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Abstract
The purpose of this paper is to investigate some interesting identities on the Bernoulli
and Euler polynomials arising from the orthogonality of Legendre polynomials in the
inner product space Pn.

1 Introduction
As is well known, the Legendre polynomial Pn(x) is a solutions of the following differential
equation:

(
 – x

)
u′′ – xu′ + n(n + )u =  (see [–]),

where n = , , , . . . .
It is a polynomial of degree n. If n is even or odd, then Pn(x) is accordingly even or odd.

They are determined up to constant and normalized so that Pn() = .
Rodrigues’ formula is given by

Pn(x) =


nn!

{(
d
dx

)n(
x – 

)n}, n ∈ Z+. (.)

Integrating by parts, we can derive

∫ 

–
Pm(x)Pn(x)dx =


n + 

δm,n (see [–]), (.)

where δm,n is the Kronecker symbol.
By (.), we get

Pn(x) =

n

[ n ]∑
k=

(–)k
(
n
k

)(
n – k

n

)
xn–k . (.)

The generating function is given by

(
 – xt + t

)– 
 =

∞∑
n=

Pn(x)tn. (.)
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The Bernoulli polynomial is defined by a generating function to be

t
et – 

ext = eB(x)t =
∞∑
n=

Bn(x)
tn

n!
(see [–]) (.)

with the usual convention about replacing Bn(x) by Bn(x).
In the special case, x = , Bn() = Bn are called the Bernoulli numbers.
From (.), we have

Bn(x) =
n∑
l=

(
n
l

)
Bn–lxl (see [–]). (.)

As is well known, the Euler numbers are defined by

E = , (E + )n + En = δ,n (see [–]) (.)

with the usual convention about replacing En by En.
The Euler polynomials are defined as

En(x) =
n∑
l=

(
n
l

)
En–lxl (see [–]). (.)

Let Pn = {p(x) ∈O[x]|degp(x)≤ n}. Then Pn is an inner product space with respect to the
inner product 〈·, ·〉 with

〈
q(x),q(x)

〉
=

∫ 

–
q(x)q(x)dx,

where q(x),q(x) ∈ Pn.
From (.), we can show that {P(x),P(x), . . . ,Pn(x)} is an orthogonal basis for Pn. In this

paper, we derive some interesting identities on the Bernoulli and Euler polynomials from
the orthogonality of Legendre polynomials in Pn.

2 Some identities on the Bernoulli and Euler polynomials
For q(x) ∈ Pn, let

q(x) =
n∑

k=

CkPk(x). (.)

Then, from (.), we have

〈
q(x),Pk(x)

〉
= Ck

〈
Pk(x),Pk(x)

〉
= Ck

∫ 

–

{
Pk(x)

} dx
=


k + 

Ck . (.)
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By (.), we get

Ck =
k + 


〈
q(x),Pk(x)

〉
=
k + 


∫ 

–
Pk(x)q(x)dx

=
(
k + 


)


kk!

∫ 

–

(
dk

dxk
(
x – 

)k)q(x)dx
=

(
k + 
k+k!

)∫ 

–

(
dk

dxk
(
x – 

)k)q(x)dx. (.)

Therefore, by (.) and (.), we obtain the following proposition.

Proposition . For q(x) ∈ Pn, let

q(x) =
n∑

k=

CkPk(x).

Then

Ck =
k + 
k+k!

∫ 

–

(
dk

dxk
(
x – 

)k)q(x)dx.
Let us assume that q(x) = xn ∈ Pn.
From Proposition ., we have

Ck =
k + 
k+k!

∫ 

–

(
dk

dxk
(
x – 

)k)xn dx
=
k + 
k+

(–)k
(
n
k

)∫ 

–

(
x – 

)kxn–k dx
=
k + 
k+

(
n
k

)(
 + (–)n–k

)∫ 



(
 – x

)kxn–k dx. (.)

For n – k ≡  (mod ), by (.), we get

Ck =
k + 
k+

(
n
k

)∫ 


( – y)ky

n–k–
 dy

=
k + 
k+

(
n
k

)
B
(
k + ,

n – k + 


)

=
k + 
k+

(
n
k

)
�(k + )�( n–k+ )

�( n+k+ + )

=
k + 
k+

(
n
k

) k!�( n–k+ )
( n+k+ )( n+k– ) · · · ( n–k+ )�( n–k+ )

=
k + 
k+

(
n
k

)
k!k+

(n – k)!(n + k + )(n + k) · · · (n – k + )
(n + k + )!

=
(k + )k+

(n + k + )!
× n!( n+k+ )!

( n–k )!
. (.)
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Here the beta function B(x, y) is defined by

B(x, y) =
∫ 


tx–( – t)y– dt

(
Re(x),Re(y) > 

)
,

and it is well known that

B(x, y) =
�(x)�(y)
�(x + y)

,

where �(s) =
∫ ∞
 ts–e–t dt (Re(s) > ) is the gamma function.

By Proposition . and (.), we get

xn =
∑

≤k≤n,n–k≡ (mod )

(k + )n!k+( n+k+ )!
(n + k + )!( n–k )!

Pk(x). (.)

From (.), we can easily derive the following equation (.):

xn =


n + 

n∑
l=

(
n + 
l

)
Bl(x) (n ∈ Z+). (.)

Therefore, by (.) and (.), we obtain the following Proposition ..

Proposition . For n ∈ Z+, we have

n∑
l=

Bl(x)
(n +  – l)!l!

=
∑

≤k≤n,n–k≡ (mod )

(k + )k+( n+k+ )!
(n + k + )!( n–k )!

Pk(x).

Let us take q(x) = Bn(x) ∈ Pn. By Proposition ., we get

Ck =
k + 
k+k!

∫ 

–

(
dk

dxk
(
x – 

)k)Bn(x)dx

=
(–)k(k + )

k+

(
n
k

)∫ 

–

(
x – 

)kBn–k(x)dx

=
(–)k(k + )

k+

(
n
k

) n–k∑
l=

(
n – k
l

)
Bn–k–l

∫ 

–

(
x – 

)kxl dx

=
k + 
k+

(
n
k

) n–k∑
l=

(
n – k
l

)
Bn–k–l

(
 + (–)l

)∫ 



(
 – x

)kxl dx. (.)

For l ∈ Z+ with l ≡  (mod ), we have

Ck =
k + 
k+

(
n
k

) ∑
≤l≤n–k,l is even

(
n – k
l

)
Bn–k–l

∫ 


( – y)ky

l–
 dy

=
k + 
k+

(
n
k

) ∑
≤l≤n–k,l is even

(
n – k
l

)
Bn–k–l

�(k + )�( l+ )
�( k+l+ + )

= (k + )k+n!
∑

≤l≤n–k,l≡ (mod )

Bn–k–l

(n – k – l)!
× ( k+l+ )!

(k + l + )!( l )!
. (.)
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In [], we showed that

Bn(x) =
n–∑
k=

(
n
k

)
Bn–kEk(x) + En(x) =

n∑
k=,k 	=n–

(
n
k

)
Bn–kEk(x). (.)

Therefore, by Proposition ., (.) and (.), we obtain the following theorem.

Theorem . For n ∈ Z+, we have


n!

n∑
k=,k 	=n–

(
n
k

)
Bn–kEk(x) =

n∑
k=

( ∑
≤l≤n–k,l≡ (mod )

(k + )k+( l+k+ )!Bn–k–l

(n – k – l)!(l + k + )!( l )!

)
Pk(x).

By the same method of Theorem ., we easily see that

En(x)
n!

=
n∑

k=

( ∑
≤l≤n–k,l≡ (mod )

(k + )k+( l+k+ )!Bn–k–l

(n – k – l)!(l + k + )!( l )!

)
Pk(x). (.)

Let us take q(x) =
∑n

k= Bk(x)Bn–k(x) ∈ Pn. Then we see that

n∑
k=

Bk(x)Bn–k(x)

= (n + )
n∑

k=

(n
k
)

n – k + 

{ n∑
l=k

Bl–kBn–l + Bn––k

}
Ek(x) +

(n – )n


En–(x). (.)

The equation (.) was proved in [].
By (.) and Proposition ., we have

Ck =
k + 
k+k!

{
(n + )

n∑
l=

(n
l
)

n – l + 

( n∑
m=l

Bm–lBn–m + Bn––l

)

×
∫ 

–
El(x)

(
dk

dxk
(
x – 

)k)dx

+
(n – )n



∫ 

–

(
dk

dxk
(
x – 

)k)En–(x)dx

}
. (.)

Integrating by parts, we get

∫ 

–
El(x)

(
dk

dxk
(
x – 

)k)dx

=
l∑

j=

(
l
j

)
El–j

∫ 

–
xj

dk

dxk
(
x – 

)k dx

=
l∑

j=k

(
l
j

)
El–j

(–)kj!
(j – k)!

∫ 

–
xj–k

(
x – 

)k dx

=
l∑

j=k

(
l
j

)
El–j

j!
(j – k)!

(
 + (–)j–k

)∫ 


xj–k

(
–x + 

)k dx. (.)
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Then we see that
∫ 

–
El(x)

(
dk

dxk
(
x – 

)k)dx

=
l∑

j=k,j–k≡ (mod )

(
l
j

)
El–j

j!
(j – k)!

∫ 


t
j–k–
 ( – t)k dt

=
l∑

j=k,j–k≡ (mod )

(
l
j

)
El–j

j!
(j – k)!

�( j–k+ )�(k + )
�( j+k+ + )

=
l∑

j=k,j–k≡ (mod )

(
l
j

)
El–j

j!k!
(j – k)!

× (j – k)!k+

(j + k + )!
× ( j+k+ )!

( j–k )!

=
l∑

j=k,j–k≡ (mod )

(
l
j

)
El–j

j!k!k+

(j + k + )!
× ( j+k+ )!

( j–k )!
. (.)

It is easy to show that

∫ 

–

(
dk

dxk
(
x – 

)k)En–(x)dx

=
n–∑
j=

(
n – 
j

)
En––j

∫ 

–

(
dk

dxk
(
x – 

)k)xj dx

=
n–∑
j=k

(
n – 
j

)
En––j

(
 + (–)j–k

)
(–)k

j!
(j – k)!

∫ 



(
x – 

)kxj–k dx

=
∑

k≤j≤n–,j–k≡ (mod )

(
n – 
j

)
En––j

j!k!k+

(j + k + )!
× ( j+k+ )!

( j–k )!
. (.)

Therefore, by (.), (.), (.) and (.), we get

Ck = (k + )k+
{
(n + )

n∑
l=k

(n
k
)

n – l + 

( n∑
m=l

Bm–lBn–m + Bn––l

)

×
∑

k≤j≤l,j–k≡ (mod )

(
l
j

)
El–j

j!
(j + k + )!

× ( j+k+ )!
( j–k )!

+
(n – )n


∑

k≤j≤n–,j–k≡ (mod )

(
n – 
j

)
En––j

j!
(j + k + )!

× ( j+k+ )!
( j–k )!

}
. (.)

Therefore, by Proposition . and (.), we obtain the following theorem.

Theorem . For n ∈ Z+, we have

n∑
k=

Bk(x)Bn–k(x)

=
n∑

k=

(k + )k+
{
(n + )

n∑
l=k

(n
k
)

n – l + 

( n∑
m=l

Bm–lBn–m + Bn––l

)
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×
∑

k≤j≤l,j–k≡ (mod )

(
l
j

)
El–j

j!
(j + k + )!

× ( j+k+ )!
( j–k )!

+
(n – )n


∑

k≤j≤n–,j–k≡ (mod )

(
n – 
j

)
En––j

j!
(j + k + )!

× ( j+k+ )!
( j–k )!

}
Pk(x).

Remark . The extended Laguerre polynomials are given by

Lα
n(x) =

n∑
r=

(–)r

r!

(
n + α

n – r

)
xr (α > –).

By the same method, we get

Lα
n(x) =

n∑
k=

∑
≤l≤n–k,l≡ (mod )

(–)k+l(k + )k+
( n+α

n–k–l
)
( l+k+ )!

(l + k + )!( l )!
Pk(x)

and

Hn(x) =
n∑

k=

∑
≤l≤n–k,l≡ (mod )

(k + )k+l+n!( l+k+ )!Hn–k–l

(n – k – l)!(l + k + )!( l )!
Pk(x),

where Hn(x) is the Hermite polynomial of degree n (see []).
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