14 research outputs found

    Space Communications: Theory and Applications. Volume 3: Information Processing and Advanced Techniques. A Bibliography, 1958 - 1963

    Get PDF
    Annotated bibliography on information processing and advanced communication techniques - theory and applications of space communication

    Microelectronic elements applied to the design of digital computer

    Get PDF
    Call number: LD2668 .R4 1967 P3

    Fault tolerance issues in nanoelectronics

    Get PDF
    The astonishing success story of microelectronics cannot go on indefinitely. In fact, once devices reach the few-atom scale (nanoelectronics), transient quantum effects are expected to impair their behaviour. Fault tolerant techniques will then be required. The aim of this thesis is to investigate the problem of transient errors in nanoelectronic devices. Transient error rates for a selection of nanoelectronic gates, based upon quantum cellular automata and single electron devices, in which the electrostatic interaction between electrons is used to create Boolean circuits, are estimated. On the bases of such results, various fault tolerant solutions are proposed, for both logic and memory nanochips. As for logic chips, traditional techniques are found to be unsuitable. A new technique, in which the voting approach of triple modular redundancy (TMR) is extended by cascading TMR units composed of nanogate clusters, is proposed and generalised to other voting approaches. For memory chips, an error correcting code approach is found to be suitable. Various codes are considered and a lookup table approach is proposed for encoding and decoding. We are then able to give estimations for the redundancy level to be provided on nanochips, so as to make their mean time between failures acceptable. It is found that, for logic chips, space redundancies up to a few tens are required, if mean times between failures have to be of the order of a few years. Space redundancy can also be traded for time redundancy. As for memory chips, mean times between failures of the order of a few years are found to imply both space and time redundancies of the order of ten

    Digital Readout and Control of a Superconducting Qubit

    Get PDF
    In the quest to build a fault-tolerant quantum computer, superconducting circuits based on Josephson junctions have emerged as a leading architecture. Coherence times have increased significantly over the last two decades, and processors with ∼ 50 qubits have been experimentally demonstrated. These systems traditionally utilize microwave frequency control signals, and heterodyne based detection schemes for measurement. Both of these techniques rely heavily on room temperature microwave generators, high-bandwidth lines from room temperature to millikelvin temperatures, and bulky non-reciprocal elements such as cryogenic microwave isolators. Reliance on these elements makes it impractical to scale existing devices up a single order of magnitude, let alone the 5-6 orders of magnitude needed for performing fault-tolerant quantum algorithms. Here, I present results that suggesting superconducting digital logic, namely Single Flux Quantum (SFQ) logic, can replace analog control and measurement techniques, avoiding the significant overhead involved. I describe a scheme for measuring qubits with a device known as a Josephson Photomultiplier (JPM), which crucially stores the result of a qubit measurement in a classical circulating supercurrent within the device and allows for integration with SFQ detection circuitry. This technique is experimentally demonstrated, with single-shot measurement fidelity of 92%. Two methods for accessing this measurement result are presented, one utilizing ballistic fluxons, and another utilizing flux comparison. Initial experimental results of the latter are presented. In addition, I describe a scheme for controlling qubits with sequences of digital SFQ pulses. This method is then used to control a qubit without a microwave signal generator, with results of an average single-qubit gate fidelity of around 95%. When combined, these techniques form a nearly fully digital interface to superconducting qubits, which could allow these systems to scale much more easily

    Nanomechanical Resonators: Toward Atomic Scale

    Get PDF
    The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to new grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes, and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained efforts have been devoted to creating mechanical devices toward the ultimate limit of miniaturization— genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines

    Nanomechanical Resonators: Toward Atomic Scale

    Get PDF
    The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/ phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization--genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines

    Nonlinear nonlocal metasurfaces

    Get PDF
    Optical metasurfaces have recently emerged as the game changer in light manipulation and opened up new perspectives in many subfields of optics and photonics. Recent developments in nonlocal metasurfaces, in which the nanoscale building blocks respond to the incoming light collectively rather than as individual objects, are especially promising for enhancing and controlling the nonlinear optical phenomena. In this article, we provide a brief overview of the basic principles of nonlocal metasurfaces in the context of their nonlinear optical functionalities. We discuss the origin and the regimes of the nonlocal response, covering the aspects of multiple scattering, radiation damping, quality factor, local-field enhancement, and temporal dynamics. Some important aspects are illustrated by computational examples. We also give our personal viewpoint on the selected ideas and research directions in nonlocal and nonlinear metasurfaces, including the role of spatial symmetry in nonlocal interactions, the effects of phase and momentum matching in frequency conversion, as well as the possibilities offered by new material platforms and novel concepts, such as bound states in the continuum, parity-time symmetry, and time-variant metasurfaces.publishedVersionPeer reviewe

    NASA thesaurus. Volume 1: Hierarchical Listing

    Get PDF
    There are over 17,000 postable terms and nearly 4,000 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions
    corecore