291 research outputs found

    Distractor inhibition by alpha oscillations is controlled by an indirect mechanism governed by goal-relevant information

    Get PDF
    The role of alpha oscillations (8–13 Hz) in cognition is intensively investigated. While intracranial animal recordings demonstrate that alpha oscillations are associated with decreased neuronal excitability, it is been questioned whether alpha oscillations are under direct control from frontoparietal areas to suppress visual distractors. We here point to a revised mechanism in which alpha oscillations are controlled by an indirect mechanism governed by the load of goal-relevant information – a view compatible with perceptual load theory. We will outline how this framework can be further tested and discuss the consequences for network dynamics and resource allocation in the working brain

    The neurophysiology of intersensory selective attention and task switching

    Full text link
    Our ability to selectively attend to certain aspects of the world and ignore others is fundamental to our day-to-day lives. The need for selective attention stems from capacity limitations inherent in our perceptual and cognitive processing architecture. Because not every elemental piece of our environment can be fully processed in parallel, the nervous system must prioritize processing. This prioritization is generally referred to as selective attention. Meanwhile, we are faced with a world that is constantly in flux, such that we have to frequently shift our attention from one piece of the environment to another and from one task to another. This process is generally referred to as task-switching. Neural oscillations in the alpha band (~8-14 Hz) have been shown to index the distribution of selective attention, and there is increasing evidence that oscillations in this band are in fact utilized by the nervous system to suppress distracting, task-irrelevant information. In order to elaborate on what is known of the function of alpha oscillations as well as current models of both intersensory selective attention and task switching, I investigated the dynamics of alpha amplitude modulations within the context of intersenory selective attention and task switching in neurologically typical young adults. Participants were alternately cued to attend to either the visual or auditory aspect of a compound audio-visual stimulus while high-density electroencephalography was recorded. It is typically found that alpha power increases over parieto-occipital cortices when attention is directed away from the visual modality and to the auditory modality. I report evidence that alpha oscillations play a role in task-switching (e.g., when switching from attending the visual task versus repeating this task), specifically as biasing signals, that may operate to re-weight competition among two tasks-sets. I further investigated the development of these same processes in school-aged children and adolescents. While exhibiting typical patterns of alpha modulations relevant to selective attention, Young school-aged children (8-12 years), compared to older participants, did not demonstrate specific task switching modulation of alpha oscillations, suggesting that this process does not fully develop until late adolescence. Finally, children and adolescents on the autism spectrum failed altogether to exhibit differentiation of alpha power between attend-visual and attend-auditory conditions--an effect present in age and IQ matched controls--suggesting that ASD individuals may have a deficit in the overall top-down deployment of alpha oscillatory biasing signals. This could result in an inability to ignore distracting information in the environment, leading to an overwhelming, disordered experience of the world, resulting in profound effects on the both social interaction and cognitive development. Altogether, these findings add to growing evidence that alpha oscillations serve as domain general biasing signals and are integral to our flexible goal-oriented behavior. Furthermore, the flexible use of these biasing signals in selective attention and task switching develops over a protracted period, and appears to be aberrant in autism spectrum disorder

    TMS-induced Neural Noise in Sensory Cortex Interferes with Short-term Memory Storage in Prefrontal Cortex

    Get PDF
    In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.\u27s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature

    Dynamic Oscillatory Interactions Between Neural Attention and Sensorimotor Systems

    Get PDF
    The adaptive and flexible ability of the human brain to preference the processing of salient environmental features in the visual space is essential to normative cognitive function, and various neurologically afflicted patient groups report negative impacts on visual attention. While the brain-bases of human attentional processing have begun to be unraveled, very little is known regarding the interactions between attention systems and systems supporting sensory and motor processing. This is essential, as these interactions are dynamic; evolving rapidly in time and across a wide range of functionally defined rhythmic frequencies. Using magnetoencephalography (MEG) and a range of novel cognitive paradigms and analytical techniques, this work attempts to fill critical gaps in this knowledge. Specifically, we unravel the role of dynamic oscillatory interactions between attention and three sensorimotor systems. First, we establish the importance of sub-second occipital alpha (8 – 14 Hz) oscillatory responses in visual distractor suppression during selective attention (Chapter 1) and their essential role in fronto-parietal attention networks during visual orienting (Chapter 2). Next, we examine the divergent effects of directed attention on multi-frequency primary somatosensory neural oscillations in the theta (4 – 8 Hz), alpha, and beta (18 – 26 Hz) bands (Chapter 3). Finally, we extend these findings to the motor system (Chapter 4), and find that the frontal and parietal beta-frequency oscillations known to support motor planning and execution are modulated equivalently by differing subtypes of attentional interference, whereas frontal gamma (64 – 84 Hz) oscillations specifically index the superadditive effect of this interference. These findings provide new insight into the dynamic nature of attention-sensorimotor interactions in the human brain, and will be the foundation for groundbreaking new studies of attentional deficits in patients with common neurological disorders (e.g., Alzheimer’s disease, HIV-associated neurocognitive disorders, Parkinson’s disease). With an enhanced knowledge of the temporal and spectral definitions of these impairments, new therapeutic interventions utilizing frequency-targeted neural stimulation can be developed

    Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task

    Get PDF
    The brain receives a rich flow of information which must be processed according to behavioral relevance. How is the state of the sensory system adjusted to up- or downregulate processing according to anticipation? We used magnetoencephalography to investigate whether prestimulus alpha band activity (8 - 14 Hz) reflects allocation of attentional resources in the human somatosensory system. Subjects performed a tactile discrimination task where a visual cue directed attention to their right or left hand. The strength of attentional modulation was controlled by varying the reliability of the cue in three experimental blocks (100%, 75%, or 50% valid cueing). While somatosensory prestimulus alpha power lateralized strongly with a fully predictive cue (100%), lateralization was decreased with lower cue reliability (75%) and virtually absent if the cue had no predictive value at all (50%). Importantly, alpha lateralization influenced the subjects' behavioral performance positively: both accuracy and speed of response improved with the degree of alpha lateralization. This study demonstrates that prestimulus alpha lateralization in the somatosensory system behaves similarly to posterior alpha activity observed in visual attention tasks. Our findings extend the notion that alpha band activity is involved in shaping the functional architecture of the working brain by determining both the engagement and disengagement of specific regions: the degree of anticipation modulates the alpha activity in sensory regions in a graded manner. Thus, the alpha activity is under top-down control and seems to play an important role for setting the state of sensory regions to optimize processing

    Temporal dynamics of target selection and distractor suppression mechanisms in the right Frontal Eye Field

    Get PDF
    The ability of the human brain to selectively attend to relevant information while ignoring irrelevant distraction is essential for the successful completion of everyday tasks. The present PhD project aimed to unravel the temporal dynamics of target selection and distractor suppression in the Frontal Eye Field (FEF), a key node in the dorsolateral attention network. Previous research (Lega et al., 2019) had assessed the contribution of both IPS and FEF to the deployment of visuo- spatial attention by means of 10 Hz TMS during a visual search task. The stimulation was delivered in a post-stimulus epoch from 100 to 300 ms, considered crucial for attentional computations in visual search. This study found that the TMS protocol improved distractor suppression mechanisms, reducing the cost engendered by salient but task-irrelevant distractors. To further clarify the temporal contribution of right FEF to distractor suppression, two experiments were carried out. Experiment 1 applied single-pulse TMS over right FEF at three different time points, 50, 200 or 350 ms after search array onset. Experiment 2 aimed to exert a stronger TMS effect over right FEF while maintaining a temporal-punctate approach. It applied trains of triple-pulse TMS at 20 Hz over right FEF in three different time windows: from -50 to 50 ms (T1), from 100 to 200 ms (T2) and from 250 to 350 ms (T3) after the search array onset. While Experiment 1 showed only a general, time-unspecific and quasi- significant effect of stimulation over response times, Experiment 2 revealed that stimulation at T2 (100-200 ms) was associated with an increase of the distractor cost, specifically for distractors located contralaterally to the stimulation site. These findings support the role of right FEF in suppressing distractions from salient but irrelevant stimuli and suggest that TMS may activate/inhibit the neural network that regulates and limits interference from such distractions. Further research is needed to precisely assess the physiological effects of different TMS protocols of the right FEF and its influence on attentional computation

    Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition

    Get PDF
    In order to understand the working brain as a network, it is essential to identify the mechanisms by which information is gated between regions. We here propose that information is gated by inhibiting task-irrelevant regions, thus routing information to task-relevant regions. The functional inhibition is reflected in oscillatory activity in the alpha band (8–13 Hz). From a physiological perspective the alpha activity provides pulsed inhibition reducing the processing capabilities of a given area. Active processing in the engaged areas is reflected by neuronal synchronization in the gamma band (30–100 Hz) accompanied by an alpha band decrease. According to this framework the brain could be studied as a network by investigating cross-frequency interactions between gamma and alpha activity. Specifically the framework predicts that optimal task performance will correlate with alpha activity in task-irrelevant areas. In this review we will discuss the empirical support for this framework. Given that alpha activity is by far the strongest signal recorded by EEG and MEG, we propose that a major part of the electrophysiological activity detected from the working brain reflects gating by inhibition

    Understanding human response to tactile stimuli: A Machine Learning approach

    Get PDF
    Whereas understanding human reaction to touch is of great interest in many medical applications, it is still a very unknown field. This research aims to clarify the nature of the relation between endogenous and exogenous attention by analysing electroencephalografic (EEG) data regarding human touch. To this end, data collected from twelve subjects under an experiment based on a variation of the Posner’s cue-target paradigm has been used. After pre-processing, several multi-class classification models based on state-of-the-art machine learning algorithms have been implemented and their accuracy in detecting different experimental conditions have been evaluated. A temporal analysis has also been performed to select the most representative time points. Results showed that although the physical stimuli was identical across conditions, different types of attentional scenarios were classified above chance. Further, the hemisphere contralateral and ipsilateral to the attended side contributed differently, across time, to the accuracy of classification
    • …
    corecore