l−1Sl .

Combining (13) and (19), we have the next theorem.

Theorem 2. For j ≥ m + n, we have the second relation as follows:

∂

∂y
Sj =

j−m−n

∑
l=0

mym−1Sj−m−n−lSl .

With the help of considering (13) and (20), we get the next result.

Theorem 3. For j ≥ m + n + c, we have the third relation as follows:

∂

∂z
Sj = czc−1

j−m−n−c

∑
l=0

Sj−m−n−c−lSl .

Lastly, by means of (13) and (21), we get the following result.

Theorem 4.

(i) For m + n − 1 ≤ j ≤ m + n + c − 1, then we obtain

(j + 1)Sj+1 = xk
j

∑
l=0

Sj−lSl + ym(n + m)
j−m−n+1

∑
l=0

SlSj−m−n−l+1.

(ii) For j ≤ m + n − 1, then we derive

(j + 1)Sj+1 = xk
j

∑
l=0

Sj−lSl .
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(iii) For j ≥ m + n + c − 1, then we get

(j + 1)Sj+1 = xk
j

∑
l=0

Sj−lSl + ym(n + m)
j−m−n+1

∑
l=0

SlSj−m−n−l+1

+ zc(n + m + c)
j−m−n−c+1

∑
l=0

SlSj−m−n−c−l+1.

After that, using the partial differential equations in (18)–(21), we get the new partial differential
equation for Sj.

Theorem 5. For j ≥ 0, we have

jSj =
x
k

∂

∂x
Sj +

(
n + m

m

)
y

∂

∂y
Sj +

(
n + m + c

c

)
z

∂

∂z
Sj.

Proof. Combining (18)–(21), we get

∂

∂t
M − x

kt
∂

∂x
M =

(
n + m

m

)
y
t

∂

∂y
M +

(
n + m + c

c

)
z
t

∂

∂z
M.

In the above, using (13), we get the desired result.

4. Some Applications of Generating Functions

In this section, by using these functions, some identities connected with these polynomials are
derived. Furthermore, in the special case, we show that these identities reduce to the well-known sum
identities connected with the well-known numbers in literature.

Case 1. Taking t = 1
a in (15) for |a| > 1, we get the following equation

∞

∑
j=0

Wj

aj =
am+c

am+n+c − xkam+n+c−1 − ymac − zc . (22)

(i) Substituting a = 2, x → x2, y → x, z → 1 and k = m = n = c = 1 in (22), we obtain the
relation for the tribonacci polynomials as

∞

∑
j=0

tj(x)
2j =

4
7 − 4x2 − 2x

. (23)

Writing x = 1 in (23), we have
∞

∑
j=0

Tj

2j = 4 ,

where Tj are the tribonacci numbers.
(ii) Taking a = 10, x → x2, y → x, z → 1 and k = m = n = c = 1 in (22), we get

∞

∑
j=0

Tj(x)
10j+2 =

1
999 − 100x2 − 10x

, (24)

and writing x = 1 (24), we get for the tribonacci numbers
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∞

∑
j=0

Tj

10j+2 =
1

889
.

(iii) Substituting x → x, y → 1, z → 0, a = 2, and k = m = n = c = 1 into (22), we get for the
Fibonacci polynomials

∞

∑
j=0

Fj(x)
2j =

2
3 − 2x

, (25)

which was given in [14]. Then taking x = 1 in (25), we have for Fibonacci numbers

∞

∑
j=0

Fj

2j = 2 ,

which was given in [14].
(iv) Substituting x → x, y → 1, z → 0, a = 3, and k = m = n = c = 1 in (22), we get for the

Fibonacci polynomials
∞

∑
j=0

Fj(x)
3j+1 =

1
8 − 3x

. (26)

Taking x = 1 in (26), we get for the Fibonacci numbers

∞

∑
j=0

Fj

3j+1 =
1
5
=

1
F5

,

was given in page 424 in [1].
(v) Substituting x → x, y → 1, z → 0, a = 8, and k = m = n = c = 1 in (22), we get for the

Fibonacci polynomials
∞

∑
j=0

Fj(x)
8j+1 =

1
63 − 3x

. (27)

Taking x = 1 in (27), we get for the Fibonacci numbers

∞

∑
j=0

Fj

8j+1 =
1
55

=
1

F10
,

was given in page 424 in [1].
(vi) Substituting x → x, y → 1, z → 0, a = −10, and k = m = n = c = 1 in (22), we get for the

Fibonacci polynomials
∞

∑
j=0

Fj(x)
(−10)j+1 =

1
99 + 10x

. (28)

Taking x = 1 in (28), we get for the Fibonacci numbers

∞

∑
j=0

Fj

(−10)j+1 =
1

109
,

was given in page 427 in [1].
(vii) Substituting x → 2x, y → 1, z → 0, a = 3, and k = m = n = c = 1 in (22), we get

∞

∑
j=0

Pj(x)
3j+1 =

1
8 − 6x

, (29)
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where Pj(x) are the Pell polynomials. Then taking x = 1 in (29), we have

∞

∑
j=0

Pj

3j+1 =
1
2

,

where Pj are the Pell numbers.
(viii) Substituting x → 1, y → 2y, z → 0, a = 3, and k = m = n = c = 1 in (22), we get

∞

∑
s=0

Js(x)
3s+1 =

1
6 − 2y

, (30)

where Js(x) are the Jacobsthal polynomials. Then taking y = 1 in (30), we have

∞

∑
s=0

Js

3s+1 =
1
4

,

where Js are the Jacobsthal numbers.

Case 2. Taking t = 1
a in (16) for |a| > 1, we get the following equation

∞

∑
j=0

Kj

aj =
am+n+cα(t; x, y)− am+cβ(t; x, y)

am+n+c − xkam+n+c−1 − ymac − zc . (31)

(i) Substituting x → x2, y → x, z → 1, a = 2, and k = m = n = c = 1, α(t; x, y) = 3,
β(t; x, y) = 2x2 + xt in (31), we get

∞

∑
j=0

kj(x)
2j =

24 − 8x4 − 2x2

7 − 4x2 − 2x
, (32)

where kj(x) are the tribonacci-Lucas polynomials. Then taking x = 1 in (32), we have

∞

∑
j=0

kj

2j+1 = 7,

where kj(x) are the tribonacci-Lucas numbers.
(ii) Substituting x → x, y → 1, z → 0, a = 2, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = x

in (31), we get
∞

∑
j=0

Lj(x)
2j+1 =

4 − x
3 − 2x

, (33)

where Lj(x) are the Lucas polynomials. Then taking x = 1 in (33), we have

∞

∑
j=0

Lj

2j+1 = 3,

where Lj are the Lucas numbers.
(iii) Substituting x → x, y → 1, z → 0, a = 10, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = x

in (31), we get
∞

∑
j=0

Lj(x)
10j =

200 − 10x
99 − 10x

, (34)

where Lj(x) are the Lucas polynomials. Then taking x = 1 in (34), for Lj are the Lucas numbers,
we have
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∞

∑
j=0

Lj

10j+1 =
19
89

=
L6 − L1

F11

was given in page 427 in [1].
(iv) Substituting x → x, y → 1, z → 0, a = 3, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = x

in (31), we get
∞

∑
j=0

Lj(x)
3j+1 =

6 − x
8 − 3x

, (35)

and taking x = 1 in (35), we have
∞

∑
j=0

Lj

3j+1 = 1.

(v) Substituting x → x, y → 1, z → 0, a = 8, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = x
in (31), we get

∞

∑
j=0

Lj(x)
8j+1 =

16 − x
63 − 8x

, (36)

and taking x = 1 in (36), we have

∞

∑
j=0

Lj

8j+1 =
3

11
=

L2

L5
.

(vi) Substituting x → x, y → 1, z → 0, a = −10, and k = m = n = c = 1, α(t; x, y) = 2,
β(t; x, y) = x in (31), we get

∞

∑
j=0

Lj(x)
(−10)j+1 =

−20 − x
99 + 10x

. (37)

Taking x = 1 in (37), we have
∞

∑
j=0

Lj

(−10)j+1 =
−21
109

,

was given in page 427 in [1].
(vii) Substituting x → 2x, y → 1, z → 0, a = 5, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = 2x

in (31), we get
∞

∑
j=0

Qj(x)
5j+1 =

5 − x
12 − 5x

, (38)

where Qj(x) are the Pell Lucas polynomials. Then taking x = 1 in (38), we have

∞

∑
j=0

Qj

5j+1 =
4
7

,

where Qj are the Pell Lucas numbers.
(viii) Substituting x → 1, y → 2y, z → 0, a = 3, and k = m = n = c = 1, α(t; x, y) = 2, β(t; x, y) = 1

in (31), we get
∞

∑
s=0

js(y)
3s+1 =

5
6 − 2y

, (39)

where js(y) are the Jocabsthal Lucas polynomials. Then taking y = 1 in (39), we have
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∞

∑
s=0

js
3s+1 =

5
4

,

where js is Jocabsthal Lucas number.
(ix) Substituting x → 2, y → 2, z → −1, a = 4, and k = m = n = c = 1, α(t; x, y) = t, β(t; x, y) = t

in (31), for the square of Fibonacci numbers Fj, we get

∞

∑
j=0

F2
j

4j =
12
25

,

was given in page 439 in [1].

Let us give Tables 3 and 4 containing the obtained formulas for simplify reading.

Table 3. Special cases of Equation (22) for k = m = n = c = 1.

a x y z Formulas

2 x2 x 1
∞
∑

j=0

tj(x)
2j = 4

7−4x2−2x

2 1 1 1
∞
∑

j=0

Tj

2j = 4

10 x2 x 1
∞
∑

j=0

Tj(x)
10j+2 = 1

999−100x2−10x

10 1 1 1
∞
∑

j=0

Tj

10j+2 = 1
889

2 x 1 0
∞
∑

j=0

Fj(x)
2j = 2

3−2x

2 1 1 0
∞
∑

j=0

Fj

2j = 2

3 x 1 0
∞
∑

j=0

Fj(x)
3j+1 = 1

8−3x

3 1 1 0
∞
∑

j=0

Fj

3j+1 = 1
5 = 1

F5

8 x 1 0
∞
∑

j=0

Fj(x)
8j+1 = 1

63−3x

8 1 1 0
∞
∑

j=0

Fj

8j+1 = 1
55 = 1

F10

−10 x 1 0
∞
∑

j=0

Fj(x)
(−10)j+1 = 1

99+10x

−10 1 1 0
∞
∑

j=0

Fj

(−10)j+1 = 1
109

3 2x 1 0
∞
∑

j=0

Pj(x)
3j+1 = 1

8−6x

3 2 1 0
∞
∑

j=0

Pj

3j+1 = 1
2

3 1 2y 0
∞
∑

s=0

Js(x)
3s+1 = 1

6−2y

3 1 2 0
∞
∑

s=0

Js
3s+1 = 1

4
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Table 4. Special cases of Equation (31) for k = m = n = c = 1.

a x y z α β Formulas

2 x2 x 1 3 2x2 + xt
∞
∑

j=0

kj(x)
2j = 24−8x4−2x2

7−4x2−2x

2 1 1 1 3 2 + t
∞
∑

j=0

kj

2j+1 = 7

2 x 1 0 2 x
∞
∑

j=0

Lj(x)
2j+1 = 4−x

3−2x

2 1 1 0 2 1
∞
∑

j=0

Lj

2j+1 = 3

10 x 1 0 2 x
∞
∑

j=0

Lj(x)
10j = 200−10x

99−10x

10 1 1 0 2 1
∞
∑

j=0

Lj

10j+1 = 19
89 = L6−L1

F11

3 x 1 0 2 x
∞
∑

j=0

Lj(x)
3j+1 = 6−x

8−3x

3 1 1 0 2 1
∞
∑

j=0

Lj

3j+1 = 1

8 x 1 0 2 x
∞
∑

j=0

Lj(x)
8j+1 = 16−x

63−8x

8 1 1 0 2 1
∞
∑

j=0

Lj

8j+1 = 3
11 = L2

L5

−10 x 1 0 2 x
∞
∑

j=0

Lj(x)
(−10)j+1 = −20−x

99+10x

−10 1 1 0 2 1
∞
∑

j=0

Lj

(−10)j+1 = −21
109

5 2x 1 0 2 2x
∞
∑

j=0

Qj(x)
5j+1 = 5−x

12−5x

5 2 1 0 2 2
∞
∑

j=0

Qj

5j+1 = 4
7

3 1 2y 0 2 1
∞
∑

s=0

js(y)
3s+1 = 5

6−2y

3 1 2 0 2 1
∞
∑

s=0

js
3s+1 = 5

4

4 2 2 −1 1/4 1/4
∞
∑

j=0

F2
j

4j = 12
25

5. Conclusions

In the present paper, we considered the families of three-variable polynomials with the generalized
polynomials reduce to generating function of the polynomials and numbers in the literature.
In Section 2, we gave special polynomials and numbers as the tables related to (15) and (16). Then we
obtained the explicit representations and partial differential equations for new polynomials. In the last
section, we gave the interesting sum identities related to the well-known numbers and polynomials in
the literature.

For all of the resuts, if the appropriate values given in the tables are taken, many infinite sums
including various polynomials are obtained.

In recent years, some authors use the well-known polynomials and numbers in the applications of
ordinary and fractional differential equations and difference equations (for example [20–23]). Therefore,
our new families of three variables polynomials could been used for future works of some application
areas such as mathematical modelling, physics, engineering, and applied sciences.
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Abstract: In this paper, we consider a two-dimensional acoustic wave equation in an unbounded
domain and introduce a modified model of the classical un-split perfectly matched layer (PML).
We apply a regularization technique to a lower order regularity term employed in the auxiliary
variable in the classical PML model. In addition, we propose a staggered finite difference method
for discretizing the regularized system. The regularized system and numerical solution are
analyzed in terms of the well-posedness and stability with the standard Galerkin method and von
Neumann stability analysis, respectively. In particular, the existence and uniqueness of the solution
for the regularized system are proved and the Courant-Friedrichs-Lewy (CFL) condition of the
staggered finite difference method is determined. To support the theoretical results, we demonstrate
a non-reflection property of acoustic waves in the layers.

Keywords: well-posedness; stability; acoustic wave equation; perfectly matched layer

1. Introduction

It is quite important to effectively truncate an unbounded domain in wave propagation
simulations in open space, where the perfectly matched layer (PML) methods that surround the
domain of interest with thin artificial absorbing layers are popularly used in easy and effective
ways. After the method was introduced by J. P. Bérenger [1], which involves splitting a field into
two nonphysical electromagnetic fields, many studies were conducted regarding the PML method
and its modified reformulations in many different wave-type equations. These include Maxwell’s
equations [2,3], elastodynamics [4,5], linearized Euler equations [6–9], Helmholtz equations [10],
and other types of wave equations [10–12]. Most PML models by the splitting technique, named a
split PML method, yield a hyperbolic system of first order partial differential equations [1,6,13–15].
It is known that the split PML models demonstrate excellent overall performance from the viewpoint
of applications. However, it was pointed out in [7,16,17] that Bérenger’s split, as well as other split
models, transform Maxwell’s equations from being strongly hyperbolic into weakly hyperbolic. These
transforms imply a transition from strong to weak well-posedness in the Cauchy problem and may
lead to ill-posedness under certain low-order damping functions in PML layers [18]. The authors
of [6,19] mention that the use of artificial dissipation is necessary to stabilize the numerical scheme of
such formulations for long-time simulations.

The resulting concerns about the well-posedness and stability of the split PML models
have prompted the development of other PMLs. Some examples of such developments, without
splitting the fields, include un-split PML models using convolution integrals [20,21] and auxiliary
variables [17,22,23]. In contrast to the split PML models, it is known that the un-split PML wave
equations are more effective at time discretization [22] and does not make the use of additional
memory for the nonphysical field variables. However, it has also been found that the un-split PML
models are susceptible to developing gradual instabilities in long-time simulations [10,19]. To overcome
this instability issue, various studies are reported: a low-pass filter inside the absorbing layer [6],
selective damping coefficients [24], a new layer by regularizing the damping terms [8], a change of
variable [25], etc. These issues are the motivation for the mathematical study of the well-posedness and

Symmetry 2019, 11, 177; doi:10.3390/sym11020177 www.mdpi.com/journal/symmetry60
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stability for the un-split PML acoustic wave model in various sound speed. A time-domain analysis
of PML acoustic wave equation with a constant sound speed is presented with a time-dependent
point source in two dimensions using the Cagniard-de-Hoop method [25,26], which includes the
time-stability and error estimates. However, it is not easy to extend the analysis to general initial
value problems in variable sound speed, because those include not only straight propagating but
also evanescent waves [27]. There is another approach to demonstrating the well-posedness and
stability by investigating the eigenvalues of the Cauchy hyperbolic problems for the PML wave
equations [4,7,12,16–18,28]. This approach gives a restricted result when the original formulation of
the PML wave equation is considered in a bounded domain, in which the solutions should be affected
by boundary conditions.

Alternatively, energy techniques are used to analyze the issue of stability for the PML wave
equations by presenting the energy behavior for the solution in each model [12,16,29]. In general,
the restriction of the PML equations to the computational domain coincides with the original
problem [12], so that damping terms are required to vanish identically in the computational region.
As the constant damping function can be considered as the Heaviside function, the equation
(∂t + σx)∂x = ∂x(∂t + σx) used in [12,16,29] is not valid at the interface between the domain of interest
and the layers for the constant damping case from a discontinuity. However, all these approaches
only provide its well-posedness, the stability has not been clearly proved in finite PML acoustic wave
equations with variable sound speed.

The main contribution of this manuscript is not only to introduce a regularized system of
the second order PML acoustic wave equation that exhibits well-posedness without losing the
non-reflection property of PMLs, but also to demonstrate its numerical stability. To construct the
system, we adopt a regularization technique for the term ∇ ·�q that has a lower regularity, which is
introduced in [8], to regularize the PML model for the Maxwell equation, where �q is the auxiliary
variable (see (2)). The standard Galerkin approximation and energy estimation of the solution are
used to show the well-posedness of the regularized system. A concrete energy estimate yields the
boundedness of the solution (see Theorem 1) together with the existence and uniqueness of the solution
under the regularity assumption of the damping terms σx, σy ∈ L∞(Ω) (see Theorem 2). As a numerical
scheme for the regularized system, a family of finite difference schemes using half-step staggered
grids in space and time is used. All spatial and temporal derivatives are discretized with central
finite differences that maintain the second order approximation in both space and time, respectively.
A concrete von Neumann stability analysis for the numerical scheme indicates that the scheme is
stable under the Courant-Friedrichs-Lewy (CFL) condition between the temporal and spatial grids
(see Theorem 3). The novel features of this study include the good performance of the solution that
present not only the well-posedness and stability but also the non-reflection property of the wave
propagation compared to the classical PML model; even the regularized system does not possess PMLs
in the original wave equation. This novelty is numerically illustrated in Section 4.

The remainder of the manuscript is organized as follows. Section 2 describes a regularized system
for the un-split PML model of the acoustic wave equation and also contains the well-posedness of its
solution based on the energy estimation. In Section 3, we develop a staggered finite difference scheme
for the regularized system and determine the CFL condition for the numerical stability. In Section 4,
several numerical results are presented to support our theoretical analysis and demonstrate the
efficiency of the regularized system. Finally, some discussions are given in Section 5.

2. Regularized System

The aim of this section is to introduce a modified PML system using a regularization technique in
a classical PML model for the acoustic wave equation. For the sake of argument, we let H1(Ω) := {ϕ :
ϕ, ∂x ϕ, ∂y ϕ ∈ L2(Ω)} and H−1(Ω) be the Sobolev space and dual space of H1

0(Ω), respectively.
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The target problem we consider with here is a general second order acoustic wave equation with
a variable sound speed c(x) > 0 described by

utt(x, t)− c2(x)Δu(x, t) = 0 ∀(x, t) ∈ R2 × (0, T]

with initial conditions u(·, 0) = f and ut(·, 0) = 0, where supp( f ) ⊂ Ω0 with a domain Ω0 ⊂⊂
[−a, a]× [−b, b] ⊂ R2. Here, T > 0 and the sound speed c(x) is bounded by

0 < c∗ ≤ c(x) ≤ c∗ < ∞. (1)

Let the domain Ω := [−a − Lx, a + Lx]× [−b − Ly, b + Ly] consist of the computational domain
[−a, a] × [−b, b] surrounded by PML layers, where a, b, Lx, Ly > 0. Using a complex coordinate
stretch, we consider the following system of the PML wave equation which is introduced in [28]:
find (u,�q) satisfying⎧⎨⎩

1
c2 utt(x, t) + α(x)ut(x, t) + β(x)u(x, t)−∇ ·�q(x, t)− Δu(x, t) = 0 ∀(x, t) ∈ Ω × (0, T],

�qt(x, t) + A(x)�q(x, t) + B(x)∇u(x, t) = 0 ∀(x, t) ∈ Ω × (0, T],
(2)

with the initial conditions

u(·, 0) := u0 = f , ut(·, 0) := u1 = 0, �q(·, 0) := �q0 =�0,

and the zero Dirichlet boundary condition u(x, ·)|∂Ω = 0, where

α(x) :=
σx + σy

c2 , β(x) :=
σxσy

c2 , A(x) =:

[
σx 0
0 σy

]
, B(x) :=

[
σx − σy 0

0 σy − σx

]
.

Here, the damping terms σx := σx(x) and σy := σy(y) are assumed to be nonnegative C0 functions
which vanish in the computational domain in the sense of the analytical continuation of the PML.

Please note that a weak solution (u,�q) of (2) is in H1
0(Ω)× L2(Ω), i.e., ∇ ·�q ∈ H−1(Ω), which

regularity is not enough to show the existence. In order to provide regularity on the term by an
operator, we introduce a mollifier ρε. Let ρ ∈ C∞(R2) with supp(ρ) ⊆ B1(0) satisfying

∫
R2 ρ(x)dx = 1.

Then, for ε > 0, one can define a mollifier ρε(x) on R2 by

ρε(x) = ε−2ρ

( |x|
ε

)
and satisfies

∫
R2

ρε(x)dx = 1 with supp(ρε) ⊆ Bε(0).

Remark 1. Let R := −Δ + I be the Riesz map from H1
0(Ω) → H−1(Ω). Then, we consider the operator

δε : H−1(Ω) → L2(Ω) given by

δε(ϕ) = R ◦ δ∗ε ◦ R−1(ϕ) for all ϕ ∈ H−1(Ω), (3)

where δ∗ε : H1
0(Ω) → H1

0(Ω) ∩ H2(Ω) is a linear bounded operator such that δ∗ε → 1, the identity operator in
H1

0(Ω), as ε → 0 in the strong operator topology (see, for detail, Theorem 3 on page 7 in [30]). Then, we obtain

δε → 1 as ε → 0 in the strong operator topology

and ‖δε(ϕ)‖L2(Ω) ≤ Cδε
‖ϕ‖H−1(Ω) for some Cδε

> 0. Furthermore, by the isometry of R,

‖δε(ϕ)− ϕ‖H−1(Ω) = ‖δ∗ε u − u‖H1
0 (Ω) → 0 as ε → 0
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for u ∈ H1
0(Ω) such that R(u) = ϕ. Please note that δε is a linear and bounded operator from H−1(Ω) to

L2(Ω).

Now, following [8,31], we introduce a regularized system of the classical PML model (2) by using
δε in the term ∇ ·�q, which is given by⎧⎨⎩

1
c2 utt(x, t) + α(x)ut(x, t) + β(x)u(x, t)− δε∇ ·�q(x, t)− Δu(x, t) = 0,

�qt(x, t) + A(x)�q(x, t) + B(x)∇u(x, t) = 0,
(4)

with initial and boundary conditions

u(·, 0) := u0 = f , ut(·, 0) := u1 = 0, �q(·, 0) := �q0 =�0, u(x, ·)|∂Ω = 0.

The remainder of this section details the analysis of the well-posedness of the solution to the
regularized system (4) based on the energy estimation under the assumption that the dampings σx

and σy are in L∞(Ω).

2.1. Energy Estimate of Weak Solution

We assume that the damping functions σx, σy satisfy σx, σy ∈ L∞(Ω), which implies that

‖α‖∞ = ‖σx + σy‖∞ < ∞, ‖β‖∞ ≤ ‖σxσy‖∞ < ∞,

‖A‖2 := max{‖σx‖∞, ‖σy‖∞} < ∞, ‖B‖2 ≤
√

2(‖σx‖∞ + ‖σy‖∞) < ∞
(5)

under the condition of c(x) = 1 in the layers of the PML model (2), where ‖ · ‖∞ denotes the L∞-norm.
Under these assumptions, the aim of this subsection is to provide an energy estimation of the weak
solution of (4) in the sense that

u ∈ L2(0, T; H1
0(Ω)), �q ∈ L2(0, T;L2(Ω)) (6)

with
ut ∈ L2(0, T; L2(Ω)), utt ∈ L2(0, T; H−1(Ω)), �qt ∈ L2(0, T;L2(Ω)),

which satisfies ⎧⎪⎨⎪⎩
〈

1
c2 utt, w

〉
+ (αut, w) + (βu, w)− (δε∇ ·�q, w) + (∇u,∇w) = 0,

(�qt,�v) + (A�q,�v) + (B∇u,�v) = 0
(7)

for each w ∈ H1
0(Ω),�v ∈ L2(Ω), and almost everywhere 0 ≤ t ≤ T and the initial data satisfy

(u(0), w) = (u0, w), < ut(0), w >= (u1, w), and (�q(0),�v) = (�q0,�v) (8)

for each w ∈ H1
0(Ω),�v ∈ L2(Ω). Here, < ·, · > denotes the duality pairing between H−1(Ω) and

H1
0(Ω), and (·, ·) is the inner product in L2(Ω). In addition, the time derivatives are understood in a

distributional sense.

Remark 2. We note that u ∈ C([0, T]; L2(Ω)), ut ∈ C([0, T];H−1(Ω)), and �q ∈ C([0, T]; L2(Ω)).
(see Theorem 2, Chapter 5.9.2 [32] for detail). Consequently, the equalities in (7), (8) make sense.

To investigate the weak solution of (4) that satisfies (7) and (8), we use the standard Galerkin
approximation and estimate the energy of the solution, which will be used to show the well-posedness
of the regularized system (4) in the subsequent subsection. Let {wj|j ∈ N} be an c−2-weighted
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orthonormal basis in L2(Ω), i.e., (c−2wj, wk) = δjk, where the Kronecker delta is given by δjk ={
0 if j �= k,
1 if j = k

of the eigenfunctions of the eigenvalue problem{
c2Δw = λw in Ω, λ ∈ C,

w = 0 on ∂Ω.

Let Uk be the subspace generated by the orthonormal system {w1, w2, · · · , wk} of L2(Ω). Then,
one can see that Uk also becomes the c−2-weighted orthogonal basis of H1

0(Ω) in the sense that(
c−2wj, wk

)
+
(∇wj,∇wk

)
= 0 if j �= k.

Let us also denote Qk, which is the space generated by the smooth functions {�v1,�v2, · · · ,�vk}
such that {�vk : k ∈ N} is an orthonormal basis of L2(Ω). We now construct approximate solutions(

uk,�q k
)

, k = 1, 2, 3, · · · , in the form

uk(t) =
k

∑
j=1

gk
j (t)wj, �q k(t) =

k

∑
j=1

hk
j (t)�vj, (9)

whose coefficients gk
j (t), hk

j (t), j = 1, 2, · · · , k, are chosen so that

gk
j (0) =

(
u0, wj

)
, (gk

j )t(0) =
(
u1, wj

)
, hk

j (0) =
(
�q0,�vj

)
and ⎧⎪⎨⎪⎩

(
1
c2 uk

tt, wj

)
+
(

αuk
t + βuk − δε∇ ·�q k, wj

)
+
(
∇uk,∇wj

)
= 0,(

�q k
t ,�vj

)
+
(

A�q k,�vj

)
+
(

B∇uk,�vj

)
= 0

(10)

are satisfied for all wj ∈ Uk, �vj ∈ Qk, j = 1, · · · , k. For each integer k = 1, 2, · · · , the standard

theory of ordinary differential equations guarantees the existence of the approximation
(

uk(t), �q k(t)
)

satisfying (9) and (10).
The following theorem gives a uniform bound of energy of the approximate solutions (9),

which allows us to send k → ∞.

Theorem 1. There exists a constant CT > 0 that depends only on σx, σy, Ω, and T such that for k ≥ 1

max
0≤t≤T

Ek(t) +
∥∥∥uk

tt

∥∥∥
L2(0,T;H−1(Ω))

+
∥∥∥�q k

t

∥∥∥
L2(0,T;L2(Ω))

≤ CT

(
‖u0‖2

H1
0 (Ω) + ‖u1‖2

L2(Ω) + ‖�q0‖2
L2(Ω)

)
,

where the energy Ek(t) is defined by

Ek(t) = ‖1
c

uk
t (t)‖2

L2(Ω) + ‖∇uk(t)‖2
L2(Ω) + ‖�q k(t)‖2

L2(Ω).

Proof. Please note that uk
t ∈ U k and �q k ∈ Qk. Hence, we apply uk

t and �q k in the first and second
equations of (10), respectively, to obtain⎧⎨⎩

( 1
c2 uk

tt, uk
t

)
+
(

αuk
t + βuk − δε∇ ·�q k, uk

t

)
+
(
∇uk,∇uk

t

)
= 0,(

�q k
t ,�q k

)
+
(

A�q k,�q k
)
+
(

B∇uk,�q k
)

= 0

for almost everywhere 0 ≤ t ≤ T. Combining the two equations with the equality
(

1
c2 uk

tt, uk
t

)
=

d
dt

(
1
2‖ 1

c uk
t ‖2

L2(Ω)

)
, we obtain
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1
2

d
dt

Ek + F1
k + F2

k = 0,

where

F1
k =

(
αuk

t , uk
t

)
+
(

βuk, uk
t

)
−
(

δε∇ ·�q k, uk
t

)
, F2

k =
(

A�q k,�q k
)
+
(

B∇uk,�q k
)

.

Based on the linear bounded operator ϕ �−→ δε(ϕ), Hölder’s inequality, assumptions for σx, σy,
and Poincaré inequality, it can be noted that Ek(t) satisfies the inequality

dEk
dt

≤ Cε
kEk for a suitable constant Cε

k > 0.

Furthermore, by applying Gronwall’s inequality, Poincaré inequality, and (1) in the above equation,
one can obtain

max
0≤t≤T

(
‖uk(t)‖2

H1
0 (Ω)

+ ‖uk
t (t)‖2

L2(Ω) + ‖�q k‖L2(Ω)

)
≤ C

(
‖u0‖2

H1
0 (Ω)

+ ‖u1‖2
L2(Ω) + ‖�q0‖2

L2(Ω)

)
(11)

for some C > 0.
Fix any w ∈ H1

0(Ω) with ‖w‖H1
0 (Ω) ≤ 1 and�v ∈ L2(Ω) with ‖�v‖L2(Ω) ≤ 1, and write w = w1 +w2

and �v = �v1 +�v2, where

w1 ∈ span{wj}k
j=1,

(
1
c2 w2, wj

)
= 0 for j = 1, · · · , k

and
�v1 ∈ span{�vj}k

j=1,
(
�v2,�vj

)
= 0 for j = 1, · · · , k.

From (9) and (10), we have〈
1
c2 uk

tt, w
〉

=

(
1
c2 uk

tt, w
)

=

(
1
c2 uk

tt, w1
)

= − (αuk
t + βuk, w1)− (δε∇ ·�q k, w1) + (∇uk,∇w1),(

�q k
t ,�v
)

=
(
�q k

t ,�v1
)

= −
(

A�q k,�v1
)
−
(

B∇uk,�v1
)

.

Thus, we have∣∣∣〈uk
tt, w
〉∣∣∣+ ∣∣∣(�q k

t ,�v
)∣∣∣ ≤ C

(∥∥∥uk
∥∥∥

H1
0 (Ω)

+
∥∥∥uk

t

∥∥∥
L2(Ω)

+
∥∥∥�q k
∥∥∥
L2(Ω)

)
.

Consequently, we obtain

∫ T

0

(∥∥∥uk
tt

∥∥∥
H−1(Ω)

+ ‖�qt‖L2(Ω)

)
dt ≤ C

∫ T

0

(∥∥∥uk
∥∥∥2

H1
0 (Ω)

+
∥∥∥uk

t

∥∥∥2

L2(Ω)
+
∥∥∥�q k
∥∥∥2

L2(Ω)

)
dt

≤ CT

(
‖u0‖2

H1
0 (Ω) + ‖u1‖2

L2(Ω) + ‖�q0‖2
L2(Ω)

)
.

(12)

The proof is carried out by combining (11) and (12).

2.2. Existence and Uniqueness

In this subsection, we will discuss the well-posedness of the regularized system by demonstrating
the existence and uniqueness of the solution (6) based on the result of Theorem 1.

Theorem 2. (Existence and Uniqueness) Assume that the initial data (u0, u1,�q0) are in H1
0(Ω)× L2(Ω)×

L2(Ω). Then, the system (4) has a unique weak solution provided by σx, σy ∈ L∞(Ω).
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Proof. The energy estimates of Theorem 1 and the standard Galerkin method enable the existence of a
weak solution using the fact that ∇· : L2(Ω) → H−1(Ω) and δε : H−1(Ω) → L2(Ω) are continuous
almost everywhere t ∈ [0, T] (see [31] for detail proof of uniqueness).

Remark 3. The most important concern in the proof is the estimation of the term δε∇ ·�q in the regularized
system, which has roles of a convolution, improving the stability of the system from the regularization of the
term from H−1(Ω) to L2(Ω).

3. Numerical Scheme

The aim of this section is to introduce a staggered finite difference method for discretizing the
regularized system and to find a stability condition for the numerical scheme. For the staggered
finite difference method, we use a family of finite difference schemes [33] with half-step staggered
grids in space and time. All spatial derivatives are discretized with the centered finite differences
over two or three cells, which guarantees a second order approximation in space. For the time
discretization, we also use the centered finite differences for the first and second order time derivatives
on a uniform mesh, which is also of the second order approximation in time. Based on the standard
von Neumann stability analysis technique, we analyze the stability of the numerical scheme and obtain
its CFL condition.

3.1. Staggered Finite Differences

Let �t > 0 denote the time step size and �x > 0 and �y > 0 denote the spatial mesh sizes in
the x and y directions, respectively. In addition, we also introduce the time step tn = n�t and the
spatial nodes xi = i�x and yj = j�y for n ∈ N ∪ {0} and i, j ∈ Z. We also define staggered nodes
in the time direction and the x and y directions, respectively, as tn± 1

2
= tn ± 1

2�t, xi± 1
2
= xi ± 1

2�x,

and yj± 1
2
= yj ± 1

2�y for n, i, j ∈ N. To simplify the notation, we denote un
i,j := u(tn, xi, yj) and

qn+ 1
2

α
i+ 1

2 ,j+ 1
2

:= qα(tn+ 1
2
, xi+ 1

2
, yj+ 1

2
) for�q = (qx, qy), α = x, y. For the discretization of the regularization

defined in Remark 1 for the regularized system, the smooth function ρε(x, y) chosen in the following
examples is constant on a rectangle centered at zero,

ρε(x, y) = ρε1(x)ρε2(y), (13)

where

ρεk (ξ) =

{
1
εk

if ξ ∈ [− εk
2 , εk

2 ], k = 1, 2,
0 elsewhere.

For a given two-dimensional finite difference grid with spatial sizes �x and �y, a possible choice
of εk is ε1 = nx�x and ε2 = ny�y with nx, ny ∈ N. For instance, with nx = ny = 1 and the usual
integration formula (see Chapter 3 in [34]), we discretize the regularized term δε(v)i,j := (ρε ∗ v)i,j,
using the 9-point central difference formula, as follows:

(ρε ∗ v)i,j =
1

16
(
4vi,j + 2vi±1,j + 2vi,j±1 + vi±1,j+1 + vi±1,j−1

)
.

Let us now introduce new notations

Ax±
i+ 1

2
:= 1 ± �t

2
σx

i+ 1
2

, A
y±
j+ 1

2
:= 1 ± �t

2
σy

j+ 1
2

,

and for k = i, j, α = x, y,

A
xy±
i,j := 1 ± �t

2
(σxi + σyj), σαk := σα(αk), σα

k+ 1
2

:= σα(αk+ 1
2
).
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Based on these notations, the staggered finite difference scheme for discretizing the regularized
system is defined in the following steps.

Step 1. Compute
(

qn+ 1
2

x
i+ 1

2 ,j+ 1
2

, qn+ 1
2

y
i+ 1

2 ,j+ 1
2

)
,

Ax+
i+ 1

2
qn+ 1

2
x

i+ 1
2 ,j+ 1

2
= Ax−

i+ 1
2
qn− 1

2
x

i+ 1
2 ,j+ 1

2
−�t(σx

i+ 1
2
− σy

j+ 1
2
)∂̃xun

i+ 1
2 ,j+ 1

2
,

A
y+
j+ 1

2
qy

n+ 1
2

i+ 1
2 ,j+ 1

2
= A

y−
j+ 1

2
qn− 1

2
y

i+ 1
2 ,j+ 1

2
−�t(σy

j+ 1
2
− σx

i+ 1
2
)∂̃yun

i+ 1
2 ,j+ 1

2
,

where the cell averages ∂̃xun
i+ 1

2 ,j+ 1
2

and ∂̃yun
i+ 1

2 ,j+ 1
2

are defined as

∂̃xun
i+ 1

2 ,j+ 1
2
=

un
i+1,j+1 − un

i,j+1 + un
i+1,j − un

i,j

2�x
, ∂̃yun

i+ 1
2 ,j+ 1

2
=

un
i+1,j+1 − un

i+1,j + un
i,j+1 − un

i,j

2�y
.

The definition of the cell averages allows us to compute the regularized term in (3)

(δε∂xqx)
n
i,j := (ρε ∗ ∂xqx)

n
i,j, (δε∂yqy)

n
i,j := (ρε ∗ ∂xqy)

n
i,j

for ∂xqn
xi,j

= 1
2

(
∂̃xqn+ 1

2
xi,j + ∂̃xqn− 1

2
xi,j

)
and ∂yqn

yi,j
= 1

2

(
∂̃yqn+ 1

2
yi,j + ∂̃yqn− 1

2
yi,j

)
, where the cell averages of the

derivatives of the function (qn± 1
2

xi,j , qn± 1
2

yi,j ) are defined as

∂̃xqn± 1
2

xi,j =
1

2�x

(
qn± 1

2
x

i+ 1
2 ,j+ 1

2
− qn± 1

2
x

i− 1
2 ,j+ 1

2
+ qn± 1

2
x

i+ 1
2 ,j− 1

2
− qn± 1

2
x

i− 1
2 ,j− 1

2

)
,

∂̃yqn± 1
2

yi,j =
1

2�y

(
qn± 1

2
y

i+ 1
2 ,j+ 1

2
− qn± 1

2
y

i+ 1
2 ,j− 1

2
+ qn± 1

2
y

i− 1
2 ,j+ 1

2
− qn± 1

2
y

i− 1
2 ,j− 1

2

)
.

Step 2. Compute un+1
i,j ,

A
xy+
i,j un+1

i,j = 2un
i,j − A

xy−
i,j un−1

i,j +�t2
(
−σ

xy
i,j un

i,j + c2
i,j

(
(δε∂xqx)

n
i,j + (δε∂yqy)

n
i,j

)
+ c2

i,jΔnun
i,j

)
, (14)

where

σ
xy
i,j = σxi σyj , ci,j = c(xi, yj), Δnun

i,j =
un

i+1,j − 2un
i,j + un

i−1,j

�x2 +
un

i,j+1 − 2un
i,j + un

i,j−1

�y2 .

3.2. Stability Analysis

To obtain the stability condition of the staggered finite difference scheme defined above, we restrict
our concern to the constant damping case with σx = σy = σ0 ≥ 0 for simplicity in our analysis.
The stability condition for the scheme in the computational domain is as follows.

Remark 4. The CFL condition of scheme (13)–(14) in the computational area (i.e., σx = σy = 0) is

c
�t
h

≤ 1√
2

for �x = �y = h from the standard von Neumann stability analysis technique.

Generally the stability condition for the staggered finite difference scheme developed in Section 3.1
can be obtained as follows.
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Theorem 3. Assume that σx = σy = σ0 > 0 and the sound speed c are constants. Then, the discrete scheme
(13)–(14) is stable if the CFL condition

c�t ≤ h√
2

1

(1 + σ0
2h2

8c2 )1/2
(15)

is satisfied for �x = �y = h.

To prove Theorem 3 and use the technique of the standard von Neumann stability analysis, we recall
the definition of the simple von Neumann polynomial and some of its properties as follows.

Definition 1. A polynomial is a simple von Neumann polynomial if all its roots, r, lie on the unit disk
(|B(0, r)| < 1) and its roots on the unit circle are simple roots.

The following theorem demonstrates that a simple von Neumann polynomial can be a sufficient
stability condition.

Theorem 4. A sufficient stability condition is that φ be a simple von Neumann polynomial, where φ is the
characteristic polynomial (see [35] for the proof).

With Theorem 4, the stability condition for a polynomial is presented in the following.

Theorem 5. Let φ be a polynomial of degree p written as

φ(z) = c0 + c1z + · · ·+ cpzp,

where c0, c1, · · · , cp ∈ C and cp �= 0. The polynomial φ is a simple von Neumann polynomial if and only if
φ0 is a simple von Neumann polynomial and |φ(0)| ≤ |φ̄(0)|, where φ0 is defined as

φ0(z) =
φ̄(0)φ(z)− φ(0)φ̄(z)

z
,

and the conjugate polynomial φ̄ is defined as

φ̄(z) = c̄p + c̄p−1z + · · ·+ c̄0zp,

where c̄ is the complex conjugate of c. The main ingredient in the proof of the theorem is Rouché’s theorem;
the proof is detailed in [36].

Now, we can computationally verify the stability condition (15) in Theorem 3 using Theorems 4
and 5.

Proof of Theorem 3 . Assume that σx = σy = σ0 in scheme (13)–(14) and we rewrite the scheme as the
second order central difference scheme of the variables u and�q.

1
c2

i,j

[
un+1

i,j − 2un
i,j + un−1

i,j

�t2 + 2σ0
un+1

i,j − un−1
i,j

2�t
+ σ0

2un
i,j

]
(16)

=
un

i+1,j − 2un
i,j + un

i−1,j

�x2 +
un

i,j+1 − 2un
i,j + un

i,j−1

�y2 + (ρε ∗ ∂xqx)
n
i,j + (ρε ∗ ∂yqy)

n
i,j,

�q n+ 1
2

i+ 1
2 ,j+ 1

2
−�q n− 1

2
i+ 1

2 ,j+ 1
2

�t
+ σ0

�q n+ 1
2

i+ 1
2 ,j+ 1

2
+�q n− 1

2
i+ 1

2 ,j+ 1
2

2
=�0. (17)
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By von Neumann analysis, we can assume a spatial dependence of the following form in the
field quantities:

un+1
i,j = ûn+1(kx, ky)eikx xi+ikyyj , un

i,j = ûn(kx, ky)eikx xi+ikyyj ,

�q n+ 1
2

i+ 1
2 ,j+ 1

2
= �̂q n+ 1

2
i+ 1

2 ,j+ 1
2
(kx, ky)e

ikx x
i+ 1

2
+ikyy

j+ 1
2 ,

where kx, ky, is the component of the wave vector�k, i.e.,�k = (kx, ky)T, and the wave number is k =√
k2

x + k2
y. Then, we have the system

[
ûn+1, ûn, q̂n+ 1

2
x , q̂n+ 1

2
y

]T

= G
[

ûn, ûn−1, q̂n− 1
2

x , q̂n− 1
2

y

]T

, where the

amplification matrix G of scheme (16), (17) is given by

G =

⎡⎢⎢⎢⎣
− c1

c2
− c0

c2
Cq̂x Cq̂y

1 0 0 0
0 0 η 0
0 0 0 η

⎤⎥⎥⎥⎦ ,

where Cq̂x and Cq̂y satisfy c2ûn+1 + c1ûn + c0ûn−1 = Cq̂x q̂x
n− 1

2 + Cq̂y q̂y
n− 1

2 with c0 = 1
�t2 − σ0�t ,

c1 = − 2
�t2 − 2c2 cos(kx�x)−1

�x2 − 2c2 cos(ky�y)−1
�y2 + σ0

2, c2 = 1
�t2 +

σ0�t , and η =
1−�t

2 σ0

1+�t
2 σ0

. Then, it is noted

that the characteristic function of G is given by

φ(G) =

(
G2 +

c1

c2
G +

c0

c2

)
(G − η)2.

Please note that |η| < 1 by the assumption. It can be observed from Theorem 5 that φ(G) is a
simple von Neumann polynomial if and only if |c1| ≤ |c0 + c2|, i.e.,∣∣∣∣ 2

�t2 + 2c2 cos(kxh) + cos(kyh)− 2
h2 − σ0

2
∣∣∣∣ ≤ 2

�t2 , for h = �x = �y.

This inequality gives the CFL condition (15), which completes the proof.

Remark 5. From the proof of Theorem 3, we notice that the characteristic function φ of the amplification matrix
G does not depend on any quantity related to the regularized term. That is, the staggered finite difference scheme
corresponding to the classical PML model (2) with a constant damping in the layers is stable under the CFL
condition (15).

4. Numerical Result

The aim of this section is to provide numerical evidence of the well-posedness of the regularized
system and the non-reflection properties of the acoustic wave in the layers of the classical PML model.
For the discussion of the non-reflection properties, we demonstrate the behavior of the maximum error
at tn defined as the maximum of the differences between the numerical solution and a reference solution
in the computational domain Ω0 := [0, 1]× [0, 1]. Here, the reference solution is taken in the same
computational domain instead of the layers with an additional large domain, for example, 15 times
wider in the x and y directions in our experiment, causing the wave in the computational domain to be
unaffected by the wave propagating from outside in the chosen long-time step. Furthermore, we use
the energy method introduced in [37] and numerically examine the well-posedness or stability of the
model (4) by observing the long-time behavior of the acoustic wave energy defined by

E(t) = 1
2

∫
Ω0

(
1
c2 ut(t)2 +∇u(t) · ∇u(t)

)
dx. (18)
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For the numerical simulation, we use the same initial condition defined by (4) and, in the absorbing
layer, the damping function of the form given by

σxk (xk) =

⎧⎪⎨⎪⎩
0, |xk| < ak = 1,

σ0

( |xk − 1|
L

)β

, 1 ≤ |xk| ≤ 1 + L,
(19)

where β = 0, 1, 2, σ0 is a given constant and L denotes the thickness of the layers.
For the comparisons of non-reflection property, we first demonstrate the maximum error for both

Formulas (2) and (4) with two sets of thickness and damping as (L, σ0) = (0.25, 30) and (L, σ0) =

(0.1875, 30). The numerical results are displayed in Figure 1. The classical PML has slightly smaller
errors than the modified one in both cases, as shown in Figure 1, but it can be observed that these
errors of the modified one can be reduced by simply increasing small amounts of thickness or damping
such as L = 0.27 or σ0 = 35.
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 (b) Error of  Models with L=0.1875
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0
=30 Classical PML

0
=35 Modified PML

Figure 1. Comparison of errors: (a) a fixed damping σ0 = 30, (b) a thickness L = 0.1875 (β = 2)

To see the influence of absorbing property by incidence angle, we demonstrate both formulas
with different positions of source function. The resulted differences between reference and computed
values of the solution during simulation at one point within the computational domain are plotted
in Figure 2. The errors of the classical PML have relatively smaller than the modified one and both
formulas have slightly better absorbing property when the angle of incidence to the interface between
the computational domain and the layers is bigger.
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Figure 2. Comparison of the difference at a point from different positions of source function with
σ0 = 35 and L = 0.1
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Next, to investigate the energy E(t) behavior, we choose a time step size �t of �x/3, which
satisfies the CFL condition (15) to guarantee the stability of the staggered finite difference scheme
(see Remark 4). Here, the first order backward and second order central finite differences in time and
space, respectively, are used to discretize the energy E(tn) of (18) at each time step tn. We investigate
the behavior of the energy for a long-time simulation at time tn =10,000 according to the thickness
of the layers and magnitude of the damping. The numerical results are displayed in Figure 3: (a) the
energy with various dampings σ0 = 40, 50, 50, 60, 70 for a fixed thickness L = 0.0625 and (b) the
energy with various thicknesses L = 0.0625, 0.1, 0.125, 0.15 for a fixed damping σ0 = 50. The results
indicate that the numerical stability of the modified formula is consistently stable in the long-time
simulation regardless of the magnitudes of damping and thickness of the layer. This provides proof of
the well-posedness of the developed system and numerical stability for the finite difference method.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

E
ne

rg
y

(a) Energy of modified formula with various dampings

0
 =70

0
 =60

0
 =50

0
 =40

Figure 3. E(t) with (a) various damping values σ0 = 40, 50, 60, 70 for a fixed thickness L = 0.0625 (β = 0),
(b) various thickness L = 0.0625, 0.1, 0.125, 0.15 for a fixed damping σ0 = 50 (β = 0).

Lastly, in order to illustrate this visual investigation, we consider the damping β = 2 and
display the snap shots of the wave propagation at times tn = 1, 30, 60, 100, 130, 150, 200, 300, 500 with
σ0 = 35, L = 0.25 in Figure 4. One can see that the regularized system displays a good property of
non-reflection in the layers, which is the purpose of building the layers . It is remarkable that from a
mathematical point of view, the analytical well-posedness without losing the non-reflection property
in the layers of that the classical PML model.
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Figure 4. Snap shots of the regularized system at time tn = 1, 30, 60, 100, 130, 150, 200, 300, 500 with
σ0 = 35, β = 2, L = 0.25 (Red rectangular box represents the computational domain.)

5. Discussion

We have introduced a new and efficient formulation related to the acoustic wave equation based
on the regularization of the un-split PML wave equation. By regularizing the lower order regularity
term in the original equation and the standard von Neumann stability analysis, we have achieved
well-posedness as well as numerical stability of the solution in the new formulation. We summarize
the main novelty and results of this study as follows: (1) We have proved the analytical well-posedness
of our formulation without any restriction of damping terms; (2) a staggered finite difference scheme
for the formulation is introduced and numerical stability is also analyzed; (3) several numerical tests
are exhibited to show the numerical stability and a non-reflection property.
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1. Introduction

For any non-negative integer n, the famous Catalan numbers Cn are defined as Cn = 1
n + 1 · (2n

n ).
For example, the first several Catalan numbers are C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42,
C6 = 132, C7 = 429, C8 = 1430, · · · . The Catalan numbers Cn satisfy the recursive formula

Cn =
n

∑
i=1

Ci−1 · Ci.

The generating function of the Catalan numbers Cn is

2
1 +

√
1 − 4x

=
∞

∑
n=0

(2n
n )

n + 1
· xn =

∞

∑
n=0

Cn · xn. (1)

These numbers occupy a pivotal position in combinatorial mathematics, as many counting
problems are closely related to Catalan numbers, and some famous examples can be found in
R. P. Stanley [1]. Many papers related to the Catalan numbers and other special sequences can also be
found in references [1–20], especially the works of T. Kim et al. give a series of new identities for the
Catalan numbers, see [9–14], these are important results in the related field.

The main purpose of this paper is to consider the calculating problem of the following convolution
sums involving the Catalan numbers:

∑
a1+a2+···+ah=n

Ca1 · Ca2 · Ca3 · · ·Cah , (2)

where the summation is taken over all h-dimension non-negative integer coordinates (a1, a2, · · · , ah)

such that the equation a1 + a2 + · · ·+ ah = n.
About the convolution sums (2), it seems that none had studied it yet, at least we have not seen any

related results before. We think this problem is meaningful. The reason is based on the following two
aspects: First, it can reveal the profound properties of the Catalan numbers themselves. Second, for the
other sequences, such as Fibonacci numbers, Fubini numbers, and Euler numbers, etc. (see [21–23]),
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there are corresponding results, so the Catalan numbers should have a corresponding identity. In this
paper, we use the elementary and combinatorial methods to answer this question. That is, we shall
prove the following:

Theorem 1. For any positive integer h, we have the identity

∑
a1+a2+···+a2h+1=n

Ca1 · Ca2 · Ca3 · · ·Ca2h+1

=
1

(2h)!

h

∑
i=0

C(h, i)
min(n,i)

∑
j=0

(n − j + h + i)! · Cn−j+h+i

(n − j)!
·
(

i
j

)
· (−4)j,

where C(h, i) are defined as C(1, 0) = −2, C(h, h) = 1, C(h + 1, h) = C(h, h − 1) − (8h + 2) · C(h, h),
C(h + 1, 0) = 8 · C(h, 1)− 2 · C(h, 0), and for all integers 1 ≤ i ≤ h − 1, we have the recursive formula

C(h + 1, i) = C(h, i − 1)− (8i + 2) · C(h, i) + (4i + 4)(4i + 2) · C(h, i + 1).

Theorem 2. For any positive integer h and non-negative n, we have

∑
a1+a2+···+a2h=n

Ca1 · Ca2 · Ca3 · · ·Ca2h

=
1

(2h − 1)!

h−1

∑
i=0

n

∑
j=0

D(h, i + 1) ·
(

i + 1
2

j

)
· (−4)j · (n − j + h + i)! · Cn−j+h+i

(n − j)!
,

where (
n+ 1

2
i ) =

(
n + 1

2

)
·
(

n − 1 + 1
2

)
· · ·
(

n − i + 1 + 1
2

)
/i!, D(k, i) are defined as D(k, 0) = 0,

D(k, k) = 1, D(k + 1, k) = D(k, k − 1) − (8k − 2), D(k + 1, 1) = 24D(k, 2) − 6D(k, 1), and for all
integers 1 ≤ i ≤ k − 1,

D(k + 1, i) = D(k, i − 1)− (8i − 2) · D(k, i) + 4i(4i + 2) · D(k, i + 1).

To better illustrate the sequence {C(k, i)} and D(h, i), we compute them using mathematical
software and list some values in the following Tables 1 and 2.

Table 1. Values of C(k, i).

C(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6

k=1 −2 1
k=2 12 −12 1
k=3 −120 180 −30 1
k=4 1680 −3360 840 −56 1
k=5 −30,240 75,600 −25,200 2520 −90 1
k=6 665,280 −1,995,840 831,600 −110,880 5940 −132 1

Table 2. Values of D(k, i).

D(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6

k=1 0 1
k=2 0 −6 1
k=3 0 60 −20 1
k=4 0 −840 420 −42 1
k=5 0 15,120 −10,080 1512 −72 1
k=6 0 −332,640 277,200 −55,440 3960 −110 1
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Observing these two tables, we can easily find that if 2k− 1 = p is a prime, then for all integers 0 ≤
i < k, we have the congruences C (k, i) ≡ 0 mod (2k − 1)(2k) and D (k, i) ≡ 0 mod (2k − 1)(2k − 2).
So we propose the following two conjectures:

Conjecture 1. Let p be a prime. Then for any integer 0 ≤ i < p + 1
2 , we have the congruence

C
(

p + 1
2

, i
)
≡ 0 mod p(p + 1).

Conjecture 2. Let p be a prime. Then for any integer 0 ≤ i < p + 1
2 , we have the congruence

D
(

p + 1
2

, i
)
≡ 0 mod p(p − 1).

For some special integers n and h, from Theorem 1 and Theorem 2 we can also deduce several
interesting corollaries. In fact if we take n = 0 and h = 1 in the theorems respectively, then we have
the following four corollaries:

Corollary 1. For any positive integer h, we have the identity

h

∑
i=0

C(h, i) · (h + i)! · Ch+i = (2h)!.

Corollary 2. For any positive integer h, we have the identity

h

∑
i=1

D(h, i) · (h + i − 1)! · Ch+i−1 = (2h − 1)!.

Corollary 3. For any integer n ≥ 0, we have the identity

∑
a+b+d=n

Ca · Cb · Cd = (n + 1) ·
[

1
2
· (n + 2) · Cn+2 − (2n + 1) · Cn+1

]
.

Corollary 4. For any integer n ≥ 0, we have the identity

∑
u+v+w+x+y=n

Cu · Cv · Cw · Cx · Cy =
(n + 1)(n + 2)(4n2 + 8n + 3)

6
· Cn+2

− (n + 3)(n + 2)(n + 1)(2n + 3)
6

· Cn+3 +
(n + 4)(n + 3)(n + 2)(n + 1)

24
· Cn+4.

2. Several Simple Lemmas

To prove our theorems, we need following four simple lemmas. First we have:

Lemma 1. Let function f (x) = 2
1 +

√
1 − 4x

. Then for any positive integer h, we have the identity

(2h)! · f 2h+1(x) =
h

∑
i=0

C(h, i) · (1 − 4x)i · f (h+i)(x),

where f (i)(x) denotes the i-order derivative of f (x) for x, and {C(h, i)} are defined as the same as in Theorem 1.
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Proof. In fact, this identity and its generalization had appeared in D. S. Kim and T. Kim’s important
work [9] (see Theorem 3.1), but only in different forms. For the completeness of our results, here we
give a different proof by mathematical induction. First from the properties of the derivative we have

f ′(x) =
4(

1 +
√

1 − 4x
)2 · 1√

1 − 4x
=

f 2(x)√
1 − 4x

or identity

f 2(x) = (1 − 4x)
1
2 · f ′(x). (3)

From (3) and note that C(1, 0) = −2 and C(1, 1) = 1 we have

2 f (x) · f ′(x) = −2 (1 − 4x)−
1
2 · f ′(x) + (1 − 4x)

1
2 · f ′′(x)

and

2! f 3(x) = −2 f ′(x) + (1 − 4x) · f ′′(x) =
1

∑
i=0

C(1, i) · (1 − 4x)i · f (1+i)(x).

That is, Lemma 1 is true for h = 1.
Assume that Lemma 1 is true for h = k ≥ 1. That is,

(2k)! · f 2k+1(x) =
k

∑
i=0

C(k, i) · (1 − 4x)i · f (k+i)(x). (4)

Then from (3), (4), the definition of C(k, i), and the properties of the derivative we can deduce that

(2k + 1)! · f 2k(x) · f ′(x) =
k

∑
i=0

C(k, i) · (1 − 4x)i · f (k+i+1)(x)

−
k

∑
i=1

4i · C(k, i) · (1 − 4x)i−1 · f (k+i)(x)

or

rrl(2k + 1)! · f 2k+2(x) =
k

∑
i=0

C(k, i) · (1 − 4x)i+ 1
2 · f (k+i+1)(x)

−
k

∑
i=1

4i · C(k, i) · (1 − 4x)i− 1
2 · f (k+i)(x).

(5)

Applying (5) and the properties of the derivative we also have

(2k + 2)! · f 2k+1(x) · f ′(x) =
k

∑
i=0

C(k, i) · (1 − 4x)i+ 1
2 · f (k+i+2)(x)

−
k

∑
i=0

(4i + 2) · C(k, i) · (1 − 4x)i− 1
2 · f (k+i+1)(x)

−
k

∑
i=1

4i · C(k, i) · (1 − 4x)i− 1
2 · f (k+i+1)(x)

+
k

∑
i=1

(4i) · (4i − 2) · C(k, i) · (1 − 4x)i− 3
2 · f (k+i)(x)
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or note that identity (3) we have

(2k + 2)! · f 2k+3(x) =
k

∑
i=0

C(k, i) · (1 − 4x)i+1 · f (k+i+2)(x)

−
k

∑
i=0

(4i + 2) · C(k, i) · (1 − 4x)i · f (k+i+1)(x)

−
k

∑
i=1

4i · C(k, i) · (1 − 4x)i · f (k+i+1)(x)

+
k

∑
i=1

(4i) · (4i − 2) · C(k, i) · (1 − 4x)i−1 · f (k+i)(x)

= C(k, k) · (1 − 4x)k+1 · f (2k+2)(x) +
k

∑
i=1

C(k, i − 1) · (1 − 4x)i · f (k+i+1)(x)

−2C(k, 0) · f (k+1)(x)−
k

∑
i=1

(4i + 2) · C(k, i) · (1 − 4x)i · f (k+i+1)(x) (6)

−
k

∑
i=1

4i · C(k, i) · (1 − 4x)i · f (k+i+1)(x) + 8 · C(k, 1) · f (k+1)(x)

+
k−1

∑
i=1

(4i + 4) · (4i + 2) · C(k, i + 1) · (1 − 4x)i · f (k+i+1)(x)

= (1 − 4x)k+1 · f (2k+2)(x) + (8 · C(k, 1)− 2 · C(k, 0)) · f (k+1)(x)

+ (C(k, k − 1)− (8k + 2) · C(k, k)) · (1 − 4x)k · f (2k+1)(x)

+
k−1

∑
i=1

(C(k, i − 1)− (8i + 2) · C(k, i) + (4i + 4)(4i + 2) · C(k, i + 1))

×(1 − 4x)i · f (k+i+1)(x)

=
k+1

∑
i=0

C(k + 1, i) · (1 − 4x)i · f (k+i+1)(x),

where we have used the identities C(k + 1, k) = C(k, k − 1) − (8k + 2) · C(k, k), C(k, k) = 1, C(k +
1, 0) = 8 · C(k, 1)− 2 · C(k, 0) and for all integers 1 ≤ i ≤ k − 1,

C(k + 1, i) = C(k, i − 1)− (8i + 2) · C(k, i) + (4i + 4)(4i + 2) · C(k, i + 1).

It is clear that (6) implies Lemma 1 is true for h = k + 1.
This proves Lemma 1 by mathematical induction.

Lemma 2. For any positive integer h, we have the identity

(2h − 1)! · f 2h(x) =
h−1

∑
i=0

D(h, i + 1) · (1 − 4x)i+ 1
2 · f (h+i)(x),

where D(h, i) are defined as the same as in Theorem 2.

Proof. It is clear that using the methods of proving Lemma 1 we can easily deduce Lemma 2.

Lemma 3. Let h be any positive integer. Then for any integer k ≥ 0, we have the identity

(1 − 4x)k · f (h+k)(x) =
∞

∑
n=0

(
min(n,k)

∑
i=0

Cn−i+h+k
(n − i)!

(
k
i

)
· (−4)i

)
· xn.
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Proof. From the binomial theorem we have

(1 − 4x)k =
k

∑
i=0

(
k
i

)
· (−4x)i. (7)

On the other hand, from (1) we also have

f (h+k)(x) =
∞

∑
n=0

(n + h + k)! · Cn+h+k
n!

· xn. (8)

Combining (7) and (8) we have

(1 − 4x)k · f (h+k)(x)

=

(
k

∑
i=0

(
k
i

)
· (−4x)i

)(
∞

∑
n=0

(n + h + k)! · Cn+h+k
n!

· xn

)

=
∞

∑
n=0

k

∑
i=0

(n + h + k)! · Cn+h+k
n!

·
(

k
i

)
· (−4)i · xn+i

=
∞

∑
n=0

(
min(n,k)

∑
i=0

(n − i + h + k)! · Cn−i+h+k
(n − i)!

(
k
i

)
· (−4)i

)
· xn.

This proves Lemma 3.

Lemma 4. Let h be any positive integer. Then for any integer k ≥ 0, we have the identity

(1 − 4x)k+ 1
2 · f (h+k)(x) =

∞

∑
n=0

(
n

∑
i=0

(
k + 1

2
i

)
· (−4)i · Cn−i+h+k

(n − i)!

)
· xn.

Proof. From the power series expansion of the function we know that

(1 − 4x)k+ 1
2 =

∞

∑
n=0

(
k + 1

2
n

)
· (−4)n · xn. (9)

Applying (8) and (9) we have

(1 − 4x)k+ 1
2 · f (h+k)(x)

=

(
∞

∑
n=0

(
k + 1

2
n

)
· (−4)n · xn

)(
∞

∑
n=0

(n + h + k)! · Cn+h+k
n!

· xn

)

=
∞

∑
n=0

(
n

∑
i=0

(
k + 1

2
i

)
· (−4)i · (n − i + h + k)! · Cn−i+h+k

(n − i)!

)
· xn.

This proves Lemma 4.

3. Proofs of the Theorems

In this section, we shall complete the proofs of our theorems. First we prove Theorem 1. From (1)
and the multiplicative properties of the power series we have

(2h)! · f 2h+1(x) = (2h)!
∞

∑
n=0

(
∑

a1+a2+···+a2h+1=n
Ca1 · Ca2 · · ·Ca2h+1

)
· xn. (10)
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On the other hand, from Lemma 1 and Lemma 3 we also have

(2h)! · f 2h+1(x) =
h

∑
i=0

C(h, i) · (1 − 4x)i · f (h+i)(x)

=
∞

∑
n=0

(
h

∑
i=0

C(h, i)
min(n,i)

∑
j=0

(n − j + h + i)!Cn−j+h+i

(n − j)!

(
i
j

)
(−4)j

)
xn.

(11)

Combining (10) and (11) we may immediately deduce the identity

∑
a1+a2+···+a2h+1=n

Ca1 · Ca2 · Ca3 · · ·Ca2h+1

=
1

(2h)!

h

∑
i=0

C(h, i)
min(n,i)

∑
j=0

(n − j + h + i)! · Cn−j+h+i

(n − j)!
·
(

i
j

)
· (−4)j.

This proves Theorem 1.
Now we prove Theorem 2. For any positive integer h, from (1) we have

f 2h(x) =
∞

∑
n=0

(
∑

a1+a2+···+a2h=n
Ca1 · Ca2 · · ·Ca2h

)
· xn. (12)

On the other hand, from Lemma 2 and Lemma 4 we also have

(2h − 1)! · f 2h(x) =
h−1

∑
i=0

D(h, i + 1) · (1 − 4x)i+ 1
2 · f (h+i)(x)

=
h−1

∑
i=0

D(h, i + 1)
∞

∑
n=0

(
n

∑
j=0

(
i + 1

2
j

)
(−4)j (n − j + h + i)! · Cn−j+h+i

(n − j)!

)
xn (13)

=
∞

∑
n=0

h−1

∑
i=0

n

∑
j=0

D(h, i + 1)
(

i + 1
2

j

)
(−4)j (n − j + h + i)!Cn−j+h+i

(n − j)!
xn.

From (12), (13), and Lemma 2 we may immediately deduce the identity

∑
a1+a2+···+a2h=n

Ca1 · Ca2 · Ca3 · · ·Ca2h

=
1

(2h − 1)!

h−1

∑
i=0

n

∑
j=0

D(h, i + 1) ·
(

i + 1
2

j

)
· (−4)j · (n − j + h + i)! · Cn−j+h+i

(n − j)!
.

This completes the proof of Theorem 2.

4. Conclusions

The main results of this paper are Theorem 1 and Theorem 2. They gave two special expressions
for convolution (2). In addition, Corollary 1 gives a close relationship between C(h, i) and Ch+i.
Corollary 2 gives a close relationship between D(h, i) and Dh+i−1. Corollary 3 and Corollary 4 give
two exact representations for the special cases of Theorem 1 with h = 1 and h = 2.

About the new sequences C(h, i) and D(h, i), we proposed two interesting conjectures related to
congruence mod p, where p is an odd prime. We believe that these conjectures are correct, but at the
moment we cannot prove them. We also believe that these two conjectures will certainly attract the
interest of many readers, thus further promoting the study of the properties of C(h, i) and Ch+i.
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Abstract: In this paper, we consider sums of finite products of Chebyshev polynomials of the first,
third, and fourth kinds, which are different from the previously-studied ones. We represent each
of them as linear combinations of Chebyshev polynomials of all kinds whose coefficients involve
some terminating hypergeometric functions 2F1. The results may be viewed as a generalization of the
linearization problem, which is concerned with determining the coefficients in the expansion of the
product of two polynomials in terms of any given sequence of polynomials. These representations
are obtained by explicit computations.

Keywords: Chebyshev polynomials of the first, second, third, and fourth kinds; sums of finite
products; representation

1. Introduction and Preliminaries

We first fix some notations that will be used throughout this paper. For any nonnegative integer n,
the falling factorial sequence (x)n and the rising factorial sequence < x >n are respectively given by:

(x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1), (x)0 = 1, (1)

< x >n= x(x + 1) · · · (x + n − 1), (n ≥ 1), < x >0= 1. (2)

Then, we easily see that the two factorial sequences are related by:

(−1)n(x)n =< −x >n . (3)

The Gauss hypergeometric function 2F1(a, b; c; x) is defined by:

2F1(a, b; c; x) =
∞

∑
n=0

< a >n< b >n

< c >n

xn

n!
, (|x| < 1). (4)

In this paper, we only need very basic facts about Chebyshev polynomials of the first, second,
third, and fourth kinds, which we recall briefly in the following. The Chebyshev polynomials belong
to the family of orthogonal polynomials. We let the interested reader refer to [1–4] for more details
on these.

In terms of generating functions, the Chebyshev polynomials of the first, second, third, and fourth
kinds are respectively given by:

Symmetry 2018, 10, 742; doi:10.3390/sym10120742 www.mdpi.com/journal/symmetry84
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F1(t, x) =
1 − xt

1 − 2xt + t2 =
∞

∑
n=0

Tn(x)tn, (5)

F2(t, x) =
1

1 − 2xt + t2 =
∞

∑
n=0

Un(x)tn, (6)

F3(t, x) =
1 − t

1 − 2xt + t2 =
∞

∑
n=0

Vn(x)tn, (7)

F4(t, x) =
1 + t

1 − 2xt + t2 =
∞

∑
n=0

Wn(x)tn. (8)

They are also explicitly given by the following expressions:

Tn(x) =2 F1

(
−n, n;

1
2

;
1 − x

2

)

=
n
2

[ n
2 ]

∑
l=0

(−1)l 1
n − l

(
n − l

l

)
(2x)n−2l , (n ≥ 1),

(9)

Un(x) = (n + 1)2F1

(
−n, n + 2;

3
2

;
1 − x

2

)

=
[ n

2 ]

∑
l=0

(−1)l
(

n − l
l

)
(2x)n−2l , (n ≥ 0),

(10)

Vn(x) =2 F1

(
−n, n + 1;

1
2

;
1 − x

2

)
=

n

∑
l=0

(
n + l

2l

)
2l(x − 1)l , (n ≥ 0),

(11)

Wn(x) = (2n + 1)2F1

(
−n, n + 1;

3
2

;
1 − x

2

)
= (2n + 1)

n

∑
l=0

2l

2l + 1

(
n + l

2l

)
(x − 1)l , (n ≥ 0),

(12)

The Chebyshev polynomials of all four kinds are also expressed by the Rodrigues formulas, which
are given by:

Tn(x) =
(−1)n2nn!

(2n)!
(1 − x2)

1
2

dn

dxn (1 − x2)n− 1
2 , (13)

Un(x) =
(−1)n2n(n + 1)!

(2n + 1)!
(1 − x2)−

1
2

dn

dxn (1 − x2)n+ 1
2 , (14)

(1 − x)−
1
2 (1 + x)

1
2 Vn(x)

=
(−1)n2nn!

(2n)!
dn

dxn (1 − x)n− 1
2 (1 + x)n+ 1

2 ,
(15)

(1 − x)
1
2 (1 + x)−

1
2 Wn(x)

=
(−1)n2nn!

(2n)!
dn

dxn (1 − x)n+ 1
2 (1 − x)n− 1

2 .
(16)

They satisfy orthogonalities with respect to various weight functions as given in the following:

∫ 1

−1
(1 − x2)−

1
2 Tn(x)Tm(x)dx =

π

εn
δn,m, (17)
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where:

εn =

{
1, if n = 0,
2, if n ≥ 1,

(18)

δn,m =

{
0, if n �= m,
1, if n = m.

(19)

∫ 1

−1
(1 − x2)

1
2 Un(x)Um(x)dx =

π

2
δn,m, (20)

∫ 1

−1

(
1 + x
1 − x

) 1
2

Vn(x)Vm(x)dx = πδn,m, (21)

∫ 1

−1

(
1 − x
1 + x

) 1
2

Wn(x)Wm(x)dx = πδn,m. (22)

For convenience, we let:

αm,r(x) = ∑
i1+···+ir+1=m

Ti1(x) · · · Tir+1(x), (m, r ≥ 0), (23)

βm,r(x) = ∑
i1+···+ir+1=m

Vi1(x) · · ·Vir+1(x), (m, r ≥ 0), (24)

γm,r(x) = ∑
i1+···+ir+1=m

Wi1(x) · · ·Wir+1(x), (m, r ≥ 0), (25)

Here, all the sums in (23)–(25) are over all nonnegative integers i1, · · · , ir+1, with i1 + i2 + · · ·+
ir+1 = m. Furthermore, note here that αm,r(x), βm,r(x), γm,r(x) all have degree m.

Further, let us put:

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)
xlTi1(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x) · · · Tir+1(x), (m ≥ 2, r ≥ 1),

(26)

m

∑
l=0

∑
i1+···+ir+1=l

(
r − 1 + m − l

r − 1

)
Vi1(x) · · ·Vir+1(x), (m ≥ 0, r ≥ 1), (27)

m

∑
l=0

∑
i1+···+ir+1=l

(−1)m−l
(

r − 1 + m − l
r − 1

)
Wi1(x) · · ·Wir+1(x), (m ≥ 0, r ≥ 1). (28)

We considered the expression (26) in [5] and (27) and (28) in [6] and were able to express
each of them in terms of the Chebyshev polynomials of all four kinds. It is amusing to note that
in such expressions, some terminating hypergeometric functions 2F1 and 3F2 appear respectively
for (26)–(28). We came up with studying the sums in (26)–(28) by observing that they are respectively
equal to 1

2r−1r! T(r)
m+r(x), 1

2rr! V
(r)
m+r(x), and 1

2rr! W
(r)
m+r(x). Actually, these easily follow by differentiating

the generating functions in (5), (7), and (8).
In this paper, we consider the expressions αm,r(x), βm,r(x), and γm,r(x) in (23)–(25), which are

sums of finite products of Chebyshev polynomials of the first, third, and fourth kinds, respectively.
Then, we express each of them as linear combinations of Tn(x), Un(x), Vn(x), and Wn(x). Here, we
remark that αm,r(x), βm,r(x), and γm,r(x) are expressed in terms of U(r)

m−j+r(x), (j = 0, 1, · · · , m)

(see Lemmas 2 and 3) by making use of the generating function in (6). This is unlike the previous works
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for (26)–(28) (see [5,6]), where we showed they are respectively equal to 1
2r−1r! T(r)

m+r(x), 1
2rr! V

(r)
m+r(x),

and 1
2rr! W

(r)
m+r(x) by exploiting the generating functions in (5), (7) and (8). Then, our results for

αm,r(x), βm,r(x), and γm,r(x) will be found by making use of Lemmas 1 and 2, the general formulas
in Propositions 1 and 2, and integration by parts. As we can notice here, generating functions play
important roles in the present and the previous works in [5,6]. We would like to remark here that the
technique of generating functions has been widely used not only in mathematics, but also in physics
and biology. For this matter, we recommend the reader to refer to [7–9]. The next three theorems are
our main results.

Theorem 1. For any nonnegative integers m, r, the following identities hold true.

∑
i1+···+ir+1=m

Ti1(x) · · · Tir+1(x)

=
1
r!

[ m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m + r − l)!
l!(m − s − l)!(s − l)! 2F1

(
2l − m,−r − 1; l − m − r;

1
2

)
Tm−2s(x)

(29)

=
1
r!

[ m
2 ]

∑
s=0

s

∑
l=0

(−1)l(m − 2s + 1)(m + r − l)!
l!(m − s + 1 − l)!(s − l)! 2F1

(
2l − m,−r − 1; l − m − r;

1
2

)
Um−2s(x) (30)

=
1
r!

m

∑
s=0

[ s
2 ]

∑
l=0

(−1)l(m + r − l)!
l!
(
m − [ s

2
]− l

)
!
([ s

2
]− l

)
! 2F1

(
2l − m,−r − 1; l − m − r;

1
2

)
Vm−s(x) (31)

=
1
r!

m

∑
s=0

[ s
2 ]

∑
l=0

(−1)s+l(m + r − l)!
l!
(
m − [ s

2
]− l

)
!
([ s

2
]− l

)
! 2F1

(
2l − m,−r − 1; l − m − r;

1
2

)
Wm−s(x). (32)

Theorem 2. For any nonnegative integers m, r, we have the following identities.

∑i1+···+ir+1=m Vi1(x) · · ·Vir+1(x)

= 1
r! ∑m

k=0 ∑
[ m−k

2 ]
l=0

(−1)m−kεk(k+2s+r)!
(s+k)!s! ( r+1

m−k−2s)2F1 (−s,−s − k;−k − 2s − r; 1) Tk(x)
(33)

= 1
r! ∑m

k=0 ∑
[ m−k

2 ]
s=0

(−1)m−k(k+1)(k+2s+r)!
(s+k+1)!s! ( r+1

m−k−2s)2F1 (−s,−s − k − 1;−k − 2s − r; 1)Uk(x) (34)

= 1
r! ∑m

k=0 ∑m−k
s=0

(−1)m−k−s(k+r+s)!
(k+[ s+1

2 ])![ s
2 ]!

( r+1
m−k−s)2F1

(
− [ s

2
]

,−
[

s+1
2

]
− k;−k − s − r; 1

)
Vk(x) (35)

= 1
r! ∑m

k=0 ∑m−k
s=0

(−1)m−k(k+r+s)!
(k+[ s+1

2 ])![ s
2 ]!

( r+1
m−k−s)2F1

(
− [ s

2
]

,−
[

s+1
2

]
− k;−k − s − r; 1

)
Wk(x) (36)

Theorem 3. For any nonnegative integers m, r, the following identities are valid.

∑
i1+···+ir+1=m

Wi1(x) · · ·Wir+1(x)

=
1
r!

m

∑
k=0

[ m−k
2 ]

∑
l=0

εk(k + 2s + r)!
(s + k)!s!

(
r + 1

m − k − 2s

)
2F1 (−s,−s − k;−k − 2s − r; 1) Tk(x)

(37)

=
1
r!

m

∑
k=0

[ m−k
2 ]

∑
s=0

(k + 1)(k + 2s + r)!
(s + k + 1)!s!

(
r + 1

m − k − 2s

)
2F1 (−s,−s − k − 1;−k − 2s − r; 1)Uk(x) (38)
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=
1
r!

m

∑
k=0

m−k

∑
s=0

(−1)s(k + r + s)!(
k +
[

s+1
2

])
!
[ s

2
]
!

(
r + 1

m − k − s

)
2F1

(
−
[ s

2

]
,−
[

s + 1
2

]
− k;−k − s − r; 1

)
Vk(x) (39)

=
1
r!

m

∑
k=0

m−k

∑
s=0

(k + r + s)!(
k +
[

s+1
2

])
!
[ s

2
]
!

(
r + 1

m − k − s

)
2F1

(
−
[ s

2

]
,−
[

s + 1
2

]
− k;−k − s − r; 1

)
Wk(x) (40)

Before moving on to the next section, we would like to say a few words on the previous works
that are associated with the results in the present paper. In terms of Bernoulli polynomials, quite
a few sums of finite products of some special polynomials are expressed. They include Chebyshev
polynomials of all four kinds, and Bernoulli, Euler, Genocchi, Legendre, Laguerre, Fibonacci, and
Lucas polynomials (see [10–16]). All of these expressions in terms of Bernoulli polynomials have been
derived from the Fourier series expansions of the functions closely related to each such polynomials.
Further, as for Chebyshev polynomials of all four kinds and Legendre, Laguerre, Fibonacci, and Lucas
polynomials, certain sums of finite products of such polynomials are also expressed in terms of all
four kinds of Chebyshev polynomials in [5,6,17,18]. Finally, the reader may want to look at [19–21] for
some applications of Chebyshev polynomials.

2. Proof of Theorem 1

In this section, we will prove Theorem 1. In order to do this, we first state Propositions 1 and 2 that
are needed in proving Theorems 1–3. Here, we note that the facts (a), (b), (c), and (d) in Proposition 1
are stated respectively in the Equations (24) of [22], (36) of [22], (23) of [23], and (38) of [23]. All of them
follow easily from the orthogonality relations in (17) and (20)–(22), Rodrigues’ formulas in (13)–(16),
and integration by parts.

Proposition 1. For any polynomial q(x) ∈ R[x] of degree n, we have the following formulas.

(a) q(x) = ∑n
k=0 Ck,1Tk(x), where:

Ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1 − x2)k− 1
2 dx,

(b) q(x) = ∑n
k=0 Ck,2Uk(x), where:

Ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
q(x)

dk

dxk (1 − x2)k+ 1
2 dx,

(c) q(x) = ∑n
k=0 Ck,3Vk(x), where:

Ck,3 =
(−1)kk!2k

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1 − x)k− 1
2 (1 + x)k+ 1

2 dx,

(d) q(x) = ∑n
k=0 Ck,4Wk(x), where,

Ck,4 =
(−1)kk!2k

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1 − x)k+ 1
2 (1 + x)k+ 1

2 dx,

The next proposition is stated and proven in [17].

Proposition 2. For any nonnegative integers m, k, we have the following formulas:
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(a)

∫ 1

−1
(1 − x2)k− 1

2 xmdx =

{
0, if m ≡ 1 (mod 2),

m!(2k)!π
2m+2k(m

2 +k)!(m
2 )!k!

, if m ≡ 0 (mod 2).

(b)

∫ 1

−1
(1 − x2)k+ 1

2 xmdx =

{
0, if m ≡ 1 (mod 2),

m!(2k+2)!π
2m+2k+2(m

2 +k+1)!(m
2 )!(k+1)!

, if m ≡ 0 (mod 2).

(c)

∫ 1

−1
(1 − x)k− 1

2 (1 + x)k+ 1
2 xmdx =

⎧⎨⎩
(m+1)!(2k)!π

2m+2k+1(m+1
2 +k)!(m+1

2 )!k!
, if m ≡ 1 (mod 2),

m!(2k)!π
2m+2k(m

2 +k)!(m
2 )!k!

, if m ≡ 0 (mod 2).

(d)

∫ 1

−1
(1 − x)k+ 1

2 (1 + x)k− 1
2 xmdx =

⎧⎨⎩ − (m+1)!(2k)!π
2m+2k+1(m+1

2 +k)!(m+1
2 )!k!

, if m ≡ 1 (mod 2),
m!(2k)!π

2m+2k(m
2 +k)!(m

2 )!k!
, if m ≡ 0 (mod 2).

The following lemma was shown in [24] and can be derived by differentiating [23].

Lemma 1. For any nonnegative integers n, r, the following identity holds:

∑
i1+···+ir+1=n

Ui1(x) · · ·Uir+1(x) =
1

2rr!
U(r)

n+k(x), (41)

where the sum is over all nonnegative integers i1, · · · , ir+1, with i1 + · · ·+ ir+1 = n.

Further, Equation (41) is equivalent to:(
1

1 − 2xt + t2

)r+1
=

1
2rr!

∞

∑
n=0

U(r)
n+r(x)tn. (42)

In reference [24], the following lemma is stated for m ≥ r + 1. However, it holds for any
nonnegative integer m, under the usual convention (r+1

j ) = 0, for j > r + 1. Therefore, we are going to
give a proof for the next lemma.

Lemma 2. Let m, r be any nonnegative integers. Then, the following identity holds.

∑
i1+···+ir+1=m

Ti1(x) · · · Tir+1(x)

=
1

2rr!

m

∑
j=0

(−1)j
(

r + 1
j

)
xjU(r)

m−j+r(x),
(43)

where (r+1
j ) = 0, for j > r + 1.
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Proof. By making use of (42), we have:

∞

∑
m=0

(
∑

i1+···+ir+1=m
Ti1(x) · · · Tir+1(x)

)
tm

=

(
1

1 − 2xt + t2

)r+1
(1 − xt)r+1

=
1

2rr!

∞

∑
n=0

U(r)
n+r(x)tn

r+1

∑
j=0

(
r + 1

j

)
(−x)jtj

=
1

2rr!

∞

∑
m=0

(
min{m,r+1}

∑
j=0

(−1)j
(

r + 1
j

)
xjU(r)

m−j+r(x)

)
tm

=
1

2rr!

∞

∑
m=0

(
m

∑
j=0

(−1)j
(

r + 1
j

)
xjU(r)

m−j+r(x)

)
tm.

(44)

Now, by comparing both sides of (44), we have the desired result.

From (10), we see that the rth derivative of Un(x) is given by:

U(r)
n (x) =

[ n−r
2 ]

∑
l=0

(−1)l
(

n − l
l

)
(n − 2l)r2n−2l xn−2l−r. (45)

Especially, we have:

xjU(r)
m−j+r(x) =

[
m−j

2

]
∑
l=0

(−1)l
(

m − j + r − l
l

)
(m − j + r − 2l)r2m−j+r−2l xm−2l . (46)

In this section, we will show (29) and (31) of Theorem 1 and leave similar proofs for (30) and (32)
as exercises to the reader. As in (23), let us put:

αm,r(x) = ∑
i1+···+ir+1=m

Ti1(x) · · · Tir+1(x),

and set:

αm,r(x) =
m

∑
k=0

Ck,1Tk(x). (47)

Then, we can now proceed as follows by using (a) of Proposition 1, (43) and (46), and integration
by parts k times.

90



Symmetry 2018, 10, 742

Ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
αm,r(x)

dk

dxk (1 − x2)k− 1
2 dx

=
(−1)k2kk!εk
(2k)!π2rr!

m

∑
j=0

(−1)j
(

r + 1
j

) ∫ 1

−1
xjU(r)

m−j+r(x)
dk

dxk (1 − x2)k− 1
2 dx

=
(−1)k2kk!εk
(2k)!π2rr!

m

∑
j=0

(−1)j
(

r + 1
j

) [m−j
2

]
∑
l=0

(−1)l
(

m − j + r − l
l

)

× (m − j + r − 2l)r2m−j+r−2l
∫ 1

−1
xm−2l dk

dxk (1 − x2)k− 1
2 dx.

=
2kk!εk

(2k)!π2rr!

m

∑
j=0

(−1)j
(

r + 1
j

) [m−j
2

]
∑
l=0

(−1)l
(

m − j + r − l
l

)

× (m − j + r − 2l)r2m−j+r−2l(m − 2l)k

∫ 1

−1
xm−k−2l(1 − x2)k− 1

2 dx

=
2kk!εk

(2k)!π2rr!

[ m−k
2 ]

∑
l=0

m−2l

∑
j=0

(−1)j
(

r + 1
j

)
(−1)l

(
m − j + r − l

l

)

× (m − j + r − 2l)r2m−j+r−2l(m − 2l)k

∫ 1

−1
xm−k−2l(1 − x2)k− 1

2 dx.

(48)

Now, from (a) of Proposition 2 and after some simplifications, we see that:

αm,r(x) =
1
r! ∑

0≤k≤m, k≡m(mod2)

[ m−k
2 ]

∑
l=0

m−2l

∑
j=0

εk(−1)j
(

r + 1
j

)
2−j

× (−1)l(m − j + r − l)!(m − 2l)!

l!(m − j − 2l)!
(

m+k
2 − l

)
!
(

m−k
2 − l

)
!
Tk(x)

=
1
r!

[ m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m − 2l)!
l!(m − s − l)!(s − l)!

×
m−2l

∑
j=0

2−j(−1)j(m + r − l − j)!(r + 1)j

j!(m − 2l − j)!
Tm−2s(x)

=
1
r!

[ m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m + r − l)!
l!(m − s − l)!(s − l)!

×
m−2l

∑
j=0

2−j(−1)j(m − 2l)j(r + 1)j

j!(m + r − l)j
Tm−2s(x)

(49)

=
1
r!

[ m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m + r − l)!
l!(m − s − l)!(s − l)!

×
m−2l

∑
j=0

2−j < 2l − m >j< −r − 1 >j

j! < l − m − r >j
Tm−2s(x)

=
1
r!

[ m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m + r − l)!
l!(m − s − l)!(s − l)!

×2 F1

(
2l − m,−r − 1; l − m − r;

1
2

)
Tm−2s(x),

where we note that we made the change of variables m − k = 2s.
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This completes the proof for (29). Next, we let:

αm,r(x) =
m

∑
k=0

Ck,3Vk(x). (50)

Then, we can obtain the following by making use of (c) of Proposition 1, (43) and (46), and
integration by parts k times.

Ck,3 =
k!2k

(2k)!π2rr!

[ m−k
2 ]

∑
l=0

m−2l

∑
j=0

(−1)j
(

r + 1
j

)
(−1)l

(
m − j + r − l

l

)
(m − j + r − 2l)r2m−j+r−2l

× (m − 2l)k

∫ 1

−1
xm−2l−k(1 − x)k− 1

2 (1 + x)k+ 1
2 dx.

(51)

where we note from (c) of Proposition 2 that:

∫ 1

−1
xm−2l−k(1 − x)k− 1

2 (1 + x)k+ 1
2 dx

=

⎧⎨⎩
(m−2l−k+1)!(2k)!π

2m+k−2l+1(m+k+1
2 −l)!(m−k+1

2 −l)!k!
, if k �≡ m (mod 2),

(m−2l−k)!(2k)!π
2m+k−2l(m+k

2 −l)!(m−k
2 −l)!k!

, if k ≡ m (mod 2).

(52)

From (50)–(52), and after some simplifications, we get:

αm,r(x) = ∑1 + ∑2, (53)

where:

∑1 =
1
r! ∑

0≤k≤m, k �≡m(mod2)

[ m−k
2 ]

∑
l=0

m−2l

∑
j=0

(−1)j
(

r + 1
j

)
2−j−1

× (−1)l(m − j + r − l)!(m − 2l)!(m − 2l − k + 1)

l!(m − j − 2l)!
(

m+k+1
2 − l

)
!
(

m−k+1
2 − l

)
!

Vk(x),

∑2 =
1
r! ∑

0≤k≤m, k≡m(mod2)

[ m−k
2 ]

∑
l=0

m−2l

∑
j=0

(−1)j
(

r + 1
j

)
2−j

× (−1)l(m − j + r − l)!(m − 2l)!

l!(m − j − 2l)!
(

m+k
2 − l

)
!
(

m−k
2 − l

)
!
Vk(x).

(54)

Proceeding analogously to the case of (29), we observe from (54) that:

∑1 =
1
r!

[ m−1
2 ]

∑
s=0

s

∑
l=0

(−1)l(m + r − l)!
l!(m − s − l)!(s − l)!

×
m−2l

∑
j=0

2−j(−1)j(r + 1)j(m − 2l)j

j!(m + r − l)j
Vm−2s−1(x)

=
1
r!

[ m−1
2 ]

∑
s=0

s

∑
l=0

(−1)l(m + r − l)!
l!(m − s − l)!(s − l)!

×2 F1

(
2l − m,−r − 1; l − m − r;

1
2

)
Vm−2s−1(x),

(55)
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∑2 =
1
r!

[ m
2 ]

∑
s=0

s

∑
l=0

(−1)l(m + r − l)!
l!(m − s − l)!(s − l)!

×
m−2l

∑
j=0

2−j(−1)j(r + 1)j(m − 2l)j

j!(m + r − l)j
Vm−2s(x)

=
1
r!

[ m
2 ]

∑
s=0

s

∑
l=0

(−1)l(m + r − l)!
l!(m − s − l)!(s − l)!

×2 F1

(
2l − m,−r − 1; l − m − r;

1
2

)
Vm−2s(x).

(56)

We now obtain the result in (31) from (53), (55) and (56).

3. Proofs of Theorems 2 and 3

In this section, we will show (34) and (36) for Theorem 2, leaving (33) and (35) as exercises to the
reader, and note that Theorem 3 follows from (33)–(36) by simple observation. The next lemma can be
shown analogously to Lemma 1.

Lemma 3. For any nonnegative integers m, r, the following identities are valid.

∑
i1+···+ir+1=m

Vi1(x) · · ·Vir+1(x)

=
1

2rr!

m

∑
j=0

(−1)j
(

r + 1
j

)
U(r)

m−j+r(x),
(57)

∑
i1+···+ir+1=m

Wi1(x) · · ·Wir+1(x)

=
1

2rr!

m

∑
j=0

(
r + 1

j

)
U(r)

m−j+r(x),
(58)

where (r+1
j ) = 0, for j > r + 1.

As in (24), let us set:

βm,r(x) = ∑
i1+···+ir+1=m

Vi1(x) · · ·Vir+1(x),

and put:

βm,r(x) =
m

∑
k=0

Ck,2Uk(x). (59)

First, we note:

U(r+k)
m−j+r(x) =

[
m−j−k

2

]
∑
l=0

(−1)l
(

m − j + r − l
l

)
(m − j + r − 2l)r+k2m−j+r−2l xm−j−k−2l . (60)

Then, we have the following by exploiting (b) of Proposition 1, (57) and (60), and integration by
parts k times.
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Ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
βm,r(x)

dk

dxk (1 − x2)k+ 1
2 dx

=
(−1)k2k+1(k + 1)!
(2k + 1)!π2rr!

m

∑
j=0

(−1)j
(

r + 1
j

) ∫ 1

−1
U(r)

m−j+r(x)
dk

dxk (1 − x2)k+ 1
2 dx

=
2k+1(k + 1)!
(2k + 1)!π2rr!

m−k

∑
j=0

(−1)j
(

r + 1
j

) ∫ 1

−1
U(r+k)

m−j+r(x)(1 − x2)k+ 1
2 dx

=
2k+1−r(k + 1)!
(2k + 1)!πr!

m−k

∑
j=0

(−1)j
(

r + 1
j

) [m−j−k
2

]
∑
l=0

(−1)l
(

m − j + r − l
l

)

× (m − j + r − 2l)r+k2m−j+r−2l
∫ 1

−1
xm−j−k−2l(1 − x2)k+ 1

2 dx

(61)

where we note from (b) of Proposition 2 that:

∫ 1

−1
xm−j−k−2l(1 − x2)k+ 1

2 dx

=

⎧⎨⎩ 0, if j �≡ m − k (mod 2),
(m−j−k−2l)!(2k+2)!π

2m−j+k−2l+2
(

m−j+k
2 +1−l

)
!
(

m−j−k
2 −l

)
!(k+1)!

, if j ≡ m − k (mod 2).

(62)

From (59), (61) and (62), and after some simplifications, we obtain:

βm,r(x) =
1
r!

m

∑
k=0

∑
0≤j≤m−k,j≡m−k(mod2)

[
m−k−j

2

]
∑
l=0

(−1)j
(

r + 1
j

)
(k + 1)

× (−1)l(m − j + r − l)!

l!
(

m−j+k
2 + 1 − l

)
!
(

m−j−k
2 − l

)
!
Uk(x)

=
1
r!

m

∑
k=0

[ m−k
2 ]

∑
s=0

(−1)m−k(k + 1)(k + 2s + r)!
(s + k + 1)!s!

(
r + 1

m − k − 2s

)
×

s

∑
l=0

(−1)l(s + k + 1)l(s)l
l!(k + 2s + r)l

Uk(x)

=
1
r!

m

∑
k=0

[ m−k
2 ]

∑
s=0

(−1)m−k(k + 1)(k + 2s + r)!
(s + k + 1)!s!

(
r + 1

m − k − 2s

)
×

s

∑
l=0

< −s >l< −s − k − 1 >l
l! < −k − 2s − r >l

Uk(x)

(63)

=
1
r!

m

∑
k=0

[ m−k
2 ]

∑
s=0

(−1)m−k(k + 1)(k + 2s + r)!
(s + k + 1)!s!

(
r + 1

m − k − 2s

)
×2 F1 (−s,−s − k − 1;−k − 2s − r; 1)Uk(x).

This completes the proof for (34). Next, we let:

βm,r(x) =
m

∑
k=0

Ck,4Wk(x). (64)

Then, from (d) of Proposition 1, (57) and (60), and integration by parts k times, we have:
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Ck,4 =
k!2k−r

(2k)!πr!

m−k

∑
j=0

(−1)j
(

r + 1
j

) [m−j−k
2

]
∑
l=0

(−1)l
(

m − j + r − l
l

)

× (m − j + r − 2l)r+k2m−j+r−2l
∫ 1

−1
xm−j−k−2l(1 − x)k+ 1

2 (1 − x)k− 1
2 dx

(65)

From (d) of Proposition 2, we observe that:

∫ 1

−1
xm−j−k−2l(1 − x)k+ 1

2 (1 − x)k− 1
2 dx

=

⎧⎪⎨⎪⎩
− (m−j−k−2l+1)!(2k)!π

2m−j+k−2l+1
(

m−j+k+1
2 −l

)
!
(

m−j−k+1
2 −l

)
!k!

, if j �≡ m − k (mod 2),

(m−j−k−2l)!(2k)!π

2m−j+k−2l
(

m−j+k
2 −l

)
!
(

m−j−k
2 −l

)
!k!

, if j ≡ m − k (mod 2).

(66)

By (64)–(66), and after some simplifications, we get:

βm,r(x) = − 1
2r!

m

∑
k=0

∑
0≤j≤m−k,j �≡m−k(mod2)

(−1)j
(

r + 1
j

) [m−j−k
2

]
∑
l=0

× (−1)l(m − j + r − l)!(m − j − k − 2l + 1)

l!
(

m−j+k+1
2 − l

)
!
(

m−j−k+1
2 − l

)
!

Wk(x)

+
1
r!

m

∑
k=0

∑
0≤j≤m−k,j≡m−k(mod2)

(−1)j
(

r + 1
j

) [m−j−k
2

]
∑
l=0

× (−1)l(m − j + r − l)!

l!
(

m−j+k
2 − l

)
!
(

m−j−k
2 − l

)
!
Wk(x)

=
1
r!

m

∑
k=0

[ m−k−1
2 ]

∑
s=0

(−1)m−k
(

r + 1
m − k − 2s − 1

)
(k + 2s + r + 1)!
(s + k + 1)!s!

×
s

∑
l=0

(−1)l(s + k + 1)l(s)l
l!(k + 2s + r + 1)l

Wk(x)

+
1
r!

m

∑
k=0

[ m−k
2 ]

∑
s=0

(−1)m−k
(

r + 1
m − k − 2s

)
(k + 2s + r)!
(s + k)!s!

×
s

∑
l=0

(−1)l(s + k)l(s)l
l!(k + 2s + r)l

Wk(x).

(67)

Further modification of (67) gives us:
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βm,r(x) =
1
r!

m

∑
k=0

[ m−k−1
2 ]

∑
s=0

(−1)m−k (k + 2s + r + 1)!
(s + k + 1)!s!

(
r + 1

m − k − 2s − 1

)
×2 F1(−s,−s − k − 1;−k − 2s − r − 1; 1)Wk(x)

+
1
r!

m

∑
k=0

[ m−k
2 ]

∑
l=0

(−1)m−k (k + 2s + r)!
(s + k)!s!

(
r + 1

m − k − 2s

)
×2 F1(−s,−s − k;−k − 2s − r; 1)Wk(x)

=
1
r!

m

∑
k=0

m−k

∑
s=0

(−1)m−k(k + r + s)!(
k +
[

s+1
2

])
!
[ s

2
]
!

(
r + 1

m − k − s

)

×2 F1

(
−
[ s

2

]
,−
[

s + 1
2

]
− k;−k − s − r; 1

)
Wk(x).

(68)

This finishes up the proof for (36).

Remark 1. We note from (57) and (58) that the only difference between βm,r(x) and γm,r(x) (see (24) and (25))
is the alternating sign (−1)j in their sums, which corresponds to (−1)m−k in (33)–(36). This remark gives the
results in (37)–(40) of Theorem 3.

4. Conclusions

Our paper can be viewed as a generalization of the linearization problem, which is concerned
with determining the coefficients in the expansion an(x)bm(x) = ∑n+m

k=0 ck(nm)pk(x) of the product
an(x)bm(x) of two polynomials an(x) and bm(x) in terms of an arbitrary polynomial sequence
{pk(x)}k≥0. Our pursuit of this line of research can also be justified from another fact; namely,
the famous Faber–Pandharipande–Zagier and Miki identities follow by expressing the sum
∑m−1

k=1
1

k(m−k) Bk (x) Bm−k (x) as a linear combination of Bernoulli polynomials. For some details on this,
we let the reader refer to the Introduction of [15]. Here, we considered sums of finite products of the
Chebyshev polynomials of the first, third, and fourth kinds and represented each of those sums of finite
products as linear combinations of Tn(x), Un(x), Vn(x), and Wn(x), which involve some terminating
hypergeometric function 2F1. Here, we remark that αm,r(x), βm,r(x), and γm,r(x) are expressed in terms
of U(r)

m−j+r(x), (j = 0, 1, · · · , m) (see Lemmas 2 and 3) by making use of the generating function in
(6). This is unlike the previous works for (26)–(28) (see [5,6]), where we showed they are respectively
equal to 1

2r−1r! T(r)
m+r(x), 1

2rr! V
(r)
m+r(x), and 1

2rr! W
(r)
m+r(x) by exploiting the generating functions in (5), (7)

and (8). Then, our results for αm,r(x), βm,r(x), and γm,r(x) were found by making use of Lemmas 1
and 2, the general formulas in Propositions 1 and 2, and integration by parts. It is certainly possible to
represent such sums of finite products by other orthogonal polynomials, which is one of our ongoing
projects. More generally, along the same line as the present paper, we are planning to consider some
sums of finite products of many special polynomials and want to find their applications.
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Abstract: In this paper, we consider Changhee polynomials of type two, which are motivated from
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polynomials of type two which are derived from the properties of symmetry for the fermionic p-adic
integral on Zp.
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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will denote the ring of
p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of Qp.

The p-adic norm | · |p is normalized as | p |p = 1
p .

Let f (x) be a continulus funciton on Zp. Then the fermionic p-adic integral on Zp is defined by
Kim in [1] as ∫

Zp
f (x)dμ−1(x) = lim

N→∞

pN−1

∑
x=0

f (x)μ−1(x) = lim
x→∞

pN−1

∑
x=0

f (x)(−1)x. (1)

For n ∈ N, by (1), we get∫
Zp

f (x + n)dμ−1(x) + (−1)n−1
∫
Zp

f (x)dμ−1(x)

= 2
n−1

∑
�=0

f (�)(−1)n−1−�
(2)

as shown in [2–5]. In particular, if we take n = 1, then we have∫
Zp

f (x + 1)dμ−1(x) +
∫
Zp

f (x)dμ−1(x) = 2 f (0), (3)

which is noted in [6,7].
In the previous paper [8], D. Kim and T. Kim introduced the Changhee polynomials C̃hn(x) of

type two by the generating function

∞

∑
n=0

C̃hn(x)
tn

n!
=

2
(1 + t) + (1 + t)−1 (1 + t)x. (4)

Symmetry 2018, 10, 740; doi:10.3390/sym10120740 www.mdpi.com/journal/symmetry98
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By exploiting the method of fermionic p-adic integral on Zp, the Changhee polynomials of type

two can be represented by the fermionic p-adic integrals of Zp: for t ∈ Cp with |t|p < p−
1

p−1 ,

∫
Zp
(1 + t)2y+1+2xdμ−1(y) =

2
(1 + t)2 + 1

(1 + t)2x+1

=
∞

∑
n=0

C̃hn(x)
tn

n!

(5)

When x = 0, C̃hn = C̃hn(0) are called the Changhee numbers of type two.
In this paper, we will introduce further generalization of Changhee polynomials of type two,

by using again fermionic p-adic integration on Zp.
We investigate some symmetry identities for the w-Changhee polynomials of type two which

are derived from the properties of symmetry for the fermionic p-adic integral on Zp. Many authors
investigated symmetric properties of special polynomials and numbers. See [9–12] and their references.

We introduce w-Changhee polynomials of type two in Section 3.

2. Changhee Polynomials and Numbers of Type Two

In this section, we use the techniques presented in the articles of C. Cesarano, C. Fornaro [13] and
C. Cesarno [14], in particular the similarity of Chebyshev polynomials.

By using the generating functions of Changhee numbers and polynomials of type two, we have
the following result.

Proposition 1. For n ∈ N and 1 ≤ k ≤ n, we have

C̃hn(x) =
n

∑
m=0

(
n
m

)
(2x)mC̃hn−m, (6)

where (x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1), (x)0 = 1.

Proof of Proposition 1.

∞

∑
n=0

C̃hn(x)
tn

n!
=

2
(1 + t) + (1 + t)−1 (1 + t)2x

=
∞

∑
m=0

C̃hm
tm

m!

∞

∑
�=0

(2x)�
tn

�!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
C̃hm(2x)n−m

)
tn

n!

The Stirling number S1(�, n) of the first kind is defined in [2–5,15] by the generating function

(
log(1 + t)

)n
= n!

∞

∑
�=n

S1(�, n),

and the Stirling number S2(m, n) of the second kind is given in [4] by the generating function

(et − 1)n = n!
∞

∑
m=n

S2(m, n)
tm

m!
.
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As is well known, the Euler polynomials En(x) are defined in [16–18] by the generating function

2
et + 1

ext =
∞

∑
n=0

En(x)
tn

n!
. (7)

When x = 0, En = En(0), (n ≥ 0), are called the n-th Euler numbers, whereas the Euler numbers
E∗

n of the second kind are given by the generating function

sech(t) =
2

et + e−t =
∞

∑
n=0

E∗
n

tn

n!
(8)

as noted in [16,19].
Before we proceed, we study some relevant relations between the Changhee numbers of type two

and the Euler numbers of the second kind.

Proposition 2. For n ∈ N and 0 ≤ k ≤ n, we have

C̃hn =
n

∑
k=0

E∗
k S1(n, k). (9)

Proof of Proposition 2. From the generating functions of Changhee numbers of type two shown in
(8), we have

∞

∑
n=0

C̃hn
tn

n!
=

2
(1 + t) + (1 + t)−1 =

2
elog(1+t) + e− log(1+t)

= sech(log(1 + t))

=
∞

∑
n=0

E∗
n
(log(1 + t))n

n!
=

∞

∑
n=0

(
n

∑
k=0

E∗
k S1(n, k)

)
tn

n!
.

(10)

Thus we have the result.

The result above helps us to derive some values of Changhee numbers of type two C̃hn’s as follows:
from E∗

0 = 1, E∗
1 = 0, E∗

2 = −1, E∗
3 = 0, E∗

4 = 5, E∗
5 = 0 and S1(n, n) = 0 for n ≥ 0, S1(n, 0) = 0 for

n ≥ 1, S1(2, 1) = 1, S1(3, 1) = 2, S1(4, 1) = 6, S1(5, 1) = 24, S1(3, 2) = 3, S1(4, 2) = 11, S1(5, 2) = 50,
S1(4, 3) = 6, S1(5, 3) = 35, S1(5, 4) = 10,

C̃h0 = E∗
0 S1(0, 0) = 1,

C̃h1 = E∗
0 S1(1, 0) + E∗

1 S1(1, 1) = 0 + 0 = 0,

C̃h2 = E∗
0 S1(2, 0) + E∗

1 S1(2, 1) + E∗
2 S1(2, 2) = 0 + 0 − 1 = −1.

C̃h3 = E∗
0 S1(3, 0) + E∗

1 S1(3, 1) + E∗
2 S1(3, 2) + E∗

3 S1(3, 3)

= 0 + 0 − 3 + 0 = −3,

C̃h4 = E∗
0 S1(4, 0) + E∗

1 S1(4, 1) + E∗
2 S1(4, 2) + E∗

3 S1(4, 3) + E∗
4 S1(4, 4)

= 0 + 0 − 11 + 0 + 5 = −6,

C̃h5 = E∗
0 S1(5, 0) + E∗

1 S1(5, 1) + E∗
2 S1(5, 2) + E∗

3 S1(5, 3) + E∗
4 S1(5, 4)

+ E∗
5 S1(5, 5) = 0 + 0 − 50 + 0 + 50 + 0 = 0.

For the inversion formulas for Proposition 2, we have the following.
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Proposition 3. For n ∈ N and 0 ≤ k ≤ n, we have

E∗
n =

n

∑
k=0

C̃hkS2(n, k).

Proof of Proposition 3. From (6) and (8), we get the following, by replacing t by et − 1:

2
(1 + t)2 + 1

(1 + t) =
∞

∑
n=0

C̃hn
tn

n!

2
e2t + 1

et =
∞

∑
k=0

C̃hk
1
k!
(et − 1)k

=
∞

∑
n=0

(
n

∑
k=0

C̃hkS2(n, k)

)
tn

n!

=
2

et + e−t =
∞

∑
n=0

E∗
n

tn

n!
.

(11)

Now (11) gives us the desired result E∗
n = ∑n

k=0 C̃hkS2(n, k).

Also by using the fermionic p-adic integration on Zp, we can represent Changhee numbers of
type two as follows.

Proposition 4 (Witt’s formula for Changhee numbers of type two).

For n ∈ N, we have
C̃hn =

∫
Zp
(2x + 1)ndμ−1(x). (12)

Proof of Proposition 4. First, we observe

∫
Zp
(1 + t)2x+1dμ−1(x) =

∫
Zp

∞

∑
n=0

(2x + 1)n
tn

n!
dμ−1(x)

=
∞

∑
n=0

∫
Zp
(2x + 1)ndμ−1

tn

n!
,

(13)

On the other hand, by the definition of fermionic p-adic integration on Zp,

∫
Zp
(1 + t)2x+1dμ−1(x) =

2
(1 + t)2 + 1

(1 + t) =
∞

∑
n=0

C̃hn
tn

n!
. (14)

Thus, by comparing the coefficients of both sides of (13) and (14), we have the desired result.

3. Symmetry of w-Changhee Polynomials of Type Two

Motivated from D. Kim and T. Kim [20], for w ∈ N, we define w-Changhee polynomials of type
two by the following generating function

2
(1 + t)2w + 1

(1 + t)2wx+1 =
∞

∑
n=0

C̃hn,w(x)
tn

n!
. (15)

When x = 0, C̃hn,w = C̃hn,w(0) are called the w-Changhee numbers of type two. When w = 1,
C̃hn,1(x) = C̃hn(x) are just the Changhee polynomials of type two in (4). For the case of w = 1

2 ,
the 1

2 -Changhee polynomials of type two are related to the well-known Changhee polynomials of type
two, i.e., C̃hn, 1

2
(x) = C̃hn(x + 1).
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The generating function of w-Changhee polynomials of type two can be related with Changhee
polynomials of type two or Changhee numbers of type two as follows.

Proposition 5. For n, w, � ∈ N and 1 ≤ � ≤ n, we have

(1) C̃hn,w(x) =
n

∑
�=0

C̃h�(2wx), and

(2) C̃hn,w(x) =
n

∑
�=0

(
n
�

)
(2wx)�C̃hn−�.

Proof of Proposition 5. (1) is immediate from the definition. For (2), we have

∞

∑
n=0

C̃hn,w(x)
tn

n!
=

(
∞

∑
�=0

C̃h�
t�

�!

)
(1 + t)2wx

=

(
∞

∑
�=0

C̃h�
t�

�!

)(
∞

∑
m=0

(2wx)m
tm

m!

)

=
∞

∑
n=0

(
n

∑
�=0

(
n
�

)
(2wx)�C̃hn−�}

)
tn

n!
.

From (3), we can easily derive the following:

2
n

∑
�=0

(−1)�(1 + t)2� =
2{1 + (−1)n+1(1 + t)2(n+1)}

(1 + t)2 + 1
(16)

The left hand side of (16) can be written as

2
n

∑
�=0

(−1)�(1 + t)2� =
∞

∑
n=0

(
n−1

∑
�=0

(−1)�(2�)n

)
tn

n!
(17)

We use the notation of λ-falling factorial in [12,21] for λ ∈ R,

(� | λ)n =

{
�(�− λ) · · · (�− λ(n − 1)), (if n ≥ 1)

1, (if n = 0).

Then the right hand side of (17) can be written as

2
n−1

∑
�=0

(−1)�(1 + t)2� =
∞

∑
n=0

Tm(n; (� | 1
2 ))

tn

n! . (18)

where we denote, for λ ∈ R,

Tm(n; (� | λ)) =
n

∑
�=0

(−1)�(� | λ)m.

For n ∈ N, n ≡ 1 (mod 2), m ≥ 0 we have

∞

∑
m=0

2

(
n

∑
�=0

(−1)�(−2�)m

)
tm

m!
=

2(1 + (1 + t)2(n+1))

(1 + t)2 + 1
. (19)
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On the other hand, by (4) and (18), we have

∞

∑
m=0

(
C̃hm + C̃hm(n + 1)

) tm

m!
=

2(1 + t)
(1 + t)2 + 1

+
2(1 + t)2(n+1)(1 + t)

(1 + t)2 + 1

= 2
n

∑
�=0

(−1)�(1 + t)2�+1

= 2Tm(n; (�+ 1
2 | 1

2 )).

(20)

Now we consider a quotient of fermionic p-adic integrals on Zp,

2
∫
Zp
(1 + t)2w2x2 dμ−1(x2)∫

Zp
(1 + t)2w1w2x1 dμ−1(x1)

=
w1−1

∑
�=0

(−1)(1 + t)2w2�

=
∞

∑
m=0

w1−1

∑
�=0

(−1)�(2w2�)m

=
∞

∑
m=0

w1−1

∑
�=0

(2w2)
m(−1)�

(
� | 1

2w2

)
m

=
∞

∑
m=0

(2w2)
mTm(w1 − 1 |

(
� | 1

2w2

)
),

(21)

where Tm(n | (� | λ)) = ∑n
�=0(−1)�(� | λ)m for λ ∈ R.

For the symmetry of w-Changhee polynomials of type two, we consider the following quotient
form of fermionic p-adic integration on Zp.

T(w1, w2) =
2
∫
Zp

∫
Zp
(1 + t)2w1x1+2w2x2+2dμ−1(x1) dμ−1(x2)∫

Zp
(1 + t)2w1w2x1+1dμ−1(x1)

(1 + t)2w1w2x

=
∫
Zp
(1 + t)2w1x1+1dμ−1(x1)(1 + t)2w1w2x

×
∫
Zp
(1 + t)2w2x2 dμ−1(x2)∫

Zp
(1 + t)2w1w2x1 dμ−1(x1)

=
( ∞

∑
�=0

C̃h�,w1(w2x)
t�

�!

)( ∞

∑
k=0

(2w2)
kTk(w1 − 1 | (k | 1

2w2
))
)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
C̃hn−k,w1(w2x)(2wk)

kTk(w1 − 1 | (k | 1
2w2

))

)
tn

n!
.

(22)

Similarly we have the following identity for T(w1, w2) because T(w1, w2) is symmetric on w1

and w2.

T(w1, w2) =
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
C̃hn−k,w2(w1x)(2w1)

kTk(w2 − 1 | (k | 1
2w1

))

)
tn

n!
. (23)

Thus, by (22) and (23), we have the following theorem.

Theorem 1. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2) and n ≥ 0, we have

n

∑
k=0

(
n
k

)
C̃hn−k,w2(w1x)(2w1)

k Tk(w2 − 1 | (k | 1
2w1

))

=
n

∑
k=0

(
n
k

)
C̃hn−k,w1(w2x)(2w2)

k Tk(w1 − 1 | (k | 1
2w2

)).
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If we take w2 = 1 in Theorem 1, we have the following

Corollary 1. For w1 ∈ N with w1 ≡ 1 (mod 2) and n ≥ 0, we have

C̃hn(w1x) =
n

∑
k=0

(
n
k

)
C̃hn−k,w1(x)2kTk(w1 − 1 | (k | 1

2 )).

From (22), we rewrite T(w1, w2) as follows:

T(w1, w2) =
∫
Zp
(1 + t)2w1x1 dμ−1(x1)(1 + t)2w1w2x

× 2
∫
Zp (1+t)2w2x2 dμ−1(x2)∫

Zp (1+t)2w1w2x1 dμ−1(x1)

=
∫
Zp
(1 + t)2w1x1 dμ−1(x1)(1 + t)2w1w2x

×2 ∑w1−1
�=0 (1 + t)2w2�(−1)�

= 2 ∑w1−1
�=0 (−1)�

∫
Zp
(1 + t)2w1x1+2w1w2x+2w2�dμ−1(x1)

= 2 ∑w1−1
�=0 (−1)�

∫
Zp
(1 + t)2w1x1+2w1w2x+ w2

w1
�dμ−1(x1)

= 2 ∑w1−1
�=0 (−1)� ∑∞

k=0 C̃hk,w1

(
w2x + w2

w1
�
)

tk

k!

= ∑∞
n=0

(
2 ∑w1−1

�=0 (−1)�C̃hn,w1

(
w2
w1
�+ w2x

))
tn

n!

(24)

Similarly, by the symmetry of T(w1, w2), we have the following identity

T(w1, w2) =
∞

∑
n=0

(
2

w2−1

∑
�=0

(−1)�C̃hn,w2

(w1

w2
�+ w1x

)) tn

n!
. (25)

Now from (24) and (25), we have the following theorem.

Theorem 2. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2) and n ≥ 0, we have

w1−1

∑
�=0

(−1)�C̃hn,w1

(w2

w1
�+ w2x

)
=

w2−1

∑
�=0

(−1)�C̃hn,w2

(w1

w2
�+ w1x

)
.

When we take w2 = 1, we have

C̃hn(w1�+ w1x) =
w1−1

∑
�=0

(−1)�C̃hn,w1

( �

w1
+ x
)

.

4. Conclusions

The Changhee polynomials of type two are considered by D. Kim and T. Kim (see [8]) and various
properties on their polynomials and numbers are investigated.

In this paper, we investigate some symmetry identities for the Changhee polynomials of type
two which are derived from the properties of symmetry for the fermionic p-adic integrals on Zp.
The techniques presented in the articles by Cesarano and Fornaro [13,14], paticularly the Chebyshev
polynomials, are used.

Especially we introduce w-Changhee polynomials of type two and investigate interesting
symmetry identities.
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For the cases of w = 1, w = 1
2 and w = 1

4 , the symmetry of the w-Changhee polynomials of type
two are related to the works of Changhee polynomials of type two, those of well-known Changhee
polynomials (see [4,22]), and those of the Catalan polynomials (see [20]) respectively.

Recently, many works are done on some identities of special polynomials in the view point of
degenerate sense (see [15,20,21]). Our result could be developed in that direction also: i.e., on the
symmetry of the degenerate w-Changhee polynomials of type two.

Finally, we remark that our results on symmetry of two variables could be extended to the three
variables case.
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Abstract: We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials and
Hermite-Bernoulli numbers attached to a Dirichlet character χ and investigate certain symmetric
identities involving the polynomials, by mainly using the theory of p-adic integral on Zp. The results
presented here, being very general, are shown to reduce to yield symmetric identities for many
relatively simple polynomials and numbers and some corresponding known symmetric identities.
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1. Introduction and Preliminaries

For a fixed prime number p, throughout this paper, let Zp, Qp, and Cp be the ring of p-adic integers,
the field of p-adic rational numbers, and the completion of algebraic closure of Qp, respectively. In
addition, let C, Z, and N be the field of complex numbers, the ring of rational integers and the set
of positive integers, respectively, and let N0 := N ∪ {0}. Let UD(Zp) be the space of all uniformly
differentiable functions on Zp. The notation [z]q is defined by

[z]q :=
1 − qz

1 − q
(z ∈ C; q ∈ C \ {1}; qz �= 1) .

Let νp be the normalized exponential valuation on Cp with |p|p = pνp(p) = p−1. For f ∈ UD(Zp) and
q ∈ Cp with |1 − q|p < 1, q-Volkenborn integral on Zp is defined by Kim [1]

Iq( f ) =
∫
Zp

f (x) dμq(x) = lim
N→∞

1
[pN ]q

pN−1

∑
x=0

f (x) qx. (1)

For recent works including q-Volkenborn integration see References [1–10].
The ordinary p-adic invariant integral on Zp is given by [7,8]

I1( f ) = lim
q→1

Iq( f ) =
∫
Zp

f (x) dx. (2)
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It follows from Equation (2) that
I1( f1) = I1( f ) + f ′(0), (3)

where fn(x) := f (x + n) (n ∈ N) and f ′(0) is the usual derivative. From Equation (3), one has

∫
Zp

ext dx =
t

et − 1
=

∞

∑
n=0

Bn
tn

n!
, (4)

where Bn are the nth Bernoulli numbers (see References [11–14]; see also Reference [15] (Section 1.7)).
From Equation (2) and (3), one gets

n
∫
Zp

extdx∫
Zp

enxtdx
=

1
t

(∫
Zp

e(x+n)tdx −
∫
Zp

extdx
)

=
n−1

∑
j=0

ejt =
∞

∑
k=0

(
n−1

∑
j=0

jk

)
tk

k!
=

∞

∑
k=0

Sk(n − 1)
tk

k!
,

(5)

where
Sk(n) = 1k + · · ·+ nk (k ∈ N, n ∈ N0) . (6)

From Equation (4), the generalized Bernoulli polynomials B(α)
n (x) are defined by the following

p-adic integral (see Reference [15] (Section 1.7))

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

α times

e(x+y1+y2+···+yα)tdy1dy2 · · · dyα =

(
t

et − 1

)α

ext =
∞

∑
n=0

B(α)
n (x)

tn

n!
(7)

in which B(1)
n (x) := Bn(x) are classical Bernoulli numbers (see, e.g., [1–10]).

Let d, p ∈ N be fixed with (d, p) = 1. For N ∈ N, we set

X = Xd = lim←−
N

(
Z/dpNZ

)
;

a + dpNZp =
{

x ∈ X | x ≡ a
(
mod dpN)}(

a ∈ Z with 0 ≤ a < dpN
)

;

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
, X1 = Zp.

(8)

Let χ be a Dirichlet character with conductor d ∈ N. The generalized Bernoulli polynomials
attached to χ are defined by means of the generating function (see, e.g., [16])

∫
X

χ(y)e(x+y)tdy =

t
d−1
∑

j=0
χ(j) ejt

edt − 1
ext =

∞

∑
n=0

Bn,χ(x)
tn

n!
. (9)

Here Bn,χ := Bn,χ(0) are the generalized Bernoulli numbers attached to χ. From Equation (9), we have
(see, e.g., [16]) ∫

X
χ(x)xndx = Bn,χ and

∫
X

χ(y)(x + y)n dy = Bn,χ(x). (10)
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Define the p-adic functional Tk(χ, n) by (see, e.g., [16])

Tk(χ, n) =
n

∑
�=0

χ(�) �k (k ∈ N). (11)

Then one has (see, e.g., [16])

Bk,χ(nd)− Bk,χ = kTk−1(χ, nd − 1) (k, n, d ∈ N). (12)

Kim et al. [16] (Equation (2.14)) presented the following interesting identity

dn
∫

X χ(x) ext dx∫
X ednxt dx

=
nd−1

∑
�=0

χ(�) e�t =
∞

∑
k=0

Tk(χ, nd − 1)
tk

k!
(n ∈ N). (13)

Very recently, Khan [17] (Equation (2.1)) (see also Reference [11]) introduced and investigated
λ-Hermite-Bernoulli polynomials of the second kind H Bn(x, y|λ) defined by the following
generating function∫

Zp
(1 + λt)

x+u
λ (1 + λt2)

y
λ dμ0(u)

=
log(1 + λt)

1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (1 + λt2)

y
λ =

∞

∑
m=0

H Bm(x, y|λ) tm

m!

(14)

(
λ, t ∈ Cp with λ �= 0, |λt| < p−

1
p−1

)
.

Hermite-Bernoulli polynomials H B(α)
k (x, y) of order α are defined by the following

generating function(
t

et − 1

)α

ext+yt2
=

∞

∑
k=0

H B(α)
k (x, y)

tk

k!
(α, x, y ∈ C; |t| < 2π) (15)

where H B(1)
k (x, y) := H Bk(x, y) are Hermite-Bernoulli polynomials, cf. [18,19]. For more information

related to systematic works of some special functions and polynomials, see References [20–29].
We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials attached to a

Dirichlet character χ and investigate certain symmetric identities involving the polynomials (15)
and (31), by mainly using the theory of p-adic integral on Zp. The results presented here, being very
general, are shown to reduce to yield symmetric identities for many relatively simple polynomials and
numbers and some corresponding known symmetric identities.

2. Symmetry Identities of Hermite-Bernoulli Polynomials of Arbitrary Complex Number Order

Here, by mainly using Kim’s method in References [30,31], we establish certain symmetry
identities of Hermite-Bernoulli polynomials of arbitrary complex number order.

Theorem 1. Let α, x, y, z ∈ C, η1, η2 ∈ N, and n ∈ N0. Then,

n

∑
m=0

m

∑
�=0

(
n
m

)(
m
�

)
H B(α)

n−m(η2x, η2
2z) Sm−�(η1 − 1) B(α−1)

� (η1y) ηn−m−1
1 ηm

2

=
n

∑
m=0

m

∑
�=0

(
n
m

)(
m
�

)
H B(α)

n−m(η1x, η2
1z) Sm−�(η2 − 1) B(α−1)

� (η2y) ηn−m−1
2 ηm

1

(16)
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and
n

∑
m=0

η1−1

∑
j=0

(
n
m

)
ηm−1

1 ηn−m
2 B(α−1)

n−m (η1y) H B(α)
m

(
η2x +

η2

η1
j, η2

2z
)

=
n

∑
m=0

η1−1

∑
j=0

(
n
m

)
ηm−1

2 ηn−m
1 B(α−1)

n−m (η2y) H B(α)
m

(
η1x +

η1

η2
j, η2

1z
)

.

(17)

Proof. Let

F(α; η1, η2)(t) :=
eη1η2t − 1

η1η2t

(
η1t

eη1t − 1

)α

eη1η2xt+η2
1 η2

2 zt2
(

η2t
eη2t − 1

)α

eη1η2yt (18)

(α, x, y, z ∈ C; t ∈ C \ {0}; η1, η2 ∈ N; 1α := 1) .

Since limt→0 ηt/(eηt − 1) = 1 = limt→0 (eηt − 1)/(ηt) (η ∈ N), F(α; η1, η2)(t) may be assumed to be
analytic in |t| < 2π/(η1η2). Obviously F(α; η1, η2)(t) is symmetric with respect to the parameters η1

and η2.
Using Equation (4), we have

F(α; η1, η2)(t) :=
(

η1t
eη1t − 1

)α

eη1η2xt+η2
1 η2

2 zt2

∫
Zp

eη2t udu∫
Zp

eη1η2t udu

(
η2t

eη2t − 1

)α−1
eη1η2yt. (19)

Using Equations (5) and (15), we find

F(α; η1, η2)(t) =
∞

∑
n=0

H B(α)
n (η2x, η2

2z)
(η1t)n

n!
· 1

η1

∞

∑
m=0

Sm(η1 − 1)
(η2t)m

m!

·
∞

∑
�=0

B(α−1)
� (η1y)

(η2t)�

�!
.

(20)

Employing a formal manipulation of double series (see, e.g., [32] (Equation (1.1)))

∞

∑
n=0

∞

∑
k=0

Ak,n =
∞

∑
n=0

[n/p]

∑
k=0

Ak,n−pk (p ∈ N) (21)

with p = 1 in the last two series in Equation (20), and again, the resulting series and the first series in
Equation (20), we obtain

F(α; η1, η2)(t) =
∞

∑
n=0

n

∑
m=0

m

∑
�=0

H B(α)
n−m(η2x, η2

2z) Sm−�(η1 − 1) B(α−1)
� (η1y)

(n − m)! (m − �)! �!

×ηn−m−1
1 ηm

2 tn.

(22)

Noting the symmetry of F(α; η1, η2)(t) with respect to the parameters η1 and η2, we also get

F(α; η1, η2)(t) =
∞

∑
n=0

n

∑
m=0

m

∑
�=0

H B(α)
n−m(η1x, η2

1z) Sm−�(η2 − 1) B(α−1)
� (η2y)

(n − m)! (m − �)! �!

×ηn−m−1
2 ηm

1 tn.

(23)

Equating the coefficients of tn in the right sides of Equations (22) and (23), we obtain the first equality
of Equation (16).
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For (17), we write

F(α; η1, η2)(t) =
1
η1

(
η1t

eη1t − 1

)α

eη1η2xt+η2
1 η2

2 zt2 eη1η2t − 1
eη2t − 1

(
η2t

eη2t − 1

)α−1
eη1η2yt. (24)

Noting

eη1η2t − 1
eη2t − 1

=
η1−1

∑
j=0

eη2 jt =
η1−1

∑
j=0

eη1
η2
η1

jt,

we have

F(α; η1, η2)(t) =
1
η1

η1−1

∑
j=0

(
η1t

eη1t − 1

)α

eη1

(
η2x+ η2

η1
j
)

t+η2
1 η2

2 zt2
(

η2t
eη2t − 1

)α−1
eη1η2yt. (25)

Using Equation (15), we obtain

F(α; η1, η2)(t) =
1
η1

∞

∑
n=0

B(α−1)
n (η1y)

(η2t)n

n!

×
∞

∑
m=0

η1−1

∑
j=0

H B(α)
m

(
η2x +

η2

η1
j, η2

2z
)

(η1t)m

m!
.

(26)

Applying Equation (21) with p = 1 to the right side of Equation (26), we get

F(α; η1, η2)(t) =
∞

∑
n=0

n

∑
m=0

η1−1

∑
j=0

B(α−1)
n−m (η1y)

×H B(α)
m

(
η2x +

η2

η1
j, η2

2z
)

ηm−1
1 ηn−m

2
m!(n − m)!

tn.

(27)

In view of symmetry of F(α; η1, η2)(t) with respect to the parameters η1 and η2, we also obtain

F(α; η1, η2)(t) =
∞

∑
n=0

n

∑
m=0

η1−1

∑
j=0

B(α−1)
n−m (η2y)

×H B(α)
m

(
η1x +

η1

η2
j, η2

1z
)

ηm−1
2 ηn−m

1
m!(n − m)!

tn.

(28)

Equating the coefficients of tn in the right sides of Equation (27) and Equation (28), we have
Equation (17).

Corollary 1. By substituting α = 1 in Theorem 1, we have

n

∑
m=0

m

∑
�=0

(
n
m

)(
m
�

)
H Bn−m(η2x, η2

2z) Sm−�(η1 − 1) (η1y)� ηn−m−1
1 ηm

2

=
n

∑
m=0

m

∑
�=0

(
n
m

)(
m
�

)
Bn−m(η1x, η2

1z) Sm−�(η2 − 1) (η2y)� ηn−m−1
2 ηm

1
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and

n

∑
m=0

η1−1

∑
j=0

(
n
m

)
ηm−1

1 ηn−m
2 (η1y) n−m

H Bm

(
η2x +

η2

η1
j, η2

2z
)

=
n

∑
m=0

η1−1

∑
j=0

(
n
m

)
ηm−1

2 ηn−m
1 (η2y)n−m

H Bm

(
η1x +

η1

η2
j, η2

1z
)

.

(29)

Corollary 2. Taking α = 1 and z = 0 in Theorem 1, we have

n

∑
m=0

m

∑
�=0

(
n
m

)(
m
�

)
Bn−m(η2x) Sm−�(η1 − 1) (η1y)� ηn−m−1

1 ηm
2

=
n

∑
m=0

m

∑
�=0

(
n
m

)(
m
�

)
Bn−m(η1x) Sm−�(η2 − 1) (η2y)� ηn−m−1

2 ηm
1

and

n

∑
m=0

η1−1

∑
j=0

(
n
m

)
ηm−1

1 ηn−m
2 (η1y) n−mBm

(
η2x +

η2

η1
j
)

=
n

∑
m=0

η1−1

∑
j=0

(
n
m

)
ηm−1

2 ηn−m
1 (η2y)n−m Bm

(
η1x +

η1

η2
j
)

.

(30)

3. Symmetry Identities of Arbitrary Order Hermite-Bernoulli Polynomials Attached to a Dirichlet
Character χ

We begin by introducing generalized Hermite-Bernoulli polynomials attached to a Dirichlet
character χ of order α ∈ C defined by means of the following generating function:

( t
d−1
∑

j=0
χ(j) ejt

edt − 1

)α

ext+yt2
=

∞

∑
n=0

H B(α)
n,χ(x, y)

tn

n!
(31)

(α, x, y ∈ C) ,

where χ is a Dirichlet character with conductor d.
Here, B(α)

n,χ(x) := H B(α)
n,χ(x, 0), B(α)

n,χ := H B(α)
n,χ(0, 0), and Bn,χ := H B(1)

n,χ(0, 0) are called
the generalized Hermite-Bernoulli polynomials and numbers attached to χ of order α and
Hermite-Bernoulli numbers attached to χ, respectively.

Remark 1. Taking y = 0 in Equation (31) gives H B(α)
n,χ(x, 0) :=H B(α)

n,χ(x), cf. [33].

Remark 2. Equation (15) is obtained when χ := 1 in Equation (31).

Remark 3. The Hermite-Bernoulli polynomials H Bn(x, y) are obtained when χ := 1 and α = 1 in
Equation (31).

Remark 4. The generalized Bernoulli polynomials B(α)
n (x) is obtained when χ := 1 and y = 0 in Equation (31).

Remark 5. The classical Bernoulli polynomials attached to χ is obtained when α = 1 and y = 0 in
Equation (31).
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Theorem 2. Let α, x, y, z ∈ C, η1, η2 ∈ N, and n ∈ N0. Then,

n

∑
m=0

m

∑
�=0

(
n
m

)(
m
�

)
ηn−m−1

1 ηm
2 H B(α)

n−m,χ

(
η2x, η2

2z
)

B(α−1)
m−�,χ (η1y) T�(χ, dη1 − 1)

=
n

∑
m=0

m

∑
�=0

(
n
m

)(
m
�

)
ηn−m−1

2 ηm
1 H B(α)

n−m,χ

(
η1x, η2

1z
)

B(α−1)
m−�,χ (η2y) T�(χ, dη2 − 1)

(32)

and
n

∑
m=0

dη1−1

∑
�=0

χ(�)

(
n
m

)
ηn−m−1

1 ηm
2 H B(α)

n−m,χ

(
η2x +

�η2

η1
, η2

2z
)

B(α−1)
m,χ (η1y)

=
n

∑
m=0

dη2−1

∑
�=0

χ(�)

(
n
m

)
ηn−m−1

2 ηm
1 H B(α)

n−m,χ

(
η1x +

�η1

η2
, η2

1z
)

B(α−1)
m,χ (η2y) ,

(33)

where χ is a Dirichlet character with conductor d.

Proof. Let

G(α; η1, η2)(t) :=
d∫

X edη1η2utdu

(η1t
d−1
∑

j=0
χ(j) ejη1t

edη1t − 1

)α

eη1η2xt+η2
1 η2

2 zt2

×
(η2t

d−1
∑

j=0
χ(j) ejη2t

edη2t − 1

)α

eη1η2yt

(34)

(α, x, y, z ∈ C; t ∈ C \ {0}; η1, η2 ∈ N; 1α := 1) .

Obviously G(α; η1, η2)(t) is symmetric with respect to the parameters η1 and η2. As in the function
F(α; η1, η2)(t) in Equation (18), G(α; η1, η2)(t) can be considered to be analytic in a neighborhood of
t = 0. Using Equation (9), we have

G(α; η1, η2)(t) =
d
∫

X χ(u)eη2utdu∫
X edη1η2utdu

(η1t
d−1
∑

j=0
χ(j) ejη1t

edη1t − 1

)α

eη1η2xt+η2
1 η2

2 zt2

×
(η2t

d−1
∑

j=0
χ(j) ejη2t

edη2t − 1

)α−1

eη1η2yt.

(35)

Applying Equations (13) and (31) to Equation (35), we obtain

G(α; η1, η2)(t) :=
1
η1

∞

∑
n=0

H B(α)
n,χ

(
η2x, η2

2z
) (η1t)n

n!

∞

∑
m=0

B(α−1)
m,χ (η1y)

(η2t)m

m!

×
∞

∑
�=0

T�(χ, dη1 − 1)
(η2t)�

�!
.

(36)

Similarly as in the proof of Theorem 1, we find

G(α; η1, η2)(t) =
∞

∑
n=0

n

∑
m=0

m

∑
�=0

ηn−m−1
1 ηm

2
(n − m)!(m − �)!�!

×H B(α)
n−m,χ

(
η2x, η2

2z
)

B(α−1)
m−�,χ (η1y) T�(χ, dη1 − 1) tn.

(37)
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In view of the symmetry of G(α; η1, η2)(t) with respect to the parameters η1 and η2, we also get

G(α; η1, η2)(t) =
∞

∑
n=0

n

∑
m=0

m

∑
�=0

ηn−m−1
2 ηm

1
(n − m)!(m − �)!�!

×H B(α)
n−m,χ

(
η1x, η2

1z
)

B(α−1)
m−�,χ (η2y) T�(χ, dη2 − 1) tn.

(38)

Equating the coefficients of tn of the right sides of Equations (37) and (38), we obtain Equation (32).
From Equation (13), we have

d
∫

X χ(u)eη2utdu∫
X edη1η2utdu

=
1
η1

dη1−1

∑
�=0

χ(�) e�η2t. (39)

Using Equation (39) in Equation (35), we get

G(α; η1, η2)(t) =
1
η1

dη1−1

∑
�=0

χ(�)

(η1t
d−1
∑

j=0
χ(j) ejη1t

edη1t − 1

)α

e
(

η2x+ �η2
η1

)
η1t+η2

1 η2
2 zt2

×
(η2t

d−1
∑

j=0
χ(j) ejη2t

edη2t − 1

)α−1

eη1η2yt.

(40)

Using Equation (31), similarly as above, we obtain

G(α; η1, η2)(t) =
∞

∑
n=0

n

∑
m=0

dη1−1

∑
�=0

χ(�) H B(α)
n−m,χ

(
η2x +

�η2

η1
, η2

2z
)

×B(α−1)
m,χ (η1y)

ηn−m−1
1 ηm

2
(n − m)!m!

tn.

(41)

Since G(α; η1, η2)(t) is symmetric with respect to the parameters η1 and η2, we also have

G(α; η1, η2)(t) =
∞

∑
n=0

n

∑
m=0

dη2−1

∑
�=0

χ(�) H B(α)
n−m,χ

(
η1x +

�η1

η2
, η2

1z
)

×B(α−1)
m,χ (η2y)

ηn−m−1
2 ηm

1
(n − m)!m!

tn.

(42)

Equating the coefficients of tn of the right sides in Equation (41) and Equation (42), we get
Equation (33).

4. Conclusions

The results in Theorems 1 and 2, being very general, can reduce to yield many symmetry identities
associated with relatively simple polynomials and numbers using Remarks 1–5. Setting z = 0 and
α ∈ N in the results in Theorem 1 and Theorem 2 yields the corresponding known identities in
References [33,34], respectively.
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Abstract: The article is written with the objectives to introduce a multi-variable hybrid class, namely
the Hermite–Apostol-type Frobenius–Euler polynomials, and to characterize their properties via
different generating function techniques. Several explicit relations involving Hurwitz–Lerch Zeta
functions and some summation formulae related to these polynomials are derived. Further, we
establish certain symmetry identities involving generalized power sums and Hurwitz–Lerch Zeta
functions. An operational view for these polynomials is presented, and corresponding applications
are given. The illustrative special cases are also mentioned along with their generating equations.
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1. Introduction and Preliminaries

The multi-variable forms of the special polynomials of mathematical physics help in deriving
several useful identities and in introducing new families of special polynomials. We know that
the generalized Hermite polynomials are important to deal with quantum mechanical and optical
beam transport problems [1] (also see [2,3]). The generating equation for the three-variable Hermite
polynomials (3VHP) Hn(x, y, z) [4] is given by:

ext+yt2+zt3
=

∞

∑
n=0

Hn(x, y, z)
tn

n!
, (1)

which for z = 0 reduce to the two-variable Hermite–Kampé de Fériet polynomials (2VHKdFP)
Hn(x, y) [5] and for z = 0, x = 2x and y = −1 become the classical Hermite polynomials Hn(x) [6].

For u ∈ C, u �= 1, the generating equation for the Apostol-type Frobenius–Euler polynomials
(ATFEP) F(α)

n (x; u; λ), of order α ∈ C, is given by [7]:(
1 − u

λet − u

)α

ext =
∞

∑
n=0

F
(α)
n (x; u; λ)

tn

n!
, (2)

which for x = 0 gives the Apostol-type Frobenius–Euler numbers (ATFEN) F(α)
n (u; λ), of order α

such that: (
1 − u

λet − u

)α

=
∞

∑
n=0

F
(α)
n (u; λ)

tn

n!
. (3)
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Symmetry 2018, 10, 652

For u = −1, the ATFEP reduce to the Apostol–Euler polynomials E
(α)
n (x; λ) [8], which for

λ = 1, become the Euler polynomials E(α)
n (x) [9]. Furthermore, the ATFEP for λ = 1 becomes the

Frobenius–Euler polynomials F(α)
n (x; u) [10].

The generating equations for the special polynomials are important from different view points
and help in finding connection formulas, recursive relations and difference equations and in solving
enumeration problems in combinatorics and encoding their solutions.

We intended to introduce a new hybrid class, namely the class of three-variable
Hermite–Apostol-type Frobenius–Euler polynomials (3VHATFEP).

Upon replacing the powers xn by the polynomials Hn(x, y, z) for (n = 0, 1, 2, . . .) in Equation (2)
and upon the use of Equation (1), we have:

For u, λ ∈ C, u �= 1, the three-variable Hermite–Apostol-type Frobenius–Euler polynomials

HF (α)
n (x, y, z; u; λ), of order α ∈ C, are defined by the following generating function:(

1 − u
λet − u

)α

ext+yt2+zt3
=

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
, (4)

which for λ = 1 becomes the three-variable Hermite–Frobenius–Euler polynomials HF
(α)
n (x, y, z; u),

of order α, which again for α = 1, give the three-variable Hermite-Frobenius–Euler polynomials

HFn(x, y, z; u).
Again, the 3VHATFEP for u = −1 give the three-variable Hermite–Apostol–Euler polynomials

HE
(α)
n (x, y, z; λ) of order α, which for λ = 1 reduce to the three-variable Hermite–Euler polynomials

HE(α)
n (x, y, z).

The 3VHATFEP are also defined as the discrete Apostol-type Frobenius–Euler convolution of the
3VHP given by:

HF
(α)
n (x, y, z; u; λ) = n!

n

∑
k=0

[k/3]

∑
r=0

F
(α)
n−k(u; λ)zr Hk−3r(x, y)
(n − k)!r!(k − 3r)!

, (5)

where Hn(x, y) are the 2VHKdFP.
Next, we deduce certain special cases related to the 3VHATFEP family. Some of these cases are

known in the literature. These polynomials are given in Table 1 below.
In this article, the 3VHATFEP are introduced, and certain properties including the explicit relations,

summation formulae and symmetric identities for these polynomials are proven using different
generating function methods. Some applications for the aforementioned hybrid class of polynomials
are given.
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2. Relations

To derive some relations for the 3VHATFEP, the following results are proven:

Theorem 1. Let α, β ∈ Z, then we have the following relation for the 3VHATFEP of order α:

HF
(α±β)
n (x, y, z; u; λ) =

n

∑
k=0

(
n
k

)
F
(α)
k (u; λ)HF

(±β)
n−k (x, y, z; u; λ). (6)

Proof. We write the generating Function (4) in the following form:

∞

∑
n=0

HF
(α±β)
n (x, y, z; u; λ)

tn

n!
=

(
1 − u

λet − u

)(α±β)

ext+yt2+zt3
, (7)

for which, upon using Equations (3) and (4) and then after simplification, we get Equation (6).

Corollary 1. For α, β ∈ Z, the following relation for the 3VHAEP of order α holds true:

HE
(α±β)
n (x, y, z; λ) =

n

∑
k=0

(
n
k

)
E
(α)
k (λ)HE

(±β)
n−k (x, y, z; λ), (8)

E
(α)
k (λ) means Apostol–Euler numbers of order α.

Theorem 2. The following recurrence relation for the 3VHATFEP holds true:

HFn+1(x, y, z; u; λ) = x HFn(x, y, z; u; λ) + 2yn HFn−1(x, y, z; u; λ) + 3zn(n − 1)

HFn−2(x, y, z; u; λ)− λ
1−u

n
∑

k=0
(n

k)HFn−k(x, y, z; u; λ)HFk(1, 0, 0; u; λ). (9)

Proof. Taking α = 1 and then taking the derivative with respect to t in Equation (4), we find:

∞

∑
n=0

HFn+1(x, y, z; u; λ)
tn

n!
=

(
1 − u

λet − u

)
ext+yt2+zt3

(x + 2yt + 3zt2)− (1 − u)λet

(λet − u)2 ext+yt2+zt3
, (10)

from which, upon using Equation (4) (for α = 1) and after simplifying the resultant equation, it follows
that:

∞
∑

n=0
HFn+1(x, y, z; u; λ) tn

n! = x
∞
∑

n=0
HFn(x, y, z; u; λ) tn

n! + 2y
∞
∑

n=0
HFn(x, y, z; u; λ) tn+1

n! + 3z
∞
∑

n=0
HFn(x, y, z; u; λ) tn+2

n! − λ
1−u

∞
∑

n=0
HFn(x, y, z; u; λ) tn

n!

∞
∑

k=0
HFk(1, 0, 0; u; λ) tk

k! .
(11)

Replacing n → n − 1, n − 2 and n − k consecutively in the second, third and last term of the above
equation on the r.h.s., it follows that:

∞
∑

n=0
HFn+1(x, y, z; u; λ) tn

n! = x
∞
∑

n=0
HFn(x, y, z; u; λ) tn

n! + 2y
∞
∑

n=0
HFn−1(x, y, z; u; λ) tn

(n−1)! + 3z
∞
∑

n=0
HFn−2(x, y, z; u; λ) tn

(n−2)! − λ
1−u

∞
∑

n=0

∞
∑

k=0
HFn−k(x, y, z; u; λ)HFk(1, 0, 0; u; λ) tn

k!(n−k)! ,

which, upon comparing the coefficients of like powers of tn/n! on both sides, gives the recurrence
Relation (9).
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Corollary 2. The following recurrence relation for the 3VHAEP holds true:

HEn+1(x, y, z; λ) = x HEn(x, y, z; λ) + 2yn HEn−1(x, y, z; λ) + 3zn(n − 1)HEn−2(x, y, z; λ)

−λ

2

n

∑
k=0

(
n
k

)
HEn−k(x, y, z; λ)HEk(1, 0, 0; λ). (12)

Theorem 3. For γ > 0, the following relation for the 3VHATFEP of order α holds true:

(1 − u)γ
HF

(α−γ)
n (x, y, z; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
n−k(x, y, z; u; λ)

γ

∑
p=0

(
γ

p

)
λp pk(−u)γ−p. (13)

Proof. We write the generating Function (4) in the following form:

∞

∑
n=0

HF
(α−γ)
n (x, y, z; u; λ)

tn

n!
=

(
1 − u

λet − u

)α

ext+yt2+zt3
(λet − u)γ(1 − u)−γ, (14)

which, upon simplifying and again using Equation (4), gives:

∞

∑
n=0

HF
(α−γ)
n (x, y, z; u; λ)

tn

n!
= (1 − u)−γ

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!

∞

∑
k=0

γ

∑
p=0

(
γ

p

)
λp pk(−u)γ−p tk

k!
. (15)

Now, simplifying and then comparing the coefficients of the same powers of t in the resultant
equation yield Assertion (13).

Corollary 3. For γ > 0, the following relation for the 3VHAEP of order α holds true:

2γ
HE

(α−γ)
n (x, y, z; λ) =

n

∑
k=0

(
n
k

)
HE

(α)
n−k(x, y, z; λ)

γ

∑
p=0

(
γ

p

)
λp pk. (16)

Theorem 4. For u, α ∈ C, u �= 1, there is the following relationship between the 3VHATFEP of order α and
the generalized Hurwitz–Lerch Zeta function (GHLZF) Φμ(z, s, a):

HF
(α)
n (x, y, z; u; λ) =

(
u − 1

u

)α n

∑
l=0

(
n
l

)
Φα

(
λ

u
, l − n, x

)
Hl(0, y, z). (17)

Proof. We write the generating Function (4) in the following form:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
= (1 − u)α (λ et − u)−α ext+yt2+zt3

, (18)

which, upon simplification, becomes:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
= (1 − u)α (−u)−α

∞

∑
n=0

∞

∑
k=0

(α)k
k!

(λ

u

)k (k + x)ntn

n!
eyt2+zt3

. (19)

Using Equation (1) and the following formula for the GHLZF Φμ(z, s, a) [13]:

Φμ(z, s, a) =
∞

∑
n=0

(μ)n

n!
zn

(n + a)s , (20)

and after simplifying the resultant equation yield Relation (17).
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Corollary 4. There is the following relationship between the 3VHAEP of order α and generalized Hurwitz–Lerch
Zeta function Φμ(z, s, a):

HE
(α)
n (x, y, z; λ) = 2α

n

∑
l=0

(
n
l

)
Φα (−λ, l − n, x) Hl(0, y, z). (21)

Theorem 5. Let α and γ be nonnegative integers. There is the following relationship between the numbers
S(n, k, λ) and the 3VHATFEP of order α:

α!
n

∑
l=0

(
n
l

)
HF

(α)
n−l(x, y, z; u; λ)S

(
l, α,

λ

u

)
=

(
1 − u

u

)α

Hn(x, y, z), (22)

HF
(α−γ)
n (x, y, z; u; λ) = γ!

(
u

1 − u

)γ n

∑
l=0

(
n
l

)
HF

(α)
n−l(x, y, z; u; λ)S

(
l, γ,

λ

u

)
. (23)

Proof. The generating Equation (4) can be formulated as:

∞

∑
n=0

HF (α)
n (x, y, z; u; λ)

tn

n!
= (1 − u)α 1

(λ et − u)α
ext+yt2+zt3

, (24)

which, upon rearranging the terms using Equation (1) and the following expansion:

(λ et − 1)k

k!
=

∞

∑
n=0

S(n, k, λ)
tn

n!
. (25)

becomes:

α!
∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!

∞

∑
l=0

S
(

l, α,
λ

u

) tl

l!
=

(
1 − u

u

)α ∞

∑
n=0

Hn(x, y, z)
tn

n!
. (26)

which, upon rearranging the summation and then simplifying the resultant equation, yields
Relation (22).

Again, we consider the following arrangement of the generating Function (4):

∞

∑
n=0

HF
(α−γ)
n (x, y, z; u; λ)

tn

n!
=
( 1 − u

λet − u

)α
ext+yt2+zt3

( u
1 − u

)γ
γ!

( λ
u et − 1)γ

γ!
, (27)

which, upon the use of Equations (4) and (25), applying the Cauchy product rule and then canceling
the same powers of t in resultant the equation, yields Relation (23).

Corollary 5. There is the following relationship between the numbers S(n, k, λ) and the 3VHAEP of order α:

α!
n
∑

l=0
(n

l )HE
(α)
n−l(x, y, z; λ)S

(
l, α,−λ

)
= (−2)αHn(x, y, z).

HE
(α−γ)
n (x, y, z; λ) = γ!

(
−1
2

)γ n
∑

l=0
(n

l )HE
(α)
n−l(x, y, z; λ)S

(
l, γ,−λ

)
.

(28)

In the next section, we derive some summation formulae for the 3VHATFEP.

3. Summation Formulae

In order to prove the summation formulae for the 3VHATFEP HF
(α)
n (x, y, z; u; λ), we have the

following theorems:
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Theorem 6. The following implicit summation formula for the 3VHATFEP of order α holds true:

HF
(α)
n (x + w, y, z; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
k (x, y, z; u; λ)wn−k. (29)

Proof. Substituting x → x + w in (4), then making use of Equation (4) and with the series expansion
of ewt in the resultant equation, we have:

∞

∑
n=0

HF
(α)
n (x + w, y, z; u; λ)

tn

n!
=

∞

∑
n=0

∞

∑
k=0

HF
(α)
k (x, y, z; u; λ)wn tn+k

n!k!
, (30)

which, upon simplification, gives Assertion (29).

Corollary 6. For w = 1 in Equation (29), we have:

HF
(α)
n (x + 1, y, z; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
k (x, y, z; u; λ). (31)

Theorem 7. The following implicit summation formula for the 3VHATFEP of order α holds true:

HF
(α)
n (x + v, y + w, z + r; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
n−k(x, y, z; u; λ) Hk(v, w, r). (32)

Proof. Replacing x → x + v, y → y + w and z → z + r in the generating Function (4) and by the help
of Equations (1) and (4), we find:

∞

∑
n=0

HF
(α)
n (x + v, y + w, z + r; u; λ)

tn

n!
=

∞

∑
n=0

∞

∑
k=0

HF
(α)
n (x, y, z; λ; u)Hk(v, w, r)

tn+k

n!k!
, (33)

which, after simplification, gives Formula (32).

Corollary 7. For r = 0 in Equation (32), we have:

HF
(α)
n (x + v, y + w, z; u; λ) =

n

∑
k=0

(
n
k

)
HF

(α)
n−k(x, y, z; u; λ) Hk(v, w). (34)

Theorem 8. The following implicit summation formula for the 3VHATFEP of order α holds true:

HF
(α)
n+k(p, y, z; u; λ) =

n,k

∑
l,m=0

(
n
l

)(
k
m

)
(p − x)l+m

HF
(α)
n+k−l−m(x, y, z; u; λ). (35)

Proof. Reestablishing t by t + v and after using the following rule:

∞

∑
N=0

f (N)
(x + y)N

N!
=

∞

∑
l,m=0

f (l + m)
xl ym

l! m!
(36)

in Equation (4) and then simplifying the resultant equation, it follows that:

e−x(t+v)
∞

∑
n,k=0

HF
(α)
n+k(x, y, z; λ; u)

tn vk

n! k!
=

(
1 − u

λet+v − u

)α

ey(t+v)2+z(t+v)3
. (37)
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Replacing x by p in the above equation, equating the resultant equation to the above equation
and then expanding the exponential function give:

∞

∑
n,k=0

HF
(α)
n+k(p, y, z; u; λ)

tn vk

n! k!
=

∞

∑
N=0

(p − x)N (t + v)N

N!

∞

∑
n,k=0

HF
(α)
n+k(x, y, z; u; λ)

tn vk

n! k!
. (38)

Now, using Formula (36) in the above equation and then replacing n → n − l and k → k − m in
the resultant equation, it follows that:

∞

∑
n,k=0

HF
(α)
n+k(p, y, z; u; λ)

tn vk

n! k!
=

∞

∑
n,k=0

n,k

∑
l,m=0

(p − x)l+m

l! m! HF
(α)
n+k−l−m(x, y, z; u; λ)

tn vk

(n − l)! (k − m)!
,

(39)
which gives Formula (35).

Corollary 8. For n = 0 in Equation (35), we have:

HF
(α)
k (p, y, z; u; λ) =

k

∑
m=0

(
k
m

)
(p − x)m

HF
(α)
k−m(x, y, z; u; λ). (40)

Corollary 9. Replacing p by p + x and taking z = 0 in Equation (35), we have:

HF
(α)
n+k(p + x, y; u; λ) =

n,k

∑
l,m=0

(
n
l

)(
k
m

)
pl+m

HF
(α)
n+k−l−m(x, y; u; λ). (41)

Corollary 10. Replacing p by p + x and taking y = 0 z = 0 in Equation (35), we have:

HF
(α)
n+k(p + x; u; λ) =

n,k

∑
l,m=0

(
n
l

)(
k
m

)
pl+m

HF
(α)
n+k−l−m(x; u; λ). (42)

Corollary 11. For p = 0 in Equation (35), we have:

HF
(α)
n+k(y, z; u; λ) =

n,k

∑
l,m=0

(
n
l

)(
k
m

)
(−x)l+m

HF
(α)
n+k−l−m(x, y, z; u; λ). (43)

Theorem 9. The following relation for the 3VHATFEP of order α holds true:

HF
(α)
n (x, y, z; u; λ) =

[ n
3 ]

∑
k=0

n!
(n − 3k)!k! HF

(α)
n−3k(x, y; u; λ)zk. (44)

Proof. Using the equation from Table 1(I), the expansion of ezt3
in Equation (4) and then simplifying

the resulting equation give:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
=

∞

∑
n=0

⎛⎝ [ n
3 ]

∑
k=0

n!
(n − 3k)!k! HF

(α)
n−3k(x, y; u; λ)zk

⎞⎠ tn

n!
. (45)

After comparing the coefficients of same powers of tn/n! in the above equation, we are led to
Relation (44).
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Theorem 10. The following relation for the 3VHATFEP of order α holds true:

HF
(α)
n (x, y, z; u; λ) =

n

∑
k=0

[ k
3 ]

∑
s=0

n!
(n − k)!(k − 3s)!s!

F
(α)
n−k(u; λ)Hk−3s(x, y)zs. (46)

Proof. Using Equations (3) and (1) (for z = 0), the expansion of ezt3
in Equation (4) and after

rearranging the terms, it follows that:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
=

∞

∑
n=0

n

∑
k=0

(
n
k

)
F
(α)
n−k(u; λ)

⎛⎝ [ k
3 ]

∑
s=0

k!
(k − 3s)!s!

Hk−3s(x, y)zs

⎞⎠ tn

n!
. (47)

Upon canceling the coefficients of like powers of t in Equation (47), we get Assertion (46).

Theorem 11. The following relation for the 3VHATFEP of order α holds true:

HF
(α)
n (x, y, z; u; λ) =

[ n
3 ]

∑
s=0

[ n−3s
2 ]

∑
k=0

n!
s!(n − 3s − 2k)!k!

F
(α)
n−3s−2k(x; u; λ)ykzs. (48)

Proof. With the use of Equation (2), the expansions of eyt2
and ezt3

in Equation (4) and upon simplifying
the resulting equation, we obtain:

∞

∑
n=0

HF
(α)
n (x, y, z; u; λ)

tn

n!
=

∞

∑
n=0

⎛⎝ [ n
3 ]

∑
s=0

[ n−3s
2 ]

∑
k=0

n!
s!(n − 3s − 2k)!k!

F
(α)
n−3s−2k(x; u; λ)ykzs

⎞⎠ tn

n!
(49)

Finally, upon equating the coefficients of the same powers of t in the above equation, Relation (48)
is proven.

In the next section, we establish some symmetric identities for the 3VHATFEP.

4. Symmetric Identities

The identities for the generalized special functions are useful in electromagnetic processes,
combinatorics, numerical analysis, etc. Several types of identities and relations related to Apostol-type
polynomials and related polynomials are considered in [14–27]. This provides the motivation to
explore symmetry identities for the 3VHATFEP. We recall the following:

For any γ ∈ R or C, the generalized sum of integer powers Sk(p; γ) is given by:

γp+1e(p+1)t − 1
γet − 1

=
∞

∑
k=0

Sk(p; γ)
tk

k!
, (50)

which gives:

Sk(p; γ) =
k

∑
l=0

γl lk.

For any γ ∈ R or C, the multiple power sums S (l)
k (m; γ) are given by:

(
1 − γmemt

1 − γet

)l

=
1
γl

∞

∑
n=0

{
n

∑
p=0

(
n
p

)
(−l)n−p S (l)

k (m; γ)

}
tn

n!
. (51)

To prove the symmetry identities for the 3VHATFEP, we have the following theorems:
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Theorem 12. For all integers c, d > 0 and n ≥ 0, α ≥ 1, λ, u ∈ C, the following symmetry relation between
the 3VHATFEP of order α and the generalized integer power sums holds true:

n
∑

k=0
(n

k)c
n−k

HF
(α)
n−k(dx, d2y, d3z; λ; u)

k
∑

l=0
(k

l)d
kuc−1Sl(c − 1; λ

u )HF
(α−1)
k−l (cX, c2Y, c3Z; λ; u)

=
n
∑

k=0
(n

k)d
n−kud−1

HF
(α)
n−k(cx, c2y, c3z; λ; u)

k
∑

l=0
(k

l)c
kSl(d − 1; λ

u )HF
(α−1)
k−l (dX, d2Y, d3Z; λ; u).

(52)

Proof. Let

G(t) :=
(1 − u)2α−1 ecdxt+y(cdt)2+z(cdt)3

(λcecdt − uc) ecdXt+Y(cdt)2+Z(cdt)3

(λect − u)α (λedt − u)α
, (53)

which, upon rearranging the powers and then using Equations (4) and (50) in the resultant
equation, yields:

G(t) =
(

∞
∑

n=0
HF

(α)
n (dx, d2y, d3z; λ; u) (ct)n

n!

)(
uc−1

∞
∑

l=0
Sl(c − 1; λ

u )
(dt)l

l!

)
×
(

∞
∑

k=0
HF

(α−1)
k (cX, c2Y, c3Z; λ; u) (dt)k

k!

)
.

(54)

Upon applying the Cauchy product rule in the above equation, we get:

G(t) =
∞
∑

n=0

( n
∑

k=0
(n

k)c
n−kdkuc−1

HF
(α)
n−k(dx, d2y, d3z; λ; u)

k
∑

l=0
(k

l)Sl(c − 1; λ
u )

×HF
(α−1)
k−l (cX, c2Y, c3Z; λ; u)

)
tn

n! .
(55)

In a similar manner, we obtain:

G(t) =
∞
∑

n=0

( n
∑

k=0
(n

k)d
n−kckud−1

HF
(α)
n−k(cx, c2y, c3z; λ; u)

k
∑

l=0
(k

l)Sl(d − 1; λ
u )

×HF
(α−1)
k−l (dX, d2Y, d3Z; λ; u)

)
tn

n! .
(56)

Equating the coefficients of the like powers of t in the r.h.s. of Expansions (55) and (56), we are led
to Identity (52).

Theorem 13. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry identity for the 3VHATFEP of order α holds true:

n
∑

k=0
(n

k)
c−1
∑

i=0

d−1
∑

j=0
uc+d−2( λ

u )
i+jcn−kdk

HF
(α)
k

(
cX + c

d j, c2Y, c3Z; λ; u
)

HF
(α)
n−k

(
dx + d

c i, d2y, d3z; λ; u
)

=
n
∑

k=0
(n

k)
d−1
∑

i=0

c−1
∑

j=0
uc+d−2( λ

u )
i+jdn−kck

HF
(α)
k

(
dX + d

c j, d2Y, d3Z; λ; u
)

HF
(α)
n−k

(
cx + c

d i, c2y, c3z; λ; u
)

.
(57)

Proof. Let

H(t) :=
(1 − u)2αecdxt+y(cdt)2+z(cdt)3

(λcecdt − uc)(λdecdt − ud) ecdXt+Y(cdt)2+Z(cdt)3

(λect − u)α+1(λedt − u)α+1 , (58)
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from which, upon rearranging the powers and using the series expansions for
(

λcecdt−uc

λedt−u

)
and(

λdecdt−ud

λectu

)
in the resultant equation, it follows that:

H(t) =
(

1 − u
λect − u

)α

edx(ct)+d2y(ct)2+d3z(ct)3
uc−1

c−1

∑
i=0

(λ

u

)i
edti

×
(

1 − u
λedt − u

)α

ecX(dt)+c2Y(dt)2+c3Z(dt)3
ud−1

d−1

∑
j=0

(λ

u

)j
ectj. (59)

Now, by making use of Equation (4) and the application of the Cauchy product rule in the resultant
equation, we have:

H(t) =
n
∑

k=0
(n

k)
c−1
∑

i=0

d−1
∑

j=0
uc+d−2( λ

u )
i+jcn−kdk

HF
(α)
k

(
cX + c

d j, c2Y, c3Z; λ; u
)

HF
(α)
n−k

(
dx + d

c i, d2y, d3z; λ; u
)

.
(60)

Following the same lines of proof as above gives another identity:

H(t) =
n
∑

k=0
(n

k)
d−1
∑

i=0

c−1
∑

j=0
ud+c−2( λ

u )
i+jdn−kck

HF
(α)
k

(
dX + d

c j, d2Y, d3Z; λ; u
)

HF
(α)
n−k

(
cx + c

d i, c2y, c3z; λ; u
)

.
(61)

Comparing the coefficients of the same powers of t in the r.h.s. of Expressions (60) and (61) gives
Identity (57).

Theorem 14. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry identity for the 3VHATFEP holds true:

d−1
∑

m=0
ud−1( λ

u )
m

n
∑

l=0
(n

l )HFn−l

(
cx, c2y, c3z; λ; u

)
dn−l(cm)l

=
c−1
∑

m=0
uc−1( λ

u )
m

n
∑

l=0
(n

l )HFn−l

(
dx, d2y, d3z; λ; u

)
cn−l(dm)l .

(62)

Proof. Let

N(t) :=
(1 − u)ecdxt+y(cdt)2+z(cdt)3

(λdecdt − ud)

(λect − u)(λedt − u)
. (63)

Proceeding on the same lines of proof as in Theorem 13, we get Identity (62). Thus, we omit
the proof.

Theorem 15. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry relation between the 3VHATFEP and multiple power sums holds true:

n
∑

l=0
(n

l )HFn−l(dx, d2y, d3z; λ; u) udαλ−α
l

∑
m=0

( l
m)

m
∑

r=0
(m

r ) (−α)m−r S (α)
k

(
d; λ

u

)
× HF

(α+1)
l−m (cX, c2Y, c3Z; λ; u)cn−l+mdl−m

=
n
∑

l=0
(n

l )HFn−l(cx, c2y, c3z; λ; u) ucαλ−α
l

∑
m=0

( l
m)

m
∑

r=0
(m

r ) (−α)m−r S (α)
k

(
c; λ

u

)
× HF

(α+1)
l−m (dX, d2Y, d3Z; λ; u)dn−l+mcl−m.

(64)
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Proof. Let:

F(t) :=
(1 − u)α+2 edx(ct)+d2y(ct)2+d3z(ct)3

(λdedct − ud)α ecX(dt)+c2Y(dt)2+c3Z(dt)3

(λedt − u)α+1 (λect − u)α+1 , (65)

which, upon rearranging the powers and use of Equations (4) and (51) in the resultant equation, yields:

F(t) :=
∞
∑

n=0
HFn(dx, d2y, d3z; λ; u)cn tn

n! udαλ−α
∞
∑

m=0

m
∑

r=0
(m

r ) (−α)m−r S (α)
k

(
d; λ

u

)
cm tm

m!
∞
∑

l=0
HF

(α+1)
l (cX, c2Y, c3Z; λ; u)dl tl

l! .
(66)

Now, appropriately applying the using Cauchy product rule in the above equation leads to:

F(t) :=
∞
∑

n=0

n
∑

l=0
(n

l )HFn−l(dx, d2y, d3z; λ; u)cn−l udαλ−α
l

∑
m=0

( l
m)

m
∑

r=0
(m

r ) (−α)m−r S (α)
k

(
d; λ

u

)
HF

(α+1)
l−m (cx, c2y, c3z; λ; u)cmdl−m tn

n! .
(67)

Similarly, we can find:

F(t) :=
∞
∑

n=0

n
∑

l=0
(n

l )HFn−l(cx, c2y, c3z; λ; u)dn−l ucαλ−α
l

∑
m=0

( l
m)

m
∑

r=0
(m

r ) (−α)m−r S (α)
k

(
c; λ

u

)
HF

(α+1)
l−m (dx, d2y, d3z; λ; u)dmcl−m tn

n! .
(68)

Equating the coefficients of the like powers of tn/n! in the r.h.s. of Expansions (67) and (68) gives
Identity (64).

Theorem 16. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry relation between the 3VHATFEP of order α and multiple power sums holds true:

n
∑

m=0
(n

m)HF
(α)
n−m(dx, d2y, d3z; λ; u)cn−m ucαλ−α

m
∑

r=0
(m

r ) (−α)m−r S (α)
k

(
c; λ

u

)
dm

=
n
∑

m=0
(n

m)HF
(α)
n−m(cx, c2y, c3z; λ; u)dn−m udαλ−α

m
∑

r=0
(m

r ) (−α)m−r S (α)
k

(
d; λ

u

)
cm.

(69)

Proof. Let:

M(t) :=
(1 − u)α edx(ct)+d2y(ct)2+d3z(ct)3

(λcecdt − uc)α

(λedt − u)α (λect − u)α
. (70)

Proceeding on the same lines of proof as in Theorem 15, we get Identity (69). Thus, we omit
the proof.

Theorem 17. For each pair of positive integers c, d and for all integers n ≥ 0, α ≥ 1, λ, u ∈ C, the following
symmetry relation between the 3VHATFEP of order α and the Hurwitz–Lerch Zeta function holds true:

(
1−u

u

)α
(−1)α

( n
∑

p=0
(n

p)
n−p
∑

s=0
(n−p

s )Φα

(
λ
u , s − n + p, cx

)
Hs(0, c2y, c3z)dn ucλ−1

p
∑

r=0
(r

p)
p−r
∑

q=0
(p−r

q )(−1)p−r−qSq

(
c, λ

u

)
HF

(α)
r (dX, d2Y, d3Z; λ; u)crdp−r

)
=
(

1−u
u

)α
(−1)α

( n
∑

p=0
(n

p)
n−p
∑

s=0
(n−p

s )Φα

(
λ
u , s − n + p, cx

)
Hs(0, d2y, d3z)cn udλ−1

p
∑

r=0
(r

p)
p−r
∑

q=0
(p−r

q )(−1)p−r−qSq

(
d, λ

u

)
HF

(α)
r (cX, c2Y, c3Z; λ; u)drcp−r

)
.

(71)
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Proof. Let:

P(t) :=
(1 − u)2α ecx(dt)+c2y(dt)2+c3z(dt)3

(λcecdt − uc) edX(ct)+d2Y(ct)2+d3Z(ct)3

(λedt − u)α+1 (λect − u)α
, (72)

which, upon rearranging the powers and after using Equations (4) and (51) (for α = 1) and the
following formula for the generalized binomial theorem:

(1 + w)−α =
∞

∑
m=0

(
m + α − 1

m

)
(−w)m; |w| < 1, (73)

in the resultant equation becomes:

P(t) :=
(

1−u
u

)α
(−1)α

∞
∑

m=0
(m+α−1

m )
(

λ
u

)m
emdt ecx(dt)+c2y(dt)2+c3z(dt)3

ucλ−1
∞
∑

p=0

p
∑

q=0
(p

q)(−1)p−q

Sq

(
c, λ

u

)
dp tp

p!

∞
∑

r=0
HF

(α)
r (dX, d2Y, d3Z; λ; u) (ct)r

r! .
(74)

Simplifying the above equation with the use of Equations (1) and (20) and then using the Cauchy
product rule in the resultant equation, we get:

P(t) : =
(

1−u
u

)α
(−1)α

∞
∑

n=0

( n
∑

p=0
(n

p)
n−p
∑

s=0
(n−p

s )Φα

(
λ
u , s − n + p, cx

)
Hs(0, c2y, c3z)dn ucλ−1

p
∑

r=0
(r

p)
p−r
∑

q=0
(p−r

q )(−1)p−r−qSq

(
c, λ

u

)
HF

(α)
r (dX, d2Y, d3Z; λ; u)crdp−r

)
tn

n! .
(75)

In a similar manner, we have:

P(t) : =
(

1−u
u

)α
(−1)α

∞
∑

n=0

( n
∑

p=0
(n

p)
n−p
∑

s=0
(n−p

s )Φα

(
λ
u , s − n + p, dx

)
Hs(0, d2y, d3z)cn udλ−1

p
∑

r=0
(r

p)
p−r
∑

q=0
(p−r

q )(−1)p−r−qSq

(
d, λ

u

)
HF

(α)
r (cX, c2Y, c3Z; λ; u)drcp−r

)
tn

n! .
(76)

Finally, canceling the coefficients of the same powers of t in the r.h.s. of Expansions (75) and (76),
Identity (71) is proven.

Note: The results established above for the 3VHATFEP can be reduced to the illustrative special
cases mentioned in Table 1 simply by substituting special values of the variables or parameters.
Therefore, we omit them.

5. Operational Representation

The classical and Apostol-type Frobenius–Euler numbers and polynomials are the generalization
of Euler numbers and polynomials, and these are associated with the Brouwer fixed-point theorem
and vector fields [28].

From generating Equation (4), we find that the 3VHATFEP are the solutions of the
following equations:

∂

∂y HF
(α)
n (x, y, z; u; λ) =

∂2

∂x2 HF
(α)
n (x, y, z; u; λ), (77)

∂

∂z HF
(α)
n (x, y, z; u; λ) =

∂3

∂x3 HF
(α)
n (x, y, z; u; λ), (78)

under the following initial condition:

HF
(α)
n (x, 0, 0; u; λ) = F

(α)
n (x; u; λ). (79)
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Thus, in view of the above equation, we find that, for the 3VHATFEP, the following operational
representation holds true:

HF
(α)
n (x, y, z; u; λ) = exp

(
y

∂2

∂x2 + z
∂3

∂x3

)
{F(α)

n (x; u; λ)}. (80)

The operational formalism developed above can be used to obtain the corresponding identities
for the 3VHATFEP and for their special cases. To give the applications of the operational
representation (80), we apply the operation O given below:

O: Operating exp
(

y ∂2

∂x2 + z ∂3

∂x3

)
on both sides of a given result.

Consider the following identities for the FEP F
(α)
n (x; u) from [17]:

uFn(x; u−1) + Fn(x; u) = (1 + u)
n

∑
k=0

(
n
k

)
Fn−k(u−1)Fk(x; u), (81)

1
n+1Fk(x; u) + Fn−k(x; u) =

n−1
∑

k=0

(n
k)

n−k+1

n
∑

l=k
((−u)Fl−k(u)Fn−l(u) + 2uFn−k(u))

Fk(x; u) Fn(x; u),
(82)

F
(α)
n (x; u) =

n
∑

k=0
(n

k)F
(α−1)
n−k (u)Fk(x; u) (n ∈ Z+), (83)

Fn(x; u) = 1
(1−u)α

n
∑

k=0
(n

k)

(
α

∑
j=0

(α
j)(−u)α−jFn−k(j; u)

)
F
(α)
k (x; u) (n ∈ Z+), (84)

which, upon using operation (O) in both sides, yields the following identities for the polynomials

HF
(α)
n (x, y, z; u):

uHFn(x, y, z; u−1) + HFn(x, y, z; u) = (1 + u)
n

∑
k=0

(
n
k

)
Fn−k(u−1)HFk(x, y, z; u), (85)

1
n+1 HFk(x, y, z; u) + HFn−k(x, y, z; u) =

n−1
∑

k=0

(n
k)

n−k+1

n
∑

l=k
((−u)Fl−k(u)Fn−l(u) + 2uFn−k(u))

HFk(x, y, z; u) Fn(x; u),
(86)

HF
(α)
n (x, y, z; u) =

n
∑

k=0
(n

k)F
(α−1)
n−k (u)HFk(x, y, z; u) (n ∈ Z+), (87)

HFn(x, y, z; u) = 1
(1−u)α

n
∑

k=0
(n

k)

(
α

∑
j=0

(α
j)(−u)α−jFn−k(j; u)

)
HF

(α)
k (x, y, z; u) (n ∈ Z+). (88)

Thus, we find that the aforementioned polynomials, which include the polynomials as their
special cases given in Table 1 along with the underlying operational formalism, offer a powerful
tool for the investigation of the properties of a wide class of polynomials. Thus, the combination of
Hermite and Frobenius–Euler polynomials yields such interesting results.

Further, motivated by the ATFEP F
(α)
n (x; u; λ), we introduce the Apostol type Frobenius–Genocchi

polynomials H(α)
n (x; u; λ) (ATFGP). For u ∈ C, u �= 1, the ATFGP of order α ∈ C are defined by:(

(1 − u)t
λet − u

)α

ext =
∞

∑
n=0

H
(α)
n (x; u; λ)

tn

n!
, (89)

which, for λ = α = 1, reduce to the Frobenius–Genocchi polynomials GF
n (x; u) [29].
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Using the previous approach, we introduce the three-variable Hermite–Apostol-type
Frobenius–Genocchi polynomials (3VHATFGP) HH

(α)
n (x, y, z; u; λ) of order α ∈ C defined by:(

(1 − u)t
λet − u

)α

ext+yt2+zt3
=

∞

∑
n=0

HH
(α)
n (x, y, z; u; λ)

tn

n!
. (90)

The special members related to the 3VHATFGP HH
(α)
n (x, y, z; u; λ) can be obtained, and

corresponding results for these polynomials and for their special cases can be obtained easily. Thus, we
omit them.

6. Conclusions

In this paper, a multi-variable hybrid class of the Hermite–Apostol-type Frobenius–Euler
polynomials is introduced and their properties are explored using various generating function methods.
Several explicit and recurrence relations, summation formulae and symmetry identities are established
for these hybrid polynomials. A brief view of the operational approach is also given for these
polynomials. The operational representations combined with integral transforms may lead to other
interesting results, which may be helpful to the theory of fractional calculus. Several techniques and
methods are used in [30,31], which are applicable to the other fields of mathematics. The applicability
of these techniques to the hybrid polynomial families can also be explored. These aspects will be
undertaken in further investigation.
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1. Introduction

For an odd prime number p, Zp, Qp, and Cp denote the ring of p-adic integers, the field of p-adic
rational numbers, and the completions of algebraic closure of Qp, respectively, throughout this paper.

The p-adic norm is normalized as |p|p = 1
p , and let q be an indeterminate in Cp with |q − 1|p <

p−
1

p−1 . The q-analogue of number x is defined as

[x]q =
1 − qx

1 − q
. (1)

Note that lim
q→1

[x]q = x for each x ∈ Zp.

Let C(Zp) = { f | f : Zp −→ R is continuous}. Then, a fermionic p-adic q-integral of f
(∈ C(Zp)

)
is defined by Kim as [1–6] :

I−q( f ) =
∫
Zp

f (x)dμ−q(x) = lim
N→∞

pN−1

∑
x=0

f (x)μ−q

(
x + pNZp

)

= lim
N→∞

1
[pN ]−q

pN−1

∑
x=0

f (x)(−q)x

= lim
N→∞

[2]q
2

pN−1

∑
x=0

f (x)(−q)x.

(2)
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On the other hand, it is well known that the Euler polynomial En(x) is given by the Appell
sequence with g(t) = 1

2
(
et + 1

)
, giving the the generating function

2
et + 1

ext =
∞

∑
n=0

En(x)
tn

n!
,

(see [7–17]). In particular, if x = 0, En = En(0) (n ∈ N) is called the Euler number.
As a q-analogue of Euler polynomials, the Carlitz’s type q-Euler polynomial En,q(x) is defined by

∞

∑
n=0

En,q(x)
tn

n!
=
∫
Zp

e[x+y]qtdμ−q(y), (3)

(see [2,13–17]). In particular, if x = 0, En,q = En,q(0) is called the q-Euler number.
By (3), the Carlitz’s type q-Euler polynomial En,q(x) is obtained as

En,q(x) =
∫
Zp
[x + y]nq dμ−q(y), (n ≥ 0). (4)

From the fermionic p-adic q-integral on Zp, the degenerate q-Euler polynomial En,λ,q(x) is defined
as [16]:

∞

∑
n=0

En,λ,q(x)
tn

n!
=
∫
Zp
(1 + λt)

[x+y]q
λ dμ−q(y). (5)

By the binomial expansion of (1 + λt)
[x+y]q

λ , we get

∫
Zp
(1 + λt)

[x+y]q
λ dμ−q(y) =

∞

∑
n=0

λn
∫
Zp

(
[x + y]q

λ

)
n

dμ−q(y)
tn

n!
, (6)

where (α)n = α(α − 1) · · · (α − n + 1) for n ∈ N, and by (5) and (6), we have

En,λ,q(x) = λn
∫
Zp

(
[x + y]q

λ

)
n

dμ−q(y), (n ∈ N). (7)

Since

(α)n = α(α − 1) · · · (α − n + 1) =
n

∑
l=0

S1 (n, l) αl , (8)

En,λ,q(x) =λn
n

∑
l=0

S1(n, l)
∫
Zp

(
[x + y]q

λ

)l

dμ−q(y)

=
n

∑
l=0

λn−lS1(n, l)El,q(x),

where S1(n, m) is the Stirling number of the first kind (see [2,7,8,12,17,18]).
Now, we apply these polynomials to Changhee polynomials, introduced by Kim et al. [19].

The Changhee polynomial of the first kind Chn(x) is defined by the generating function to be

∞

∑
n=0

Chn(x)
tn

n!
=
∫
Zp
(1 + t)x+ydμ−1(y)

=
2

2 + t
(1 + t)x.

(9)

(see [20,21]).
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In view point of (3) and (9), Carlitz’s type q-Changhee polynomial Chn,q(x) is defined by

∞

∑
n=0

Chn,q(x)
tn

n!
=
∫
Zp
(1 + t)[x+y]q dμ−q(y), (10)

(see [18,22]).
By the binomial expansion of (1 + t)[x+y]q ,

∞

∑
n=0

Chn,q(x)
tn

n!
=
∫
Zp
(1 + t)[x+y]q dμ−q(y)

=
∞

∑
n=0

∫
Zp

(
[x + y]q

)
n dμ−q(y)

tn

n!
,

(11)

and so the equation (10) and (11) yield the following:

Chn,q(x) =
∫
Zp

(
[x + y]q

)
n dμ−q(y), (12)

(see [20,21]).
In the past decade, many different generalizations of Changhee polynomials have been studied

(see [19,20,22–32]), and the relationship between important combinatorial polynomials and those
polynomials was found.

Symmetric identities of special polynomials are important and interesting in number theory, pure
and applied mathematics. Symmetric identities of many different polynomials were investigated
in [5,10,14,16,32–39]. In particular, C. Cesarano [40] presented some techniques regarding the
generating functions used, and these identities can be applicable to the theory of porous materials [41].

In current paper, we construct symmetric identities for the Carlitz’s type q-Changhee polynomials
under the symmetry group of order n arising from the fermionic p-adic q-integral on Zp, and the proof
methods which was used in the Kim’s previous researches are also used as good tools in this paper
(see [5,10,14,16,32–39]).

2. Symmetric Identities for the Carlitz’s Type q-Changhee Polynomials

Let t ∈ Cp with |t|p < p−
1

p−1 , and let Sn be the symmetry group of degree n. For positive integers
w1, w2, . . . , wn with wi ≡ 1 (mod 2) for each i = 1, 2, . . . n, we consider the following integral equation
for the fermionic p-adic q-integral on Zp;

∫
Zp
(1 + t)

⎡⎢⎣(∏n−1
i=1 wi)y+(∏n

i=1 wi)x+wn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

⎤⎥⎦
q dμ−qw1w2 ···wn−1 (y)

=
[2]qw1 ···wn−1

2
lim

N→∞

wn−1

∑
m=0

pN−1

∑
y=0

(1 + t)

⎡⎢⎣(∏n−1
i=1 wi)(m+wny)+(∏n

i=1 wi)x+wn ∑n
i=1

⎛⎜⎝∑n−1
j=1
j �=i

wj

⎞⎟⎠ki

⎤⎥⎦
q

× (−1)m+wnyqw1w2···wn−1(m+wny).

(13)
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From (13), we get

2
[2]qw1w2 ···wn−1

n−1

∏
m=1

wm−1

∑
km=0

(−1)∑n−1
i=1 ki q

wn ∑n−1
j=1

⎛⎝∏n−1
i=1
i �=j

wi

⎞⎠kj

×
∫
Zp
(1 + t)

⎡⎢⎣(∏n−1
i=1 wi)y+(∏n

i=1 wi)x+wn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

⎤⎥⎦
q dμ−qw1w2 ···wn−1 (y)

= lim
N→∞

n−1

∏
m=1

wm−1

∑
km=0

wn−1

∑
l=0

pN−1

∑
y=0

(1 + t)

⎡⎢⎣(∏n−1
i=1 wi)(m+wny)+(∏n

i=1 wi)x+wn ∑n
i=1

⎛⎜⎝∑n−1
j=1
j �=i

wj

⎞⎟⎠ki

⎤⎥⎦
q

× (−1)∑n−1
i=1 ki+l+yq

(
∑n−1

j=1

)
l+
(

∏n
j=1 wj

)
y+wn ∑n−1

j=1

⎛⎝∏i=1
i �=j

wi

⎞⎠ki

.

(14)

If we put

F(w1, w2, . . . , wn) =
2

[2]qw1w2 ···wn−1

n−1

∏
m=1

wm−1

∑
km=0

(−1)∑n−1
i=1 ki q

wn ∑n−1
j=1

⎛⎝∏n−1
i=1
i �=j

wi

⎞⎠kj

×
∫
Zp
(1 + t)

⎡⎢⎣(∏n−1
i=1 wi)y+(∏n

i=1 wi)x+wn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

⎤⎥⎦
q dμ−qw1w2 ···wn−1 (y),

(15)

then, by (14), we know that F(w1, w2, . . . , wn) is invariant for any permutation σ ∈ Sn.
Hence, by (14) and (15), we obtain the following theorem.

Theorem 1. Let w1, w2, . . . , wn be positive odd integers. For any σ ∈ Sn, F(wσ(1), wσ(2), . . . , wσ(n)) have the
same value.

By (1), we know that

[
n−1

∏
i=1

wi

]
q

[
y + wnx + wn

n−1

∑
i=1

ki
wi

]
qw1w2 ···wn−1

=

⎡⎢⎢⎣
(

n−1

∏
i=1

wi

)
y +

(
n

∏
i=1

wi

)
x + wn

n−1

∑
i=1

⎛⎜⎜⎝n−1

∏
j=1
j �=i

wj

⎞⎟⎟⎠ ki

⎤⎥⎥⎦
q

. (16)
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From (5) and (16), we derive the following identities.

∫
Zp
(1 + t)

⎡⎢⎣(∏n−1
i=1 wi)y+(∏n

i=1 wi)x+wn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

⎤⎥⎦
q dμ−qw1w2 ···wn−1 (y)

=(1 + t)[∏
n−1
i=1 wi]q

∫
Zp
(1 + t)

[
y+wnx+wn ∑n−1

i=1
ki
wi

]
qw1w2 ···wn−1 dμ−qw1w2 ···wn−1 (y)

=

⎛⎝ ∞

∑
l=0

([∏n−1
i=1 wi

]
q

l

)
tl

⎞⎠( ∞

∑
m=0

Chm,qw1w2 ···wn−1

(
wnx + wn

n−1

∑
i=1

ki
wi

)
tm

m!

)

=
∞

∑
m=0

⎛⎝ m

∑
r=0

⎛⎝[n−1

∏
i=1

wi

]
q

⎞⎠
m−r

(
m
r

)
Chr,qw1w2 ···wn−1

(
wnx + wn

n−1

∑
i=1

ki
wi

)⎞⎠ tm

m!
,

(17)

for each positive integer n. Thus, by Theorem 1 and (17), we obtain the following corollary.

Corollary 1. Let w1, w2, . . . , wn be positive integers with wi ≡ 1 (mod 2) for each i = 1, 2, . . . , n, and let m
be a nonnegative integer. Then, for any permutation τ ∈ Sn,

2
[2]qwτ(1)wτ(2) ···wτ(n)

m

∑
r=0

n−1

∏
l=1

wτ(l)−1

∑
kl=0

(−1)∑n−1
i=1 ki q

wτ(n) ∑n−1
i=1

⎛⎜⎝∑n−1
j=1
j �=i

wτ(j)

⎞⎟⎠ki

×
⎛⎝[n−1

∏
i=1

wτ(i)

]
q

⎞⎠
m−r

(
m
r

)
Chr,q

wτ(1)wτ(2) ···wτ(n−1)

(
wτ(n)x + wτ(n)

n−1

∑
i=1

ki
wτ(i)

)

have the same expressions.

Note that, by the definition of [x]q,[
y + wnx + wn

n−1

∑
i=1

ki
wi

]
qw1w2 ···wn−1

=
[wn]q[

∏n−1
i=1 wi

]
q

⎡⎢⎢⎣n−1

∑
i=1

⎛⎜⎜⎝n−1

∏
j=1
j �=i

wj

⎞⎟⎟⎠ ki

⎤⎥⎥⎦
qwn

+ q

wn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

[y + wnx]qw1w2 ···wn−1 .

(18)

By (12), we get

Chm,qw1w2 ···wn−1

(
wnx + wn

n−1

∑
i=1

ki
wi

)

=
∫
Zp

⎛⎝[y + wnx + wn

n−1

∑
i=1

ki
wi

]
qw1w2 ···wn−1

⎞⎠
m

dμ−qw1w2 ···wn−1 ,

(19)
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and by (8) and (18),⎛⎝[y + wnx + wn

n−1

∑
i=1

ki
wi

]
qw1w2 ···wn−1

⎞⎠
m

=

⎛⎜⎜⎜⎜⎝ [wn]q[
∏n−1

i=1 wi

]
q

⎡⎢⎢⎣n−1

∑
i=1

⎛⎜⎜⎝n−1

∏
j=1
j �=i

wj

⎞⎟⎟⎠ ki

⎤⎥⎥⎦
qwn

+ q

wn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

[y + wnx]qw1w2 ···wn−1

⎞⎟⎟⎟⎟⎠
m

=
m

∑
l=0

S1(m, l)

⎛⎜⎜⎜⎜⎝ [wn]q[
∏n−1

i=1 wi

]
q

⎡⎢⎢⎣n−1

∑
i=1

⎛⎜⎜⎝n−1

∏
j=1
j �=i

wj

⎞⎟⎟⎠ ki

⎤⎥⎥⎦
qwn

+ q

wn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

[y + wnx]qw1w2 ···wn−1

⎞⎟⎟⎟⎟⎠
l

=
m

∑
l=0

S1(m, l)
l

∑
i=1

(
l
i

)⎛⎜⎝ [wn]q[
∏n−1

i=1 wi

]
q

⎞⎟⎠
l−i
⎡⎢⎢⎣n−1

∑
i=1

⎛⎜⎜⎝n−1

∏
j=1
j �=i

wj

⎞⎟⎟⎠ ki

⎤⎥⎥⎦
l−i

qwn

× q

iwn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

[y + wnx]iqw
1 w2···wn−1

.

(20)

From (4), (19) and (20), we have

Chm,qw1w2 ···wn−1

(
wnx + wn

n−1

∑
i=1

ki
wi

)

=
m

∑
l=0

S1(m, l)
l

∑
i=1

(
l
i

)⎛⎜⎝ [wn]q[
∏n−1

i=1 wi

]
q

⎞⎟⎠
l−i
⎡⎢⎢⎣n−1

∑
i=1

⎛⎜⎜⎝n−1

∏
j=1
j �=i

wj

⎞⎟⎟⎠ ki

⎤⎥⎥⎦
l−i

qwn

× q

iwn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki∫
Zp

[y + wnx]iqw1w2 ···wn−1 dμ−qw1w2 ···wn−1 (y)

=
m

∑
l=0

S1(m, l)
l

∑
i=1

(
l
i

)⎛⎜⎝ [wn]q[
∏n−1

i=1 wi

]
q

⎞⎟⎠
l−i
⎡⎢⎢⎣n−1

∑
i=1

⎛⎜⎜⎝n−1

∏
j=1
j �=i

wj

⎞⎟⎟⎠ ki

⎤⎥⎥⎦
l−i

qwn

× q

iwn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

Chi,qw1w2 ···wn−1 (wnx).

(21)
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From (21), we have

2
[2]qw1w2 ···wn

m

∑
r=0

n−1

∏
l=1

wl−1

∑
kl=0

(−1)∑n−1
i=1 ki q

wn ∑n−1
i=1

⎛⎜⎝∑n−1
j=1
j �=i

wj

⎞⎟⎠ki

×
⎛⎝[n−1

∏
i=1

wi

]
q

⎞⎠
m−r

(
m
r

)
Chr,qw1w2 ···wn−1

(
wnx + wn

n−1

∑
i=1

ki
wi

)

=
2

[2]qw1w2 ···wn

m

∑
r=0

n−1

∏
l=1

wl−1

∑
kl=0

(−1)∑n−1
i=1 ki q

wn ∑n−1
i=1

⎛⎜⎝∑n−1
j=1
j �=i

wj

⎞⎟⎠ki
⎛⎝[n−1

∏
i=1

wi

]
q

⎞⎠
m−r

(
m
r

)

×
r

∑
p=0

S1(r, p)
l

∑
i=1

(
l
i

)⎛⎜⎝ [wn]q[
∏n−1

i=1 wi

]
q

⎞⎟⎠
p−i
⎡⎢⎢⎣n−1

∑
i=1

⎛⎜⎜⎝n−1

∏
j=1
j �=i

wj

⎞⎟⎟⎠ ki

⎤⎥⎥⎦
p−i

qwn

× q

iwn ∑n−1
i=1

⎛⎜⎝∏n−1
j=1
j �=i

wj

⎞⎟⎠ki

Chi,qw1w2 ···wn−1 (wnx)

=
m

∑
r=0

r

∑
l=0

l

∑
i=1

S1(r, l)
(

m
r

)(
l
i

)⎛⎜⎝ [wn]q[
∏n−1

i=1 wi

]
q

⎞⎟⎠
p−i⎛⎝[n−1

∏
i=1

wi

]
q

⎞⎠
m−r

Chi,qw1w2 ···wn−1 (wnx)

× 2
[2]qw1w2 ···wn

n−1

∏
l=1

wl−1

∑
kl=0

(−1)∑n−1
i=1 ki q

(1+i)wn ∑n−1
i=1

⎛⎜⎝∑n−1
j=1
j �=i

wj

⎞⎟⎠ki

⎡⎢⎢⎣n−1

∑
i=1

⎛⎜⎜⎝n−1

∏
j=1
j �=i

wj

⎞⎟⎟⎠ ki

⎤⎥⎥⎦
p−i

qwn

=
m

∑
r=0

r

∑
l=0

l

∑
i=1

S1(r, l)
(

m
r

)(
l
i

)

×

⎛⎜⎝ [wn]q[
∏n−1

i=1 wi

]
q

⎞⎟⎠
p−i⎛⎝[n−1

∏
i=1

wi

]
q

⎞⎠
m−r

Chi,qw1w2 ···wn−1 (wnx)Fn,qwn (w1, . . . , wn−1|i + 1),

(22)

where

Fn,q(w1, . . . , wn−1|i) = 2
[2]qw1w2 ···wn

n−1

∏
l=1

wl−1

∑
kl=0

(−1)∑n−1
i=1 ki q

i ∑n−1
i=1

⎛⎜⎝∑n−1
j=1
j �=i

wj

⎞⎟⎠ki

⎡⎢⎢⎣n−1

∑
t=1

⎛⎜⎜⎝n−1

∏
j=1
j �=t

wj

⎞⎟⎟⎠ kt

⎤⎥⎥⎦
p−i−1

q

Theorem 2. For each nonnegative odd integers w1, w2, . . . , wn and for any permutation σ in the symmetry
group of degree n, the expressions

m

∑
r=0

r

∑
l=0

l

∑
i=1

S1(r, l)
(

m
r

)(
l
i

)⎛⎜⎝ [wσ(n)]q[
∏n−1

i=1 wσ(i)

]
q

⎞⎟⎠
p−i⎛⎝[n−1

∏
i=1

wσ(i)

]
q

⎞⎠
m−r

× Chi,q
wσ(1)wσ(2) ···wσ(n−1)

(
wσ(n)x

)
Fn,q

wσ(n)

(
wσ(1), . . . , wσ(n−1)|i + 1

)
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have the same.

3. Conclusion

The Changhee numbers are closely related with the Euler numbers, the Stirling numbers of the first
kind and second kind and the harmonic numbers, and so on. Throughout this paper, we investigate
that the function F(wσ(1), wσ(2), . . . , wσ(n)) for the Carlitz’s type q-Changhee polynomials is invariant
under the symmetry group σ ∈ Sn. From the invariance of F(wσ(1), wσ(2), . . . , wσ(n)), σ ∈ Sn, we
construct symmetric identities of the Carlitz’s type q-Changhee polynomials from the fermionic p-adic
q-integral on Zp. As Bernoulli and Euler polynomials, our properties on the Carlitz’s type q-Changhee
polynomials play an crucial role in finding identities for numbers in algebraic number theory.
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1. Introduction

Let q ≥ 3 be an integer. For any Dirichlet character χ mod q, according to the definition of classical
Gauss sums τ(χ), we can write

τ(χ) =
q

∑
a=1

χ(a)e
(

a
q

)
,

where e(y) = e2πiy.
Since this sum appears in numerous classical number theory problems, and it has a close

connection with the trigonometric sums, we believe that classical Gauss sums play a crucial part
in analytic number theory. Because of this phenomenon, plenty of experts have researched Gauss
sums. Meanwhile, more conclusions have been obtained as regards their arithmetic properties. Such
as the following results provided by Chen and Zhang [1]:

Let p be an odd prime with p ≡ 1 mod 4, λ be any fourth-order character mod p. Then one has
the identity

τ2(λ) + τ2 (λ) = √
p ·

p−1

∑
a=1

(
a + a

p

)
= 2

√
p · α,

where
(
∗
p

)
= χ2 denotes the the Legendre’s symbol mod p (please see Reference [1,2] for its definition

and related properties), and α =

p − 1
2
∑
a=1

(
a + a

p

)
.

If p is a prime with p ≡ 1 mod 3, ψ is any third-order character mod p, then Zhang and Hu [3]
had already obtained an analogous result (see Lemma 1). However, perhaps the most beautiful and
important property of Gauss sums τ(χ) is that |τ(χ)| = √

q, for any primitive character χ mod q.
Reference [2] and References [4–13] have a good deal of various elementary properties of Gauss

sums. In this paper, the following rational polynomials of Gauss sums attract our attention.

Uk(p, χ) =
τ3k (χ)

τ3k (χ)
+

τ3k (χ)

τ3k (χ)
, (1)
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where p is an odd prime, k is a non-negative integer, χ is any non-principal character mod p.
Observing the basic properties of Equation (1), we noticed that hardly anyone had published

research in any academic papers to date. We consider that the question is significant. In addition, the
regularity of the value distribution of classical Gauss sums could be better revealed. Presently, we will
explain certain properties discovered in our investigation. See that Uk(p, χ) has some good properties.
In fact, for some special character χ mod p, the second-order linear recurrence formula for Uk(p, χ) for
all integers k ≥ 0 may be found similarly.

The goal of this paper is to use the analytic method and the properties of the character sums to
solve the computational problem of Uk(p, χ), and to calculate two recursive formulae, which are listed
hereafter:

Theorem 1. Let p be a prime with p ≡ 1 mod 12, ψ be any third-order character mod p. Then, for any
positive integer k, we can deduce the following second-order linear recursive formulae

Uk+1(p, ψ) =
d2 − 2p

p
· Uk(p, ψ)− Uk−1(p, ψ),

where the initial values U0(p, ψ) = 2 and U1(p, ψ) = d2−2p
p , d is uniquely determined by 4p = d2 + 27b2 and

d ≡ 1 mod 3.

So we can deduce the general term

Uk(p, ψ) =

(
d2 − 2p + 3dbi

√
3

2p

)k

+

(
d2 − 2p − 3dbi

√
3

2p

)k

, i2 = −1.

Theorem 2. Let p be a prime with p ≡ 7 mod 12, ψ be any third-order character mod p. Then, for any
positive integer k, we will obtain the second-order linear recursive formulae

Uk+1(p, ψ) =
i
(
2p − d2)

p
· Uk(p, ψ)− Uk−1(p, ψ),

where the initial values U0(p, ψ) = 2, U1(p, ψ) =
i(2p−d2)

p and i2 = −1.

Similarly, we can also deduce the general term

Uk(p, ψ) = ik

(
2p − d2 +

√
8p2 − 4pd2 + d4

2p

)k

+ ik

(
2p − d2 −√8p2 − 4pd2 + d4

2p

)k

.

2. Several Lemmas

We have used five simple and necessary lemmas to prove our theorems. Hereafter, we will apply
relevant properties of classical Gauss sums and the third-order character mod p, all of which can be
found in books concerning elementary and analytic number theory, such as in References [2,10], so we
will not duplicate the related contents.

Lemma 1. If p is any prime with p ≡ 1 mod 3, ψ is any third-order character mod p, then, we have
the equation

τ3 (ψ) + τ3 (ψ) = dp,

where τ (ψ) denotes the classical Gauss sums, d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Proof. See References [3] or [8].
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Lemma 2. Let p be a prime with p ≡ 1 mod 3, ψ be any third-order character mod p, χ2 =
(
∗
p

)
denotes the

Legendre’s symbol mod p. The following identity holds

τ2 (ψ) = (−1
p

)
ψ(4)τ(χ2)τ(ψχ2).

Proof. Firstly, using the properties of Gauss sums, we get

∑
p−1
a=1 ψ (a(a + 1)) = 1

τ(ψ) ∑
p−1
b=1 ψ(b)∑

p−1
a=1 ψ(a)e

(
b(a+1)

p

)
=

τ2(ψ)
τ(ψ)

=
τ3(ψ)

p .
(2)

On the other side, we get the sums

∑
p−1
a=1 ψ (a(a + 1)) = ψ(4)∑

p−1
a=0 ψ

(
4a2 + 4a

)
= ψ(4)∑

p−1
a=0 ψ

(
(2a + 1)2 − 1

)
= ψ(4)∑

p−1
a=0 ψ

(
a2 − 1

)
= ψ(4)

τ(ψ) ∑
p−1
b=1 ψ(b)∑

p−1
a=0 e

(
b(a2−1)

p

)
= ψ(4)

τ(ψ) ∑
p−1
b=1 ψ(b)e

(
−b
p

)
∑

p−1
a=0 e

(
ba2

p

)
= ψ(4)τ(χ2)

τ(ψ) ∑
p−1
b=1 ψ(b)χ2(b)e

(
−b
p

)
= ψ(4)χ2(−1)τ(χ2)τ(ψχ2)

τ(ψ)
.

(3)

Combining Equations (2) and (3), we obtain

τ2 (ψ) = (−1
p

)
ψ(4)τ(χ2)τ(ψχ2).

Now, Lemma 2 has been proved.

Lemma 3. Let p be a prime with p ≡ 1 mod 6, χ be any sixth-order character mod p. Then, about classical
Gauss sums τ(χ), the following holds:

τ3(χ) + τ3 (χ) =

⎧⎨⎩ p
1
2

(
d2 − 2p

)
i f p = 12h + 1,

−i · p
1
2

(
d2 − 2p

)
if p = 12h + 7,

where i2 = −1, d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.

Proof. Since p ≡ 1 mod 6, ψ is a third-order character mod p. Any sixth-order character χ mod p can
be denoted as χ = ψχ2 or χ = ψχ2. Note that ψ3(4) = 1, ψ

3
(4) = 1 and χ3

2 = χ2, from Lemma 2
we deduce

τ6 (ψ) = (−1
p

)
τ3(χ2)τ

3(ψχ2) (4)

and

τ6 (ψ) =

(−1
p

)
τ3(χ2)τ

3 (ψχ2
)

. (5)

Adding Equations (4) and (5), and then applying Lemma 1 we have(
−1
p

)
τ3(χ2)

(
τ3(ψχ2) + τ3 (ψχ2

))
= τ6 (ψ)+ τ6 (ψ)

=
(
τ3 (ψ)+ τ3 (ψ)

)2 − 2p3 = d2 p2 − 2p3.
(6)
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Note that χ2 is a real character mod p, ψχ2 = ψχ2, and τ(χ2) =
√

p. If p ≡ 1 mod 4;
τ(χ2) = i · √p, i2 = −1, if p ≡ 3 mod 4. From Equation (6) we may immediately prove the sum

τ3(ψχ2) + τ3 (ψχ2
)
=

⎧⎨⎩ p
1
2

(
d2 − 2p

)
if p = 12h + 1,

−i · p
1
2

(
d2 − 2p

)
if p = 12h + 7.

(7)

Let χ = ψχ2, then χ is a sixth-order character mod p and ψχ2 = χ. From Equation (7) we can
deduce the sum term

τ3(χ) + τ3 (χ) =

⎧⎨⎩ p
1
2

(
d2 − 2p

)
if p = 12h + 1,

−i · p
1
2

(
d2 − 2p

)
if p = 12h + 7.

The proof of Lemma 3 has been completed.

Lemma 4. Let p be a prime with p ≡ 7 mod 12, ψ be any three-order character mod p. Then, we compute the
sum term

τ3 (ψ)
τ3 (ψ)

+
τ3 (ψ)

τ3
(
ψ
) =

i · (2p − d2)

p
.

Proof. Let ψ be a three-order character mod p. Then, for any six-order character χ mod p, we must
have χ = ψχ2 or χ = χχ2. Without loss of generality we suppose that χ = ψχ2, then note that
ψ(−1) = 1, χ2(−1) = −1 and Theorem 7.5.4 in Reference [10], we acquire

p−1

∑
a=0

e
(

ba2

p

)
= χ2(b) · √p, (p, b) = 1.

Using the properties of Gauss sums we can write

∑
p−1
a=0 χ

(
a2 − 1

)
= 1

τ(χ) ∑
p−1
b=1 χ(b)∑

p−1
a=0 e

(
b(a2−1)

p

)
= 1

τ(χ) ∑
p−1
b=1 χ(b)e

(
−b
p

)
∑

p−1
a=0 e

(
ba2

p

)
=

√
p

τ(χ) ∑
p−1
b=1 χ(b)χ2(b)e

(
−b
p

)
=

χ(−1)χ2(−1)
√

p τ(χχ2)
τ(χ)

=
√

p τ(χχ2)
τ(χ)

.

(8)

Noting that χ2 = ψ
2
= ψ, we can deduce

∑
p−1
a=0 χ

(
a2 − 1

)
= ∑

p−1
a=0 χ

(
(a + 1)2 − 1

)
= ∑

p−1
a=1 χ(a)χ(a + 2)

= 1
τ(χ) ∑

p−1
b=1 χ(b)∑

p−1
a=1 χ(a)e

(
b(a+2)

p

)
= τ(χ)

τ(χ) ∑
p−1
b=1 χ2(b)e

(
2b
p

)
= ψ(2)τ(χ)τ(ψ)

τ(χ)
.

(9)

Obviously, χχ2 = ψ and ψ3(2) = 1, applying Equations (8) and (9) we have

τ3(χ) = p
3
2 · τ3 (ψ)

τ3 (ψ)
. (10)

Similarly, we can see

τ3 (χ) = p
3
2 · τ3 (ψ)

τ3
(
ψ
) . (11)
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Combining Equation (10), Equation (11) and Lemma 3 we compute

τ3 (ψ)

τ3
(
ψ
) + τ3 (ψ)

τ3 (ψ)
=

1

p
3
2

(
τ3(χ) + τ3 (χ)

)
=

i · (2p − d2)

p
.

This completes the proof of Lemma 4.

Lemma 5. Let p be a prime with p ≡ 1 mod 12, ψ be any three-order character mod p. Then, we obtain the
sum term

τ3 (ψ)
τ3 (ψ)

+
τ3 (ψ)

τ3
(
ψ
) =

d2 − 2p
p

.

Proof. From Lemma 3 and the method of proving Lemma 4 we can easily deduce Lemma 5.

3. Proofs of the Theorems

In this section, we prove our two theorems. For Theorem 1, since p ≡ 1 mod 12, ψ is a third-order
character mod p, then for any positive integer k, let

Uk(p) =
τ3k (ψ)

τ3k
(
ψ
) + τ3k (ψ)

τ3k (ψ)
.

From Lemma 5 we have

U1(p) =
τ3 (ψ)
τ3 (ψ)

+
τ3 (ψ)

τ3
(
ψ
) =

d2 − 2p
p

(12)

and
d2−2p

p · Uk(p) = Uk(p)U1(p) =
(

τ3k(ψ)

τ3k(ψ)
+

τ3k(ψ)
τ3k(ψ)

)
·
(

τ3(ψ)
τ3(ψ)

+ τ3(ψ)

τ3(ψ)

)
=

τ3k+3(ψ)
τ3k+3(ψ)

+ τ3k+3(ψ)

τ3k+3(ψ)
+

τ3k−3(ψ)
τ3k−3(ψ)

+ τ3k−3(ψ)

τ3k−3(ψ)
= Uk+1(p) + Uk−1(p).

(13)

Combining Equations (12) and (13) we may immediately compute the second-order linear
recursive formula

Uk+1(p) =
d2 − 2p

p
· Uk(p)− Uk−1(p) (14)

with initial values U0(p) = 2 and U1(p) = d2−2p
p .

Note that the two roots of the equation λ2 − d2−2p
p λ + 1 = 0 are

λ1 =
d2 − 2p + 3dbi

√
3

2p
and λ2 =

d2 − 2p − 3dbi
√

3
2p

.

So from Equation (14) and its initial values we may immediately deduce the general term

Uk(p, ψ) =

(
d2 − 2p + 3dbi

√
3

2p

)k

+

(
d2 − 2p − 3dbi

√
3

2p

)k

,

where i2 = −1. Now Theorem 1 has been finished.
Similarly, from Lemma 4 and the method of proving Theorem 1 we can easily obtain Theorem 2.

Now, we have completed all the proofs of our Theorems.

146



Symmetry 2018, 10, 625

4. Conclusions

The main results of this paper are Theorem 1 and 2. They give a new second-order linear
recurrence formula for Equation (1) with the third-order character ψ mod p. Therefore, we can
calculate the exact value of Equation (1). Note that |τ (ψ) /τ (ψ) | = 1, so τ

(
ψ
)

/τ (ψ) is a unit root,
thus, the results in this paper profoundly reveal the distributional properties of two different Gauss
sums quotients on the unit circle.

For the other mod p characters, for example, the fifth-order character χ mod p with p ≡ 1 mod 5,
we naturally ask whether there exists a similar formula as presented in our theorems. This is still an
open problem. It will be the content of our future investigations.
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polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact,
by carrying out explicit computations each of them are expressed as linear combinations of Hermite,
generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating
hypergeometric functions 2F0, 2F1, and 3F2.
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1. Introduction and Preliminaries

In this section, we will recall some basic facts about relevant orthogonal polynomials that will be
needed throughout this paper. For this, we will first fix some notations. For any nonnegative integer
n, the falling factorial polynomials (x)n and the rising factorial polynomials < x >n are respectively
given by

(x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1), (x)0 = 1, (1)

< x >n= x(x + 1) · · · (x + n − 1), (n ≥ 1), < x >0= 1. (2)

The two factorial polynomials are evidently related by

(−1)n(x)n =< −x >n, (−1)n < x >n= (−x)n. (3)

(2n − 2s)!
(n − s)!

=
22n−2s(−1)s < 1

2 >n

< 1
2 − n >s

, (n ≥ s ≥ 0). (4)

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt =

Γ(x)Γ(y)
Γ(x + y)

, (Re x, Re y > 0). (5)

Γ(n +
1
2
) =

(2n)!
√

π

22nn!
, (n ≥ 0). (6)
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Γ(x + 1)
Γ(x + 1 − n)

= (x)n,
Γ(x + n)

Γ(x)
=< x >n, (n ≥ 0), (7)

where Γ(x) and B(x, y) are the gamma and beta functions respectively.
The hypergeometric function is defined by

pFq(a1, · · · , ap; b1, · · · , bq; x)

=
∞

∑
n=0

< a1 >n · · · < ap >n

< b1 >n · · · < bq >n

xn

n!
.

(8)

We are now ready to state some basic facts about Chebyshev polynomials of the third kind
Vn(x), those of the fourth kind Wn(x), Hermite polynomials Hn(x), generalized (extended) Laguerre
polynomials Lα

n(x), Legendre polynomials Pn(x), Gegenbauer polynomials C(λ)
n (x), and Jacobi

polynomials P(α,β)
n . Chebyshev polynomials are diversely used in approximation theory and numerical

analysis, Hermite polynomials appear as the eigenfunctions of the harmonic oscillator in quantum
mechanics, Laguerre polynomials have important applications to the solution of Schrödinger’s
equation for the hydrogen atom, Legendre polynomials can be used to write the Coulomb potential
as a series, Gegenbauer polynomials play an important role in the constructive theory of spherical
functions and Jacobi polynomials occur in the solution to the equations of motion of the symmetric
top. All the necessary facts on those special polynomials can be found in [1–9]. For the full accounts of
this fascinating area of orthogonal polynomials, the reader may refer to [10–13].

The above special polynomials are given in terms of generating functions by

F(t, x) =
1 − t

1 − 2xt + t2 =
∞

∑
n=0

Vn(x)tn, (9)

G(t, x) =
1 + t

1 − 2xt + t2 =
∞

∑
n=0

Wn(x)tn, (10)

e2xt−t2
=

∞

∑
n=0

Hn(x)
tn

n!
, (11)

(1 − t)−α−1 exp(− xt
1−t ) =

∞

∑
n=0

Lα
n(x)tn, (α > −1), (12)

(1 − 2xt + t2)−
1
2 =

∞

∑
n=0

Pn(x)tn, (13)

1
(1 − 2xt + t2)λ

=
∞

∑
n=0

C(λ)
n (x)tn, (λ > −1

2
, λ �= 0, |t| < 1, |x| ≤ 1), (14)

2α+β

R(1 − t + R)α(1 + t + R)β
=

∞

∑
n=0

P(α,β)
n (x)tn, (15)

(R =
√

1 − 2xt + t2, α, β > −1).

Explicit expressions for the above special polynomials are as in the following:

Vn(x) = 2F1(−n, n + 1; 1
2 ; 1−x

2 )

=
n

∑
l=0

(
2n − l

l

)
2n−l(x − 1)n−l , (16)
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Wn(x) = (2n + 1)2F1(−n, n + 1; 3
2 ; 1−x

2 )

= (2n + 1)
n

∑
l=0

2n−l

2n − 2l + 1

(
2n − l

l

)
(x − 1)n−l , (17)

Hn(x) = n!
[ n
2 ]

∑
l=0

(−1)l

l!(n − 2l)!
(2x)n−2l , (18)

Lα
n(x) =

< α + 1 >n

n! 1F1(−n, α + 1; x)

=
n

∑
l=0

(−1)l(n+α
n−l )

l!
xl , (19)

Pn(x) = 2F1(−n, n + 1; 1; 1−x
2 )

=
1
2n

[ n
2 ]

∑
l=0

(−1)l
(

n
l

)(
2n − 2l

n

)
xn−2l , (20)

C(λ)
n (x) =

(
n + 2λ − 1

n

)
2F1(−n, n + 2λ; λ + 1

2 ; 1−x
2 )

=

[ n
2 ]

∑
k=0

(−1)k Γ(n − k + λ)

Γ(λ)k!(n − 2k)!
(2x)n−2k, (21)

P(α,β)
n (x) =

< α + 1 >n

n! 2F1(−n, 1 + α + β + n; α + 1; 1−x
2 )

=
n

∑
k=0

(
n + α

n − k

)(
n + β

k

)
( x−1

2 )k( x+1
2 )n−k. (22)

Next, we state Rodrigues-type formulas for Hermite and generalized Laguerre polynomials and
Rodrigues’ formulas for Legendre, Gegenbauer and Jacobi polynomials.

Hn(x) = (−1)nex2 dn

dxn e−x2
, (23)

Lα
n(x) =

1
n!

x−αex dn

dxn (e
−xxn+α), (24)

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, (25)

(1 − x2)λ− 1
2 C(λ)

n (x) =
(−2)n

n!
< λ >n

< n + 2λ >n

dn

dxn (1 − x2)n+λ− 1
2 , (26)

(1 − x)α(1 + x)βP(α,β)
n (x) =

(−1)n

2nn!
dn

dxn (1 − x)n+α(1 + x)n+β. (27)

The last thing we want to mention is the orthogonalities with respect to various weight functions
enjoyed by Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials.

∫ ∞

−∞
e−x2

Hn(x)Hm(x) dx = 2nn!
√

πδn,m, (28)∫ ∞

0
xαe−xLα

n(x)Lα
m(x) dx =

1
n!

Γ(α + n + 1)δn,m, (29)∫ 1

−1
Pn(x)Pm(x) dx =

2
2n + 1

δn,m, (30)∫ 1

−1
(1 − x2)λ− 1

2 C(λ)
n (x)C(λ)

m (x) dx =
π21−2λΓ(n + 2λ)

n!(n + λ)Γ(λ)2 δn,m, (31)
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∫ 1

−1
(1 − x)α(1 + x)βP(α,β)

n (x)P(α,β)
m (x) dx

=
2α+β+1Γ(n + α + 1)Γ(n + β + 1)

(2n + α + β + 1)Γ(n + α + β + 1)Γ(n + 1)
δn,m. (32)

For convenience, let us put

γn,r(x) =
n

∑
l=0

∑
i1+i2+···+ir+1=l

(
r − 1 + n − l

r − 1

)
Vi1(x)Vi2(x) · · ·Vir+1(x), (n ≥ 0, r ≥ 1), (33)

En,r(x) =
n

∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(

r − 1 + n − l
r − 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x), (n ≥ 0, r ≥ 1). (34)

We observe here that both γn,r(x) and En,r(x) have degree n.
In this paper, we will consider the connection problem of expressing the sums of finite products

in (33) and (34) as linear combinations of Hn(x), Lα
n(x), Pn(x), C(λ)

n (x), and P(α,β)
n (x). These will be

done by performing explicit computations based on Proposition 1. We observe here that the formulas
in Proposition 1 follow from their orthogonalities, Rodrigues’ and Rodrigues-type formulas and
integration by parts.

Our main results are the following Theorems 1 and 2.

Theorem 1. Let n, r be any integers with n ≥ 0, r ≥ 1. Then we have the following.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(
r − 1 + n − l

r − 1

)
Vi1(x)Vi2(x) · · ·Vir+1(x)

=
(2n + 2r)!

r!4n+r(n + r − 1
2 )n+r

n

∑
k=0

(−2)k

(n − k)!

×
[ k

2 ]

∑
j=0

2F1(2j − k, 1
2 − n − r;−2n − 2r; 2)
j!4j(k − 2j)!

Hn−k(x) (35)

=
1
r!

n

∑
k=0

k

∑
l=0

(−2)n−l(2n + 2r − l)!(n + r − l)!
l!(2n + 2r − 2l)!(k − l)!

× 2F0(l − k, n − k + α + 1;−; 1)Lα
n−k(x) (36)

=
(−1)nn!(2n + 2r)!
r!4r(n + r − 1

2 )n+r

n

∑
k=0

(−1)k(2k + 1)
(n − k)!(n + k + 1)!

× 3F2(k − n,
1
2
− n − r,−n − k − 1;−2n − 2r,−n; 1)Pk(x) (37)

=
(−1)n(2n + 2r)!4λ−rΓ(λ)Γ(n + λ + 1

2 )√
πr!(n + r − 1

2 )n+r

n

∑
k=0

(−1)k(k + λ)

Γ(n + k + 2λ + 1)(n − k)!

× 3F2(k − n,
1
2
− n − r,−n − k − 2λ;−2n − 2r,−n − λ +

1
2

; 1)C(λ)
k (x) (38)

=
(−1)n(2n + 2r)!Γ(n + α + 1)

r!4r(n + r − 1
2 )n+r

n

∑
k=0

(−1)k(2k + α + β + 1)Γ(k + α + β + 1)
(n − k)!Γ(α + k + 1)Γ(n + k + α + β + 2)

× 3F2(k − n,
1
2
− n − r,−n − k − α − β − 1;−2n − 2r,−n − α; 1)P(α,β)

k (x). (39)
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Theorem 2. Let n, r be any integers with n ≥ 0, r ≥ 1. Then we have the following.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(

r − 1 + n − l
r − 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x)

=
(2n + 1)(2n + 2r)!

r!22n+2r+1(n + r + 1
2 )n+r+1

n

∑
k=0

(−2)k

(n − k)!

×
[ k

2 ]

∑
j=0

2F1(2j − k,−n − r − 1
2 ;−2n − 2r; 2)

j!4j(k − 2j)!
Hn−k(x) (40)

=
(2n + 1)

r!

n

∑
k=0

k

∑
l=0

(−2)n−l(2n + 2r − l)!(n + r − l)!
l!(2n + 2r − 2l + 1)!(k − l)!

× 2F0(l − k, n − k + α + 1;−; 1)Lα
n−k(x) (41)

=
(−1)nn!(2n + 1)(2n + 2r)!

r!22r+1(n + r + 1
2 )n+r+1

n

∑
k=0

(−1)k(2k + 1)
(n − k)!(n + k + 1)!

× 3F2(k − n,−n − r − 1
2

,−n − k − 1;−2n − 2r,−n; 1)Pk(x) (42)

=
(−1)n(2n + 2r)!22λ−2r−1(2n + 1)Γ(λ)Γ(n + λ + 1

2 )√
πr!(n + r + 1

2 )n+r+1

×
n

∑
k=0

(−1)k(k + λ)

Γ(n + k + 2λ + 1)(n − k)!

× 3F2(k − n,−n − r − 1
2

,−n − k − 2λ;−2n − 2r,−n − λ +
1
2

; 1)C(λ)
k (x) (43)

=
(−1)n(2n + 2r)!(2n + 1)Γ(n + α + 1)

r!22r+1(n + r + 1
2 )n+r+1

×
n

∑
k=0

(−1)k(2k + α + β + 1)Γ(k + α + β + 1)
(n − k)!Γ(α + k + 1)Γ(n + k + α + β + 2)

× 3F2(k − n,−n − r − 1
2

,−n − k − α − β − 1;−2n − 2r,−n − α; 1)P(α,β)
k (x). (44)

Before closing the section, we are going to mention some of previous results on the related
connection problems. The papers [14–16] treat the connection problem of expressing sums of finite
products of Bernoulli, Euler and Genocchi polynomials in terms of Bernoulli polynomials. In fact,
they were carried out by deriving Fourier series expansions for the functions closely related to those
sums of finite products. Moreover, the same was done for the sums of finite products of Chebyshev
polynomials of the second kind and of Fibonacci polynomials in [17].

Along the same line as the present paper, sums of finite products of Chebyshev polynomials
of the second kind and Fibonacci polynomials were expressed in [18] as linear combinations of the
orthogonal polynomials Hn(x), Lα

n(x), Pn(x), C(λ)
n (x), and P(α,β)

n (x). Also, the connection problem of
expressing in terms of all kinds of Chebyshev polynomials were done for sums of finite products of
Chebyshev polynomials of the second, third and fourth kinds and of Fibonacci, Legendre and Laguerre
polynomials in [19–21].

Finally, we let the reader refer to [22,23] for some applications of Chebyshev polynomials.

2. Proof of Theorem 1

First, we will state Propositions 1 and 2 that will be needed in showing Theorems 1 and 2.
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The results in (a), (b), (c), (d) and (e) in Proposition 1 follow respectively from (3.7) of [4],
(2.3) of [4] (see also (2.4) of [2]), (2.3) of [5], (2.3) of [3] and (2.7) of [7]. They can be derived from their
orthogonalities in (28)–(32), Rodrigues-type and Rodrigues’ formulas in (23)–(27) and integration
by parts.

Proposition 1. Let q(x) ∈ R[x] be a polynomial of degree n. Then we have the following.

(a) q(x) =
n

∑
k=0

Ck,1Hk(x), where

Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
q(x)

dk

dxk e−x2
dx,

(b) q(x) =
n

∑
k=0

Ck,2Lα
k (x), where

Ck,2 =
1

Γ(α + k + 1)

∫ ∞

0
q(x)

dk

dxk (e
−xxk+α) dx,

(c) q(x) =
n

∑
k=0

Ck,3Pk(x), where

Ck,3 =
2k + 1
2k+1k!

∫ 1

−1
q(x)

dk

dxk (x2 − 1)kdx,

(d) q(x) =
n

∑
k=0

Ck,4C(λ)
k (x), where

Ck,4 =
(k + λ)Γ(λ)

(−2)k
√

πΓ(k + λ + 1
2 )

∫ 1

−1
q(x)

dk

dxk (1 − x2)k+λ− 1
2 dx,

(e) q(x) =
n

∑
k=0

Ck,5P(α,β)
n (x), where

Ck,5 =
(−1)k(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

×
∫ 1

−1
q(x)

dk

dxk (1 − x)k+α(1 + x)k+βdx.

The following proposition will be used in showing Theorems 1 and 2. In fact, (a) is needed for (35)
and (40), (b) for (39) and (44), and (b) or (c) for (37), (38), (42) and (43).

Proposition 2. The following holds true.

(a) For any nonnegative integer m,

∫ ∞

−∞
xme−x2

dx =

⎧⎨⎩0, if m ≡ 1 (mod 2),
m!

√
π

(m
2 )!2m , if m ≡ 0 (mod 2),

(b) For any real numbers r, s > −1, we have

∫ 1

−1
(1 − x)r(1 + x)sdx = 2r+s+1 Γ(r + 1)Γ(s + 1)

Γ(r + s + 2)
,

(c) For any real numbers r, s with r + s > −1, s > −1, we have

∫ 1

−1
(1 − x)r(1 − x2)sdx = 2r+2s+1 Γ(r + s + 1)Γ(s + 1)

Γ(r + 2s + 2)
.
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Proof.

(a) This is an easy exercise.
(c) This follows from (b) with r replaced by r + s.
(b) This follows from the change of variable 1 + x = 2y and (5).

The following lemma can be obtained by differentiating (9), as was shown in [24].

Lemma 1. Let n, r be integers with n ≥ 0, r ≥ 1. Then we have the following identity.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(
r − 1 + n − l

r − 1

)
Vi1(x)Vi2(x) · · ·Vir+1(x) =

1
2rr!

V(r)
n+r(x), (45)

where the inner sum runs over all nonnegative integers i1, i2, · · · ir+1, with i1 + i2 + · · ·+ ir+1 = l.

From (16), we see that the rth derivative of Vn(x) is given by

V(r)
n (x) =

n−r

∑
l=0

(
2n − l

l

)
2n−l(n − l)r(x − 1)n−l−r. (46)

Especially, we have

V(r+k)
n+r (x) =

n−k

∑
l=0

(
2n + 2r − l

l

)
2n+r−l(n + r − l)r+k(x − 1)n−k−l . (47)

Now, we are ready to prove Theorem 1. As (38) and (39) can be shown similarly to (43) and (44)
in the next section, we will show only (35), (36) and (37). With γn,r(x) as in (33), we let

γn,r(x) =
n

∑
k=0

Ck,1Hk(x). (48)

Then, from (a) of Proposition 1, (45), (47), and integration by parts k times, we obtain

Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
γn,r(x)

dk

dxk e−x2
dx

=
(−1)k

2k+rk!r!
√

π

∫ ∞

−∞
V(r)

n+r(x)
dk

dxk e−x2
dx

=
1

2k+rk!r!
√

π

∫ ∞

−∞
V(r+k)

n+r (x)e−x2
dx

=
1

2k+rk!r!
√

π

n−k

∑
l=0

(
2n + 2r − l

l

)
2n+r−l(n + r − l)r+k

×
∫ ∞

−∞
(x − 1)n−k−l e−x2

dx.

(49)
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Before proceeding further, by making use of (a) in Proposition 2, we note that∫ ∞

−∞
(x − 1)me−x2

dx

=
m

∑
s=0

(
m
s

)
(−1)m−s

∫ ∞

−∞
xse−x2

dx

= ∑
0≤s≤m

s≡0 (mod 2)

(
m
s

)
(−1)m−s s!

√
π

( s
2 )!2

s

=(−1)m√π
[ m

2 ]

∑
j=0

(
m
2j

)
(2j)!
j!22j , (m ≥ 0).

(50)

From (48)–(50), and after simplifications, we have

γn,r(x) =
1
r!

n

∑
k=0

(−2)k

(n − k)!

k

∑
l=0

[ k−l
2 ]

∑
j=0

(− 1
2 )

l(2n + 2r − l)!(n + r − l)!
l!(2n + 2r − 2l)!(k − l − 2j)!j!4j Hn−k(x)

=
1
r!

n

∑
k=0

(−2)k

(n − k)!

[ k
2 ]

∑
j=0

1
j!4j

k−2j

∑
l=0

(− 1
2 )

l(2n + 2r − l)!(n + r − l)!
l!(2n + 2r − 2l)!(k − l − 2j)!

Hn−k(x)

=
(2n + 2r)!

r!4n+r < 1
2 >n+r

n

∑
k=0

(−2)k

(n − k)!

[ k
2 ]

∑
j=0

1
j!4j(k − 2j)!

×
k−2j

∑
l=0

2l < 2j − k >l<
1
2 − n − r >l

l! < −2n − 2r >l
Hn−k(x)

=
(2n + 2r)!

r!4n+r(n + r − 1
2 )n+r

n

∑
k=0

(−2)k

(n − k)!

×
[ k

2 ]

∑
j=0

2F1(2j − k, 1
2 − n − r;−2n − 2r; 2)
j!4j(k − 2j)!

Hn−k(x).

(51)

This shows (35) of Theorem 1.
Next, we let

γn,r(x) =
n

∑
k=0

Ck,2Lα
k (x). (52)

Then, from (b) of Proposition 1, (45), (47) and integration by parts k times, we get
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Ck,2 =
1

2rr!Γ(α + k + 1)

∫ ∞

0
V(r)

n+r(x)
dk

dxk (e
−xxk+α)dx

=
(−1)k

2rr!Γ(α + k + 1)

∫ ∞

0
V(r+k)

n+r (x)e−xxk+αdx

=
(−1)k

2rr!Γ(α + k + 1)

n−k

∑
l=0

(
2n + 2r − l

l

)
2n+r−l(n + r − l)r+k

×
∫ ∞

0
(x − 1)n−k−l e−xxk+αdx

=
(−1)k

2rr!Γ(α + k + 1)

n−k

∑
l=0

(
2n + 2r − l

l

)
2n+r−l(n + r − l)r+k

×
n−k−l

∑
s=0

(
n − k − l

s

)
(−1)n−k−l−sΓ(s + k + α + 1)

=
(−1)k

2rr!

n−k

∑
l=0

(
2n + 2r − l

l

)
2n+r−l(n + r − l)r+k

×
n−k−l

∑
s=0

(
n − k − l

s

)
(−1)n−k−l−s < k + α + 1 >s

=
1
r!

n−k

∑
l=0

(2n + 2r − l)!(−2)n−l(n + r − l)!
l!(2n + 2r − 2l)!(n − k − l)!

×
n−k−l

∑
s=0

1
s!

< k + l − n >s< k + α + 1 >s

=
1
r!

n−k

∑
l=0

(2n + 2r − l)!(−2)n−l(n + r − l)!
l!(2n + 2r − 2l)!(n − k − l)!

× 2F0(k + l − n, k + α + 1;−; 1).

(53)

Combining (52)–(53), we finally have

γn,r(x) =
1
r!

n

∑
k=0

k

∑
l=0

(2n + 2r − l)!(−2)n−l(n + r − l)!
l!(2n + 2r − 2l)!(k − l)!

× 2F0(l − k, n − k + α + 1;−; 1)Lα
n−k(x).

(54)

This completes the proof for (36) of Theorem 1.
Finally, let us put

γn,r(x) =
n

∑
k=0

Ck,3Pk(x). (55)

Then, from (c) of Proposition 1, (45), (47) and integration by parts k times, we have

Ck,3 =
2k + 1(−1)k

2k+r+1k!r!

∫ 1

−1
V(r+k)

n+r (x)(x2 − 1)kdx

=
(2k + 1)(−1)k

2k+r+1k!r!

n−k

∑
l=0

(
2n + 2r − l

l

)
2n+r−l(n + r − l)r+k

×
∫ 1

−1
(x − 1)n−k−l(x2 − 1)kdx.

(56)
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By making use of (c) in Proposition 2 and after simplifications, from (56) we obtain

Ck,3 =
(−1)n+k(2k + 1)

r!

n−k

∑
l=0

× (−1)l4n−l(2n + 2r − l)!(n + r − l)!(n − l)!
l!(2n + 2r − 2l)!(n − k − l)!(n + k − l + 1)!

=
(−1)n(2n + 2r)!n!
r!4r(n + r − 1

2 )n+r

(−1)k(2k + 1)
(n − k)!(n + k + 1)!

×
n−k

∑
l=0

< k − n >l<
1
2 − n − r >l< −n − k − 1 >l

l! < −2n − 2r >l< −n >l

=
(−1)n(2n + 2r)!n!
r!4r(n + r − 1

2 )n+r

(−1)k(2k + 1)
(n − k)!(n + k + 1)!

× 3F2(k − n,
1
2
− n − r,−n − k − 1;−2n − 2r,−n; 1).

(57)

From (55) and (57), we get

γn,r(x) =
(−1)n(2n + 2r)!n!
r!4r(n + r − 1

2 )n+r

n

∑
k=0

(−1)k(2k + 1)
(n − k)!(n + k + 1)!

× 3F2(k − n,
1
2
− n − r,−n − k − 1;−2n − 2r,−n; 1)Pk(x).

(58)

This proves (37) of Theorem 1.

3. Proof of Theorem 2

Here we will show only (43) and (44) in Theorem 2, as (40)–(42) can be shown analogously to the
proofs for (35)–(37), respectively. The following can be derived by differentiating the Equation (10) and
is stated in [24].

Lemma 2. Let n, r be integers with n ≥ 0, r ≥ 1. Then we have the following identity.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(

r − 1 + n − l
r − 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x) =

1
2rr!

W(r)
n+r(x), (59)

where the inner sum runs over all nonnegative integers i1, i2, · · · , ir+1, with i1 + i2 + · · ·+ ir+1 = l.

From (17), the rth derivative of Wn(x) is given by

W(r)
n (x) = (2n + 1)

n−r

∑
l=0

2n−l

2n + 1 − 2l

(
2n − l

l

)
(n − l)r(x − 1)n−l−r. (60)

In particular, we have

W(r+k)
n+r (x) = (2n + 1)

n−k

∑
l=0

2n+r−l

2n + 2r + 1 − 2l

(
2n + 2r − l

l

)
(n + r − l)r+k(x − 1)n−k−l . (61)

With En,r(x) as in (34), we let

En,r(x) =
n

∑
k=0

Ck,4C(α)
k (x). (62)
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Then, from (d) of Proposition 1, (59), (61) and integration by parts k times, we get

Ck,4 =
(k + λ)Γ(λ)

2k+rr!
√

πΓ(k + λ + 1
2 )

×
∫ 1

−1
W(r+k)

n+r (x)(1 − x2)k+λ− 1
2 dx

=
(k + λ)Γ(λ)(2n + 1)

2k+rr!
√

πΓ(k + λ + 1
2 )

×
n−k

∑
l=0

2n+r−l

2n + 2r + 1 − 2l

(
2n + 2r − l

l

)
(n + r − l)r+k

×
∫ 1

−1
(x − 1)n−k−l(1 − x2)k+λ− 1

2 dx

=
(k + λ)Γ(λ)(2n + 1)(−2)n−k

r!
√

πΓ(k + λ + 1
2 )

×
n−k

∑
l=0

(− 1
2 )

l(2n + 2r − l)!(n + r − l)!
(2n + 2r − 2l + 1)l!(2n + 2r − 2l)!(n − k − l)!

×
∫ 1

−1
(1 − x)n−k−l(1 − x2)k+λ− 1

2 dx.

(63)

Invoking (c) of Proposition 2 and after simplifications, from (63) we obtain

Ck,4 =
(−1)n−k(k + λ)Γ(λ)(2n + 1)22n+2λ+1Γ(n + λ + 1

2 )(2n + 2r)!
Γ(n + k + 2λ + 1)(n − k)!r!

√
π

×
n−k

∑
l=0

(− 1
4 )

l(2n + 2r − l)!(n + r − l + 1)!(n − k)!(n + k + 2λ)l

l!(2n + 2r)!(2n + 2r − 2l + 2)!(n − k − l)!(n + λ − 1
2 )l

=
(−1)k(k + λ)Γ(λ)(2n + 1)22λ−2r−1(−1)nΓ(n + λ + 1

2 )(2n + 2r)!
Γ(n + k + 2λ + 1)(n − k)!r!

√
π(n + r + 1

2 )n+r+1

×
n−k

∑
l=0

< k − n >l< −n − r − 1
2 >l< −n − k − 2λ >l

l! < −2n − 2r >l< −n − λ + 1
2 >l

=
(−1)k(k + λ)Γ(λ)(2n + 1)22λ−2r−1(−1)nΓ(n + λ + 1

2 )(2n + 2r)!
Γ(n + k + 2λ + 1)(n − k)!r!

√
π(n + r + 1

2 )n+r+1

× 3F2(k − n,−n − r − 1
2

,−n − k − 2λ;−2n − 2r,−n − λ +
1
2

; 1).

(64)

From (62) and (64), we have

En,r(x) =
Γ(λ)(2n + 1)22λ−2r−1(−1)nΓ(n + λ + 1

2 )(2n + 2r)!
r!
√

π(n + r + 1
2 )n+r+1

×
n

∑
k=0

(−1)k(k + λ)

Γ(n + k + 2λ + 1)(n − k)!

× 3F2(k − n,−n − r − 1
2

,−n − k − 2λ;−2n − 2r,−n − λ +
1
2

; 1)C(α)
k (x).

(65)

This shows (43) of Theorem 2.
Next, we let

En,r(x) =
n

∑
k=0

Ck,5P(α,β)
n (x). (66)
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Then, from (e) of Proposition 1, and (59), (61), and integrating by parts k times, we obtain

Ck,5 =
(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+r+1r!Γ(α + k + 1)Γ(β + k + 1)

×
∫ 1

−1
W(r+k)

n+r (x)(1 − x)k+α(1 + x)k+βdx

=
(2k + α + β + 1)Γ(k + α + β + 1)(2n + 1)

2α+β+k+r+1r!Γ(α + k + 1)Γ(β + k + 1)

×
n−k

∑
l=0

2n+r−l

2n + 2r − 2l + 1

(
2n + 2r − l

l

)
(n + r − l)r+k(−1)n−k−l

×
∫ 1

−1
(1 − x)n+α−l(1 + x)k+βdx.

(67)

By exploiting (b) in Proposition 2 and after simplifications, from (67) we get

Ck,5 =
(−1)n−k(2k + α + β + 1)Γ(k + α + β + 1)22n+1(2n + 1)Γ(n + α + 1)

Γ(α + k + 1)Γ(n + k + α + β + 2)r!

×
n−k

∑
l=0

(− 1
4 )

l(2n + 2r − l)!(n + r − l + 1)!(n + k + α + β + 1)l

l!(2n + 2r − 2l + 2)!(n − k − l)!(n + α)l

=
(−1)n−k(2k + α + β + 1)Γ(k + α + β + 1)(2n + 1)Γ(n + α + 1)(2n + 2r)!

Γ(α + k + 1)Γ(n + k + α + β + 2)(n − k)!r!22r+1(n + r + 1
2 )n+r+1

×
n−k

∑
l=0

< k − n >l< −n − r − 1
2 >l< −n − k − α − β − 1 >l

l! < −2n − 2r >l< −n − α >l

=
(−1)n−k(2k + α + β + 1)Γ(k + α + β + 1)(2n + 1)Γ(n + α + 1)(2n + 2r)!

Γ(α + k + 1)Γ(n + k + α + β + 2)(n − k)!r!22r+1(n + r + 1
2 )n+r+1

× 3F2(k − n,−n − r − 1
2

,−n − k − α − β − 1;−2n − 2r,−n − α; 1).

(68)

Thus, from (66) and (68), we have

En,r(x) =
(−1)n(2n + 1)Γ(n + α + 1)(2n + 2r)!

r!22r+1(n + r + 1
2 )n+r+1

×
n

∑
k=0

(−1)k(2k + α + β + 1)Γ(k + α + β + 1)
Γ(α + k + 1)Γ(n + k + α + β + 2)(n − k)!

× 3F2(k − n,−n − r − 1
2

,−n − k − α − β − 1;−2n − 2r,−n − α; 1)P(α,β)
n (x).

4. Conclusions

In this paper, we considered sums of finite products of Chebyshev polynomials of the third and
fourth kinds and expressed each of them in terms of five orthogonal polynomials. Indeed, by explicit
computations we expressed each of them as linear combinations of Hermite, generalized Laguerre,
Legendre, Gegenbauer and Jacobi polynomials which involve some terminating hypergeometric
functions. This can be viewed as a generalization of the classical linearization problem. In general,
the linearization problem deals with determining the coefficients in the expansion of the products of
two polynomials am(x) and bn(x) in terms of an arbitrary polynomial sequence {pk(x)}k≥0:

am(x)bn(x) =
m+n

∑
k=0

cmn(k)pk(x).
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Those sums of finite products were also represented by all kinds of Chebyshev polynomials
in [20]. In addition, the same had been done for sums of finite products of Chebyshev polynomials of
the first and second kinds, Fibonacci polynomials, Legendre polynomials, Laguerre polynomials and
Lucas polynomials.
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1. Introduction

Let {Fn}n≥0 be the Fibonacci sequence which is a second-order linear recursive sequence given by
Fn+2 = Fn+1 + Fn, its initial values are F0 = 0 and F1 = 1, and its companion Lucas sequence {Ln}n≥0

follows the same recursive pattern as the Fibonacci numbers, but with initial values L0 = 2 and L1 = 1.
Fibonacci and Lucas numbers are very famous because they have amazing features (consult [1–3]).
The problem of looking for a specific form of second-order recursive sequence has a very rich history.
Bugeaud, Mignotte and Siksek [4] showed that 0, 1, 8, 144 and 1, 4 are the only Fibonacci and Lucas
numbers, respectively, of the form yt with t > 1 (perfect power). Other related papers searched for
Fibonacci numbers of forms such as px2 + 1, px3 + 1 [5], k2 + k + 2 [6], pa ± pb + 1 [7]. In 1989, Luo [8]
solved Vern Hoggatt’s conjecture and proved that the only triangle numbers in the Fibonacci sequence
{Fn} are 1, 3, 21, 55. In 1991, Luo [9] found all triangular numbers in the Lucas sequence {Ln}. In
[10], Eric F. Bravo and Jhon J. Bravo found all positive integer solutions of the Diophantine equation
Fn + Fm + Fl = 2a in non-negative integers n, m, l, and a with n ≥ m ≥ l. In [11], Normenyo, Luca
and Togbé determined all base-10 repdigits that are expressible as sums of four Fibonacci or Lucas
numbers. In [12], Marques and Togbé searched for Fibonacci numbers of the form 2a + 3b + 5c which
are sum of three perfect powers of some prescribed distinct bases.

In this paper, we are interested in Fibonacci numbers and Lucas numbers which are sum of four
perfect powers of several prescribed distinct bases. The number of perfect powers involved in the
Diophantine equation solved by the literature [12] is one less than the perfect powers involved in the
equation solved by us and the amount of computation in the literature [12] is relatively small. More
precisely, our results are the following.

Theorem 1. The solutions of the Diophantine equation

Fn = 2a + 3b + 5c + 7d (1)

in non-negative integers n, a, b, c, d with 0 ≤ max{a, b, c} ≤ d are (n, a, b, c, d) ∈ {(7, 1, 1, 0, 1), (10, 1, 1, 0, 2
), (10, 2, 0, 0, 2), (14, 1, 3, 1, 3), (14, 3, 0, 2, 3)}.

Symmetry 2018, 10, 509; doi:10.3390/sym10100509 www.mdpi.com/journal/symmetry162
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Theorem 2. The solutions of the Diophantine equation

Ln = 2a + 3b + 5c + 7d (2)

in non-negative integers n, a, b, c, d with 0 ≤ max{a, b, c} ≤ d are (n, a, b, c, d) ∈ {(3, 0, 0, 0, 0), (5, 1, 0, 0, 1),
(9, 0, 0, 2, 2)}.

2. Preliminaries

Before proceeding further, we recall some facts and tools which will be used later.
First, we recall the Binet’s formulae for Fibonacci and Lucas sequences:

Fn =
γn − μn

γ − μ

and
Ln = γn + μn,

where γ = 1+
√

5
2 and μ = 1−√

5
2 are the roots of F′

ns characteristic polynomial x2 − x − 1 = 0 . For all
positive integers n, the inequalities

γn−2 ≤ Fn ≤ γn−1, γn−1 ≤ Ln ≤ 2γn (3)

hold.
In order to prove our theorem, one tool used is a Baker type lower bound for a linear form in

logarithms of algebraic numbers, and such a bound was given by the following result of Matveev (see
[13]).

Lemma 1. Let γ1, γ2, · · · , γt be real algebraic numbers and let b1, · · · , bt be non-zero rational integers. Let D
be the degree of the number field Q(γ1, γ2, · · · , γt) over Q and let Aj be a real number satisfying

Aj ≥ max{Dh(γj), |logγj|, 0.16}

for j = 1, · · · , t. Assume that
B ≥ max{|b1|, · · · , |bt|}.

If γ
b1
1 · · · γbt

t �= 1, then

|γb1
1 · · · γbt

t − 1| ≥ exp(−1.4 × 30t+3 × t4.5 × D2(1 + logD)(1 + logB)A1 · · · At).

As usual, in the above statement, the logarithmic height of an s−degree algebraic number γ is
defined as

h(γ) =
1
s
(log|a|+

s

∑
j=1

logmax{1, |γ(j)|},

where a is the leading coefficient of the minimal polynomial of γ (over Z) and γ(j), 1 ≤ j ≤ s are the
conjugates of γ (over Q).

After finding an upper bound on n which is in general too large, the next step is to reduce it.
For that, we need a variant of the famous Baker–Davenport lemma which was developed by Dujella
and Pethő [14]. For a real number x, we use ‖x‖ = min{|x − n| : n ∈ Z} for the distance from x to the
nearest integer.

Lemma 2. (see [10]) Let M be a positive integer, let p
q be a convergent of the continued fraction of the

irrational number α such that q > 6M, and let A, B, τ be some real numbers with A > 0 and B > 1.
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Let ε := ‖τq‖ − M‖αq‖, where ‖ · ‖ denotes the distance from the nearest integer. If ε > 0, then no solution to
the inequality

0 < |uα − v + τ| < AB−ω

exists in positive integers u, v, and ω with u ≤ M and w ≥ log(Aq/ε)
logB .

Next, we are ready to handle the proofs of our results.

3. Proof of Theorem 1

3.1. Bounding n

By combining the Binet formula together with (1), we get

γn
√

5
− 7d = 2a + 3b + 5c +

μn
√

5
> 0, (4)

because |μ| < 1 while 2a ≥ 1. Thus,

γn7−d
√

5
− 1 =

2a

7d +
3b

7d +
5c

7d +
μn

7d
√

5
> 0 (5)

yields

| γn7−d
√

5
− 1 |< 4

70.1d . (6)

From the first inequality of (3), we obtain the estimate γn−2 < 4 × 7d and 7d < γn−1, which
implies that 0.24n − 1.9 < d < 0.25(n − 1); also, this yields d < n.

We are in a situation where we can apply Matveev’s result Lemma 1 to the left side of (6). The left
expression of (6) is nonzero, since, if this expression is zero, it means that γ2n = 72d × 5 ∈ Z, so γ2n ∈ Z

for some positive integer n, which is false. We take t := 3, γ1 := γ, γ2 := 7, γ3 :=
√

5 and b1 := n, b2 :=
−d, b3 := −1. Then we have D = [Q(

√
5) : Q] = 2. Note that h(γ1) = 1

2 logγ, h(γ2) = log7 and
h(γ3) = log

√
5. Thus, we can take A1 := 0.5, A2 := 3.9 and A3 := 1.7. Note that max{|b1|, |b2|, |b3|} =

max{n, d, 1} = n. We are in position to apply Matveev’s result Lemma 1. This lemma together with
a straightforward calculation gives

| γn7−d
√

5
− 1 |> exp(−C(1 + logn)), (7)

where C = 3.22 × 1012. Thus, from (6), (7) and d > 0.24n − 1.9, taking logarithms in the inequalities
(6), (7) and comparing the resulting inequalities, we get

0.046n − 1.8 < 3.22 × 1012 × (1 + logn),

giving n < 2.56 × 1015. We summarize the conclusions of this section as follows.

Lemma 3. If (n, a, b, c, d) is a solution in positive integers to Equation (1) with 0 ≤ max{a, b, c} ≤ d, then

d < n < 2.56 × 1015.

3.2. Reducing the Bound on n

We use Lemma 2 several times to reduce the bound for n. We return to (6). Put

ΛF := nlogγ − dlog7 − log
√

5.
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Then (5), (6) implies that

0 < ΛF < eΛF − 1 <
4

70.1d . (8)

Dividing across by log7, we get

0 < |n logγ

log7
− d − log

√
5

log7
| < 2.1

70.1d . (9)

We are now ready to apply Lemma 2 with the obvious parameters,

α :=
logγ

log7
, v := d, τ := −

√
5

log7
, A := 2.1, B := 1.2.

It is easy to see that α is irrational. In fact, we assume that α = p
q , where p, q ∈ Z+ and

gcd(p, q) = 1. Then γq = 7p, hence γq = 7p, where γ is the conjugate of γ. Thus, we can get
γqγq = 72p; hence, (−1)q = 72p which is an absurdity. We can take M := 2.56 × 1015. Let pk

qk
be the kth

convergent of the continued fraction of α. By applying Lemma 2 and performing the calculations with
q39 > 6M and ε = ‖τq39‖ − M‖αq39‖ = 0.42904 · · · , we get that if (n, a, b, c, d) is a solution in positive
integers of Equation (1), then d < 225, which implies that

n <
226.9
0.24

= 945.417 < 946.

Then we can take M := 946. By applying Lemma 2 again and performing the calculations with
q8 > 6M and ε = ‖τq8‖ − M‖αq8‖ = 0.07417 · · · , we get that if (n, a, b, c, d) is a solution in positive
integers of Equation (1), then d < 73, which implies that

n < 313.

Finally, we apply a program written in Mathematica to determine the solutions to (1) in the
range 0 ≤ max{a, b, c} ≤ d < 73 and n < 313. Quickly, the program returns the following solutions:
(n, a, b, c, d) ∈ {(7, 1, 1, 0, 1), (10, 1, 1, 0, 2), (10, 2, 0, 0, 2), (14, 1, 3, 1, 3), (14, 3, 0, 2, 3)}. This proof has
been completed.

4. Proof of Theorem 2

4.1. Bounding n

By combining Binet formula together with (2), we get

γn − 7d = 2a + 3b + 5c − μn > 0, (10)

because |μ| < 1 while 2a ≥ 1. Thus,

γn7−d − 1 =
2a

7d +
3b

7d +
5c

7d − μn7−d > 0 (11)

yields

| γn7−d − 1 |< 4
70.1d . (12)

From the second inequality of (3) and (2) , we obtain the estimate γn−1 < 4 × 7d and 7d < 2 × γn,
which implies that 4.04d − 1.45 < n < 4.05d + 3.89; also, this yields d ≤ n.

We are also in a situation where we can apply Matveev’s result Lemma 1 to the left side of (12). The
left expression of (12) is nonzero, since, if this expression is zero, it means that γn = 7d ∈ Z, so γn ∈ Z

for some positive integer n, which is false. We take t := 2, γ1 := γ, γ2 := 7 and b1 := n, b2 := −d.
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Then we have D = [Q(
√

5) : Q] = 2. Note that h(γ1) = 1
2 logγ, h(γ2) = log7. Thus, we can take

A1 := 0.5, A2 := 3.9. Note that B = max{|b1|, |b2|} = max{n, d} = n. We are in position to apply
Matveev’s result Lemma 1. This lemma together with a straightforward calculation gives

| γn7−d − 1 |> exp(−C(1 + logn)), (13)

where C = 1.02 × 1010. Thus, from (12), (13) and d > n−3.89
4.05 , taking logarithms in the inequalities (12),

(13) and comparing the resulting inequalities, we get

0.1(n − 1)logγ − 1.1 × log4 < C × (1 + logn),

giving n < 6.47 × 1012. The conclusions of this section are as follows.

Lemma 4. If (n, a, b, c, d) is a solution in positive integers to Equation (2) with 0 ≤ max{a, b, c} ≤ d, then

d ≤ n < 6.47 × 1012.

4.2. Reducing the Bound on n

We use the extremality property of continued fraction to reduce the bound for n. We return to (12)
and put

ΛL := nlogγ − dlog7.

Then (11), (12) implies that

0 < ΛL < eΛL − 1 <
4

70.1d . (14)

Dividing by log7, we get

0 < n
logγ

log7
− d <

2.1
1.2d . (15)

Let [a0, a1, a2, a3, a4, · · · , ] = [0, 4, 22, 1, 5, 1, 1, 17, · · · ] be the continued fraction of logγ
log7 , and let pk

qk

be its kth convergent. Recall that n < 6.47 × 1012 by Lemma 4. A quick inspection using Mathematica
reveals that q19 < 1.662 × 1012 < q20. Furthermore, aM := max{ai : i = 0, 1, · · · , 27} = a14 = 35. So, in
accordance with the extremality property of continued fraction, we obtain that

|n logγ

log7
− d| > 1

(aM + 2)n
=

1
37n

. (16)

By comparing estimates (15) and (16), we get right away that

1
37n

<
2.1
1.2d .

This leads to

d <
log(2.1 × 37n)

log1.2
< 186,

which implies that
n < 757.

This can lead to

d <
log(2.1 × 37n)

log1.2
< 61,

which implies that
n < 251.
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Finally, we use a program written in Mathematica to find the solutions to (2) in the range
0 ≤ max{a, b, c} ≤ d < 61 and n < 251. Quickly, the program returns the following solutions:
(n, a, b, c, d) ∈ {(3, 0, 0, 0, 0), (5, 1, 0, 0, 1), (9, 0, 0, 2, 2)}. This completes the proof.

5. Conclusions

In this paper, we find all the solutions of the Diophantine equation (1) by using a Baker type
lower bound for a nonzero linear form in logarithms of algebraic numbers and the Lemma 2 from
Diophantine approximation to reduce the upper bounds on the variables of the equation. For the
Diophantine equation (2), we solve the equation by using the lower bound for a nonzero linear form
in logarithms of algebraic numbers and the extremality properties of continued fraction to reduce the
upper bounds on the variables of the equation.

6. Future Developments

We remark that we can further take advantage of our method to prove that there are only
finitely many solutions (and all of them are effectively computable) for the Diophantine equation
Fn = −2a − 3b − 5c + 7d, Ln = −2a − 3b − 5c + 7d in non-negative integers n, a, b, c, d with 0 ≤
max{a, b, c} ≤ d. We leave this as a problem for other researchers.
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1. Introduction

It is well known that gamma function is defied by

Γ(s) =
∫ ∞

0
e−tts−1dt, where s ∈ C with Re(s) > 0, (1)

(see [1,2]). From (1), we note that

Γ(s + 1) = sΓ(s), and Γ(n + 1) = n!, where n ∈ N. (2)

Let f (t) be a function defined for t ≥ 0. Then, the integral

L( f (t)) =
∫ ∞

0
e−st f (t)dt, (3)

(see [1–4]), is said to be the Laplace transform of f , provided that the integral converges. For λ ∈ (0, ∞).
Kim-Kim [2] introduced the degenerate gamma function for the complex variable swith 0 < Re(s) < 1

λ

as follows:
Γλ(s) =

∫ ∞

0
(1 + λt)−

1
λ ts−1dt, (4)

(see [2]) and degenerate Laplace transformation which was defined by

Lλ( f (t)) =
∫ ∞

0
(1 + λt)−

s
λ f (t)dt, (5)

(see [2,5]), if the integral converges. The authors obtained some properties and interesting formulas
related to the degenerate gamma function. For examples, For λ ∈ (0, 1) and 0 < Re(s) < 1−λ

λ ,

Symmetry 2018, 10, 471; doi:10.3390/sym10100471 www.mdpi.com/journal/symmetry169
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Γλ(s + 1) =
s

(1 − λ)s−1 Γ λ
1−λ

(s), (6)

and λ ∈ (0, 1
k+s ) with k ∈ N and 0 < Re(s) < 1−λ

λ ,

Γλ(s + 1) =
s(s − 1) · · · (s − (k + 1) + 1)

(1 − λ)(1 − 2λ) · · · (1 − kλ)(1 − (k + 1)λ)
Γ λ

1−(k+1)λ
(s − k), (7)

and for k ∈ N and λ ∈ (0, 1
k ),

Γλ(k) =
(k − 1)!

(1 − λ)(1 − 2λ) · · · (1 − kλ)
. (8)

The authors obtained some formulas related to the degenerate Laplace transformation.
For examples,

Lλ(1) =
1

s − λ
, if s > λ, (9)

and
Lλ((1 + λt)−

a
λ ) =

1
s + a − λ

, if s > −a + λ, (10)

and
Lλ(cosλ(at)) =

s − λ

(s − λ)2 + a2 , (11)

and
Lλ(sinλ(at)) =

a
(s − λ)2 + a2 , (12)

where cosλ(t) = 1
2

(
(1 + λt)

it
λ + (1 + λt)−

it
λ

)
and sinλ(t) = 1

2i

(
(1 + λt)

it
λ − (1 + λt)−

it
λ

)
.

Furthermore, the authors obtained that

Lλ(tn) =
n!

(s − λ)(s − 2λ) · · · (s − nλ)(s − (n + 1)λ)
, (13)

for n ∈ N and s > (n + 1)λ, and

Lλ( f (n)(t)) = s(s + λ)(s + 2λ) · · · (s + (n − 1)λ)Lλ((1 + λt)−n f (t))

−
n−1

∑
i=0

f (i)(0)

(
n−i−1

∏
t=1

s + (l − 1)λ

)
.

(14)

where f , f (1), · · · , f (n−1) are continuous on (0, ∞) and are of degenerate exponential order and f (n)(t)
is piecewise continuous on (0, ∞), and

Lλ((log(1 + λt))n f (t)) = (−1)nλn
(

d
ds

)n
Lλ(s), (15)

for n ∈ N.

At first, L. Carlitz introduced the degenerate special polynomials (see [6,7]). The recently works
which can be cited in this and researchers have studied the degenerate special polynomials and
numbers (see [2,8–19]). Recently, the concept of degenerate gamma function and degenerate Laplace
transformation was introduced by Kim-Kim [2]. They studied some properties of the degenerate
gamma and degenerate Laplace transformation and obtained their properties. We observe whether or
not that holds. Thus, we consider the modified degenerate Laplace transform which are satisfied (16).
The degenerate gamma and degenerate Laplace transformation applied to engineer’s mathematical
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toolbox as they make solving linear ODEs and related initial value problems. This paper consists
of two sections. The first section contains the modified degenerate gamma function and investigate
the properties of the modified gamma function. The second part of the paper provide the modified
degenerate Laplace transformation and investigate interesting results of the modified degenerate
Laplace transformation.

Lλ( f ∗ g) = Lλ( f )Lλ(g) (16)

2. Modified Degenerate Gamma Function

In this section, we will define modified degenerate gamma functions which are different to
degenerate gamma functions. For each λ ∈ (0, ∞), we define modified degenerate gamma function for
the complex variable s with 0 < Re(s) as follows:

Γ∗
λ(s) =

∫ ∞

0
(1 + λ)−

t
λ ts−1dt. (17)

Let λ ∈ (0, 1). Then, for 0 < Re(s), we have

Γ∗
λ(s + 1) =

∫ ∞

0
(1 + λ)−

t
λ tsdt

=
1

(log(1 + λ)−
1
λ

(1 + λ)−
t
λ ts |∞0 +

λ

log(1 + λ)

∫ ∞

0
s(1 + λ)−

t
λ ts−1dt

=
λ

log(1 + λ)
sΓ∗

λ(s).

(18)

Therefore, by (18), we obtain the following theorem.

Theorem 1. Let λ ∈ (0, 1). Then, for 0 < Re(s), we have

Γ∗
λ(s + 1) =

λs
log(1 + λ)

Γ∗
λ(s). (19)

Then, for 0 < Re(s) and λ ∈ (0, 1), repeatly we calculate

Γ∗
λ(s + 1) =

λs
log(1 + λ)

Γ∗
λ(s) =

λ2(s − 1)
(log(1 + λ))2 Γ∗

λ(s − 1). (20)

Thus, continuing this process, for 0 < Re(s) and λ ∈ (0, 1), we have

Γ∗
λ(s + 1) =

λk(s − 1) · · · (s − k + 1)
(log(1 + λ))k Γ∗

λ(s − k). (21)

Therefore, by (21), we obtain the following theorem.

Theorem 2. Let λ ∈ (0, 1). Then, for 0 < Re(s), we have

Γ∗
λ(s + 1) = λk(s−1)···(s−k+1)

(log(1+λ))k Γ∗
λ(s − k). (22)

Let us take s = k + 1. Then, by Theorem 2, we get

Γ∗
λ(k + 2) =

λk+1k · · · 2
(log(1 + λ))k+1 Γ∗

λ(1)

=
λk+1k!

(log(1 + λ))k+1 Γ∗
λ(1)

(23)
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and

Γ∗
λ(1) =

∫ ∞

0
(1 + λ)−

t
λ dt

= − λ

(log(1 + λ)
(1 + λ)−

t
λ |∞0

=
λ

(log(1 + λ)
.

(24)

Therefore, by (23) and (24), we obtain the following theorem.

Theorem 3. For k ∈ N and λ ∈ (0, 1), we have

Γ∗
λ(k + 1) =

λk+1k!
(log(1 + λ))k+1 . (25)

3. Modified Degenerate Laplace Transformation

In this section, we will define modified Laplace transformation which are different to degenerate
Laplace transformation. Let λ ∈ (0, ∞) and let f (t) be a function defined for t ≥ 0. Then the integral

L∗
λ( f (t)) =

∫ ∞

0
(1 + λs)−

t
λ f (t)dt. (26)

is said to be the modified degenerate Laplace transformation of f if the integral converges which is
also defined by L∗

λ( f (t)) = Fλ(s).
From (26), we get

L∗
λ(α f (t) + βg(t)) = αL∗

λ( f (t)) + βL∗
λ(g(t)), (27)

where α and β are constant real numbers.
First, we observe that for n ∈ N,

L∗
λ(t

n) =
∫ ∞

0
(1 + λs)−

t
λ tndt

= − λ

log(1 + λs)
(1 + λs)−

t
λ tn |∞0 +

λn
log(1 + λs)

∫ ∞

0
(1 + λs)−

t
λ tn−1dt

=
λn

log(1 + λs)
L∗

λ(t
n−1)

=
λn

log(1 + λs)

(
− λ

log(1 + λs)
(1 + λs)−

t
λ tn−1 |∞0 +

λ(n − 1)
log(1 + λs)

∫ ∞

0
(1 + λs)−

t
λ tn−2dt

)
=

(
λ

log(1 + λs)

)2
n(n − 1)L∗

λ(t
n−2)

= · · ·

=

(
λ

log(1 + λs)

)n
n!L∗

λ(1)

=

(
λ

log(1 + λs)

)n+1
n!.

(28)

Therefore, by (28), we obtain the following theorem.

Theorem 4. For k ∈ N and λ ∈ (0, 1), we have

L∗
λ(t

n) =

(
λ

log(1 + λs)

)n+1
n!. (29)
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Secondly, we note that if f is a periodic function with a period T.

L∗
λ( f (t)) =

∫ ∞

0
(1 + λs)−

t
λ f (t)dt

=
∫ T

0
(1 + λs)−

t
λ f (t)dt +

∫ ∞

T
(1 + λs)−

t
λ f (t)dt

=
∫ T

0
(1 + λs)−

t
λ f (t)dt +

∫ ∞

0
(1 + λs)−

t+T
λ f (t + T)dt

=
∫ T

0
(1 + λs)−

t
λ f (t)dt + (1 + λs)−

T
λ

∫ ∞

0
(1 + λs)−

t
λ f (t)dt

(30)

By (30), we get (
1 − (1 + λs)−

T
λ

)
L∗

λ( f (t)) =
∫ T

0 (1 + λs)−
t
λ f (t)dt. (31)

Thus, by (31), we get

L∗
λ( f (t)) = 1(

1−(1+λs)−
T
λ

) ∫ T
0 (1 + λs)−

t
λ f (t)dt. (32)

We recall that the degenerate Bernoulli numbers are introduced as

t

(1 + λ)−
t
λ

=
∞

∑
n=0

Bn,λ
tn

n!
, (33)

Thus, by (32) and (33), we have

1

1 − (1 + λS)−
T
λ

= − 1
TS

ST

(1 + λs)−
TS
λS − 1

= − 1
TS

∞

∑
n=0

Bn,λS(−1)nSn Tn

n!
.

(34)

Therefore, by (33) and (34), we obtain the following theorem.

Theorem 5. If f is a function defined t ≥ 0 and L∗
λ( f (t)) exists, then we have

L∗
λ( f (t)) = − 1

TS

∞

∑
n=0

Bn,λS(−1)nSn
∫ T

0
(1 + λs)−

t
λ f (t)dt

Tn

n!

= − 1
TS

∞

∑
n=0

Bn,λS(−1)nSnL∗
λ(U(t − T) f (t)),

(35)

where U(t − a) =

{
0, for 0 ≥ t ≥ a,

1, for t ≤ a.
is the Heviside function.

Thirdly, we observe the modified degenerate Laplace transformation of f (t − a)U(t − a)
as follows:

L∗
λ( f (t − a)U(t − a)) =

∫ ∞

0
(1 + λs)−

t
λ f (t − a)U(t − a)dt

=
∫ ∞

a
(1 + λs)−

t
λ f (t − a)dt

=
∫ ∞

0
(1 + λs)−

t+a
λ f (t)dt

= (1 + λs)−
a
λ

∫ ∞

0
(1 + λs)−

t
λ f (t)dt

= (1 + λs)−
a
λ L∗

λ( f (t)).

(36)
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Therefore, by (36), we obtain the following theorem.

Theorem 6. For λ ∈ (0, 1) and a ∈ (0, ∞) we have

L∗
λ( f (t − a)U(t − a)) = (1 + λs)−

a
λ L∗

λ( f (t)), (37)

where U(t − a) is the Heviside function.

Fourthly, we observe the modified degenerate Laplace transformation of the convolution f ∗ g of
two function f , g as follows:

L∗
λ( f )L∗

λ(g) =
(∫ ∞

0
(1 + λs)−

t
λ f (t)dt

)(∫ ∞

0
(1 + λs)−

τ
λ g(τ)dτ

)
=
∫ ∞

0

∫ ∞

0
(1 + λs)−

t+τ
λ f (t)g(τ)dtdτ

=
∫ ∞

0
f (t)

∫ ∞

τ
(1 + λs)−

μ
λ g(μ − τ)dμdτ

=
∫ ∞

0

∫ ∞

τ
f (t)(1 + λs)−

μ
λ g(μ − τ)dμdτ

=
∫ ∞

0
( f ∗ g) (1 + λs)−

μ
λ dμ

= Lλ( f ∗ g).

(38)

Therefore, by (38), we obtain the following theorem.

Theorem 7. For λ ∈ (0, 1], we have

L∗
λ( f ∗ g) = L∗

λ( f )L∗
λ(g). (39)

We note that

L∗
λ(1) =

∫ ∞

0
(1 + λs)−

t
λ 1dt

= − λ

log(1 + λs)
(1 + λs)−

t
λ |∞0

=
λ

log(1 + λs)
.

(40)

By (40), we have

L∗
λ( f ∗ 1) = L∗

λ( f )L∗
λ(1) = L∗

λ( f )
λ

log(1 + λs)
. (41)

Therefore, by (41), we obtain the following theorem.

Theorem 8. For λ ∈ (0, 1], we have

L∗−1
λ (L∗

λ( f )
λ

log(1 + λs)
) = f ∗ 1(t) =

∫ t

0
f (t)dt. (42)
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Fifthly, we observe that the modified degenerate Laplace transformation of derivative of f which
is f (t) = 0((1 + λs)−

t
λ ), where f (t) = 0(u(t)) means

L∗
λ( f ′) =

∫ ∞

0
(1 + λs)−

t
λ f ′dt

= (1 + λs)−
t
λ f (t) |∞0 +

∫ ∞

0

log(1 + λs)
λ

(1 + λs)−
t
λ f (t)dt

= − f (0) +
log(1 + λs)

λ
L∗

λ( f ).

(43)

and L∗
λ( f (2)) =

∫ ∞

0
(1 + λs)−

t
λ f (2)dt

= (1 + λs)−
t
λ f ′(t) |∞0 +

log(1 + λs)
λ

∫ ∞

0
(1 + λs)−

t
λ f ′(t)dt

= − f (0) +
log(1 + λs)

λ

(
− f (0) +

log(1 + λs)
λ

L∗
λ( f )

)
=

(
log(1 + λs)

λ

)2

L∗
λ( f )− log(1 + λs)

λ
f (0)− f ′(0).

(44)

By using mathematical induction, we obtain the following theorem.

Theorem 9. For λ ∈ (0, 1], we have

L∗
λ( f (n)) =

(
log(1 + λs)

λ

)n
L∗

λ( f )−
n−1

∑
i=0

(
log(1 + λs)

λ

)n−1−i
f (i)(0). (45)

Finally, we observe

dF∗
λ

ds
=
∫ ∞

0

λ

1 + λs
(− t

λ
)(1 + λs)−

t
λ f (t)dt

= − 1
1 + λs

∫ ∞

0
(1 + λs)−

t
λ t f (t)dt

= − 1
1 + λs

L∗
λ(t f (t)).

(46)

By (46), we obtain the following theorem.

Theorem 10. For λ ∈ (0, 1] and 0 < Re(s), we have

dF∗
λ

ds
= − 1

1 + λs
L∗

λ(t f (t)). (47)

4. Conclusions

Kim-Kim ([9]) defined a degenerate gamma function and a degenerate Laplace transformation.
The motivation of this paper is to define modified degenerate gamma functions and modified
degenerate Laplace transformations which are different to degenerate gamma function and degenerate
Laplace transformation and to obtain more useful results which are Theorems 7 and 8 for the
modified degenerate Laplace transformation. We do not obtain these result from the degenerate
Laplace transformation. Also, we investigated some results which are Theorems 1 and 3 for modified
degenerate gamma functions. Furthermore, Theorems 6 and 9 are some interesting properties which
are applied to differential equations in engineering mathematics.
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Abstract: The q-Bernoulli numbers and polynomials can be given by Witt’s type formulas as p-adic
invariant integrals on Zp. We investigate some properties for them. In addition, we consider two
variable q-Bernstein polynomials and operators and derive several properties for these polynomials
and operators. Next, we study the evaluation problem for the double integrals on Zp of two variable
q-Bernstein polynomials and show that they can be expressed in terms of the q-Bernoulli numbers and
some special values of q-Bernoulli polynomials. This is generalized to the problem of evaluating any
finite product of two variable q-Bernstein polynomials. Furthermore, some identities for q-Bernoulli
numbers are found.

Keywords: q-Bernoulli numbers; q-Bernoulli polynomials; two variable q-Bernstein polynomials;
two variable q-Bernstein operators; p-adic integral on Zp

1. Introduction

Let p be a fixed prime number. Throughout this paper, N, Zp, Qp, and Cp will denote the set of
natural numbers, the ring of p-adic integers, the field of p-adic rational numbers, and the completion
of the algebraic closure of Qp, respectively. The p-adic norm | · |p is normalized as |p|p = 1

p . Assume

that q is an indeterminate in Cp such that |1 − q|p < p−
1

p−1 .
It is known that the q-number is defined by

[x]q =
1 − qx

1 − q
,

see [1–20].
Please note that lim

q→1
[x]q = x. Let UD(Zp) be the space of uniformly differentiable functions on

Zp. For f ∈ UD(Zp), the p-adic q-integral on Zp is defined by Kim as

Iq( f ) =
∫
Zp

f (x)dμq(x) = lim
N→∞

1
[pN ]q

pN−1

∑
x=0

f (x)qx, (1)

see [9,10].

Symmetry 2018, 10, 451; doi:10.3390/sym10100451 www.mdpi.com/journal/symmetry177
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As q → 1 in (1), we have the p-adic integral on Zp which is given by

I1( f ) = lim
q→1

Iq( f ) =
∫
Zp

f (x)dμ1(x) = lim
N→∞

1
pN

pN−1

∑
x=0

f (x), (2)

see [7–11,17].
From (2), we note that

I1( f1)− I1( f ) = f ′(0), (3)

see [9]. Where f1(x) = f (x + 1) and f ′(0) = d f (x)
dx |x=0.

Thus, by (3), we get

∫
Zp

e(x+y)tdμ1(y) =
t

et − 1
ext =

∞

∑
n=0

Bn(x)
tn

n!
, (4)

see [6,9], where Bn(x) are the ordinary Bernoulli polynomials.
From (4), we note that ∫

Zp
(x + y)ndμ1(y) = Bn(x), (n ≥ 0), (5)

see [7–11,17,18].
When x = 0, Bn = Bn(0), (n ≥ 0), are called the ordinary Bernoulli numbers.
The Equation (4) implies the following recurrence relation for Bernoulli numbers:

B0 = 1, (B + 1)n − Bn =

{
1 if n = 1,
0 if n > 1,

(6)

with the usual convention about replacing Bn by Bn (see [21]).
In [3,4], L. Carlitz introduced the q-Bernoulli numbers given by the recurrence relation

β0,q = 1, q(qβq + 1)n − βn,q =

{
1 if n = 1,
0 if n > 1,

(7)

with the usual convention about replacing βn
q by βn,q.

He also defined q-Bernoulli polynomials as

βn,q(x) = (qxβq + [x]q)n =
n

∑
l=0

(
n
l

)
[x]n−l

q qlxβl,q, (8)

see [3,4].
In 1999, Kim proved the following formula.∫

Zp
[x + y]nq dμq(y) = βn,q(x), (n ≥ 0), (9)

see [10].
In the view of (5) and (9), we define the q-Bernoulli polynomials, different from Carlitz’s q-Bernoulli

polynomials, as

Bn,q(x) =
∫
Zp

[x + y]nq dμ1(y), (n ≥ 0), (10)

see [8,9].
When x = 0, Bn,q = Bn,q(0) are called the q-Bernoulli numbers.
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From (3) and (10), we have

B0,q = 1, (qBq + 1)n − Bn,q =

{
log q
q−1 if n = 1,

0 if n > 1,
(11)

with the usual convention about replacing Bn
q by Bn,q.

By (10), we easily get

Bn,q(x) = (qxBq + [x]q)n =
n

∑
l=0

(
n
l

)
[x]n−l

q qlxBl,q, (12)

see [9].
As is known, the p-adic q-Bernstein operator is given by

Bn,q( f |x) =
n

∑
k=0

(
n
k

)
f
(

k
n

)
[x]kq[1 − x]n−k

q−1 =
n

∑
k=0

f
(

k
n

)
Bk,n(x|q),

where n, k ∈ N∪ {0}, x ∈ Zp, and f is a continuous function on Zp (see [7]). Here

Bk,n(x|q) =
(

n
k

)
[x]kq[1 − x]n−k

q−1 , (n, k ≥ 0),

are called the p-adic q-Bernstein polynomials of degree n (see [7]). Please note that lim
q→1

Bk,n(x|q) =
Bk,n(x), where Bk,n are the Bernstein polynomials (see [1,2,18–20,22]).

Here we cannot go without mentioning that Phillips (see [16]) introduced earlier in 1997 a different
version of q-Bernstein polynomials from Kim’s. Let f be a function defined on [0, 1], q any positive real
number, and let

[n]q! = [1]q[2]q . . . [n]q, (n ≥ 1), [0]q! = 1,
[n

k

]
q
=

[n]q!
[k]q![n − k]q!

.

Then Phillips’ q-Bernstein polynomial of order n for f is given by

Bn( f , q; x) =
n

∑
k=0

f (
[k]q
[n]q

)
[n

k

]
q

xk
n−1−k

∏
s=0

(1 − qsx),

Many results of Phillips’ q-Bernstein polynomials for q > 1 were obtained for instance in [14,15],
while those for q ∈ (0, 1) were derived for example in [12,13]. However, all of these and other related
papers deal only with analytic properties of those q-Bernstein polynomials and some applications
of them.

The Volkenborn integral and the fermionic p-adic, the p-adic q-invariant and the fermionic
p-adic q-invariant integrals introduced by Kim have been studied for more than twenty years.
Numberous results of arithmetic or combinatorial nature have been found by Kim and his colleagues
around the world.

The present and related paper (see [5,6]) concern about Kim’s q-Bernstein polynomials which
have some merits over Phillips’. Indeed, by considering p-adic integrals on Zp of them we can easily
derive integral representations of q-Bernoulli numbers in the present paper, those of a q-analogue
of Euler numbers in [5] and those of q-Euler numbers in [6]. These approaches also yield some
identities for q-Bernoulli numbers, q-analogue of Euler numbers and q-Euler numbers. In conclusion,
the Phillips’ q-Bernstein polynomials are more analytic nature, while the Kim’s are more arithmetic
and combinatorial nature.
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In this paper, we will study q-Bernoulli numbers and polynomials, which is introduced as p-adic
invariant integrals on Zp, and investigate some properties for these numbers and polynomials. Also,
we will consider two variable q-Bernstein polynomials and operators and derive several properties
for these polynomials and operators. Next, we will consider p-adic integrals on Zp of any finite
product of two variable q-Bernstein polynomials and show that they can be expressed in terms of the
q-Bernoulli numbers and some special values of q-Bernoulli polynomials. Furthermore, some identities
for q-Bernoulli numbers will be found.

2. Some Integral Representations of q-Bernoulli Numbers and Polynomials

First, we consider the two variable q-Bernstein operator of order n which is given by

Bn,q( f |x1, x2) =
n

∑
k=0

(
n
k

)
f
(

k
n

)
[x1]

k
q[1 − x2]

n−k
q−1 =

n

∑
k=0

f
(

k
n

)
Bk,n(x1, x2|q),

where n ∈ N, and x1, x2 ∈ Zp.
Here, for n, k ≥ 0,

Bk,n(x1, x2|q) =
(

n
k

)
[x1]

k
q[1 − x2]

n−k
q−1 (13)

are called two variable q-Bernstein polynomials of degree n (see [6,7]). In particular, this implies
that Bk,n(x1, x2|q) = 0, for 0 ≤ n < k. In (13), if x1 = x2 = x, then Bk,n(x, x|q) = Bk,n(x|q) are the
q-Bernstein polynomials. It is not difficult to show that the generating function of Bk,n(x1, x2|q) is
given by

F(k)
q (x1, x2|t) =

(t[x1]q)
k

k!
e(t[1−x2]q−1 ) =

∞

∑
n=k

Bk,n(x1, x2|q) tn

n!
, (14)

where k ∈ N∪ {0} (see [6,7]).
From (13), we easily get

Bn−k,n(1 − x2, 1 − x1|q−1) = Bk,n(x1, x2|q), (0 ≤ k ≤ n).

For 1 ≤ k ≤ n − 1, we have the following properties (see [6,7]):

[1 − x2]q−1 Bk,n−1(x1, x2|q) + [x1]qBk−1,n−1(x1, x2|q) = Bk,n(x1, x2|q), (15)

∂

∂x1
Bk,n(x1, x2|q) = log q

q − 1
n
(
(q − 1)[x1]qBk−1,n−1(x1, x2|q) + Bk−1,n−1(x1, x2|q)

)
, (16)

∂

∂x2
Bk,n(x1, x2|q) = log q

1 − q
n((q − 1)[x2]qBk,n−1(x1, x2|q) + Bk,n−1(x1, x2|q)). (17)

From (13) and q-Bernstein operator, we note that

Bn,q(1|x1, x2) =
n

∑
k=0

(
n
k

)
[x1]

k
q[1 − x2]

n−k
q−1 = (1 + [x1]q − [x2]q)

n, (18)

Bn,q(t|x1, x2) = [x1]q(1 + [x1]q − [x2]q)
n−1,

Bn,q(t2|x1, x2) =
n − 1

n
[x1]

2
q(1 + [x1]q − [x2]q)

n−2 +
[x1]q

n
(1 + [x1]q − [x2]q)

n−1,

and

Bn,q( f |x1, x2) =
n

∑
l=0

(
n
l

)
[x2]

l
q

l

∑
k=0

(
l
k

)
(−1)l−k f

(
k
n

)(
[x1]q
[x2]q

)k

, (19)

where n ∈ N and f is a continuous function on Zp.
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To see this, we first observe that

[1 − x2]q−1 = 1 − [x2]q,
(

n
k

)(
n − k
l − k

)
=

(
n
l

)(
l
k

)
.

Then (19) can be obtained as follows:

B( f |x1, x2) =
n

∑
k=0

f (
k
n
)

(
n
k

)
[x1]

k
q(1 − [x2]q)

n−k

=
n

∑
k=0

f (
k
n
)

(
n
k

)
[x1]

k
q

n−k

∑
l=0

(
n − k

l

)
(−1)l [x2]

l
q

=
n

∑
k=0

f (
k
n
)

(
n
k

)
[x1]

k
q

n

∑
l=k

(
n − k
l − k

)
(−1)l−k[x2]

l−k
q

=
n

∑
l=0

(
n
l

)
[x2]

l
q

l

∑
k=0

(
l
k

)
(−1)l−k f

(
k
n

)(
[x1]q
[x2]q

)k

.

It is easy to show that

1
(1 + [x1]q − [x2]q)n−j

n

∑
k=j

(k
j)

(n
j)

Bk,n(x1, x2|q) = [x1]
j
q, (20)

where j ∈ N∪ {0} and x1, x2 ∈ Zp.
Indeed, by making use of (18), we see that

n

∑
k=j

(k
j)

(n
j)

Bk,n(x1, x2|q) =
n

∑
k=j

(
n − j
k − j

)
[x1]

k
q[1 − x2]

n−k
q−1

=
n−j

∑
k=0

(
n − j

k

)
[x1]

k+j
q [1 − x2]

n−j−k
q−1

= [x1]
j(1 + [x1]q − [x2]q)

n−j.

From (2), we have∫
Zp

[1 − x + y]nq−1 dμ1(y) = (−1)nqn
∫
Zp

[x + y]nq dμ1(y), (n ≥ 0). (21)

By (10) and (21), we get

Bn,q−1(1 − x) = (−1)nqnBn,q(x), (n ≥ 0). (22)

Again, from (11) and (12), we can derive the following equation.

Bn,q(2) = nq
log q
q − 1

+ (qBq + 1)n = nq
log q
q − 1

+ Bn,q, (n > 1). (23)

Thus, by (23), we obtain the following lemma.

Lemma 1. For n ∈ N with n > 1, we have

Bn,q(2) = nq
log q
q − 1

+ Bn,q.
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By (2), (10) and (22), we get∫
Zp

[1 − x]nq−1 dμ1(x) = (−1)nqn
∫
Zp

[x − 1]nq dμ1(x)

= (−1)nqnBn,q(−1)

= Bn,q−1(2), (n ≥ 0).

(24)

For n ∈ N with n > 1, by (21), Lemma 1, and (24), we have∫
Zp

[1 − x]nq−1 dμ1(x) =
∫
Zp

[x + 2]nq−1 dμ1(x)

= (−1)nqn
∫
Zp

[x − 1]nq dμ1(x)

= n
log q
q − 1

+
∫
Zp

[x]nq−1 dμ1(x)

=
n log q
q − 1

+ Bn,q−1 .

(25)

Let us take the double p-adic integral on Zp for the two variable q-Bernstein polynomials.
Then we have ∫

Zp

∫
Zp

Bk,n(x1, x2|q)dμ1(x1)dμ1(x2)

=

(
n
k

) ∫
Zp

∫
Zp

[x1]
k
q[1 − x2]

n−k
q−1 dμ1(x1)dμ1(x2)

=

(
n
k

)
Bk,q

∫
Zp

[1 − x2]
n−k
q−1 dμ1(x2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n
k)Bk,q(Bn−k,q−1 +

log q
q−1 (n − k)), if n > k + 1,

(k + 1)Bk,qB1,q−1(2), if n = k + 1,

Bk,q, if n = k,

0, if 0 ≤ n < k.

(26)

Therefore, we obtain the following theorem.

Theorem 1. For n, k ∈ N∪ {0}, we have∫
Zp

∫
Zp

Bk,n(x1, x2|q)dμ1(x1)dμ1(x2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n
k)Bk,q(Bn−k,q−1 +

log q
q−1 (n − k)), if n > k + 1,

(k + 1)Bk,qB1,q−1(2), if n = k + 1,

Bk,q if n = k,

0, if 0 ≤ n < k.
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For n, k ∈ N∪ {0}, we have∫
Zp

∫
Zp

Bk,n(x1, x2|q)dμ1(x1)dμ1(x2)

=
∫
Zp

∫
Zp

(
n
k

)
[x1]

k
q[1 − x2]

n−k
q−1 dμ1(x1)dμ1(x2)

=

(
n
k

) ∫
Zp

∫
Zp

(1 − [1 − x1]q−1)k[1 − x2]
n−k
q−1 dμ1(x1)dμ1(x2)

=

(
n
k

) k

∑
l=0

(
k
l

)
(−1)k−l

∫
Zp

∫
Zp

[1 − x1]
k−l
q−1 [1 − x2]

n−k
q−1 dμ1(x1)dμ1(x2)

=

(
n
k

) ∫
Zp

[1 − x2]
n−k
q−1 dμ1(x2)

×
(

1 − k
∫
Zp

[1 − x1]q−1 dμ1(x1) +
k−2

∑
l=0

(
k
l

)
(−1)k−l

(
(k − l)

log q
q − 1

+ Bk−l,q−1

))
.

(27)

Thus, by (27), we get

(
n
k

)−1
∫
Zp

∫
Zp

Bk,n(x1, x2|q)dμ1(x1)dμ1(x2)∫
Zp

[1 − x2]
n−k
q−1 dμ1(x2)

= 1 − k
∫
Zp

[1 − x1]q−1 dμ1(x1) +
k−2

∑
l=0

(
k
l

)
(−1)k−l

(
(k − l)

log q
q − 1

+ Bk−l,q−1

)
= 1 − k

(
1 − log q − q + 1

(q − 1)2

)
+ k

k−2

∑
l=0

(
k − 1

l

)
(−1)k−l log q

q − 1
+

k−2

∑
l=0

(−1)k−l
(

k
l

)
Bk−l,q−1

(28)

= 1 − k
(

1 − log q − q + 1
(q − 1)2

)
+ k

log q
q − 1

+
k−2

∑
l=0

(−1)k−l
(

k
l

)
Bk−l,q−1

= 1 − kq
(

q − log q − 1
(q − 1)2

)
+

k−2

∑
l=0

(−1)k−l
(

k
l

)
Bk−l,q−1 .

(29)

Therefore, by (28), we obtain the following theorem.

Theorem 2. For n, k ∈ N∪ {0} with k > 1, we have∫
Zp

∫
Zp

Bk,n(x1, x2|q)dμ1(x1)dμ1(x2)

(n
k)
∫
Zp

[1 − x2]
n−k
q−1 dμ1(x2)

=

(
n
k

)(
1 − kq

(
q − log q − 1
(q − 1)2

)
+

k−2

∑
l=0

(−1)k−l
(

k
l

)
Bk−l,q−1

)
.

Therefore, by Theorems 1 and 2, we obtain the following corollary.

Corollary 1. For k ∈ N with k > 1, we have

Bk,q = 1 − kq
(

q − log q − 1
(q − 1)2

)
+

k−2

∑
l=0

(−1)k−l
(

k
l

)
Bk−l,q−1 .
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For m, n ∈ N∪ {0}, we have∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dμ1(x1)dμ1(x2)

=

(
n
k

)(
m
k

) ∫
Zp

[x1]
2k
q dμ1(x1)

∫
Zp

[1 − x2]
n+m−2k
q−1 dμ1(x2).

(30)

Thus, by (29), we get∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dμ1(x1)dμ1(x2)∫
Zp

[1 − x2]
n+m−2k
q−1 dμ1(x2)

=

(
n
k

)(
m
k

)
B2k,q.

Hence, we have the following proposition.

Proposition 1. For m, n, k ∈ N∪ {0}, we have∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dμ1(x1)dμ1(x2)∫
Zp

[1 − x2]
n+m−2k
q−1 dμ1(x2)

=

(
n
k

)(
m
k

)
B2k,q.

Let m, n, k ∈ N∪ {0}. Then we get∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dμ1(x1)dμ1(x2)

=
2k

∑
l=0

(
n
k

)(
m
k

)(
2k
l

)
(−1)2k−l

×
∫
Zp

∫
Zp

[1 − x1]
2k−l
q−1 [1 − x2]

n+m−2k
q−1 dμ1(x1)dμ1(x2)

(31)

Thus, from (30), we have

(
n
k

)−1(m
k

)−1
∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dμ1(x1)dμ1(x2)∫
Zp

[1 − x2]
n+m−2k
q−1 dμ1(x2)

= 1 − 2k
∫
Zp

[1 − x1]q−1 dμ1(x1) +
2k−2

∑
l=0

(
2k
l

)
(−1)2k−l

∫
Zp

[1 − x1]
2k−l
q−1 dμ1(x1)

= 1 − 2k
(

1 − log q − q + 1
(q − 1)2

)
+ 2k

log q
q − 1

+
2k−2

∑
l=0

(
2k
l

)
(−1)2k−l B2k−l,q−1

= 1 − 2kq
(

q − log q − 1
(q − 1)2

)
+

2k−2

∑
l=0

(
2k
l

)
(−1)2k−l B2k−l,q−1 .

(32)

By (31), we have the following proposition.
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Proposition 2. For m, n, k ∈ N∪ {0}, with k ≥ 1, we have∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dμ1(x1)dμ1(x2)∫
Zp

[1 − x2]
n+m−2k
q−1 dμ1(x2)

=

(
n
k

)(
m
k

)(
1 − 2kq

(
q − log q − 1
(q − 1)2

)
+

2k−2

∑
l=0

(
2k
l

)
(−1)2k−l B2k−l,q−1

)
.

Therefore, by Propositions 1 and 2, we obtain the following corollary.

Corollary 2. For k ∈ N, we have

B2k,q = 1 − 2k
(

q2 − q − log q
(q − 1)2

)
+

2k−2

∑
l=0

(
2k
l

)
(−1)2k−l

(
(2k − l)

log q
q − 1

+ B2k−l,q−1

)
.

For m ∈ N, let n1, n2, · · · , nm, k ∈ N∪ {0}. Then we note that

∫
Zp

∫
Zp

(
m

∏
i=1

Bk,ni
(x1, x2|q)

)
dμ1(x1)dμ1(x2)

=
mk

∑
l=0

(
m

∏
i=1

(
ni
k

))(
mk
l

)
(−1)mk−l

×
∫
Zp

∫
Zp

[1 − x1]
mk−l
q−1 [1 − x2]

n1+n2+···+nm−mk
q−1 dμ1(x1)dμ1(x2)

(33)

Thus, by (32), we have

m

∏
i=1

(
ni
k

)−1
∫
Zp

∫
Zp

(
∏m

i=1 Bk,ni
(x1, x2|q)

)
dμ1(x1)dμ1(x2)∫

Zp
[1 − x2]

n1+n2+···+nm−mk
q−1 dμ1(x2)

=
mk

∑
l=0

(
mk
l

)
(−1)mk−l

∫
Zp

[1 − x1]
mk−l
q−1 dμ1(x1)

= 1 − mk
∫
Zp

[1 − x1]q−1 dμ1(x1)

+
mk−2

∑
l=0

(
mk
l

)
(−1)mk−l

∫
Zp

[1 − x1]
mk−l
q−1 dμ1(x1)

Therefore we obtain the following theorem.

Theorem 3. For n1, n2, · · · , nm ∈ N∪ {0}, and k, m ∈ N with mk > 1, we have

m

∏
i=1

(
ni
k

)−1
∫
Zp

∫
Zp

(
∏m

i=1 Bk,ni
(x1, x2|q)

)
dμ1(x1)dμ1(x2)∫

Zp
[1 − x2]

n1+n2+···+nm−mk
q−1 dμ1(x2)

= 1 − mk
(

q2 − q − log q
(q − 1)2

)
+

mk−2

∑
l=0

(
mk
l

)
(−1)mk−l

(
(mk − l)

log q
q − 1

+ Bmk−l,q−1

)
.
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On the other hand, we easily get∫
Zp

∫
Zp

(
∏m

i=1 Bk,ni
(x1, x2|q)

)
dμ1(x1)dμ1(x2)∫

Zp
[1 − x2]

n1+n2+···+nm−mk
q−1 dμ1(x2)

=
m

∏
i=1

(
ni
k

)
Bmk,q. (34)

Therefore, by Theorem 3 and (33), we obtain the following corollary.

Corollary 3. For m, k ∈ N with mk > 1, we have

Bmk,q = 1 − mk
(

q2 − q − log q
(q − 1)2

)
+

mk−2

∑
l=0

(
mk
l

)
(−1)mk−l

(
(mk − l)

log q
q − 1

+ Bmk−l,q−1

)
.

3. Conclusions

Here we studied q-Bernoulli numbers and polynomials which are different from the classical
Carlitz q-Bernoulli numbers βn,q and polynomials βn,q(x), and arise naturally from some p-adic
invariant integrals on Zp, as was shown in (10). After investigating some of their properties, we turned
our attention to two variable q-Bernstein polynomials and operators, which was introduced by Kim
and generalizes the single variable q-Bernstein polynomials and operators in [6]. As a preparation,
we derived several properties of these polynomials and operators.

Next, we considered the evaluation problem for the double integrals on Zp of two variable
q-Bernstein polynomials and showed that they can be expressed in terms of the q-Bernoulli numbers
and some special values of q-Bernoulli polynomials. This was further generalized to the problem
of evaluating the product of two and that of an arbitrary number of two variable q-Bernstein
polynomials. It was shown again that they can be expressed in terms of the q-Bernoulli numbers.
Also, some identities for q-Bernoulli numbers were found along the way.

Finally, we would like to mention that, along the same line, in [5] we studied some properties
of a q-analogue of Euler numbers and polynomials arising from the p-adic fermionic integrals on Zp.
Then we considered p-adic fermionic integrals on Zp of the two variable q-Bernstein polynomials and
of products of the two variable q-Bernstein polynomials, and showed that they can be expressed in
terms of the q-analogues of Euler numbers.
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1. Introduction

Let n ≥ 0 be an integer, the famous Fubini polynomials Fn(y) are defined according to the
coefficients of following generating function:

1
1 − y (et − 1)

=
∞

∑
n=0

Fn(y)
n!

· tn, (1)

where F0(y) = 1, F1(y) = y, and so on.
These polynomials are closely related to the Stirling numbers and Euler numbers. For example,

if y = − 1
2 , then (1) becomes

2
1 + et =

∞

∑
n=0

En

n!
· tn, (2)

where En denotes the Euler numbers.
At the same time, the Fubini polynomials with two variables can also be defined by the following

identity (see [1,2]):
ext

1 − y (et − 1)
=

∞

∑
n=0

Fn(x, y)
n!

· tn,

and Fn(y) = Fn(0, y) for all integers n ≥ 0. Many scholars have studied the properties of Fn(x, y), and
have obtained many important works. For example, T. Kim et al. proved a series of identities related
to Fn(x, y) (see [2,3]), one of which is

Fn(x, y) =
n

∑
l=0

(
n
l

)
xl · Fn−l(y), n ≥ 0.

Zhao Jianhong and Chen Zhuoyu [4] studied the computational problem of the sums

∑
a1+a2+···+ak=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · · Fak (y)
(ak)!

,

Symmetry 2018, 10, 359; doi:10.3390/sym10090359 www.mdpi.com/journal/symmetry188
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where the summation in the formula above denotes all k-dimension non-negative integer coordinates
(a1, a2, · · · , ak) such that a1 + a2 + · · ·+ ak = n. They proved the identity

∑a1+a2+···+ak=n
Fa1 (y)
(a1)!

· Fa2 (y)
(a2)!

· · · Fak (y)
(ak)!

= 1
(k−1)!(y+1)k−1 · 1

n! ∑k−1
i=0 C(k − 1, i)Fn+k−1−i(y),

(3)

where the sequence C(k, i) is defined for positive integer k and i with 0 ≤ i ≤ k, C(k, 0) = 1, C(k, k) = k!
and

C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i), for all 0 ≤ i < k,

providing C(k, i) = 0, if i > k.
For clarity, for 1 ≤ k ≤ 9, we list values of C(k, i) in the following Table 1.

Table 1. Values of C(k, i).

C(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

k=1 1 1
k=2 1 3 2
k=3 1 6 11 6
k=4 1 10 35 50 24
k=5 1 15 85 225 274 120
k=6 1 21 175 735 1624 1764 720
k=7 1 28 322 1960 6769 13,132 13,068 5040
k=8 1 36 546 4536 22,449 67,284 118,124 109,584 40,320
k=9 1 45 870 9450 63,273 269,325 723,680 1,172,700 1,026,576 362,880

Meanwhile, Zhao Jianhong and Chen Zhuoyu [4] proposed some conjectures related to the
sequence. We believe that this sequence is meaningful because it satisfies some very interesting
congruence properties, such as

C(p − 2, i) ≡ 1 (mod p) (4)

for all odd primes p and integers 0 ≤ i ≤ p − 2. The equivalent conclusion is

C(p − 1, i) ≡ 0 (mod p) (5)

for all odd primes p and positive integers 1 ≤ i ≤ p − 2. Since some related content can be found in
references [5–15], we will not go through all of them here.

The aim of this paper is to prove congruence (5) by applying the elementary method and the
properties of the second kind Stirling numbers. That is, we will solve the conjectures in [4], which are
listed in the following.

Theorem 1. Let p be an odd prime. For any integer 1 ≤ i ≤ p − 2, we have congruence

C(p − 1, i) ≡ 0 (mod p) .

From this theorem and (3), we can deduce following three corollaries:

Corollary 1. For any positive integer n and odd prime p, we have

Fn+p−1(y)− Fn(y) ≡ 0 (mod p) .

Corollary 2. For any positive integer n and odd prime p, we have
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En+p−1 − En ≡ 0 (mod p).

Corollary 3. For any odd prime p, we have the congruences

2Ep ≡ −1 (mod p), 4Ep+2 ≡ 1 (mod p), and 2Ep+4 ≡ −1 (mod p).

Note. Since En is a rational number, we can denote En =
Un

Vn
, where Un and Vn are integers with

(Un, Vn) = 1. Based on this, in our paper, the expression En ≡ 0 (mod p) means p | Un, while p � Vn.

2. Several Lemmas

Lemma 1. For any positive integer k, we have the identity

k!y(y + 1)k−1 =
k−1

∑
i=0

C(k − 1, i)Fk−i(y).

Proof. Taking n = 1 in (3), and noting that F0(y) = 1, F1(y) = y, and the equation a1 + a2 + · · ·+ ak = 1
holds if and only if one of ai is 1, others are 0. The number of the solutions of this equation is (k

1) = k.
So, from (3), we have

∑
a1+a2+···+ak=1

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · · Fak (y)
(ak)!

=

(
k
1

)
y = ky

=
1

(k − 1)!(y + 1)k−1 ·
k−1

∑
i=0

C(k − 1, i)Fk−i(y)

or identity

k!y(y + 1)k−1 =
k−1

∑
i=0

C(k − 1, i)Fk−i(y),

which proves Lemma 1.

Lemma 2. For any positive integer n, we have the identity

Fn(y) =
n

∑
k=0

S(n, k) k! yk, (n ≥ 0),

where S(n, k) are the second kind Stirling numbers, which are defined for any integer k, n with 0 ≤ k ≤ n as:

S(n, k) = kS(n − 1, k) + S(n − 1, k − 1)

where S(0, 0) = 1, S(n, 0) = 0 and S(0, k) = 0 for n, k > 0.

Proof. See Reference [2].

Lemma 3. For any positive integers n and k, we have

S(n, k) =
1
k!

k

∑
j=0

(
k
j

)
jn(−1)k−j.

Proof. See Theorem 4.3.12 of [16].
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Lemma 4. For any odd prime p and positive integer 2 ≤ k ≤ p − 1, we have the congruence

k!S(p, k) ≡ 0 (mod p) .

Proof. From the definition and properties of S(n, k), we have S(n, k) = 0, if k > n. For any integers
0 ≤ j ≤ p − 1, from the famous Fermat’s little theorem, we have the congruence jp ≡ j (mod p).
From this congruence and Lemma 3, we have

k!S(p, k) =
k

∑
j=0

(
k
j

)
jp(−1)k−j ≡

k

∑
j=0

(
k
j

)
j(−1)k−j ≡ k!S(1, k) ≡ 0 (mod p) ,

if k ≥ 2. This completes the proof of Lemma 4.

3. Proof of the Theorem

In this section, we will prove Theorem by mathematical induction. Taking k = p in Lemma 1 and
noting that C(p − 1, 0) = 1 and C(p − 1, p − 1) = (p − 1)!, we have:

p!y(y + 1)p−1 =
p−1

∑
i=0

C(p − 1, i)Fp−i(y)

= Fp(y) + y(p − 1)! +
p−2

∑
i=1

C(p − 1, i)Fp−i(y).

Note that (p − 1)! + 1 ≡ 0 (mod p), which implies

Fp(y)− y +
p−2

∑
i=1

C(p − 1, i)Fp−i(y) ≡ 0 (mod p) . (6)

From (6), we have the congruence

y − Fp(y) ≡
p−2

∑
i=1

C(p − 1, i)Fp−i(y) (mod p) . (7)

From Lemma 2, we have

Fp(y) =
p

∑
k=0

S(p, k) k! yk (8)

and

F(p−1)
p (0) = S(p, p − 1) (p − 1)! · (p − 1)!, (9)

where F(k)
n (y) denotes the k-order derivative of Fn(y) for variable y.

F(p−1)
p−1 (0) = S(p − 1, p − 1) (p − 1)! · (p − 1)! = (p − 1)! · (p − 1)!. (10)

Then, applying Lemma 3 and Lemma 4 and noting that S(1, p − 1) = 0, we have

(p − 1)!S(p, p − 1) ≡ ∑
p−1
j=0 (p−1

j )jp(−1)p−1−j ≡ ∑
p−1
j=0 (p−1

j )j(−1)p−1−j

≡ (p − 1)!S(1, p − 1) ≡ 0 (mod p) .
(11)
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Combining (7), (9), (10), and (11), we have:

0 ≡ −S(p, p − 1)(p − 1)!(p − 1)! ≡ C(p − 1, 1)(p − 1)! · (p − 1)! (mod p) (12)

or

C(p − 1, 1) ≡ 0 (mod p) . (13)

That is, the theorem is true for i = 1.
Assume that the theorem is true for all 1 ≤ i ≤ s. That is,

C(p − 1, i) ≡ 0 (mod p)

for 1 ≤ i ≤ s < p − 1. It is clear that if s = p − 2, then the theorem is true.
If 1 < s < p − 2, then from (7) we have the congruence

y − Fp(y) ≡
p−2

∑
i=s+1

C(p − 1, i)Fp−i(y) (mod p) . (14)

In congruence (14), taking the (p − s − 1)-order derivative with respect to t, then let y = 0,
applying Lemma 2, we have:

−S(p, p − s − 1)(p − s − 1)! · (p − s − 1)!

≡ C(p − 1, s + 1)(p − s − 1)!(p − s − 1)! (mod p) .
(15)

Note that ((p − s − 1)!, p) = 1, from Lemma 4 and (15) we have the congruence

C(p − 1, s + 1)(p − s − 1)! ≡ −(p − s − 1)!S(p, p − s − 1) ≡ 0 (mod p) ,

which implies

C(p − 1, s + 1) ≡ 0 (mod p) .

That is, the theorem is true for i = s+ 1. Now the proof of the theorem completes by mathematical
induction.

Now, we prove Corollary 1. For any integer n ≥ 0, taking k = p in (3) and noting that

n! ∑
a1+a2+···+ap=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · · Fap(y)
(ap)!

≡ 0 (mod p) ,

we have

p−1

∑
i=0

C(p − 1, i)Fn+p−1−i(y) ≡ 0 (mod p) . (16)

From our theorem, we have

p−2

∑
i=1

C(p − 1, i)Fn+p−1−i(y) ≡ 0 (mod p) . (17)
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Note that C(p − 1, 0) = 1, C(p − 1, p − 1) = (p − 1)!. Combining (16) and (17), we can deduce
the congruence

Fn+p−1(y)− Fn(y) ≡ 0 (mod p) .

Now the proof of Corollary 1 completes. Since Corollarys 2 and 3 are the special situation of
Corollary 1, we will not prove Corollarys 2 and 3 here.
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Abstract: We study a q-analogue of Euler numbers and polynomials naturally arising from the
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1. Introduction

As is well known, the classical Bernstein polynomial of order n for f ∈ C[0, 1] is defined by
(see [1–3]),

Bn( f |x) =
n

∑
k=0

f
(

k
n

)
Bk,n(x), 0 ≤ x ≤ 1, (1)

where Bn is called the Bernstein operater of order n, and (see [4–30]),

Bk,n(x) =
(

n
k

)
xk(1 − x)n−k, n, k ≥ 0, (2)

are called the Bernstein basis polynomials (or Bernstein polynomials of degree n).
The Weierstrass approximation theorem states that every continuous function defined on [0, 1]

can be uniformly approximated as closely as desired by a polynomial function. In 1912, S. N. Bernstein
explicitly constructed a sequence of polynomials that uniformly approximates any given continuous
function f on [0, 1]. Namely, he showed that Bn( f |x) tends uniformly to f (x) as n → ∞ on [0, 1]
(see [3]). For q ∈ C, with 0 < |q| < 1, and n, k ∈ Z≥0, with n ≥ k, the q-Bernstein polynomials of
degree n are defined by Kim as (see [8])

Bk,n(x, q) =
(

n
k

)
[x]kq[1 − x]n−k

1
q

, (3)

Symmetry 2018, 10, 311; doi:10.3390/sym10080311 www.mdpi.com/journal/symmetry194
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where [x]q = 1−qx

1−q . For any f ∈ C[0, 1], the q-Bernstein operator of order n is defined as

Bn,q( f |x) =
n

∑
k=0

f
(

k
n

)
Bk,n(x, q) =

n

∑
k=0

f
(

k
n

)(
n
k

)
[x]kq[1 − x]n−k

1
q

, (4)

where 0 ≤ x ≤ 1, and n ∈ Z≥0, (see [8,13]).
Here we note that a different version of q-Bernstein polynomials from Kim’s was introduced

earlier in 1997 by Phillips (see [22]). His q-Bernstein polynomial of order n for f is defined by

Bn( f , q; x) =
n

∑
k=0

f (
[k]q
[n]q

)
[n

k

]
q

xk
n−1−k

∏
s=0

(1 − qsx),

where f is a function defined on [0, 1], q is any positive real number, and

[n
k

]
q
=

[n]q!
[k]q![n − k]q!

, [n]q! = [1]q[2]q . . . [n]q, (n ≥ 1), [0]q! = 1.

The properties of Phillips’ q-Bernstein polynomilas for q ∈ (0, 1) were treated for example
in [6,15,16,22–24], while those for q > 1 were developed for instance in [17–20].

A Bernoulli trial is an experiment where only two outcomes, whether a particular event A occurs
or not, are possible. Flipping of coin is an example of Bernoulli trial, where only two outcomes, namely
head and tail, are possible. Conventionally, it is said that the outcome of Bernoulli trial is a “success” if
A occurs and a “failure” otherwise. Let Pn(k) denote the probability of k successes in n independent
Bernoulli trials with the probability of success r. Then it is given by the binomial probability law

Pn(k) =
(

n
k

)
rk(1 − r)n−k, for k = 0, 1, 2, · · · , n. (5)

We remark here that the Bernstein basis is the probability mass function of the binomial
distribution from the definition of Bernstein polynomials. Let p be a fixed odd prime number.
Throughout this paper, we will use the notations Zp,Qp, and Cp to denote respectively the ring
of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of
Qp. The p-adic norm in Cp is normalized in such a way that |p|p = 1

p . It is known that in terms of the
recurrence relation the Euler numbers are given as follows (see [10,11]):

E0 = 1, (E + 1)n + En = 2δ0,n, (6)

where δn,k is the Kronecker’s symbol. Then the Euler polynomials can be given as (see [10])

En(x) =
n

∑
l=0

(
n
l

)
El xn−l , (7)

The q-Euler polynomials, considered by L. Carlitz, are given by

E0,q = 1, q(qEq + 1)n + En,q =

{
[2]q, if n = 0,
0, if n > 0,

(8)

with the understanding that En
q is to be replaced by En,q (see [5]). Note that limq→1 En,q = En, (n ≥ 0).

Let f (x) be a continuous function on Zp. Then the p-adic fermionic integral on Zp is defined by
Kim as (see [12])
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I−1( f ) =
∫
Zp

f (x)dμ−1(x) = lim
N→∞

pN−1

∑
x=0

f (x)(−1)x, (9)

where we notice that μ−1(x + pNZp) = (−1)x is a measure.
From (9), we note that (see [12])

I−1( f1) + I−1( f ) = 2 f (0), (10)

where f1(x) = f (x + 1). By (10), we easily get (see [25])∫
Zp
(x + y)ndμ−1(y) = En(x), (n ≥ 0), (11)

When x = 0, we note that
∫
Zp

xndμ−1(x) = En, (n ≥ 0). Let q be an indeterminate in Cp with

|1− q|p < p−
1

p−1 . Taking (11) into consideration, we may investigate a q-analogue of Euler polynomials
which are given by (see [12,26])∫

Zp
[x + y]nq dμ−1(y) = En,q(x), (n ≥ 0), (12)

When x = 0, En,q = En,q(0), (n ≥ 0) are said to be the q-Euler numbers. Using (9), we can easily
see that ∫

Zp
[x]nq dμ−1(x) =

2
(1 − q)n

n

∑
l=0

(
n
l

)
(−1)l 1

1 + ql

= 2
∞

∑
m=0

(−1)m[m]nq , (n ≥ 0).
(13)

Thus, by (13), we get

En,q = 2
∞

∑
m=0

(−1)m[m]nq =
2

(1 − q)n

n

∑
l=0

(
n
l

)
(−1)l 1

1 + ql . (14)

For n, k ≥ 0, with n ≥ k, and q ∈ Cp, with |1 − q|p < p−
1

p−1 , we define the p-adic q-Bernstein
polynomials as follows:

Bk,n(x, q) =
(

n
k

)
[x]kq[1 − x]n−k

1
q

. (15)

Then we consider the p-adic q-Bernstein operator defined for continuous functions f on Zp and
given by

Bn,q( f |x) =
n

∑
k=0

f
(

k
n

)
Bk,n(x, q), (x ∈ Zp). (16)

We study a q-analogue of Euler numbers and polynomials naturally arising from the p-adic
fermionic integrals on Zp and investigate some properties for these numbers and polynomials.
Then we will consider p-adic fermionic integrals on Zp of the two variable q-Bernstein polynomials,
recently introduced by Kim in [8], and demonstrate that they can be written in terms of the q-analogues
of Euler numbers. Further, from such p-adic integrals we will derive some identities for the q-analogues
of Euler numbers.
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2. q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials

We assume that q ∈ Cp, with |1 − q|p < p−
1

p−1 , throughout this section. From (12), we notice that

∞

∑
n=0

En,q(x)
tn

n!
=

∞

∑
m=0

(−1)me[m+x]qt. (17)

By (10), we get ∫
Zp
[x + 1]nq dμ−1(x) +

∫
Zp
[x]nq dμ−1(x) = 2δ0,n, (n ≥ 0). (18)

Thus, from (12), we have

En,q(1) + En,q =

{
2, if n = 0,
0, if n > 0.

(19)

On the other hand,

En,q(x) =
∫
Zp
[x + y]nq dμ−1(y)

=
n

∑
l=0

(
n
l

)
[x]n−l

q qlx
∫
Zp
[y]lqdμ−1(y)

=
n

∑
l=0

(
n
l

)
qlxEl,q[x]n−l

q =
(
qxEq + [x]q

)n ,

(20)

with the understanding that En
q is to be replaced by En,q. From (19) and (20), we note that

E0,q = 1, (qEq + 1)n + En,q =

{
2, if n = 0,
0, if n > 0.

(21)

Now, we observe that

En,q(2) = (q2Eq + 1 + q)n = (q(qEq + 1) + 1)n

=
n

∑
l=0

ql(qEq + 1)l
(

n
l

)
= 2 − E0,q −

n

∑
l=1

qlEl,q

(
n
l

)
= 2 −

n

∑
l=0

qlEl,q

(
n
l

)
= 2 − (qEq + 1)n.

(22)

Now, by combining (21) with (22), we have the following theorem.

Theorem 1. For any n ≥ 0, we have

En,q(2) = 2 + En,q, (n > 0), E0,q(2) = 1. (23)

Invoking (9), we can derive the following equation∫
Zp
[1 − x + y]nq−1 dμ−1(y) = (−1)nqn

∫
Zp
[x + y]nq dμ−1(y), (24)

where n is a nonnegative integer. By (12) and (24), we get

En,q−1(1 − x) = (−1)nqnEn,q(x), (n > 0). (25)
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On the other hand, we have∫
Zp
[1 − x]nq−1 dμ−1(x) = (−1)nqn

∫
Zp
[x − 1]nq dμ−1(x)

= (−1)nqnEn,q(−1),
(26)

as [−x]q−1 = −q[x]q. By (25) and (26), we get

∫
Zp
[1 − x]nq−1 dμ−1(x) = (−1)nqnEn,q(−1) = En,q−1(2). (27)

Therefore, by (23) and (27), we have

Theorem 2. For any n > 0, we have∫
Zp
[1 − x]nq−1 dμ−1(x) = 2 + En,q−1 . (28)

For q ∈ Cp, with |1 − q|p < p−
1

p−1 , and x1, x1 ∈ Zp, the two variable q-Bernstein polynomials are
defined by

Bk,n(x1, x2|q) =
{

(n
k)[x1]

k
q[1 − x2]

n−k
q−1 , if n ≥ k,

0, if n < k,
(29)

where n, k ≥ 0. From (29), we note that

Bn−k,n(1 − x2, 1 − x1|q−1) = Bk,n(x1, x2|q), Bk,n(x, x|q) = Bk,n(x, q), (30)

where n, k ≥ 0 and x1, x2 ∈ Zp. For continuous functions f on Zp, the two variable q-Bernstein operator
of order n is defined by

Bn,q( f |x1, x2) =
n

∑
k=0

f
(

k
n

)(
n
k

)
[x1]

k
q[1 − x2]

n−k
q−1

=
n

∑
k=0

f
(

k
n

)
Bk,n(x1, x2|q),

(31)

where n, k ∈ Z≥0, and x1, x2 ∈ Zp. In particular, if f = 1, then we have

Bn,q(1|x1, x2) =
n

∑
k=0

(
n
k

)
[x1]

k
q[1 − x2]

n−k
q−1

= (1 + [x1]q − [x2]q)
n,

(32)

where we used the fact
[1 − x]q−1 = 1 − [x]q. (33)

Taking the double p-adic fermionic integral on Zp as in the following, we have
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∫
Zp

∫
Zp

Bk,n(x1, x2|q)dμ−1(x1)dμ−1(x2)

=

(
n
k

) ∫
Zp
[x1]

k
qdμ−1(x1)

∫
Zp
[1 − x2]

n−k
q−1 dμ−1(x2)

=

{
(n

k)Ek,q(2 + En−k,q−1), if n > k,
Ek,q, if n = k.

(34)

Therefore, from (34) we obtain the next theorem.

Theorem 3. For any n, k ∈ Z≥0, with n ≥ k, we have∫
Zp

∫
Zp

Bk,n(x1, x2|q)dμ−1(x1)dμ−1(x2)

=

{
(n

k)En,q(2 + En,q−1), if n > k,
Ek,q, if n = k.

(35)

Making the use of the definition of the two variable q-Bernstein polynomials and from (33),
we notice that∫

Zp

∫
Zp

Bk,n(x1, x2|q)dμ−1(x1)dμ−1(x2)

=
k

∑
l=0

(
n

n − k

)(
k
l

)
(−1)k+l

∫
Zp

∫
Zp
[1 − x1]

k−l
q−1 [1 − x2]

n−k
q−1 dμ−1(x1)dμ−1(x2)

=

(
n
k

) ∫
Zp
[1 − x2]

n−k
q−1 dμ−1(x2)

k

∑
l=0

(
k
l

)
(−1)k−l

∫
Zp
[1 − x1]

k−l
q−1 dμ−1(x1)

=

(
n
k

) ∫
Zp
[1 − x2]

n−k
q−1 dμ−1(x2)

{
1 +

k−1

∑
l=0

(
k
l

)
(2 + Ek−l , q−1)

}
.

(36)

Therefore, from (34) and (36) we deduce the following theorem.

Theorem 4. For any k ≥ 0, we have

Ek,q = 2(2k − 1) +
k

∑
l=0

(
k
l

)
Ek−l,q−1 . (37)

For m, n, k ∈ Z≥0, we observe that∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dμ−1(x1)dμ−1(x2)

=

(
n
k

)(
m
k

) ∫
Zp
[x1]

2k
q dμ−1(x1)

∫
Zp
[1 − x2]

n+m−2k
q−1 dμ−1(x2)

=

(
n
k

)(
m
k

)
E2k,q

∫
Zp
[1 − x2]

n+m−2k
q−1 dμ−1(x2).

(38)

On the other hand,

199



Symmetry 2018, 10, 311

∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dμ−1(x1)dμ−1(x2)

=
2k

∑
l=0

(
n
k

)(
m
k

)(
2k
l

)
(−1)2k−l

×
∫
Zp

∫
Zp
[1 − x1]

2k−l
q−1 [1 − x2]

n+m−2k
q−1 dμ−1(x1)dμ−1(x2)

=

(
n
k

)(
m
k

) ∫
Zp
[1 − x2]

n+m−2k
q−1 dμ−1(x2)

×
{

1 +
2k−1

∑
l=0

(
2k
l

)
(−1)2k−l

∫
Zp
[1 − x1]

2k−l
q−1 dμ−1(x1)

}
.

(39)

Hence, by (28), (38) and (39), we arrive at the following theorem.

Theorem 5. For any k ∈ N, we have

E2k,q = −2 +
2k

∑
l=0

(
2k
l

)
(−1)2k−lE2k−l,q−1 . (40)

Let n1, n2, . . . , ns, k ∈ Z≥0, with s ∈ N. Then we clearly have

∫
Zp

∫
Zp

s

∏
i=1

Bk,ni
(x1, x2|q)dμ−1(x1)dμ−1(x2)

=
s

∏
i=1

(
ni
k

) ∫
Zp

∫
Zp
[x1]

sk
q [1 − x2]

n1+···+ns−sk
q−1 (x1)dμ−1(x2)

=
s

∏
i=1

(
ni
k

)
Esk,q

∫
Zp
[1 − x2]

n1+···+ns−sk
q−1 dμ−1(x2).

(41)

On the other hand,

∫
Zp

∫
Zp

s

∏
i=1

Bk,ni
(x1, x2|q)dμ−1(x1)dμ−1(x2)

=
sk

∑
l=0

s

∏
i=1

(
ni
k

)(
sk
l

)
(−1)sk−l

×
∫
Zp

∫
Zp
[1 − x1]

sk−l
q−1 [1 − x2]

n1+···+ns−sk
q−1 dμ−1(x1)dμ−1(x2).

(42)

By (41) and (42), we get

Esk,q =
sk

∑
l=0

(
sk
l

)
(−1)sk−l

∫
Zp

∫
Zp
[1 − x1]

sk−l
q−1 dμ−1(x1)

= 1 +
sk−1

∑
l=0

(
sk
l

)
(−1)sk−l

∫
Zp

∫
Zp
[1 − x1]

sk−l
q−1 dμ−1(x1).

(43)

Hence (28) and (43) together yield the next theorem.

Theorem 6. For any s ∈ N, we have

Esk,q = −2 +
sk

∑
l=0

(
sk
l

)
(−1)sk−lEsk−l,q−1 . (44)
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3. Conclusions

In the previous paper [8], the q-Bernstein polynomials were introduced as a generalization of the
classical Bernstein polynomials. Here we studied some properties of a q-analogue of Euler numbers and
polynomials arising from the p-adic fermionic integrals on Zp. Then we considered p-adic fermionic
integrals on Zp of the two variable q-Bernstein polynomials, recently introduced by Kim, and show that
they can be expressed in terms of the q-analogues of Euler numbers. Along the same line, we can introduce
a new q-Bernoulli numbers and polynomials, different from the classical Carlitz q-Bernoulli numbers βn,q

and polynomials βn,q(x), by considering the Volkenborn integrals in lieu of the p-adic fermionic integrals
on Zp. Then we may investigate Volkenborn integrals on Zp of the q-Bernstein polynomials and unveil
their connections with those new q-Bernoulli numbers which is our ongoing project.
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1. Introduction

For any integer n ≥ 0, the Fubini polynomials {Fn(y)} are defined by the coefficients of the
generating function

1
1 − y (et − 1)

=
∞

∑
n=0

Fn(y)
n!

· tn, (1)

where F0(y) = 1, F1(y) = y, and so on. Fn(1) = Fn are called Fubini numbers. These polynomials and
numbers are closely connected with the Stirling numbers. Some contents and propertities of Stirling
numbers can be found in reference [1]. T. Kim et al. [2] proved the identity

Fn(y) =
n

∑
k=0

S2(n, k) k! yk, (n ≥ 0),

where S2(n, k) are the Stirling numbers of the second kind. It not only associated Fubini polynomials
with Stirling numbers, but also stressed the importance of researching Fubini polynomials.

Please note that the identity (see [3,4])

2etx

1 + et =
∞

∑
n=0

En(x)
n!

· tn, (2)

where En(x) signifies the Euler polynomials.
It is distinct that if taking y = − 1

2 in (1) and x = 0 in (2), then from (1) and (2) we can get
the identity

En(0) = Fn

(
−1

2

)
, n ∈ N∗0 (3)
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where En(0) = En is the Euler number (see [5] for related contents).
On the other hand, two variable Fubini polynomials are defined by means of the following

(see [2,6])
ext

1 − y (et − 1)
=

∞

∑
n=0

Fn(x, y)
n!

· tn,

and Fn(y) = Fn(0, y) for all integers n ≥ 0. About the properties of Fn(x, y), several scholars have also
researched it, especially T. Kim and others have done a large amount of vital works. For instance, they
proved a series of identities linked to Fn(x, y) (see [2,7]), one of which is

Fn(x, y) =
n

∑
l=0

(
n
l

)
xl · Fn−l(y), n ∈ N∗0.

These polynomials occupy indispensable positions in the theory and application of mathematics.
In particular, they are widely used in combinatorial mathematics. Therefore, several scholars have
researched their various properties, and acquired a series of vital results. Some involved contents can
be found in references [5,7–17].

The goal of this paper is to use elementary methods and recursive properties of a special sequenc
to research the computational problem of the sums

∑
a1+a2+···+ak=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · · Fak (y)
(ak)!

, (4)

where the summation is over all k-tuples with non-negative integer coordinates (a1, a2, · · · , ak) such
that a1 + a2 + · · ·+ ak = n.

About this content, it seems there is no valid method to solve the computational problem of (4).
However, this problem is significant, it can reveal the structure of Fubini polynomials itself and its
internal relations, at least it can reflect the combination properties of Fubini polynomials.

In this paper, we will take elementary methods and the properties of Fn(y) to obtain a fascinating
computational formula for (4). Simultaneously, we can also acquire a recursive calculation method for
the general case. That is, we are going to prove the following major result:

Theorem 1. For any positive integers n and k, we have the identity

∑
a1+a2+···+ak=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · · Fak (y)
(ak)!

=
1

(k − 1)!(y + 1)k−1 · 1
n!

k−1

∑
i=0

C(k − 1, i)Fn+k−1−i(y),

where the sequence {C(k, i)} is defined as follows: For any positive integer k and integers 0 ≤ i ≤ k, we define
C(k, 0) = 1, C(k, k) = k! and

C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i), for all 0 ≤ i < k,

providing C(k, i) = 0, if i > k.

The characteristic of this theorem is to represent a complex sum of Fubini polynomials as a linear
combination of a single Fubini polynomial. Of course, our method can also be further generalized,
provided a corresponding results for Fn(x, y). It is just that its form is not so pretty, so we are not
listing it here. If taking k = 3, 4 and 5, then from our theorem we may instantly deduce the following
several corollaries:
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Corollary 1. For any positive integer n, we have the identity

∑
a+b+c=n

Fa(y)
a!

· Fb(y)
b!

· Fc(y)
c!

=
1

2 · n! · (y + 1)2 (Fn+2(y) + 3Fn+1(y) + 2Fn(y)) .

Corollary 2. For any positive integer n, we have the identity

∑
a+b+c+d=n

Fa(y)
a!

· Fb(y)
b!

· Fc(y)
c!

· Fd(y)
d!

=
1

6 · n! · (y + 1)3 (Fn+3(y) + 6Fn+2(y) + 11Fn+1(y) + 6Fn(y)) .

Corollary 3. For any positive integer n, we have the identity

∑
a+b+c+d+e=n

Fa(y)
a!

· Fb(y)
b!

· Fc(y)
c!

· Fd(y)
d!

· Fe(y)
e!

=
1

24 · n! · (y + 1)4 (Fn+4(y) + 10Fn+3(y) + 35Fn+2(y) + 50Fn+1(y) + 24Fn(y)) .

If taking y = − 1
2 in our theorem, then from (3) we can also infer the following:

Corollary 4. For any positive integers n and k ≥ 2, we have the identity

∑
a1+a2+···+ak=n

Ea1

(a1)!
· Ea2

(a2)!
· · · Eak

(ak)!
=

2k−1

(k − 1)!
· 1

n!

k−1

∑
i=0

C(k − 1, i)En+k−1−i.

If n = p is an odd prime, then taking y = 1 in Corollarys 1 and 2, we also have the
following congruences.

Corollary 5. For any odd prime p, we have the congruence

22Fp ≡ Fp+2 + 3Fp+1 (mod p) .

Corollary 6. For any odd prime p, we have the congruence

186Fp ≡ Fp+3 + 6Fp+2 + 11Fp+1 (mod p) .

2. A Simple Lemma

For purpose of proving our theorem, we need a uncomplicated lemma. As a matter of convenience,
we first present a new sequence {C(k, i)} as follows. For any positive integer k and integers 0 ≤ i ≤ k,
we define C(k, 0) = 1, C(k, k) = k! and

C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i), 1 ≤ i ≤ k, C(k, i) = 0, if i > k.
For clarity, for 1 ≤ k ≤ 9, we list values of C(k, i) in the Table 1.
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Table 1. Values of C(k, i).

C(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

k=1 1 1
k=2 1 3 2
k=3 1 6 11 6
k=4 1 10 35 50 24
k=5 1 15 85 225 274 120
k=6 1 21 175 735 1624 1764 720
k=7 1 28 322 1960 6769 13,132 13,068 5040
k=8 1 36 546 4536 22,449 67,284 118,124 109,584 40,320
k=9 1 45 870 9450 63,273 269,325 723,680 1,172,700 1,026,576 362,880

Obviously, the values of C(k, i) can be easily calculated by using a computer program. Hence,
for any positive integer k, the computational problem of (4) can be solved fully.

In this table of numerical values, we also find that for prime p = 3, 5 and 7, we have the congruence

C(p − 1, i) ≡ 0 (mod p) for all 1 ≤ i ≤ p − 2.

For all prime p > 7 is true? This is an enjoyable open problem.
If this congruence is true, then we can also deduce that for any positive integer n and odd prime

p, one has the congruence
Fn+p−1(y) + Fn(y) ≡ 0 (mod p) .

Now let function f (t) = 1
1−y(et−1) . Then we have the following

Lemma 1. For any positive integer k, we have the identity

k

∑
i=0

C(k, i) f (k−i)(t) = k!(y + 1)k f k+1(t),

where f (0)(t) = f (t), f (r)(t) denotes the r-order derivative of f (t) for variable t.

Proof. Now we prove this lemma by induction. From the definition of the derivative we acquire

f ′(t) = yet

(1 − y (et − 1))2 = − f (t) + (y + 1) f 2(t) (5)

or

f ′(t) + f (t) = (y + 1) f 2(t). (6)

Please note that C(1, 0) = 1 and C(1, 1) = 1, so the lemma is true for k = 1.
Suppose that the lemma is true for all integer k ≥ 1. That is,

k

∑
i=0

C(k, i) f (k−i)(t) = k!(y + 1)k f k+1(t). (7)

Then take the derivative for t in (7) and applying (5) and (7) we obtain

k
∑

i=0
C(k, i) f (k+1−i)(t) = (k + 1)!(y + 1)k f k(t) · f ′(t)

= (k + 1)!(y + 1)k f k(t) · (− f (t) + (y + 1) f 2(t)
)

= (k + 1)!(y + 1)k+1 f k+2(t)− (k + 1)!(y + 1)k f k+1(t)

= (k + 1)!(y + 1)k+1 f k+2(t)− (k + 1)
(

k
∑

i=0
C(k, i) f (k−i)(t)

)
.

(8)
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It is evident that (8) implies

(k + 1)!(y + 1)k+1 f k+2(t)

= C(k, 0) f (k+1)(t) +
k−1
∑

i=0
(C(k, i + 1) + (k + 1)C(k, i)) f (k−i)(t) + (k + 1)! f (t)

= C(k, 0) f (k+1)(t) +
k−1
∑

i=0
C(k + 1, i + 1) f (k−i)(t) + (k + 1)! f (t)

=
k+1
∑

i=0
C(k + 1, i) f (k+1−i)(t),

(9)

where we have used the identities C(k, 0) = 1 and C(k, k) = k!. Now the lemma follows from (9) and
mathematical induction.

3. Proof of the Theorem

In this section, the proof of our theorem will be completed. Firstly, for any positive integer k, from
the definition of f (t) and the properties of the power series we obtain

f (k)(t) =
∞

∑
n=0

Fn+k(y)
n!

· tn (10)

and

f k(t) =

(
∞
∑

a1=0

Fa1 (y)
a1! · ta2

)(
∞
∑

a2=0

Fa2 (y)
a2! · ta1

)
· · ·
(

∞
∑

ak=0

Fak (y)
ak ! · tak

)

=

(
∞
∑

a1=0

∞
∑

a2=0
· · · ∞

∑
ak=0

Fa1 (y)
(a1)!

· Fa2 (y)
(a2)!

· · · · Fak (y)
(ak)!

· ta1+a2···+ak

)

=
∞
∑

n=0

(
∑

a1+a2+···+ak=n

Fa1 (y)
(a1)!

· Fa2 (y)
(a2)!

· · · Fak (y)
(ak)!

)
· tn.

(11)

From (10), (11) and Lemma we acquire

1
(k−1)!(y+1)k−1 ·

k−1
∑

i=0
C(k − 1, i)

∞
∑

n=0

Fn+k−1−i(y)
n! · tn

=
∞
∑

n=0

(
∑

a1+a2+···+ak=n

Fa1 (y)
(a1)!

· Fa2 (y)
(a2)!

· · · Fak (y)
(ak)!

)
· tn.

(12)

Comparing the coefficients of tn in (12) we have the identity

∑
a1+a2+···+ak=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · · Fak (y)
(ak)!

=
1

(k − 1)!(y + 1)k−1 · 1
n!

k−1

∑
i=0

C(k − 1, i)Fn+k−1−i(y).

This completes the proof of our Theorem.
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Abstract: Here, we consider the sums of finite products of Chebyshev polynomials of the third and
fourth kinds. Then, we represent each of those sums of finite products as linear combinations of the
four kinds of Chebyshev polynomials, which involve the hypergeometric function 3F2.

Keywords: Chebyshev polynomials; sums of finite products; hypergeometric function

MSC: 11B68; 33C45

1. Introduction and Preliminaries

We first recall here that, for any nonnegative integer n, the falling factorial polynomials (x)n and
the rising factorial polynomials < x >n are respectively given by:

(x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1), (x)0 = 1, (1)

< x >n= x(x + 1) · · · (x + n − 1), (n ≥ 1), < x >0= 1. (2)

The two factorial polynomials are related by:

(x)n = (−1)n < −x >n, < x >n= (−1)n(−x)n. (3)

We will make use of the following.

(2n − 2s)!
(n − s)!

=
22n−2s(−1)s < 1

2 >n

< 1
2 − n >s

, (4)

for any integers n, s with n ≥ s ≥ 0.

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt =

Γ(x)Γ(y)
Γ(x + y)

, (Re(x), Re(y) > 0), (5)

Γ
(

n +
1
2

)
=

(2n)!Γ( 1
2 )

22nn!
, (n ≥ 0). (6)

Here, B(x, y) and Γ(x) are respectively the Beta and Gamma functions.

Symmetry 2018, 10, 258; doi:10.3390/sym10070258 www.mdpi.com/journal/symmetry209
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The hypergeometric function pFq

(
a1, ··· , ap
b1, ··· , bq

; x
)

is defined by (see [1]):

pFq

(
a1, · · · , ap

b1, · · · , bp
; x
)
=

∞

∑
n=0

< a1 >n · · · < ap >n

< b1 >n · · · < bq >n

xn

n!

(p ≤ q + 1, |x| < 1).

(7)

In this paper, we will need only some basic knowledge about Chebyshev polynomials, which we
recall here in below. The interested reader may want to refer to [1–3] for full accounts of this fascinating
area of orthogonal polynomials.

The Chebyshev polynomials of the first, second, third and fourth kinds are respectively defined
by the following generating functions.

1 − xt
1 − 2xt + t2 =

∞

∑
n=0

Tn(x)tn, (8)

1
1 − 2xt + t2 =

∞

∑
n=0

Un(x)tn, (9)

F(t, x) =
1 − t

1 − 2xt + t2 =
∞

∑
n=0

Vn(x)tn, (10)

G(t, x) =
1 + t

1 − 2xt + t2 =
∞

∑
n=0

Wn(x)tn. (11)

One way of deriving their generating functions is from their trigonometric formulas. For example,
those formulas for Vn(x) and Wn(x) are given by:

Vn(cos θ) =
cos(n + 1

2 )θ

cos θ
2

,

Wn(cos θ) =
sin(n + 1

2 )θ

sin θ
2

.

They are explicitly expressed as in the following.

Tn(x) = 2F1

(
−n, n;

1
2

;
1 − x

2

)

=
n
2

[ n
2 ]

∑
l=0

(−1)l 1
n − l

(
n − l

l

)
(2x)n−2l , (n ≥ 1),

(12)

Un(x) = (n + 1) 2F1

(
−n, n + 2;

3
2

;
1 − x

2

)

=
[ n

2 ]

∑
l=0

(−1)l
(

n − l
l

)
(2x)n−2l , (n ≥ 0),

(13)

Vn(x) = 2F1

(
−n, n + 1;

1
2

;
1 − x

2

)
=

n

∑
l=0

(
2n − l

l

)
2n−l(x − 1)n−l , (n ≥ 0),

(14)
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Wn(x) = (2n + 1) 2F1

(
−n, n + 1;

3
2

;
1 − x

2

)
= (2n + 1)

n

∑
l=0

2n−l

2n − 2l + 1

(
2n − l

l

)
(x − 1)n−l , (n ≥ 0).

(15)

The Chebyshev polynomials of the first, second, third and fourth kinds are also given by
Rodrigues’ formulas.

Tn(x) =
(−1)n2nn!

(2n)!
(1 − x2)

1
2

dn

dxn (1 − x2)n− 1
2 , (16)

Un(x) =
(−1)n2n(n + 1)!

(2n + 1)!
(1 − x2)−

1
2

dn

dxn (1 − x2)n+ 1
2 , (17)

(1 − x)−
1
2 (1 + x)

1
2 Vn(x) =

(−1)n2nn!
(2n)!

dn

dxn (1 − x)n− 1
2 (1 + x)n+ 1

2 , (18)

(1 − x)
1
2 (1 + x)−

1
2 Wn(x) =

(−1)n2nn!
(2n)!

dn

dxn (1 − x)n+ 1
2 (1 + x)n− 1

2 . (19)

They have the following orthogonalities with respect to various weight functions.

∫ 1

−1
(1 − x2)−

1
2 Tn(x)Tm(x)dx =

π

εn
δn,m, (20)

∫ 1

−1
(1 − x2)

1
2 Un(x)Um(x)dx =

π

2
δn,m, (21)

∫ 1

−1
(

1 + x
1 − x

)
1
2 Vn(x)Vm(x)dx = πδn,m, (22)

∫ 1

−1
(

1 − x
1 + x

)
1
2 Wn(x)Wm(x)dx = πδn,m, (23)

where:

εn =

{
1, if n = 0,
2, if n ≥ 1,

δn =

{
0, if n �= m,
1, if n = m.

(24)

To proceed further, we let:

αn,r(x) =
n

∑
l=0

∑
i1+i2+···+ir+1=l

(
r − 1 + n − l

r − 1

)
Vi1(x)Vi2(x) · · ·Vir+1(x),

(n ≥ 0, r ≥ 1),

(25)

βn,r(x) =
n

∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(

r − 1 + n − l
r − 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x),

(n ≥ 0, r ≥ 1).

(26)

We note here that both αn,r(x) and βn,r(x) are polynomials of degree n.
In the following, we assume that the polynomials with subscript n, like pn(x), qn(x) and rn(x),

have degree n.
The linearization problem in general consists of determining the coefficients cnm(k) in the

expansion of the product of two polynomials qn(x) and rm(x) in terms of an arbitrary polynomial
sequence {pk(x)}k≥0:

qn(x)rm(x) =
n+m

∑
k=0

cnm(k)pk(x).

A special problem of this is the case when pn(x) = qn(x) = rn(x), which is called either the
standard linearization or the Clebsch–Gordan-type problem.
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Another particular case is when rm(x) = 1, which is the so-called connection problem. If further
qn(x) = xn, it is called the inversion problem for the sequence {pk(x)}k≥0.

In this paper, we will consider the sums of finite products of Chebyshev polynomials of the third
and fourth kinds in (25) and (26). Then, we are going to express each of them as linear combinations of
the four kinds of Chebyshev polynomials Tn(x), Un(x), Vn(x) and Wn(x). Thus, our problem may be
regarded as a generalization of the linearization problem. We obtain them by explicit computations
and using Propositions 1 and Lemma 1. The general formulas in Proposition 1 can be derived by using
orthogonalities and Rodrigues’ formulas for Chebyshev polynomials and integration by parts.

Finally, we note that many problems in physics and engineering can be solved with the help of
special functions; for instance, we let the reader refer to the excellent papers [4–6] in this direction.

The next two theorems are our main results in which the terminating hypergeometric functions

3F2

(−n, a, b
d, e ; 1

)
appear.

Theorem 1. Let n, r be integers with n ≥ 0, r ≥ 1. Then we have following.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(
r − 1 + n − l

r − 1

)
Vi1(x)Vi2(x) · · ·Vir+1(x)

=
(−1)n(2n + 2r)!
r!22r(n + r − 1

2 )r

×
n

∑
k=0

(−1)kεk
(n − k)!(n + k)! 3F2

(
k − n, − k − n, 1

2 − n − r
1
2 − n, − 2n − 2r

; 1

)
Tk(x)

(27)

=
(−1)n(2n + 2r)!

r!22r−2(n + r − 1
2 )r−1

×
n

∑
k=0

(−1)k(k + 1)
(n − k)!(n + k + 2)! 3F2

(
k − n, − k − n − 2, 1

2 − n − r
− 1

2 − n, − 2n − 2r
; 1

)
Uk(x)

(28)

=
(−1)n(2n + 2r)!
r!22r(n + r − 1

2 )r

×
n

∑
k=0

(−1)k(2k + 1)
(n − k)!(n + k + 1)! 3F2

(
k − n, − k − n − 1, 1

2 − n − r
1
2 − n, − 2n − 2r

; 1

)
Vk(x)

(29)

=
(−1)n(2n + 2r)!

r!22r−1(n + r − 1
2 )r−1

×
n

∑
k=0

(−1)k

(n − k)!(n + k + 1)! 3F2

(
k − n, − k − n − 1, 1

2 − n − r
− 1

2 − n, − 2n − 2r
; 1

)
Wk(x).

(30)

Theorem 2. Let n, r be integers with n ≥ 0, r ≥ 1. Then we have following.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(

r − 1 + n − l
r − 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x)

=
(−1)n(2n + 2r)!
r!22r(n + r + 1

2 )r

×
n

∑
k=0

(−1)kεk
(n − k)!(n + k)! 3F2

(
k − n, − k − n, − 1

2 − n − r
1
2 − n, − 2n − 2r

; 1

)
Tk(x)

(31)
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=
(−1)n(2n + 1)(2n + 2r)!

r!22r−1(n + r + 1
2 )r

×
n

∑
k=0

(−1)k(k + 1)
(n − k)!(n + k + 2)! 3F2

(
k − n, − k − n − 2, − 1

2 − n − r
− 1

2 − n, − 2n − 2r
; 1

)
Uk(x)

(32)

=
(−1)n(2n + 2r)!
r!22r(n + r + 1

2 )r

×
n

∑
k=0

(−1)k(2k + 1)
(n − k)!(n + k + 1)! 3F2

(
k − n, − k − n − 1, − 1

2 − n − r
1
2 − n, − 2n − 2r

; 1

)
Vk(x)

(33)

=
(−1)n(2n + 1)(2n + 2r)!

r!22r(n + r + 1
2 )r

×
n

∑
k=0

(−1)k

(n − k)!(n + k + 1)! 3F2

(
k − n, − k − n − 1, − 1

2 − n − r
− 1

2 − n, − 2n − 2r
; 1

)
Wk(x).

(34)

As we know, the Bernoulli polynomials are not orthogonal polynomials, but Appell polynomials.
In [7], the sums of finite products of Chebyshev polynomials in (25) and (26) were expressed as linear
combinations of Bernoulli polynomials. Furthermore, the same has been done for the sums of finite
products of Bernoulli, Euler and Genocchi polynomials in [8–10]. All of these were found by deriving
Fourier series expansions for the functions closely connected with those various sums of finite products.
For some other applications of Chebyshev polynomials, we let the reader refer to [11–13].

2. Proof of Theorem 1

Here, we will prove Theorem 1. For this purpose, we first state Proposition 1 and Lemma 1 that
will be used in Sections 2 and 3.

The results in Proposition 1 can be derived by using the orthogonalities in (20)–(23) and the
Rodrigues formulas in (16)–(19). The statements (a) and (b) in Proposition 1 are respectively from
the Equations (23) and (35) of [14], while (c) and (d) are respectively from the Equations (22) and
(37) of [15].

Proposition 1. Let q(x) ∈ R[x] be a polynomial of degree n. Then, we have the following.

(a) q(x) =
n

∑
k=0

ck,1Tk(x),

where ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1 − x2)k− 1
2 dx,

(b) q(x) =
n

∑
k=0

ck,2Uk(x),

where ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
q(x)

dk

dxk (1 − x2)k+ 1
2 dx,

(c) q(x) =
n

∑
k=0

ck,3Vk(x),

where ck,3 =
(−1)k2kk!
(2k)!π

∫ 1

−1
q(x)

dk

dxk (1 − x)k− 1
2 (1 + x)k+ 1

2 dx,
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(d) q(x) =
n

∑
k=0

ck,4Wk(x),

where ck,4 =
(−1)k2kk!
(2k)!π

∫ 1

−1
q(x)

dk

dxk (1 − x)k+ 1
2 (1 + x)k− 1

2 dx.

Lemma 1. Let l, m be nonnegative integers. Then, we have the following.

∫ 1

−1
(1 − x)m− 1

2 (1 + x)l− 1
2 dx

=
2l+m

(l + m)!
Γ(l +

1
2
)Γ(m +

1
2
)

=
(2l)! (2m)! π

2l+m (l + m)! l! m!
.

(35)

Proof. By changing the variables 1 + x = 2y, the integral in (35) becomes:

2l+m
∫ 1

0
yl+ 1

2−1(1 − y)m+ 1
2−1dy = 2l+m Γ(l + 1

2 )Γ(m + 1
2 )

Γ(l + m + 1)

=
2l+m (2l)! Γ( 1

2 ) (2m)! Γ( 1
2 )

(l + m)! 22l l! 22m m!
,

where we used (5) and (6).

As was shown in [7], the following lemma can be obtained by differentiating Equation (10). It
expresses the sums of finite products in (25) very neatly, which plays an important role in the following
discussion.

Lemma 2. Let n, r be integers with n ≥ 0, r ≥ 1. Then, we have the identity.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(
r − 1 + n − l

r − 1

)
Vi1(x) · · ·Vir+1(x) =

1
2r r!

V(r)
n+r(x), (36)

where the inner sum runs over all nonnegative integers i1, i2, · · · , ir+1, with i1 + i2 + · · ·+ ir+1 = l.

From (14), the r-th derivative of Vn(x) is given by:

V(r)
n (x) =

n−r

∑
l=0

(
2n − l

l

)
2n−l(n − l)r(x − 1)n−l−r. (37)

In particular, we have:

V(r+k)
n+r (x) =

n−k

∑
l=0

(
2n + 2r − l

l

)
2n+r−l(n + r − l)r+k(x − 1)n−k−l . (38)

V(r+k)
n+r (x) =

n−k

∑
l=0

(
2n + 2r − l

l

)
2n+r−l(n + r − l)r+k(x − 1)n−k−l . (38)

Here, we will show only (28) of Theorem 1, since (27), (29) and (30) can be proved similarly to (28).
With αn,r(x) as in (25), we let:

αn,r(x) =
n

∑
k=0

ck,2Uk(x). (39)
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Then, from (b) of Proposition 1, (36), (38) and integration by parts k times, we have:

ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
αn,r(x)

dk

dxk (1 − x2)k+ 1
2 dx

=
(−1)k2k+1(k + 1)!
(2k + 1)!π2rr!

∫ 1

−1
V(r)

n+r(x)
dk

dxk (1 − x2)k+ 1
2 dx

=
2k+1(k + 1)!
(2k + 1)!π2rr!

∫ 1

−1
V(r+k)

n+r (x)(1 − x2)k+ 1
2 dx

=
2k+1(k + 1)!
(2k + 1)!π2rr!

n−k

∑
l=0

(−1)n−k−l
(

2n + 2r − l
l

)
2n+r−l

× (n + r − l)r+k

∫ 1

−1
(1 − x)n−l+1− 1

2 (1 + x)k+1− 1
2 dx.

(40)

From (40), (35), we get:

ck,2 =
2k+1(k + 1)!
(2k + 1)!π2rr!

×
n−k

∑
l=0

(−1)n−k−l(2n + 2r − l)!2n+r−l(n + r − l)!(2k + 2)!(2n − 2l + 2)!π
l!(2n + 2r − 2l)!(n − k − l)!2n−l+k+2(n − l + k + 2)!(n − l + 1)!(k + 1)!

=
(−1)n−k(k + 1)

r!

×
n−k

∑
l=0

(−1)l(2n + 2r − l)!(n + r − l)!(2n + 2 − 2l)!
l!(n − k − l)!(n + k − l + 2)!(2n + 2r − 2l)!(n + 1 − l)!

.

(41)

Using (3) and (4), (41) is equal to:

ck,2 =
(−1)n−k(k + 1)(2n + 2r)!

r!(n − k)!(n + k + 2)!

×
n−k

∑
l=0

(−1)l(n − k)l(n + k + 2)l <
1
2 − n − r >l 22n−2l+2(−1)l < 1

2 >n+1

l!(2n + 2r)l22n+2r−2l(−1)l < 1
2 >n+r<

1
2 − n − 1 >l

.

=
(−1)n(2n + 2r)!

r!22r−2(n + r − 1
2 )r−1

× (−1)k(k + 1)
(n − k)!(n + k + 2)!

n−k

∑
l=0

< k − n >l < −k − n − 2 >l <
1
2 − n − r >l

< − 1
2 − n >l < −2n − 2r >l l!

=
(−1)n(2n + 2r)!

r!22r−2(n + r − 1
2 )r−1

× (−1)k(k + 1)
(n − k)!(n + k + 2)! 3F2

(
k − n, − k − n − 2, 1

2 − n − r
− 1

2 − n, − 2n − 2r
; 1

)
.

(42)

Now, the Equation (28) in Theorem 1 follows from (39) and (42).

3. Proof of Theorem 2

In this section, we will show (31) of Theorem 2, as (32)–(34) can be treated analogously to (31).
The following lemma can be obtained by differentiating (11) and is stated as Lemma 3 in [7].
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Lemma 3. Let n, r be integers with n ≥ 0, r ≥ 1. Then, we have the following identity.

n

∑
l=0

∑
i1+i2+···+ir+1=l

(−1)n−l
(

r − 1 + n − l
r − 1

)
Wi1(x)Wi2(x) · · ·Wir+1(x)

=
1

2rr!
W(r)

n+r(x),

(43)

where the inner sum runs over all nonnegative integers i1, i2, · · · , ir+1, with i1 + i2 + · · ·+ ir+1 = l.

From (15), the r-th derivative of Wn(x) is given by:

W(r)
n (x) = (2n + 1)

n−r

∑
l=0

2n−l

2n + 1 − 2l

(
2n − l

l

)
(n − l)r(x − 1)n−l−r. (44)

In particular,

W(r+k)
n+r (x)

= (2n + 1)
n−k

∑
l=0

2n+r−l

2n + 2r + 1 − 2l

(
2n + 2r − l

l

)
(n + r − l)r+k(x − 1)n−k−l .

(45)

Here, we will show only (31) of Theorem 2, since (32)–(34) can be proven analogously to (31).
With βn,r(x) as in (26), we put:

βn,r(x) =
n

∑
k=0

ck,1Tk(x). (46)

Then, from (a) of Proposition 1, (43), (45) and integration by parts k times, we have:

ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
βn,r(x)

dk

dxk (1 − x2)k− 1
2 dx

=
(−1)k2kk!εk
(2k)!π2rr!

∫ 1

−1
W(r)

n+r(x)
dk

dxk (1 − x2)k− 1
2 dx

=
2kk!εk

(2k)!π2rr!

∫ 1

−1
W(r+k)

n+r (x)(1 − x2)k− 1
2 dx

=
(2n + 1)2kk!εk
(2k)!π2rr!

n−k

∑
l=0

(−1)n−k−l2n+r−l

2n + 2r + 1 − 2l

(
2n + 2r − l

l

)
× (n + r − l)r+k

∫ 1

−1
(1 − x)n−l− 1

2 (1 + x)k− 1
2 dx.

(47)

From (47), (35) and after some simplifications, we get:

ck,2 =
(2n + 1)εk(−1)n−k

r!

×
n−k

∑
l=0

(−1)l(2n + 2r − l)!(n + r − l)!
l!(n − k − l)!(n + k − l)!(2n + 2r − 2l + 1)!(n − l)!

=
2(2n + 1)εk(−1)n−k

r!

×
n−k

∑
l=0

(−1)l(2n + 2r − l)!(n + r − l + 1)!(2n − 2l)!
l!(n − k − l)!(n + k − l)!(2n + 2r − 2l + 2)!(n − l)!

.

(48)
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Using (3) and (4), (48) is equal to:

ck,1 =
2(2n + 1)(2n + 2r)!εk(−1)n−k

r!(n − k)!(n + k)!

×
n−k

∑
l=0

(−1)l(n − k)l(n + k)l <
1
2 − n − r − 1 >l 22n−2l(−1)l < 1

2 >n

l!(2n + 2r)l22n+2r+2−2l(−1)l < 1
2 >n+r+1<

1
2 − n >l

=
(2n + 1)(−1)n(2n + 2r)!

r!22r+1(n + r + 1
2 )r+1

× (−1)kεk
(n − k)!(n + k)!

k

∑
l=0

< k − n >l < −k − n >l < − 1
2 − n − r >l

< 1
2 − n >l < −2n − 2r >l

=
(−1)n(2n + 2r)!
r!22r(n + r + 1

2 )r

× (−1)kεk
(n − k)!(n + k)! 3F2

(
k − n, − k − n, − 1

2 − n − r
1
2 − n, − 2n − 2r

; 1

)
.

(49)

Now, Equation (31) in Theorem 2 follows from (46) and (49).

Remark 1. As we noted earlier, Lemmas 2 and 3 play crucial roles and express sums of finite products in (25)
and (26) very neatly as higher-order derivatives of Vn(x) and Wn(x). These could be derived by noting that
Chebyshev polynomials are special cases of Jacobi polynomials and using the general formula for the derivative of
Jacobi polynomials. Indeed, their Jacobi polynomial expressions and the derivatives of the Jacobi polynomials are
as follows:

Vn(x) = P(−1/2,1/2)
n (x)/P(−1/2,1/2)

n (1),

Wn(x) = P(1/2,−1/2)
n (x)/P(1/2,−1/2)

n (1),

d
dx

P(a,b)
n (x) =

1
2
(n + a + b + 1)P(a+1,b+1)

n−1 (x).

4. Conclusions

The linearization problem in general consists of determining the coefficients cnm(k) in the
expansion of the product of two polynomials qn(x) and rm(x) in terms of an arbitrary polynomial
sequence {pk(x)}k≥0:

qn(x)rm(x) =
n+m

∑
k=0

cnm(k)pk(x).

Along this line and as a generalization of this, we considered sums of finite products of Chebyshev
polynomials of the third and fourth kinds and represented each of those sums of finite products as
linear combinations of the four kinds of Chebyshev polynomials, which involve the hypergeometric
function 3F2. It is certainly possible to represent such sums of finite products by other orthogonal
polynomials, which is our ongoing project.
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Abstract: We represent the generating function of w-torsion Fubini polynomials by means of a
fermionic p-adic integral on Zp. Then we investigate a quotient of such p-adic integrals on Zp,
representing generating functions of three w-torsion Fubini polynomials and derive some new
symmetric identities for the w-torsion Fubini and two variable w-torsion Fubini polynomials.
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1. Introduction and Preliminaries

In recent years, various p-adic integrals on Zp have been used in order to find many interesting
symmetric identities related to some special polynomials and numbers. The relevant p-adic integrals
are the Volkenborn, fermionic, q-Volkenborn, and q-fermionic integrals of which the last three were
discovered by the first author T. Kim (see [1–3]). They have been used by a good number of researchers
in various contexts and especially in unfolding new interesting symmetric identities. This verifies
the usefulness of such p-adic integrals. Moreover, we can expect that people will find some further
applications of these p-adic integrals in the years to come. The present paper is an effort in this
direction. Assume that p is any fixed odd prime number. Throughout our discussion, we will use the
standard notations Zp, Qp, and Cp to denote the ring of p-adic integers, the field of p-adic rational
numbers and the completion of the algebraic closure of Qp, respectively. The p-adic norm | · |p is
normalized as |p|p = 1

p . Assume that f (x) is a continuous function on Zp. Then the fermionic p-adic
integral of f (x) on Zp was introduced by Kim (see [2]) as

∫
Zp

f (x)dμ−1(x) = lim
N→∞

pN−1

∑
x=0

f (x)(−1)x, (1)

where μ−1(x + pNZp) = (−1)x.
We can easily deduce from (1) that (see [2,3])∫

Zp
f (x + 1)dμ−1(x) +

∫
Zp

f (x)dμ−1(x) = 2 f (0). (2)

By invoking (2), we easily get (see [2,4])

∫
Zp

e(x+y)tdμ−1(y) =
2

et + 1
ext =

∞

∑
n=0

En(x)
tn

n!
, (3)
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where En(x) are the usual Euler polynomials.
As is known, the two variable Fubini polynomials are defined by means of the following (see [5,6])

∞

∑
n=0

Fn(x, y)
tn

n!
=

1
1 − y(et − 1)

ext. (4)

When x = 0, Fn(y) = Fn(0, y), (n ≥ 0), are called Fubini polynomials. Further, if y = 1,
then Obn = Fn(0, 1) are the ordered Bell numbers (also called Frobenius numbers). They first
appeared in Cayley’s work on a combinatorial counting problem in 1859 and have many different
combinatorial interpretations. For example, the ordered Bell numbers count the possible outcomes
of a multi-candidate election. From (3) and (4), we note that Fn(x,−1/2) = En(x), (n ≥ 0). By (4),
we easily get (see [6]),

Fn(y) =
n

∑
k=0

S2(n, k)k!yk, (n ≥ 0), (5)

where S2(n, k) are the Stirling numbers of the second kind.
For w ∈ N, we define the two variable w-torsion Fubini polynomials given by

1
1 − yw(et − 1)w ext =

∞

∑
n=0

Fn,w(x, y)
tn

n!
. (6)

In particular, for x = 0, Fn,w(y) = Fn,w(0, y) are called the w-torsion Fubini polynomials. It is
obvious that Fn,1(x, y) = Fn(x, y).

We represent the generating function of w-torsion Fubini polynomials by means of a fermionic
p-adic integral on Zp. Then we investigate a quotient of such p-adic integrals on Zp, representing
generating functions of three w-torsion Fubini polynomials and derive some new symmetric identities
for the w-torsion Fubini and two variable w-torsion Fubini polynomials. Recently, a number of
researchers have studied symmetric identities for some special polynomials. The reader may refer
to [7–11] as an introduction to this active area of research. Some symmetric identities for q-special
polynomials and numbers were treated in [12–15], including q-Bernoulli, q-Euler, and q-Genocchi
numbers and polynomials. While some identities of symmetry for degenerate special polynomials
were discussed in the more recent papers [6,16,17]. Finally, interested readers may want to have a
glance at [18,19] as general references on polynomials.

2. Symmetric Identities for w-torsion Fubini and Two Variable w-torsion Fubini Polynomials

From (2), we note that

∫
Zp
(−1)x(y(et − 1))xdμ−1(x) =

2
1 − y(et − 1)

= 2
∞

∑
n=0

Fn(y)
tn

n!
, (7)

and

ext
∫
Zp
(−1)z(y(et − 1))zdμ−1(z) =

2
1 − y(et − 1)

ext = 2
∞

∑
n=0

Fn(x, y)
tn

n!
. (8)
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From (7) and (8), we note that(
∞

∑
l=0

xl tl

l!

)(
∞

∑
m=0

2Fm(y)
tm

m!

)
= ext

∫
Zp
(−1)z(y(et − 1))zdμ−1(z)

=
∞

∑
n=0

2Fn(x, y)
tn

n!
.

(9)

Thus, by (9), we easily get

n

∑
l=0

(
n
l

)
xl Fn−l(y) = Fn(x, y), (n ≥ 0). (10)

Now, we observe that

1 − yk(et − 1)k

1 − y(et − 1)
=

k−1

∑
i=0

yi(et − 1)i =
k−1

∑
i=0

i

∑
l=0

(
i
l

)
(−1)i−lyielt

=
∞

∑
n=0

(
k−1

∑
i=0

i

∑
l=0

(
i
l

)
(−1)i−lyiln

)
tn

n!

=
∞

∑
n=0

(
k−1

∑
i=0

yiΔi0n

)
tn

n!
,

(11)

where Δ f (x) = f (x + 1)− f (x).
For w ∈ N, the w-torsion Fubini polynomials are represented by means of the following fermionic

p-adic integral on Zp:

∫
Zp
(−yw(et − 1)w)xdμ−1(x) =

2
1 − yw(et − 1)w =

∞

∑
n=0

2Fn,w(y)
tn

n!
, (12)

From (7) and (12), we have∫
Zp
(−y(et − 1))xdμ−1(x)∫

Zp
(−yw1(et − 1)w1)xdμ−1(x)

=
1 − yw1(et − 1)w1

1 − y(et − 1)
=

w1−1

∑
i=0

yi(et − 1)i

=
∞

∑
n=0

(
w1−1

∑
i=0

yiΔi0n

)
tn

n!
, (w1 ∈ N).

(13)

For w1, w2 ∈ N, we let

I =

∫
Zp
(−yw1(et − 1)w1)x1 dμ−1(x1)

∫
Zp
(−yw2(et − 1)w2)x2 dμ−1(x2)∫

Zp
(−yw1w2(et − 1)w1w2)xdμ−1(x)

. (14)

Here it is important to observe that (14) has the built-in symmetry. Namely, it is invariant under
the interchange of w1 and w2.

Then, by (14), we get

I =
(∫

Zp
(−yw1(et − 1)w1)xdμ−1(x)

)
×
( ∫

Zp
(−yw2(et − 1)w2)xdμ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdμ−1(x)

)
. (15)
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First, we observe that∫
Zp
(−yw2(et − 1)w2)xdμ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdμ−1(x)

=
1 − yw1w2(et − 1)w1w2

1 − yw2(et − 1)w2
=

w1−1

∑
i=0

yw2i(et − 1)w2i

=
w1−1

∑
i=0

yw2i
w2i

∑
l=0

(
w2i

l

)
(−1)w2i−l elt

=
∞

∑
n=0

(
w1−1

∑
i=0

yw2iΔw2i0n

)
tn

n!
.

(16)

From (15) and (16), we can derive the following equation.

I =
(∫

Zp
(−yw1(et − 1)w1)xdμ−1(x)

)
×
( ∫

Zp
(−yw2(et − 1)w2)xdμ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdμ−1(x)

)

=

(
∞

∑
m=0

2Fm,w1(y)
tm

m!

)
×
(

∞

∑
k=0

(
w1−1

∑
i=0

yw2iΔw2i0k

)
tk

k!

=
∞

∑
n=0

(
2

n

∑
k=0

w1−1

∑
i=0

yw2iΔw2i0kFn−k,w1(y)
(

n
k

))
tn

n!
.

(17)

Interchanging the roles of w1 and w2, by (14), we get

I =
(∫

Zp
(−yw2(et − 1)w2)xdμ−1(x)

)
×
( ∫

Zp
(−yw1(et − 1)w1)xdμ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdμ−1(x)

)
. (18)

We note that∫
Zp
(−yw1(et − 1)w1)xdμ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdμ−1(x)

=
1 − yw1w2(et − 1)w1w2

1 − yw1(et − 1)w1
=

w2−1

∑
i=0

yw1i(et − 1)w1i

=
∞

∑
n=0

(
w2−1

∑
i=0

yw1iΔw1i0n

)
tn

n!
.

(19)

Thus, by (18) and (19), we get

I =
(∫

Zp
(−yw2(et − 1)w2)xdμ−1(x)

)
×
( ∫

Zp
(−yw1(et − 1)w1)xdμ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdμ−1(x)

)

=

(
∞

∑
m=0

2Fm,w2(y)
tm

m!

)
×
(

∞

∑
k=0

(
w2−1

∑
i=0

yw1iΔw1i0k

)
tk

k!

=
∞

∑
n=0

(
2

n

∑
k=0

w2−1

∑
i=0

yw1iΔw1i0kFn−k,w2(y)
(

n
k

))
tn

n!
.

(20)

The following theorem is now obtained by Equations (17) and (20).

Theorem 1. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), n ≥ 0, we have

n

∑
k=0

w1−1

∑
i=0

(
n
k

)
Fn−k,w1(y)y

w2iΔw2i0k =
n

∑
k=0

w2−1

∑
i=0

(
n
k

)
Fn−k,w2(y)y

w1iΔw1i0k. (21)
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Remark 1. In particular, for w1 = 1, we have

Fn(y) =
n

∑
k=0

w2−1

∑
i=0

(
n
k

)
Fn−k,w2(y)y

iΔi0k. (22)

By expressing I in a different way, we have

I =
(∫

Zp
(−yw1(et − 1)w1)xdμ−1(x)

)
×
( ∫

Zp
(−yw2(et − 1)w2)xdμ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdμ−1(x)

)

=

(∫
Zp
(−yw1(et − 1)w1)xdμ−1(x)

)
×
(

1 − yw1w2(et − 1)w1w2

1 − yw2(et − 1)w2

)

=

(
w1−1

∑
i=0

yw2i(et − 1)w2i

)
×
(

2
1 − yw1(et − 1)w1

)

=
w1−1

∑
i=0

w2i

∑
l=0

(
w2i

l

)
yw2i(−1)l 2

1 − yw1(et − 1)w1
e(w2i−l)t

= 2
∞

∑
n=0

(
w1−1

∑
i=0

w2i

∑
l=0

(
w2i

l

)
yw2i(−1)l Fn,w1(w2i − l, y)

)
tn

n!
.

(23)

Interchanging the roles of w1 and w2, by (14), we get

I =
(∫

Zp
(−yw2(et − 1)w2)xdμ−1(x)

)
×
( ∫

Zp
(−yw1(et − 1)w1)xdμ−1(x)∫

Zp
(−yw1w2(et − 1)w1w2)xdμ−1(x)

)

=

(∫
Zp
(−yw2(et − 1)w2)xdμ−1(x)

)
×
(

1 − yw1w2(et − 1)w1w2

1 − yw1(et − 1)w1

)

=

(
w2−1

∑
i=0

yw1i(et − 1)w1i

)
×
(

2
1 − yw2(et − 1)w2

)

=
w2−1

∑
i=0

w1i

∑
l=0

yw1i
(

w1i
l

)
(−1)l 2

1 − yw2(et − 1)w2
e(w1i−l)t

= 2
∞

∑
n=0

(
w2−1

∑
i=0

w1i

∑
l=0

yw1i
(

w1i
l

)
(−1)l Fn,w2(w1i − l, y)

)
tn

n!
.

(24)

Hence, by Equations (23) and (24), we obtain the following theorem.

Theorem 2. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2), n ≥ 0, we have

w1−1

∑
i=0

w2i

∑
l=0

yw2i
(

w2i
l

)
(−1)l Fn,w1(w2i − l, y) =

w2−1

∑
i=0

w1i

∑
l=0

yw1i
(

w1i
l

)
(−1)l Fn,w2(w1i − l, y). (25)

Remark 2. Especially, if we take w1 = 1, then by Theorem 2, we get

Fn(y) =
w2−1

∑
i=0

i

∑
l=0

(
i
l

)
yi(−1)l Fn,w2(i − l, y). (26)
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3. Conclusions

In this paper, we introduced w-torsion Fubini polynomials as a generalization of Fubini
polynomials and expressed the generating function of w-torsion Fubini polynomials by means of a
fermionic p-adic integral on Zp. Then we derived some new symmetric identities for the w-torsion
Fubini and two variable w-torsion Fubini polynomials by investigating a quotient of such p-adic
integrals on Zp, representing generating functions of three w-torsion Fubini polynomials. It seems
that they are the first double symmetric identities on Fubini polynomials. As was done, for example
in [4,20,21], we expect that this result can be extended to the case of triple symmetric identities. That is
one of our next projects.
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