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ABSTRACT 

 

The adaptive and flexible ability of the human brain to preference the processing of 

salient environmental features in the visual space is essential to normative cognitive 

function, and various neurologically afflicted patient groups report negative impacts on 

visual attention. While the brain-bases of human attentional processing have begun to be 

unraveled, very little is known regarding the interactions between attention systems and 

systems supporting sensory and motor processing. This is essential, as these interactions 

are dynamic; evolving rapidly in time and across a wide range of functionally defined 

rhythmic frequencies. Using magnetoencephalography (MEG) and a range of novel 

cognitive paradigms and analytical techniques, this work attempts to fill critical gaps in this 

knowledge. Specifically, we unravel the role of dynamic oscillatory interactions between 

attention and three sensorimotor systems. First, we establish the importance of sub-

second occipital alpha (8 – 14 Hz) oscillatory responses in visual distractor suppression 

during selective attention (Chapter 1) and their essential role in fronto-parietal attention 

networks during visual orienting (Chapter 2). Next, we examine the divergent effects of 

directed attention on multi-frequency primary somatosensory neural oscillations in the 

theta (4 – 8 Hz), alpha, and beta (18 – 26 Hz) bands (Chapter 3). Finally, we extend these 

findings to the motor system (Chapter 4), and find that the frontal and parietal beta-

frequency oscillations known to support motor planning and execution are modulated 

equivalently by differing subtypes of attentional interference, whereas frontal gamma (64 

– 84 Hz) oscillations specifically index the superadditive effect of this interference. These 

findings provide new insight into the dynamic nature of attention-sensorimotor interactions 

in the human brain, and will be the foundation for groundbreaking new studies of 

attentional deficits in patients with common neurological disorders (e.g., Alzheimer’s 

disease, HIV-associated neurocognitive disorders, Parkinson’s disease). With an 
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enhanced knowledge of the temporal and spectral definitions of these impairments, new 

therapeutic interventions utilizing frequency-targeted neural stimulation can be developed.  
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INTRODUCTION 

Attention in the Human Nervous System: 

Current models of the central nervous system (CNS) posit that the brain functions as 

the center of predictive inference. In other words, by actively gathering sensory cues to 

form a model of the external environment, comparing these measurements to internally 

generated predictive models, and updating internal weightings based on the discrepancies 

between the two, the brain allows us to proactively predict and modify our environment to 

our benefit, by means of our peripheral motor actions. The ability to selectively and flexibly 

direct sensory systems, such as vision and somatosensation, towards salient 

environmental stimuli is essential to the formation of a high-fidelity environmental model. 

This cognitive process, generally termed attention, helps our brains to divine signal in a 

world full of noise, and thus, when dysfunctional, can be debilitating. Importantly, although 

attention is often discussed as a unitary construct, it is difficult to operationalize in this 

way, and currently exists as more of a cognitive “umbrella term” rather than a single 

process. Essential among the cognitive attention sub-systems are directed enhancement 

of salient environmental stimuli, along with concurrent selective inhibition of interfering or 

distracting ones. Despite a great deal of research establishing the neuroanatomically 

defined brain networks supporting these attentional sub-systems, substantial gaps in 

knowledge remain regarding how they actually interact with the sensorimotor systems that 

they modulate.  

Neural Oscillations: 

Modern invasive and non-invasive recordings of population-level neuronal activity 

have indicated that the mammalian nervous system samples its environment and 
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organizes internal information transfer through rhythmic coordination spread across 

multiple, spectrally-defined rhythms (measured in cycles per second; Hz). As they provide 

a mechanism for temporally discrete sensory sampling and inter-system information 

modulation in the human brain, it is perhaps unsurprising that these neural oscillations are 

essential to attention function, however, knowledge of the neural oscillatory dynamics 

serving attention in healthy adult humans is incomplete. In particular, the rapidly-evolving 

oscillatory interactions between neural attentional sub-systems and sensorimotor systems 

have not been well-studied, which poses a major barrier in the way of understanding 

processing in the complex functional circuitry of the human brain, as well as for the 

development of non-invasive neurostimulation (e.g., transcranial magnetic and electric 

stimulation) and behavioral therapies for patient populations affected by attentional 

impairments. This dearth of research can be partially attributed to limitations in non-

invasive neuroimaging technologies: non-invasive methods with the sufficient spatial and 

temporal precision needed to study these topics are rare, and invasive studies of the 

healthy human brain are generally ethically dubious.  

Neuroimaging with Magnetoencephalography: 

MEG is a passive and noninvasive method for quantifying neural activity in the human 

brain, and represents the ideal methodology by which to study the dynamic attention 

sensorimotor interactions in question. MEG data are acquired by measuring the miniscule 

magnetic fields that naturally emanate from population-level neural activity using a whole-

head array of sensors that are sensitive at the femto-Tesla (10-15 T) level. MEG provides 

a unique combination of spatial (~ 5 mm) and temporal (< 1 ms) precision that is not 

achievable with any other method (e.g., fMRI and EEG). The high temporal resolution of 

MEG recordings also allows for the direct measurement and quantification of neural 

oscillations, which are now known to provide extremely useful information regarding the 
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function of spatially defined neural populations. In addition, this enhanced precision allows 

for measurement of very fast (i.e., millisecond-scale) interactions between distinct neural 

systems (e.g., attention and somato-motor) that are otherwise invisible. 

Goals of the Current Studies: 

The current studies aim to address knowledge gaps in the extant literature regarding: 

(A) the spatial and spectral patterns of rhythmic interactions between oscillatory neural 

responses in selective attention sub-systems and visual systems (Chapters 1 and 2), (B) 

the corollary interactions between attention and somatosensory systems (Chapter 3), and 

(C) the influence of these attention sub-systems on neural motor systems (Chapter 4). 

With the findings from these studies, we can expect to reach two primary goals. First, we 

can enhance our developing understanding of the functional role of spectrally limited 

neural activity in the human brain, across a number of neural systems and behaviorally 

relevant contexts. For example, although more established in vision, the distinct roles of 

temporally overlapping multi-spectral neural responses in somatosensation and motor 

plan execution are uncertain, and a better understanding of the functional implications of 

these rhythms will provide new insight into the mechanisms by which the human brain 

processes information and coordinates motor output. Second, and more importantly, these 

studies will lay the groundwork for upcoming studies of attention-sensorimotor interactions 

in a number of patient populations who present with deficits in attention. Patients with 

Alzheimer’s disease (AD), HIV-associated neurocognitive disorders (HAND), and 

Parkinson’s disease (PD), among others, all commonly report attentional issues, however 

the role that these impairments play in clinical outcomes and activities of daily living (ADLs) 

remains vastly understudied. 
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CHAPTER 1: OCCIPITAL ALPHA OSCILLATIONS IN SELECTIVE DISTRACTOR 

SUPPRESSION 

The material presented in this chapter was previously published in Wiesman and Wilson, 
2019, Alpha frequency entrainment reduces the effect of visual distractors, Journal of 
Cognitive Neuroscience, 31(9):1392-1403. 

Introduction: 

A substantial amount of research has connected parieto-occipital alpha oscillations to 

the active inhibition of visual cortical function (1, 2), particularly when these rhythms are 

measured prior to the onset of a salient visual stimulus or during the maintenance phase 

of visual working memory tasks (3-9). However, the conceptualization of occipital alpha 

as a suppression mechanism in visual cortex has recently come into question (10). Thus, 

studies aimed at experimentally manipulating occipital alpha in visual cortices and 

measuring the resulting effects on behavior and associated neural responses are 

extremely relevant. 

In an attempt to manipulate occipital alpha experimentally, many laboratories have 

turned to frequency-specific entrainment with flickering visual stimuli (11). Although it 

remains unclear whether entrainment responses to stimuli flickering in the alpha-range 

represent a power-modulation of ongoing rhythmic patterns of neural activity, or more 

simply a “frequency-following response” (12), it is nonetheless established that visual 

perception appears to be negatively modulated by these stimuli (13-17). An enhanced 

understanding of this phenomenon is crucial, as flickering visual stimuli have been used 

for decades to “tag” stimuli in vision and cognitive neuroscience research in a supposedly 

neutral, physiologically-inert fashion (18). 

Importantly, the impact of task-salience on the negative effects of alpha enhancement 

through visual entrainment remains unclear, as does the nature of these impairing effects 

on visual perception (i.e., pre- or post- attentive). Such knowledge is essential to 

understanding the interaction between attention and the effects of alpha entrainment on 
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visual perception, which is a rapidly growing area of neuroscience (19). As discussed 

above, previous research has found a detrimental effect of alpha entrainment on visual 

perception, but virtually all of these studies entrained the visual field corresponding to 

target stimuli (13, 14, 16, 17). Thus, whether similar effects would be observed when the 

entrained visual field corresponds to non-imperative, or even distracting, stimuli remains 

to be investigated. Essentially, if such alpha entrainment is associated with similarly 

detrimental effects on the perception of distracting stimuli, then the expected net effect 

would be enhanced task performance, which would provide strong support for the 

conceptualization that alpha entrainment has an “early” inhibitory effect in visual cortex 

that modulates visual perception. 

In this study, we utilized an arrow-based, entrainment version of the classic Eriksen 

flanker selective attention paradigm and MEG to investigate the dynamic interactions 

between alpha-targeted entrainment in the visual cortex and behavioral performance. We 

hypothesized that local entrainment of visual cortex at 10 Hz would result in a reduced 

interference effect of visual stimuli in that portion of the visual field. Specifically, by 

entraining visual cortices at two distinct frequencies (i.e., 10 Hz alpha and 30 Hz control) 

in the specific locations where the interfering arrows would subsequently appear (and not 

over the target arrow), we hypothesized that pre-stimulus alpha entrainment would 

selectively decrease the behavioral interference effect of the incongruent flanking arrows. 

Further, we hypothesized that the strength of pre-stimulus neural entrainment in the alpha 

range would predict the decreased behavioral interference effect of the distracting flanker 

stimuli. 

Methods: 

Participants 
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Twenty-three healthy young adults were recruited for the study (Mage = 26.09; age 

range: 20-33 years; 16 males; 21 right-handed). Exclusion criteria included any medical 

illness affecting CNS function, any neurological or psychiatric disorder, history of head 

trauma, current substance abuse, and any non-removable metal implants that would 

adversely affect MEG data acquisition. Participants were compensated $50 for their time 

and travel for taking part in the study. All participants had normal or corrected-to-normal 

vision. Three participants were excluded early during analysis of the neural data: one due 

to technical difficulties with data acquisition and two more due to artifactual neural data 

(i.e., physiologically-implausible amplitude of responses), leaving a remaining twenty total 

participants for further analysis (Mage = 26.00; 15 males; 18 right-handed). The Institutional 

Review Board at the University of Nebraska Medical Center reviewed and approved this 

investigation. Written informed consent was obtained from each participant following 

detailed description of the study. All participants completed the same experimental 

protocol. 

MEG Experimental Design and Behavioral Data Analysis 

We used a modified arrow-based version of the classic Eriksen “flanker” paradigm to 

engage alpha-frequency networks related to selective attention processing (Figure 1). 

Each trial began with a fixation that was presented for a randomly-varied inter-stimulus 

interval of 2100-2300 ms. After this, two entrainment stimuli were flickered at a frequency 

of either 10 or 30 Hz on each side of this central fixation for 1500 ms. A row of 5 arrows 

was then presented in the same spatial locations as the five previously-presented stimuli 

(i.e., the central fixation and four surrounding entrainment stimuli) for 1000 ms. 

Importantly, the presentation of these arrows coincided with what would be the effective 

“peak” of the ongoing entrained rhythm. Prior to starting the experiment, participants were 

instructed to respond as quickly and accurately as possible as to whether the middle arrow 
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was pointing to the left (index finger) or right (middle finger), using their right hand on a 

non-magnetic button pad. All stimuli prior to the presentation of the flanker arrows (i.e., 

the fixation and entrainment stimuli) were diamonds of equal height and width as the 

arrows, so to completely encompass and systematically modulate the visual field of the 

subsequently presented flanker stimuli. The 300 total trials were pseudo-randomized and 

equally split between each of the two entrainment (10 Hz and 30 Hz) and flanker 

congruency (congruent and incongruent) conditions. Correct responses were also 

pseudo-randomized, such that the direction of the central target arrow was never repeated 

more than twice in a row. Custom visual stimuli were programmed in Matlab (Mathworks, 

Inc., Massachusetts, USA) using Psychophysics Toolbox Version 3 (20) and back-

projected onto a semi-translucent non-ferromagnetic screen at an approximate distance 

of 42 inches, using a Panasonic PT-D7700U-K model DLP projector with a refresh rate of 

60 Hz and a contrast ratio of 4000:1. Flickering stimuli were presented as a square-wave 

 

Figure 1. Visual entrainment flanker task paradigm.  

The task began with 2200 ms of fixation, followed by 1500 ms of bilateral peripheral visual entrainment 
(green dotted lines) driven at either 10 or 30 Hz. Upon cessation of the entraining stimuli, one of the four 
arrow arrays was presented, comprising either a congruent or incongruent visual stimulus. Participants 
were instructed to indicate (by button press) the direction of the central arrow, while ignoring the interfering 
information provided by the flanking distractor arrows. Diamonds were chosen for fixation and entrainment 
stimuli, so as to completely encompass the visual field of the to-be-presented arrow stimuli, while also 
providing no information regarding the direction of the subsequently-presented arrow stimuli. It is 
important to note that the five positions of the fixation and entrainment stimuli perfectly overlapped in 
visual space with the positions of the subsequently-presented arrow stimuli.  
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function with a frequency of either 10 Hz (3 frames on/3 frames off; ~16.67 ms per frame) 

or 30 Hz (1 frame on/1 frame off), with a luminance contrast of 100% (white stimuli on a 

black background). The arrow and entrainment stimuli were centered on five locations 

evenly distributed horizontally across the screen, and each subtended an approximate 

visual angle of 1.0° horizontally by 1.0° vertically. Including spaces between the arrows, 

the entire visual array (i.e., all five arrows/entrainment stimuli) subtended an approximate 

visual angle of 6.3° horizontally by 1.0° vertically. Total MEG recording time was about 24 

minutes. 

For each participant, reaction time (RT) data were extracted for each individual trial, 

incorrect and no-response trials were removed, and outliers were then excluded based on 

a standard threshold of ± 2.5 standard deviations from the mean. The remaining RT data 

were then averaged within each participant, and these mean RT values were subjected to 

a 2 (flanker congruency) x 2 (entrainment frequency) repeated measures ANOVA. These 

participant-level RT means were also used in subsequent statistical analyses, however it 

is important to note that, when computing the “congruency effect” for these analyses 

(commonly computed as the Incongruent RT – Congruent RT), we opted to divide the 

values instead, as this helped minimize the bias resulting from variability in overall 

response time (i.e., participants with higher overall reaction time could have a higher 

congruency effect, despite having a similar RT ratio between the two conditions). 

Importantly, side-by-side comparison of the different methods to compute congruency 

effects (i.e., subtraction, division, [active-baseline]/[active+baseline]) revealed that this 

choice made no meaningful difference in our primary finding (i.e., the significant time-

varying relationship between 10 Hz entrainment and behavior). Accuracy data were also 

computed, but were not analyzed for conditional differences due to possible ceiling effects 

(mean accuracy = 94%) that would obscure meaningful interpretation. 
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MEG Data Acquisition 

All recordings were conducted in a one-layer magnetically-shielded room with active 

shielding engaged for environmental noise compensation. Neuromagnetic responses 

were sampled continuously at 1 kHz with an acquisition bandwidth of 0.1– 330 Hz using 

a 306-sensor Elekta MEG system (Helsinki, Finland) equipped with 204 planar 

gradiometers and 102 magnetometers. Participants were monitored during data 

acquisition via real-time audio–video feeds from inside the shielded room. Each MEG 

dataset was individually corrected for head motion and subjected to noise reduction using 

the signal space separation method with a temporal extension (21). 

Structural MRI Processing and MEG Coregistration 

Preceding MEG measurement, four coils were attached to the participant’s head and 

localized, together with the three fiducial points and scalp surface, using a 3-D digitizer 

(Fastrak 3SF0002, Polhemus Navigator Sciences, Colchester, VT, USA). Once the 

participant was positioned for MEG recording, an electric current with a unique frequency 

label (e.g., 322 Hz) was fed to each of the coils. This induced a measurable magnetic field 

and allowed each coil to be localized in reference to the sensors throughout the recording 

session. Since coil locations were also known in head coordinates, all MEG 

measurements could be transformed into a common coordinate system. With this 

coordinate system, each participant’s MEG data were co-registered with structural T1-

weighted MRI data in BESA MRI (Version 2.0) prior to source-space analysis. Structural 

MRI data were aligned parallel to the anterior and posterior commissures and transformed 

into standardized space. Following source analysis (i.e., beamforming; see MEG Source 

Imaging and Statistics), each participant’s 4.0 x 4.0 x 4.0 mm functional images were also 

transformed into standardized space using the transform that was previously applied to 

the structural MRI volume and spatially resampled. 
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MEG Preprocessing, Time-Frequency Transformation, and Sensor-Level Statistics 

Cardiac artifacts were removed from the data using signal-space projection (SSP), 

which was subsequently accounted for during source reconstruction (22). The continuous 

magnetic time series was then divided into 3200 ms epochs (-2200 to 1000 ms relative to 

the onset of the arrow stimuli; -700 to 2500 ms relative to the onset of the entraining 

stimuli), with the baseline extending from -2000 to -1600 ms prior to the onset of the arrow 

stimuli (and -500 to -100 ms prior to the onset of the entrainment stimuli). Recall that the 

entrainment stimuli appeared 1500 ms prior to the arrow stimuli and extended until their 

onset. Epochs containing artifacts were rejected using a fixed threshold method, 

supplemented with visual inspection. An average of 255.10 (SD = 13.57) trials per 

participant (out of 300 total) were used for further analysis, and the mean number of 

accepted trials per condition did not differ by entrainment frequency, flanker congruency, 

nor by an interaction between the two terms (2 x 2 repeated measures ANOVA; all p’s > 

.20). 

The artifact-free epochs were next transformed into the time-frequency domain using 

complex demodulation (23), and the resulting spectral power estimations per sensor were 

averaged over trials to generate time-frequency plots of mean spectral density. For 

visualization, these sensor-level data were normalized by each respective bin’s baseline 

power, which was calculated as the mean power during the -2000 to -1600 ms time period. 

The time-frequency windows used for subsequent source imaging of the entrainment 

response were determined a priori, based on the duration and frequency of the entrained 

stimuli. For each of these responses, the spectral window was the frequency of 

entrainment (i.e., 10 or 30 Hz) ± 0.25 Hz, and the time windows were defined in two 

successive bins stretching from -1500 to -500 ms prior to arrow stimuli presentation. To 

facilitate comparison between the baseline and entrainment periods, the duration of the 
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baseline was extended in time (-2100 to -1600 ms) to match the length (500 ms) of the 

entrainment bins for source imaging. Since there were no strong a priori predictions about 

the spectral and temporal extent of the alpha-frequency neural responses to the arrow 

stimuli (i.e., after entrainment), the time-frequency windows used for source imaging of 

these responses were determined by statistical analysis of the sensor-level spectrograms 

across the entire array of gradiometers. Each data point in the spectrogram was initially 

evaluated using a mass univariate approach based on the general linear model. To reduce 

the risk of false positive results while maintaining reasonable sensitivity, a two stage 

procedure was followed to control for Type 1 error. In the first stage, paired-sample t-tests 

against baseline were conducted on each data point and the output spectrogram of t-

values was thresholded to define time-frequency bins containing potentially significant 

oscillatory deviations across all participants. In stage two, time-frequency bins that 

survived the threshold were clustered with temporally and/or spectrally neighboring bins 

that were also above the threshold, and a cluster value was derived by summing all of the 

t-values of all data points in the cluster. Nonparametric permutation testing was then used 

to derive a distribution of cluster-values and the significance level of the observed clusters 

(from stage one) were tested directly using this distribution (24, 25). For each comparison, 

10,000 permutations were computed to build a distribution of cluster values. Based on 

these analyses, the alpha time-frequency window that contained significant (p < .05) 

oscillatory events across all participants were subjected to a beamforming analysis. 

Subsequent MEG analyses were performed only on significant oscillatory events that 

began in the time window preceding the mean RT across all participants, so as to focus 

on responses underlying visuospatial attention and discrimination, rather than other 

processes inherent to the later portions of the task (i.e., motor initiation, response/error-

checking, etc.).  
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MEG Source Imaging and Statistics  

Cortical networks were imaged through an extension of the linearly constrained 

minimum variance vector beamformer (dynamic imaging of coherent sources; DICS; 26), 

which applies spatial filters to time-frequency sensor data in order to calculate voxel-wise 

source power for the entire brain volume. The single images are derived from the cross 

spectral densities of all combinations of MEG gradiometers averaged over the time-

frequency range of interest, and the solution of the forward problem for each location on 

a grid specified by input voxel space. Following convention, we computed noise-

normalized, source power per voxel in each participant using active (i.e., task) and passive 

(i.e., baseline) periods of equal duration and bandwidth. Such images are typically referred 

to as pseudo-t maps, with units (pseudo-t) that reflect noise-normalized power 

differences (i.e., active vs. passive) per voxel. For the entrainment maps, the baseline was 

defined as -2100 to -1600 ms prior to arrow stimulus onset, while the baseline for the 

arrow stimulus response was defined as -400 to 0 ms prior to the onset of these stimuli. 

The baseline was shifted for the arrow stimulus response to account for the differential 

modulation of absolute alpha activity between the two entrainment conditions, as well as 

to account for individual variability in the strength of this entrainment response. The time-

frequency window used to compute source images for the arrow-stimulus response 

extended temporally from 200 to 550 ms after the onset of the arrows, and spectrally from 

8 to 14 Hz. To generate participant-level maps for the entrainment responses, we 

averaged the whole-brain images from the two previously described time-frequency 

windows (temporal extent: -1500 to -1000 ms and -1000 to -500 ms prior to flanker 

stimulus onset; spectral extent: the respective entrainment frequency ± 0.25 Hz) within 

each participant for each entrainment frequency, and these maps were then used to 

identify the peak voxel of the respective entrainment response. MEG pre-processing and 
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imaging used the Brain Electrical Source Analysis (BESA version 6.1) software. 

Entrainment peak voxels were identified as the voxel with the highest response magnitude 

from the grand average of the entrainment maps. Peak voxel locations for the arrow 

stimulus alpha response were extracted from the voxel with the highest average pseudo-

t across all conditions and participants. 

Virtual sensor (i.e., voxel time series) data were computed by applying the sensor-

weighting matrix derived through the forward computation to the preprocessed signal 

vector, which yielded a time series for each source vector centered in the voxel of interest. 

For the entrainment responses, time series were extracted across a frequency range of ± 

0.25 Hz centered on the entrainment frequency of interest, to maximize the entrainment 

signal and reduce interference from competing responses (i.e., the lateral 

desynchronization). In contrast, the time series for the arrow stimuli response was 

extracted across a frequency range of 8-14 Hz, to both maximize the temporal precision 

of the dynamic neural signals being investigated, as well as to better represent the 

endogenous cortical oscillations that normally serve selective attention processing (27). It 

should be noted that, due to the temporal resolution needed to derive a reliable measure 

of the entrainment responses, the temporal resolution for the entrainment time series was 

reduced compared to the 8-14 Hz time series. These time series were in absolute units 

(not relative to baseline) and, after initial analyses did not suggest substantial laterality 

effects, were averaged across both hemispheres into one voxel time series per response 

(i.e., entrainment and arrow stimulus responses) per participant for the desired time 

interval (i.e., the time periods preceding and succeeding the presentation of the arrow 

stimuli).  

Statistical Analyses 
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Once the peak voxel time series were extracted for the responses of interest (i.e., the 

entrainment and arrow stimuli responses), we used cluster-based permutation statistics 

to test our hypotheses. This method was selected due to the statistical non-independence 

of neural time series data (as neural activations are not expected to persist across only 

one time sample), as well as to account for the time-varying nature of attentional effects 

on steady-state responses (28). This statistical procedure is largely similar to that used in 

the sensor-level statistics. Briefly, clusters of temporally contiguous, significant 

relationships were identified using a two stage procedure to control for Type 1 error. In the 

first stage, effect-size statistics were computed for each data point and the output 

spectrogram of these values were thresholded at p < .05 to define time bins that were 

potentially significant across all participants. In stage two, time bins that survived were 

clustered with temporally neighboring bins that were also above the threshold, and a 

cluster value was derived by summing all of the effect size statistics of all data points in 

the cluster. Nonparametric permutation testing was then used to derive a distribution of 

cluster-values and the significance level of the observed clusters (from stage one) were 

tested directly using this distribution. For each comparison, 10,000 permutations were 

computed to build a distribution of cluster values, and a final cluster threshold of p < .05 

was considered statistically significant. Time series permutation testing was performed 

using custom-built functions in Matlab, behavioral ANOVAs and Bayesian ANOVAs were 

computed in JASP (29), and linear regression modeling was performed in R (30, 31). All 

statistical tests were performed two-tailed, unless explicitly stated otherwise. 

Results: 

Effects of Entrainment Frequency and Arrow Congruency on Behavior  

All participants performed well on the task (mean = 94.09% correct, SD = 2.94%) and 

we did not examine accuracy due to ceiling effects. A 2 x 2 (entrainment frequency by 
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flanker arrow congruency) repeated-measures ANOVA on reaction time (RT) revealed a 

significant main effect of congruency (F(1,22) = 101.48, p < .001), supporting decades of 

previous literature using similar selective attention paradigms. In addition, and supporting 

our primary hypothesis of alpha-frequency entrainment as an amplifier of active inhibition 

of the visual cortex, we observed an interaction between frequency and congruency 

(F(1,22) = 18.70, p < .001), such that the effect of congruency (i.e., the difference in RT 

between incongruent and congruent trials) was significantly reduced for the 10 Hz 

entrainment trials (mean ΔRT = 18.15), as compared to the 30 Hz entrainment trials (mean 

ΔRT = 37.76; Figure 2). To further probe the robustness of this effect, we also performed 

a repeated-measures Bayesian analysis to determine the relative evidence of the 

alternative hypothesis in reference to the null hypothesis (Bayes Factor; BF10) while 

controlling for the individual effects of congruency and frequency in the null model. This 

  

Figure 2. Reduction of the behavioral congruency effect by 10 Hz visual 
entrainment.  

Visualization of the interaction term between the factors of entrainment frequency (10 or 

30 Hz) and arrow congruency (incongruent or congruent) shows that participants 

exhibited a reduced effect of congruency in the 10 Hz entrainment condition, as 

compared to the 30 Hz condition. We propose that the 10 Hz entrainment increased alpha 

in visual regions corresponding to the flanking arrows, and that this increased alpha 

decreased local processing and thus decreased the impact of congruency between the 

flanking and central arrows. On the left, overall reaction time is denoted on the y-axis in 

milliseconds, while on the right, reaction time congruency differences (incongruent – 

congruent; in ms) are denoted on the y-axis. 
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analysis revealed an interaction term with an individual BF10 = 135.15, meaning that these 

data are ~ 135 times more likely to result from the alternative hypothesis than the null, 

which is considered very strong evidence for the alternative hypothesis. No significant 

main effect of entrainment frequency on reaction time was observed (p = .644).  

Temporal-spectral Profile of Alpha-frequency Neural Oscillatory Dynamics  

Before projecting our recorded neurophysiological signals into brain-space, we first 

needed to identify the temporal and spectral extent of our neural responses of interest 

(i.e., the entrainment and arrow stimulus responses). After decomposing the signal into 

time-frequency components across the entire array of sensors, we observed two distinct 

alpha-frequency neural responses, both consistent with previous reports (16, 27). In the 

10 Hz entrainment condition, this analysis revealed a robust narrow-band synchronization 

at 10 Hz beginning almost immediately after the onset of the entrainment stimuli (1500 ms 

prior to the onset of the flanker arrow stimuli), and extending modestly into the presentation 

of the arrows. Further, we also observed a more broadband desynchronization in the alpha 

range (8 – 14 Hz) in both entrainment conditions, extending temporally from 200 to 550 

ms after the onset of the arrow stimuli. A robust, narrow-band synchronization centered 

around 30 Hz was also observed in the 30 Hz entrainment condition, and this response 

also began 1500 ms prior to the onset of the flanker stimuli and extended slightly into the 

arrow presentation. These responses can be visualized in the data from a representative 

sensor (M2123) over the posterior occipital cortices in Figure 3.  

To determine the cortical origins of these responses, each was subjected to an 

advanced source-reconstruction analysis (see Methods). In agreement with previous 

studies of visual entrainment and selective attention, the 10 Hz and 30 Hz narrow-band 

entrainment responses were found to originate from medial primary visual areas in the 

occipital cortex, while the 8 – 14Hz alpha desynchronization originated from slightly more 
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lateral occipital regions. In order to better examine the distinct temporal profiles of each of 

these responses, we extracted peak voxel virtual sensor time-series from the 10 and 30 

Hz entrainment conditions and the 8 – 14 Hz desynchronization peaks (in units of absolute 

power; nAm2), and subjected the resulting frequency-specific power-envelopes to cluster-

based permutation analyses to test our hypotheses.  

Alpha Visual Entrainment Reduces the Effect of Distracting Stimuli 

Providing robust support for our prediction that entrained alpha-frequency oscillations 

represent a form of active inhibition in visual cortex, time series permutation testing 

               

 

Figure 3. Temporal-spectral profile of visual entrainment dynamics.  

The sensor plots display alpha and gamma frequency neural responses over occipital regions for the 10 
Hz (top) and 30 Hz (bottom) entrainment conditions. Time (in milliseconds) is denoted on the x-axis at 
bottom, and frequency (in Hz) is denoted on the y-axis of each respective plot. The dashed white line at 
-1500 ms indicates the onset of the entrainment stimuli, and the dashed white line at 0 ms indicates the 
onset of the arrow stimuli. Entrainment frequency is denoted using a dashed grey bar for each condition. 
The color scale bar for percent change from baseline is displayed between the plots. These spectrograms 
represent group-averaged data from one posterior occipital gradiometer sensor (M2123) that was 
representative of the neural responses in this region.  
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revealed that the power of the entrainment response at 10 Hz significantly predicted 

congruency differences in RT (Rmin = -.49, pcluster < .001; Figure 4, top), such that as the 

entrained response increased, the interference effect of the flanking arrows decreased. 

The predictive capacity of this signal increased steadily from the onset of the entrainment 

stimuli to the onset of the arrow stimuli, reaching significance in the peri-stimulus window 

for the presentation of the arrows (-600 to 200 ms). To enhance visualization and 

interpretation of this relationship, we averaged over this time window and plotted the 

resulting power values against congruency differences in RT (Figure 5). Additionally, 

although entrainment in the 30 Hz condition produced a robust neural response at 30 Hz 

(Figure 3), the power of this response did not predict the congruency effect on RT (Rmax = 

 

Figure 4. Power of visual entrainment at 10 Hz predicts congruency effects on behavior.  

The source image maps (left) show the neural response to the 10 Hz (top) and 30 Hz (bottom) entrainment 
stimuli, with a color scale legend to the side representing group-averaged response amplitude (in pseudo-
t values). Plots (right) are the power envelopes for the entrained medial occipital responses (green and 
blue lines) and the time-varying relationship between this respective entrainment response and the 
congruency effect on RT (dotted black lines). Time (in ms) is denoted on the x-axes, and the y-axes on 
the left and right display the relevant scales for the regression (in R) and power envelope (in nAm2) time 
series, respectively. The shaded box indicates the temporal cluster identified as significant by permutation 
testing, with the peak regression effect size and cluster significance value denoted above. For reference, 
the horizontal gray dotted line indicates the initial cutoff of p < .05 used for the identification of potentially-
significant clusters in the permutation analysis.  
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.12, Rmin = -.004, no significant clusters; 

Figure 4, bottom), signifying that this effect 

is specific to the alpha-band, and not a 

general effect of visual entrainment.  

Finally, due to the importance of neural 

congruency effects in lateral visual regions 

in the alpha-band (27), we hypothesized 

that the power of 10 Hz entrainment might 

be reflected in the difference values of the 

neural desynchronization responses to 

incongruent versus congruent trials. To 

test this hypothesis, we computed a 

timepoint-by-timepoint ratio of the alpha 

desynchronization response to the 

incongruent/congruent flanker stimuli. We 

then regressed the power of the 10 Hz entrainment response (averaged over the 

previously identified -600 to 200 ms time window) on these data, and corrected for multiple 

comparisons using a cluster-based permutation approach. This relationship was indeed 

significant from 75 to 325 ms (Rmax = .48, pcluster < .001, one-tailed) after arrow onset, such 

that as the power of the entrainment response increased, the absolute power of the 

incongruent, relative to the congruent, response, also increased. Again, to enhance 

visualization, we averaged over this significant time window and plotted this relationship 

in Figure 6. In other words, since this response was a desynchronization from pre-stimulus 

levels of alpha (8-14 Hz) activity, the participants who exhibited stronger entrainment at 

10 Hz tended to have a weaker response to the incongruent (relative to the congruent) 

stimuli. In contrast, those who did not entrain as strongly tended towards the more 

 

Figure 5. Relationship between the 10 Hz 
visual entrainment response and 
behavior.  

This scatterplot shows the relationship between 
the 10 Hz visual entrainment response in primary 
visual cortex averaged across the significant time-
window identified in the permutation analysis 
(denoted on the y-axis in nAm2) and the effect of 
congruency on behavior (denoted on the x-axis as 
a ratio of incongruent RT/congruent RT). The line 
of best-fit and the regression coefficient for this 
relationship are overlaid on the plot in black. The 
grey dotted lines indicate the 95% confidence 
interval for this relationship.  
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prototypical pattern (27) of a stronger 

response to incongruent (relative to 

congruent) stimuli. 

Discussion: 

Alpha-frequency oscillatory activity in 

the parieto-occipital cortices has been 

repeatedly connected to the active 

inhibition of irrelevant visual information (1, 

3, 5-9), however causal links between 

neurophysiology and behavioral outcomes 

have been difficult to draw. Several studies 

have used visual stimuli that flicker at 

specific frequencies to systematically 

enhance occipital alpha oscillations and 

impair visual perception of target stimuli 

(13-17, 19, 32), but no study to date had investigated whether this effect could be extended 

to impair perception of distracting stimuli (i.e., for a net benefit). In this study, we used a 

modified arrow-based version of the classic Eriksen flanker selective attention paradigm 

(33), paired with frequency-targeted flickering stimuli and dynamic brain imaging using 

MEG to address these gaps in the scientific literature. By entraining visual cortex at 10 or 

30 Hz only over the visual field of the to-be-presented distractor stimuli, we provide robust 

evidence for the role of pre-stimulus alpha entrainment in the active inhibition of visual 

cortex function, even when this inhibition is beneficial to task performance. These findings, 

as well as their broader implications, are discussed below. 

 

Figure 6. Relationship between entrained 
and endogenous visual alpha responses.  

This scatterplot shows the relationship between 
the 10 Hz visual entrainment response in primary 
visual cortex averaged across the significant time-
window identified in the permutation analysis 
(denoted on the x-axis in nAm2) and the effect of 
congruency on the 8 – 14 Hz alpha 
desynchronization response (denoted on the y-
axis as a ratio of incongruent response 
power/congruent response power). The line of 
best-fit and the regression coefficient for this 
relationship are overlaid on the plot in black. The 
grey dotted lines indicate the 95% confidence 
interval for this relationship.  
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Regarding our behavioral data, we had one primary hypothesis: that alpha-frequency 

(10 Hz) entrainment relative to 30 Hz entrainment would selectively reduce the 

congruency (i.e., flanker) effect of the interfering arrow stimuli, which was supported. 

Further, due to the literature suggesting substantial individual variability in neural 

responses to entraining stimuli (34), we hypothesized that the magnitude of the neural 

response to entrainment would predict this behavioral modulation, such that higher 

entrainment power at 10 Hz would predict a greater reduction in behavioral interference. 

Again this hypothesis was supported. Importantly, we found no main effect of entrainment 

frequency on overall reaction time (i.e., congruency-invariant RT), signifying that 

differences in entrainment did not differentially modulate general alertness on the task, but 

rather acted to specifically inhibit visual distractor information in the 10 Hz condition. The 

importance of this finding is two-fold. First, alpha entrainment of visual cortex has been 

found previously to inhibit visual perception, and these data provide additional support for 

this. Steady-state visual stimuli have been used for decades to “tag” stimuli in cognitive 

experiments using a purportedly inert/neutral frequency of entrainment, the 

representations of which (i.e., SSVEPs) could then be localized within relevant neural 

networks and used as markers of lateralization and other phenomena. The current study 

provides evidence that these stimuli are not only non-inert, but in some cases actually 

serve as potent modulators of very low-level cognitive processes (i.e., visual perception). 

Further, the finding that this effect was specific to the 10 Hz entrainment condition 

suggests a particular sensitivity of the occipital cortex to alpha-frequency rhythmic visual 

input. Through further research, it might be possible to use this knowledge to better 

understand low-level perceptual deficits in patient populations, or to enhance attention in 

cognitively demanding settings. Second, previous research on this topic has focused on 

impairing the perception of target stimuli, and until now it has remained uncertain whether 

this effect could be translated to the inhibition of distracting visual information. Our finding 
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that distracting information can also be compromised by 10 Hz visual entrainment notably 

strengthens the notion that the gating of information seen with alpha entrainment begins 

at visual perception. Interestingly, our findings also introduces the possibility of using alpha 

entrainment to positively modulate performance on selective attention tasks, by 

decreasing the negative effect of distracting environmental inputs. 

In regards to our neural data, we hypothesized that the power of visual entrainment in 

the 10 Hz condition would significantly covary with the reduction of distractor inhibition 

discussed above. We observed such a relationship during the time-window prior to and 

encompassing the onset of the selective attention stimuli, further strengthening the link 

between alpha entrainment and visual inhibition. The 10 Hz entrainment response also 

covaried significantly with the effect of stimulus congruency on the occipital alpha 

desynchronization, which is a neural response that has previously been found to index the 

effect of flanker interference (27), as well as active visual processing more generally. The 

nature of this relationship was such that as 10 Hz entrainment in primary visual cortex 

increased, the difference in this response between incongruent and congruent trials was 

reduced, signifying a modulation of endogenous, perceptually relevant patterns of neural 

activity by 10 Hz entrainment. Finally, 30 Hz entrainment exhibited no relationship with 

task performance, indicating that these effects are frequency-specific, and not a general 

result of visual entrainment. 

Of course, this research is not without limitations. First and foremost, due to the nature 

and focus of our experimental paradigm and hypotheses, the effect of other oscillatory 

frequencies was not explored. Neural oscillations in cortices other than occipital, and in 

frequencies other than alpha, have been found to be essential to selective attention 

processing (27, 35) and visual perception (36-45), and thus might have displayed 

interesting interactions with the occipital dynamics that we investigated, however the focus 

of this study was to examine the alpha-occipital dynamics in detail, and future research 
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will be needed to flesh out the effects of other oscillatory responses. Second, although we 

did find the hypothesized reduction in RT in the incongruent condition following 10 Hz, 

relative to 30 Hz, entrainment, we also observed the opposite effect in the congruent 

condition. In other words, it appears that in addition to decreasing RT on incongruent trials, 

10 Hz entrainment also tended to increase RT on congruent ones. Although intriguing, this 

finding was unexpected, and future research is needed to understand its origin. Third, we 

made no attempt here to vary the delay between the end of the visual entrainment and 

the onset of the task stimuli (i.e., the arrows), as has been done in other studies (16). 

Thus, since we presented our task-stimuli at what would effectively be the “peak” of the 

entrained rhythm, it remains possible that our results would have been different if we had 

instead presented them at the “trough.”  Finally, it should be noted that since we only used 

one control entrainment condition that was “faster” than the 10 Hz condition (i.e., 30 Hz), 

it remains a possibility that the observed reduction in distractor effects was not alpha-

specific. However, while theoretically plausible, this explanation is in direct conflict with 

the vast majority of literature on this topic, and would imply that the alpha-specific effects 

of entrainment previously observed on imperative stimuli do not persist when the stimuli 

are instead distracting. Thus, we remain convinced that alpha-specificity is the more 

parsimonious explanation.  

Despite these limitations, this study provides new insight into the effects of alpha 

entrainment on visual perception, and supports the pivotal role of alpha oscillations in 

selective attention function. Further, these findings suggest that these signals might be 

used to enhance selective attention function in the presence of visual distractors. This is 

essential knowledge, which could potentially be leveraged to enhance selective attention 

abilities in cognitively taxing environments. These findings also provide novel information 

regarding the coding of visual saliency in the human visual cortex, and will hopefully 

motivate further study in this area.   
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CHAPTER 2: ALPHA-FREQUENCY INTERACTIONS BETWEEN VISUAL AND 

ATTENTION SYSTEMS 

The material presented in this chapter was previously published in Wiesman and Wilson, 
2019, Frontoparietal networks mediate the behavioral impact of alpha inhibition in visual 
cortex, Cerebral Cortex, 29(8):3505-3513. 

Introduction: 

The ability to rapidly perceive salient components of the visual environment is essential 

for normative cognitive function, and is thought to be supported by both “bottom-up” 

sensory (e.g., retinotopic activation in primary visual cortices) and “top-down” regulatory 

(e.g., activation in fronto-parietal attention networks) processes. Further, spectrally 

defined patterns of neural oscillatory activity have been found to play a key role in visual 

processing. In particular, alpha-frequency (8 – 13 Hz) rhythms in parietal and occipital 

cortices are thought to be essential for the active inhibition of irrelevant or distracting visual 

inputs (1, 3, 4, 15, 16, 46). Perhaps unsurprisingly then, alpha-band oscillations, both 

within and outside of parieto-occipital areas, have also been found to be essential to visual 

attention (27, 47-53) and are a potential spectral point of mediation between bottom-up 

sensory mechanisms and top-down regulatory systems in the human brain.  

Unfortunately, experimental manipulation of alpha-frequency activity in the human 

brain is difficult in healthy individuals, making causal interpretations of the role of alpha 

oscillations problematic. To this end, many researchers have turned to noninvasive 

neurostimulation (53-60). For example, Capotosto et al. (53) used repetitive transcranial 

magnetic stimulation (rTMS) and EEG to systematically disrupt alpha oscillations in the 

right parietal and frontal cortices prior to the performance of a visual target identification 

task. They showed that the disruption of alpha oscillations impaired the participant’s ability 

to identify subsequently-presented targets in the visual space. In addition, this impairment 

covaried significantly with the level of alpha-frequency disruption in parietal and occipital 

electrodes. These findings provide robust support for the involvement of alpha activity in 



25 
 

fronto-parietal networks in the perception of objects in the visual space. However, the 

experimental design precluded the authors from investigating other attention-network 

regions that may have been involved in this process, and also from examining whether 

signals from bottom-up systems interfered with attention networks.  

Beyond neurostimulation, other studies have used flickering visual stimuli to 

systematically modulate endogenous rhythms in the human brain, by “entraining” activity 

in sensory cortices at targeted frequencies (13, 15, 16, 34, 61, 62). However, few 

experiments have investigated the interaction between exogenously entrained neural 

oscillatory activity in primary visual cortex and the endogenous patterns of rhythmic neural 

activity that support visual attention and perception. Because of this void, the mechanism 

by which rhythmic alpha activity in visual cortex exerts its functionally inhibitory effect 

remains unclear. On the other hand, studies have shown that visual alpha activity covaries 

with target perception (3, 16, 49, 63), is involved in the protection of stimulus 

representations during working memory maintenance, and is often correlated with 

accuracy and load on such working memory tasks (4, 8, 64). Alpha activity is also known 

to be widely-distributed across the human brain (65). In fact, prior studies using flickering 

stimuli have reported spatially widespread effects unique to alpha range entrainment (61, 

66, 67). Thus, it seems likely that at least some part of this alpha-related modulation is 

taking place in top-down regulatory networks. If this is the case, it is important to 

understand (1) which specific cortical regions are implicated in this modulation, (2) 

whether modulation at these regions affects visual perception, and (3) to what extent this 

modulation statistically mediates the relationship between entrained dynamics in primary 

visual cortex and visual perceptual abilities. 

In this study, we used 10 Hz visual entrainment to modulate the endogenous alpha 

oscillations in occipital cortices that are known to support visual processing, mapped the 

resulting neural perturbations using MEG, and delineated the effects of these neural 
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perturbations on visual perceptual abilities. Interestingly, previous studies have found that 

attentional deployment enhances the neural response at corresponding retinotopic areas 

to entraining visual stimuli, with the notable exception of alpha-frequency entrainment, 

where results have been less consistent, and attention often shows either a reduced or 

negative effect on entrainment power (52, 66, 68). Given these data, we did not 

hypothesize that entrainment to the 10 Hz flicker would necessarily be enhanced by 

attentional cueing, but we did expect the cueing effect (i.e., the degree to which cueing 

biased the neural response toward or away from the entraining stimuli) to covary with 

visual perception of the attended stimulus, as indexed by performance metrics on the task. 

Further, we hypothesized that this cueing effect on the 10 Hz entrainment response would 

covary with activity in top-down attention networks, signifying potential interference of 

processing in these networks by the 10 Hz entrainment signal. Finally, we expected that 

the relationship between this cueing effect and task performance would be mediated by 

activity in the same fronto-parietal regulatory networks, signifying an interfering effect of 

10 Hz visual entrainment on attentional processing. 

Methods: 

Participants 

Twenty-three healthy young adults were recruited for the study (Mage = 26.09; age 

range: 20-33 years; 16 males; 21 right-handed). Exclusion criteria included any medical 

illness affecting CNS function, any neurological or psychiatric disorder, history of head 

trauma, current substance abuse, and any non-removable metal implants that would 

adversely affect MEG data acquisition. All participants had normal or corrected-to-normal 

vision. The Institutional Review Board at the University of Nebraska Medical Center 

reviewed and approved this investigation. Written informed consent was obtained from 
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each participant following detailed description of the study. All participants completed the 

same experimental protocol. 

MEG Experimental Paradigm and Behavioral Data Analysis 

We used a modified version of the classic Posner cueing paradigm (69) to engage 

alpha-frequency networks related to the orienting of attention (Figure 7). Each trial began 

with a central fixation that was presented for a randomly-varied inter-stimulus interval of 

2000-2400 ms. Participants were instructed to fixate centrally on this point of the screen 

for the entirety of the experiment. Subsequently, the fixation was replaced with an arrow-

cue pointing towards the left or right. The centrally presented arrow-cue remained on the 

screen for 2000 ms and correctly predicted the side of the to-be-presented probe stimulus 

on 100% of trials. On each side of the cue was an entrainment stimulus (in the form of an 

outline of a box) that flickered at a frequency of 10 Hz. For clarity, both sides flickered in 

all trials, regardless of the cue direction. At the end of the entrainment period, the boxes 

stopped flickering and a small break appeared on either the top or bottom side of the box 

(cued side only) for 1000 ms. The presentation of this probe stimulus occurred at the same 

time relative to flicker offset for every trial, which aligned temporally with the peak of the 

ongoing 10 Hz phase of the entraining visual stimuli. Prior to starting the experiment, 

participants were instructed to respond as quickly and accurately as possible as to 

whether the break appeared on the top (index finger) or bottom (middle finger) of the cued 

box, using their right hand on a non-magnetic button pad. The entraining and probe stimuli 

occupied the same spatial areas of the visual field, so to entrain the visual cortex 

corresponding to the subsequently-presented probe stimulus. The 200 total trials were 

pseudo-randomized and equally split between each of the cue (left and right) and 

response (top and bottom) conditions. Correct responses were also pseudo-randomized, 

such that the same response was never repeated more than twice. Custom visual stimuli 
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were programmed in Matlab (Mathworks, Inc., Massachusetts, USA) using Psychophysics 

Toolbox Version 3 (20) and back-projected onto a semi-translucent nonmagnetic screen 

using a Panasonic PT-D7700U-K model DLP projector with a refresh rate of 60 Hz and a 

contrast ratio of 4000:1. Flickering stimuli were presented as a square-wave function with 

a frequency of 10 Hz (3 frames on/3 frames off; ~16.67 ms per frame), with a luminance 

contrast of 100% (white stimuli on a black background). Total MEG recording time was 

approximately 17 minutes. For each participant, accuracy data were computed as a 

percentage (correct/total trials). Reaction time (RT) data were also extracted for each 

individual trial, incorrect and no-response trials were removed, and outliers were then 

excluded based on a standard threshold of ± 2.5 standard deviations from the mean.  

MEG Data Acquisition 

 

Figure 7. Visual entrainment Posner task paradigm and neurophysiological hypothesis.  

Each trial began with a central fixation that was presented for 2200 ms (randomized jitter of ± 100 ms). 
After this, a 100% predictive arrow-cue pointing towards the left or right appeared centrally for 2000 ms. 
On each side of this cue was an entrainment stimulus (highlighted here by green dotted lines for clarity) 
that flickered at a frequency of 10 Hz. At the end of the entrainment period, the box stimuli ceased 
flickering, and a small break appeared on either the top or bottom side of the box on the cued side for 
1000 ms. Participants responded as quickly and accurately as possible as to whether the break appeared 
on the top (index finger) or bottom (middle finger) of the cued box. The entraining and probe stimuli 
occupied the same spatial areas of the visual field, which ensured that the probe stimulus would be 
processed by entrained visual regions. The visual pathway and sine waves below reflect one of our 
neurophysiological hypotheses, which included a general increase in 10 Hz amplitude during the 
entrainment period, and either a negative or negligible effect of attention on the amplitude of this signal 
(red line), as has been reported in a number of previous studies. For clarity, although we did not predict 
a general effect of attention on entrainment across all participants, we did expect that the magnitude of 
attentional modulation on visual dynamics would affect task performance.  
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All recordings were conducted in a one-layer magnetically-shielded room with active 

shielding engaged for environmental noise compensation. Neuromagnetic responses 

were sampled continuously at 1 kHz with an acquisition bandwidth of 0.1– 330 Hz using 

a 306-sensor Elekta MEG system (Helsinki, Finland) equipped with 204 planar 

gradiometers and 102 magnetometers. Participants were monitored during data 

acquisition via real-time audio-video feeds from inside the shielded room. Each MEG 

dataset was individually corrected for head motion and subjected to noise reduction using 

the signal space separation method with a temporal extension (21). 

Structural MRI Processing and MEG Coregistration 

Preceding MEG measurement, four coils were attached to the participant’s head and 

localized, together with the three fiducial points and scalp surface, using a 3-D digitizer 

(Fastrak 3SF0002, Polhemus Navigator Sciences, Colchester, VT, USA). Once the 

participant was positioned for MEG recording, an electric current with a unique frequency 

label (e.g., 322 Hz) was fed to each of the coils. This induced a measurable magnetic field 

and allowed each coil to be localized in reference to the sensors throughout the recording 

session. Since coil locations were also known in head coordinates, all MEG 

measurements could be transformed into a common coordinate system. With this 

coordinate system, each participant’s MEG data were co-registered with structural T1-

weighted MRI data in BESA MRI (Version 2.0) prior to source-space analysis. Structural 

MRI data were aligned parallel to the anterior and posterior commissures and transformed 

into standardized space. Following source analysis (i.e., beamforming), each participant’s 

4.0 x 4.0 x 4.0 mm functional images were also transformed into standardized space using 

the transform that was previously applied to the structural MRI volume and spatially 

resampled. 

MEG Preprocessing, Time-Frequency Transformation, and Sensor-Level Statistics 
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Cardiac artifacts were removed from the data using SSP, which was subsequently 

accounted for during source reconstruction (22). The continuous magnetic time series was 

then divided into 3500 ms epochs, with the baseline extending from -2500 to -2000 ms 

prior to the onset of the probe stimuli, which was defined as 0 ms. Epochs containing 

artifacts were rejected per participant using a fixed threshold method, supplemented with 

visual inspection. An average amplitude threshold of 1092.39 (SD = 212.86) fT and an 

average gradient threshold of 107.95 (SD = 38.84) fT/s was used to reject artifacts. Across 

the group, an average of 160.83 (SD = 8.72) trials per participant were used for further 

analysis. 

The artifact-free epochs were next transformed into the time-frequency domain using 

complex demodulation, and the resulting spectral power estimations per sensor were 

averaged over trials to generate time-frequency plots of mean spectral density. These 

sensor-level data were normalized by each respective bin’s baseline power, which was 

calculated as the mean power during the -2500 to -2000 ms time period. The time-

frequency windows used for subsequent source imaging of the entrainment response 

were determined a priori, based on the duration and frequency of the entrained stimuli. 

The spectral window was defined as the frequency of entrainment (i.e., 10 Hz) ± 0.2 Hz, 

and the time window was defined from 750 to 0 ms prior to presentation of the probe 

stimulus. Although entrainment did elicit a neural synchronization beginning earlier 

(roughly 1500 ms prior to the onset of the probe stimulus, see below), only the time period 

that exhibited the strongest response (-750 to 0 ms) was used in order to maximize the 

signal-to-noise ratio of the subsequent source images. 

MEG Source Imaging and Statistics  

Cortical networks were imaged using the DICS beamformer (26), which applies spatial 

filters to time-frequency sensor data in order to calculate voxel-wise source power for the 
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entire brain volume. The single images are derived from the cross spectral densities of all 

combinations of MEG gradiometers averaged over the time-frequency range of interest, 

and the solution of the forward problem for each location on a grid specified by input voxel 

space. Following convention, we computed noise-normalized, source power per voxel in 

each participant using active (i.e., task) and passive (i.e., baseline) periods of equal 

duration and bandwidth. Such images are typically referred to as pseudo-t maps, with 

units (pseudo-t) that reflect noise-normalized power differences (i.e., active vs. 

passive) per voxel. MEG pre-processing and imaging used BESA (version 6.1) software. 

Left and right hemisphere entrainment peak voxels were identified as the voxel in occipital 

cortex with the highest average pseudo-t from grand-averaged whole-brain images across 

all participants. These bilateral peaks were then used to compute response values 

separately for the attended and unattended hemifields for each trial, based on the cue 

direction in that trial. For example, on a left-cued trial, the entrainment peak from the right 

(contralateral) primary visual cortex would represent the attended hemifield, while the 

peak from the left (ipsilateral) primary visual cortex would represent the unattended 

hemifield. To investigate hypothesized covariance between cueing effects and other 

metrics, a cueing ratio was derived from these peak values for each participant 

((attended+100)/(unattended+100)). For interpretation, higher cueing effect values 

indicate an increased cueing bias of neural entrainment responses toward the attended 

hemifield, while lower values indicate biased neural entrainment away from the attended 

side. Note that a constant value of 100 was added prior to the division of these data, to 

account for any negative amplitude values. 

Statistical Analysis 

Pearson product-moment correlation coefficients were computed to test hypothesized 

covariance between metrics, with post-hoc control for multiple comparisons using 
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Bonferroni correction unless explicitly stated otherwise. To test hypothesized mediations, 

relevant metrics were extracted from behavioral and neurophysiological data, and the 

resulting values were used in stepwise linear regressions to determine whether an indirect 

effect was plausible. If the effect of the independent variable was reduced to the extent of 

no longer being significant, a nonparametric bootstrapping analysis with 10,000 

simulations was used to test the significance of potential mediation (i.e., indirect) effects. 

Correlation coefficients, linear regressions, and mediation bootstrapping analyses were 

computed in R (30, 31). Finally, for whole-brain correlation maps, voxel-wise correlations 

were computed between neural activity in the participant-level whole brain maps and 

relevant continuous metrics (i.e., cueing effects on entrainment). For these maps, a 

stringent statistical threshold of p < .0005 was used, along with a cluster threshold (k) of 

at least 200 contiguous voxels. In addition, all peaks reported in this analysis also survived 

a stringent second-level correction using cluster-based permutation testing (initial 

threshold: p < .0005; 10,000 permutations). 

Results: 

Temporal-spectral Profile of 10 Hz Entrainment 

Before projecting our recorded neurophysiological signals into brain-space, we first 

needed to identify the temporal and spectral extent of the neural responses of interest. 

After transforming the MEG signals into time-frequency space, we observed a robust, 

narrow-band synchronization centered at 10 Hz over occipital sensors. This 

synchronization began roughly 500 ms after the onset of the entrainment stimuli, and 

reached a maximum amplitude between 750 and 0 ms prior to the onset of the probe 

(Figure 8, top). To maximize the signal-to-noise ratio of the input data, the time window 

with the highest amplitude (750 to 0 ms before probe onset) was used for subsequent 

source imaging. 
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Effects of Entrainment on Behavior 

Consistent with previous reports, the 10 Hz entrainment response was found to 

originate from bilateral sources in the primary visual cortices (Figure 8, top inlay). To 

investigate the general effect of entrainment (i.e., regardless of attentional cueing effects), 

we extracted peak voxel amplitude values from the 10 Hz entrainment response in each 

hemisphere for each 

participant, and averaged 

these values across 

bilateral primary visual 

cortices. This metric of 

cueing-invariant 

entrainment significantly 

correlated with accuracy 

on the task (r = .58, p = 

.004; Figure 8, bottom 

left), such that as alpha 

entrainment increased, 

accuracy improved. 

Although of interest in 

itself, this relationship 

was not the primary focus 

of our investigation, as it 

does not account for 

attentional cueing and 

likely reflects a more 

 

Figure 8. Spectral, temporal, and spatial definitions of 
neural responses to 10 Hz entrainment, and interactions 
with attention and behavior.  

The MEG sensor spectrogram (top) displays alpha-frequency neural 
responses over occipital regions during the 10 Hz entrainment period, 
with time (in milliseconds) denoted on the x-axis and frequency (in Hz) 
denoted on the y-axis. The dashed black line at -2000 ms indicates the 
onset of the entrainment stimuli, and the dashed black line at 0 ms 
indicates the onset of the probe stimulus. The color scale bar for percent 
change from baseline is displayed above the plot. This spectrogram 
represents group-averaged data from one gradiometer sensor that was 
representative of the neural responses in occipital cortices. Inlaid on the 
far right is the source-imaged representation of this response, with the 
color scale bar to the right denoting response amplitude in pseudo-t 
units. The correlation plots below show the relationships between 
accuracy (on both y-axes, denoted in % correct trials) and bilaterally-
averaged entrainment power (denoted on the x-axis in pseudo-t) on the 
left, and the cueing effect (denoted on the x-axis as a ratio of 
attended/unattended source amplitude) on the right. Lines of best-fit, as 
well as the relevant covariance coefficients, are overlaid on each plot. 



34 
 

general index of alertness when performing the task. To examine the effect of attentional 

cueing more directly, we used the same voxels described above and derived the amplitude 

values for 10 Hz entrainment responses corresponding to the attended and unattended 

hemifield separately, and then computed a ratio of these values for each participant (i.e., 

the cueing ratio; (attended+100)/(unattended+100)). For interpretation, higher cueing 

effect values indicate an increased cueing bias of neural entrainment responses toward 

the attended hemifield, while lower values indicate biased neural entrainment away from 

the attended side. Intriguingly, the effect of attentional cueing on the entrainment response 

also significantly covaried with accuracy (r = -.46, p = .029; Figure 8, bottom right). 

Confirming our primary hypothesis, this relationship was reversed in direction, such that 

greater entrainment on the attended (relative to the unattended) side was related to 

decreased performance on the task, indicating reduced visual perceptual abilities in that 

same visual space. In other words, regardless of the overall amplitude of visual 

entrainment, greater attentional “enhancement” of the 10 Hz entrainment in the cued 

hemifield (i.e., where the probe subsequently appeared) was associated with reduced 

performance. 

Fronto-parietal Networks Covary with Attentional Modulation of 10 Hz Entrainment 

To explore if any “higher-order” cortical regions were also affected by the 10 Hz 

entrainment, we next computed a whole-brain correlation between each participant’s 

entrainment cueing ratio and voxel-wise amplitude values of neural activity during the 

entrainment period (-750 to 0 ms; Figure 9, top). Using stringent statistical thresholds, 

activity in a widespread network of regions was found to covary with the entrainment 

cueing effect, including nodes in the right dorsolateral prefrontal (r-dlPFC, rmax = -.72), right 

primary motor (r-M1, rmax = -.81), bilateral superior parietal (r-SPC, rmax = -.73; l-SPC, rmax 

= -.70), and midcingulate (MCC, rmax = -.70) cortices (all p’s < 5 x 10-4, cluster-corrected, 
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k = 200). The direction of 

this relationship was 

similar across all nodes, 

such that as entrainment 

in the attended (relative to 

the unattended) hemifield 

increased, the 10 Hz 

response in these other 

regions decreased (i.e., 

desynchronized). Such 

decreases from baseline 

levels of synchrony are 

well supported as being 

indicative of active 

neuronal processing at 

this (alpha) frequency (1, 

52, 70, 71). Thus, this 

covariance should be 

interpreted as increased entrainment (i.e., interference) in visual cortex on the attended 

side leading to greater neural responses in fronto-parietal cortices. Interestingly, the peak 

voxel amplitude at all five of these nodes was robustly correlated, which further supports 

that these regions were functioning in concert (all r’s > .60 and all p’s < .05, Bonferroni-

corrected; Figure 9). Finally, we investigated the behavioral relevance of these regions by 

correlating amplitude values extracted from each peak voxel with task accuracy. After 

Bonferroni correction, only activity in the r-SPC (r = .62, p = .005, Bonferroni-corrected; 

Figure 9) and l-SPC (r = .55, p = .035, Bonferroni-corrected) was found to significantly 

 

Figure 9. Fronto-parietal networks mediate the relationship 
between visual cueing effects and behavior.  

(Top) Whole-brain covariance maps of the entrainment cueing effect 
and response amplitude, with significant peaks in the right dorsolateral 
prefrontal, right primary motor, mid-cingulate, and bilateral superior 
parietal cortices. A color scale bar depicting the statistical significance 
is displayed in the upper left. (Bottom left) Covariance matrix 
representing the intra-network covariance of all network nodes 
mentioned above. The correlation coefficient representing the 
amplitude relationship between each set of regional peaks is indicated 
by the scale bar on the right, and the individual effect size (r) for each 
relationship is overlaid on its appropriate square. (Bottom right) 
Correlation plot showing the relationship between accuracy (on the y-
axis, denoted in % correct trials) and response amplitude in the right 
superior parietal region (denoted on the x-axis in pseudo-t). A line of 
best-fit and the covariance coefficient for the relationship are overlaid 
on the plot. 
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predict accuracy on the task, such that a stronger neural response in these regions (i.e., 

a greater decrease from baseline) was related to worse task performance (i.e., lower 

accuracy).  

Regions of the Fronto-parietal Network Mediate the Behavioral Impact of 10 Hz 

Entrainment 

Since the above analyses indicated that the two superior parietal peaks were the most 

relevant nodes in this fronto-parietal network for task performance, we performed a 

mediation analysis in which each of these regions (i.e., left and right) was the prospective 

mediator between the entrainment cueing ratio and task accuracy. Upon addition of 

activity values from each of the superior parietal peaks, the relationship between cueing 

effects on entrainment and task performance became non-significant, indicating a full 

mediation. After testing each indirect effect with a statistically stringent bootstrapping 

procedure, activity in both the l-SPC (b = -.68, p = .029, 95% CI = -1.42, -0.07) and r-SPC 

(b = -.99, p = .008, 95% CI = -1.80, -0.25) was found to significantly mediate the 

relationship between the entrainment cueing ratio and visual perceptual abilities (i.e., task 

accuracy). 

Discussion: 

In this study, we used a modified Posner attention-cueing paradigm that included a 10 

Hz flicker component to perturb visual perceptual networks during task performance, while 

simultaneously measuring the neural dynamics underlying these perturbations. En masse, 

our findings support both the role of alpha oscillations in functional inhibition of visual 

perception, as well as a powerful interference effect on fronto-parietal attention networks 

by 10 Hz entrainment. More specifically, we found that increased cue biasing of neural 

entrainment responses towards the attended hemifield was related to reduced task 

accuracy. In other words, participants with higher 10 Hz entrainment over the visual field 
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of the to-be-presented stimulus exhibited impaired visual perception. Additionally, this 

cueing effect covaried robustly with activity in a network of fronto-parietal regions, and 

activity in this network fully mediated the relationship between the entrainment cueing 

effect and visual impairment. In sum, these results support not only the functionally 

inhibitory role of 10 Hz activity in visual cortices, but also the ability of interfering inhibition 

in these visual networks to propagate to “higher-order” networks and thereby impair visual 

perception. Thus, these findings also provide direct support for a spectrally defined 

interaction between primary visual and fronto-parietal attention networks in the alpha 

band, which can be experimentally manipulated by means of artificially induced alpha-

frequency visual entrainment. 

Numerous studies have suggested that alpha-frequency oscillations in visual cortices 

reflect a functionally inhibitory signal (1-3, 5-8, 15, 16, 49, 51, 52, 54), and our data once 

again clearly support this conceptualization. Namely, when entrainment was stronger in 

the attended hemisphere, the participant was less accurate, signifying that attentional 

biasing towards entrainment in the attended hemifield interfered with subsequent visual 

perception of the probe stimulus. Importantly, the current framework provides a robust 

experimental and analytical method to test this relationship, as the normalization of the 

attended entrainment response to an unattended response within each participant 

removes the potentially confounding effects of differences in overall task-engagement. 

Supporting this, bilaterally-averaged entrainment amplitude (i.e., regardless of attentional 

cueing) exhibited a relationship with task accuracy in the opposite direction, suggesting 

that task engagement between participants also affected performance, as would be 

expected.   

Although most studies have found visual gating by alpha inhibition to be beneficial for 

performance on higher-order cognitive tasks (e.g., working memory), a smaller subset 

have shown that enhancing alpha-frequency oscillatory activity at inopportune times can 
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also significantly impair behavior, which is in line with our findings. In particular, a number 

of experiments using flickering visual stimuli to entrain primary visual cortex have shown 

that alpha frequency entrainment impairs visual perceptual abilities (15, 16). However, the 

systems-level mechanism of this alpha interference effect has remained unclear until now. 

Although some part of this effect is potentially due to a modulation of endogenous rhythmic 

activity in occipital cortices, our results indicate that, at least in the case of an attentional 

manipulation, the negative relationship between alpha entrainment and visual perception 

is fully mediated by activity in extra-visual regions. More specifically, we found that activity 

in a set of frontal and parietal regions known to be involved in attention function exhibited 

substantial covariance with the entrainment cueing ratio, and these regions explained the 

entirety of the covariance between the cueing effects and task accuracy. The importance 

of these findings is twofold. First, previous studies reporting the widespread spatial 

distribution of alpha entrainment responses have lacked the spatial precision to identify 

the cortical generators of these signals reliably. Herein, we show that these generators 

are components of a well-established top-down regulatory system involved in attention: 

the fronto-parietal network. Second, the nature of this alpha-specific engagement of 

anterior cortices has remained elusive. Is it a compensatory mechanism to suppress the 

interfering effects of alpha entrainment on visual cortex, or evidence of a secondary 

interference effect that has “propagated” to higher-order regions from visual cortices, 

perhaps due to the pervasive functionality of alpha oscillations in visual attention networks 

across the human brain? Our data strongly support the latter, as the whole-brain analyses 

indicated that the increase in response amplitude within these regions was driven by 

attention accentuating entrainment, and was a strong negative predictor of task 

performance. Reinforcing this interpretation and providing new insight on the functional 

dissociation of the fronto-parietal network, our mediation analysis findings further showed 
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that the interfering effects of entrainment on behavior were entirely due to functional 

disruption in the superior parietal nodes of this network.  

Despite the novelty of these findings, our experiment was not without limitations. For 

instance, the use of a 100% predictive cue during the entrainment period precluded us 

from examining any potentially unique effects of 10 Hz entrainment on the process of 

attentional re-orienting, which might provide additional insight into the mechanism of alpha 

entrainment interference. Further, we did not investigate the potential impact of 

entrainment-stimulus phase on these dynamics. The relative phase of ongoing alpha-

frequency entrainment has been found to influence visual perceptual abilities (16), and 

thus presenting our probe stimuli at the trough rather than the peak of the entraining alpha 

phase might have yielded different results. Future exploration of this possibility is 

warranted and would help clarify the impact of each parameter. Future studies might also 

consider the use of complementary neuroimaging and neurostimulation modalities to 

expand upon these findings. For instance, it would be intriguing to see if these effects 

could be replicated using alpha-frequency transcranial alternating current stimulation 

(tACS) over the occipital cortices. Finally, in light of previous findings in the field, this study 

investigated only the effects of 10 Hz entrainment on visual perception and attention 

processes, however it remains possible that other frequencies of entrainment might also 

interfere with higher-order systems. Adding further nuance, frequency variability even 

within the alpha range might influence these effects. For instance, it appears that attention 

to stimuli flickering in the lower alpha-frequency range (e.g., 8 – 10 Hz) commonly results 

in a null or negative effect on the amplitude of the entrainment response (52, 66, 68), while 

the reverse effect (i.e., an enhancement of the response by attention) appears to occur 

when stimuli flicker at higher alpha-frequencies (e.g., 10 - 14 Hz; 66, 72, 73, 74). 

Additionally, variation in the individual alpha peak frequency between participants has 

been found to covary with entrainment effects on visual perception (15), which could also 
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potentially influence the effect of visual alpha entrainment at set frequencies. Regardless 

of these limitations, our findings provide a new understanding of how alpha-frequency 

visual entrainment affects visual perception, and enhance our knowledge of the functional 

importance of fronto-parietal networks in visual attention. 
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CHAPTER 3: ATTENTION EFFECTS ON OSCILLATORY SOMATOSENSORY 

SYSTEMS 

The material presented in this chapter was previously published in Wiesman and Wilson, 
2020, Attention modulates the gating of primary somatosensory oscillations, NeuroImage, 
211:116610. 

Introduction: 

Sensory gating (SG) is a robust phenomenon whereby neural responses to identical 

stimuli are reduced when presented in rapid succession. This phenomenon has been 

widely studied in the auditory (75-77) and somatosensory (78-84) systems, and is 

commonly interpreted as representing the “filtering” of redundant stimulus features at an 

early level of processing. Traditionally, SG has been considered a pre-attentive process 

in the human brain (85). Despite this consideration, very few studies have examined 

whether differences in attentional state directly modulate SG. This is surprising, as a 

number of studies have reported robust interactions between neuropsychological 

measures of attention function and SG, such that reduced attentional capacity is related 

to reductions in SG. For instance, stronger sensory gating has been linked with reduced 

distractibility and faster reaction times on the continuous performance task of sustained 

attention (86-88), as well as enhanced performance on the Posner attentional orienting 

task (87), the Stroop cognitive interference task (89), and the Attention Network Task (88, 

89). Beyond these indirect links to neuropsychology, only a handful of studies (90-93) 

have examined the neural dynamics of SG across differing attentional states. Generally, 

these studies have found no significant effect of attention on the gating of primary sensory 

responses, however, none of these studies have examined this potential effect in the 

somatosensory domain or comprehensively examined the role of neural oscillations. An 

enhanced understanding of the potential effects of attention on SG is essential to better 

understand the basic neurophysiology of attention function in the human brain, as well as 

to aid in interpretation of aberrant SG in patient populations. 
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It also remains unknown whether the gating of the evoked (i.e., phase-locked) and 

multi-spectral oscillatory neural responses serving somatosensory processing (80, 83, 94-

104) are differentially impacted by attention. In general, early-latency evoked and low-

frequency theta synchronizations are thought to index the processing of incoming 

somatosensory stimulus information in a “bottom-up” manner (80, 83, 84, 100-105). In 

contrast, later-latency desynchronizations in the alpha and beta frequencies following 

somatosensory stimulation have been robustly tied to the “top-down” processing of this 

information in relation to context-specific task demands, and appear to be modulated by 

the direction of attention towards the somatosensory domain (94-99, 106, 107). In light of 

these previous findings, it seems likely that the gating of these differing responses would 

be affected by attention in opposing directions. In addition, the direction of such effects 

would provide clarification regarding the functional nature of these responses. 

A significant volume of research has also been devoted to the study of SG in clinical 

populations and as a function of healthy aging. Perhaps most auspiciously, both auditory 

and somatosensory gating have been found to be aberrant in patients with schizophrenia 

(77, 83, 108-110), and somatosensory gating deficits have been reported in cerebral palsy 

(79) and HIV-associated cognitive dysfunction (78). These aberrations have widely been 

interpreted to represent an inability by these patients to suppress non-salient sensory 

information, which could then lead to common disease sequelae such as degraded 

perception and even hallucinations. In addition, somatosensory gating is often found to 

decrease as age increases in healthy adults (81, 82, 111, 112), suggesting a degradation 

of somatosensory processing as age progresses. Importantly, in the majority of clinical 

populations commonly studied with SG paradigms (78, 79, 113-115), attentional deficits 

are also consistently reported. This is problematic, as the effects of directed attention on 

SG are not well studied, particularly in the somatosensory domain. 
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In this study, we investigate the interaction between directed attention and 

somatosensory gating, as measured with MEG. Twenty-six healthy young adults 

performed a novel somato-visual paradigm designed expressly for this purpose during an 

MEG recording, whereby alertness was held constant and attention was either directed 

towards or away from a paired-pulse somatosensory stimulation applied to the left median 

nerve. We hypothesized that SG would be significantly altered when attention was 

directed away from the somatosensory stimuli, relative to when it was directed towards 

the stimuli. Specifically, we predicted that attention would enhance SG of neural 

somatosensory responses that are known to index early, “bottom-up” stimulus processing, 

including the initial evoked broadband and early theta-frequency responses (75, 83, 100, 

101, 103, 104, 116). Conversely, we predicted that attention would reduce SG of 

somatosensory responses thought to represent “top-down” integration with executive 

systems, and in particular neural activity in the alpha and beta bands, where attention has 

been repeatedly found to have a robust influence (94-99, 106, 107). Along these lines, we 

also expected that coherent neural activity in the alpha and beta frequency bands might 

facilitate communication between prefrontal attention cortices and primary somatosensory 

cortex. 

Methods: 

Participants 

We enrolled 26 healthy young adults (mean age = 24.04 years; SD = 3.22 years; range 

= 19-31 years; 12 males/14 females) for participation in this study. Exclusionary criteria 

included any medical illness affecting CNS function, any neurological disorder, history of 

head trauma, any non-removable metal implant that would adversely affect data 

acquisition, and current substance abuse. The Institutional Review Board at the University 

of Nebraska Medical Center reviewed and approved this investigation. After complete 
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description of the study, written informed consent was acquired from each participant. All 

participants had normal or corrected-to-normal vision. All participants completed the same 

experimental protocol. 

Experimental Paradigm 

Participants were seated in a custom-made nonmagnetic chair with their head 

positioned within the MEG sensor array. During the scan, participants performed a novel 

somato-visual oddball paradigm, aimed at systematically dividing attention between the 

somatosensory and visual domains during paired-pulse somatosensory stimulation 

(Figure 10). Stimuli from these two sensory modalities were presented in alternation, and 

a small proportion of the stimuli from each modality were temporal “oddballs,” which were 

utilized to monitor behavior and ensure that attention was directed towards either the 

visual or somatosensory domain. The visual stimulus consisted of a right-lateralized circle 

 

Figure 10. Somato-visual directed attention task paradigm.  

Each participant performed one counterbalanced block of the experiment per attention condition (i.e., 88 
somatosensory and 88 visual trials/block, 352 total trials). The task consisted of interspersed 
somatosensory paired-pulse (inter-stimulus interval (ISI): 500 ms) and visual stimuli (duration: 500 ms), 
separated by a variable inter-modality interval (IMI) of 2400 ± 200 ms. Eight of the total 88 stimuli per 
modality were oddballs (somatosensory ISI: 1000 ms; visual duration: 1000 ms), and participants only 
responded to oddballs in one modality per block, depending on the condition. These conditions only 
differed in the instructions given (i.e., “respond to the somatosensory oddballs” versus “respond to the 
visual oddballs”), and the visual fixation was present for the entire duration of the task. IPI: interpair 
interval. 
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centered on the horizontal axis and to the right of a centrally-presented fixation crosshair. 

In 80 of the 88 total visual trials, this stimulus was presented for a duration of 500 ms, and 

for the other eight “oddball” trials it was presented for 1000 ms. The somatosensory 

stimulus consisted of a paired-pulse delivered using unilateral electrical stimulation to the 

median nerve of the left hand. For each participant, 80 paired-pulse trials were collected 

per block using an inter-stimulus interval of 500 ms, while the remaining eight “oddball” 

somatosensory trials used an inter-stimulus interval of 1000 ms. Visual and 

somatosensory trials were presented in alternation for a total of 160 non-oddball trials in 

a single block (i.e., 80 somatosensory and 80 visual). The inter-pair interval (IPI) between 

somatosensory paired-pulses was 5300 ± 400 ms (randomly jittered to prevent 

anticipatory effects; not accounting for the additional 500 ms present on the eight oddball 

trials out of the total 88 visual trials) and the inter-modality interval (IMI) between visual 

and somatosensory stimuli was 2400 ± 200 ms. Each participant performed two blocks of 

the experiment (i.e., 352 total trials, including 32 oddball trials), and the only difference 

between the two blocks was the instructions given (i.e., “respond to somatosensory 

oddballs” versus “respond to visual oddballs”). In the “visual” block, participants responded 

to only the visual oddballs, and were told to ignore the task-irrelevant somatosensory 

stimuli. Conversely, in the “somatosensory” block, participants were told to respond only 

to the somatosensory oddballs, and to ignore the task-irrelevant visual stimuli. Importantly, 

participants were required to fixate on the centrally-presented crosshair and keep their left 

arm still for the entirety of both blocks. The order of the blocks was counterbalanced across 

participants. Participants used a MEG-compatible five-finger response pad to respond to 

the occurrence of the oddball stimuli, using their right index finger. Total MEG recording 

time was approximately 20 minutes per participant.  

For the somatosensory stimuli, mild electrical stimulation was delivered using external 

cutaneous stimulators connected to a Digitimer DS7A constant-current stimulator system 
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(Digitimer Limited, Letchworth Garden City, UK). Each pulse was comprised of a 0.2 ms 

constant-current square wave that was set to 10% above the motor threshold required to 

elicit a subtle twitch in the thumb, and the same stimulation amplitude was used in both 

blocks for each participant. A 500 ms inter-stimulus interval (ISI) between the pulses was 

chosen, as this is the interval most commonly used in previous research, and is known to 

elicit robust SG responses (77-81, 84, 117, 118). Custom visual stimuli were programmed 

in Matlab (Mathworks, Inc., Massachusetts, USA) using Psychophysics Toolbox Version 

3 (20) and back-projected onto a semi-translucent non-ferromagnetic screen at an 

approximate distance of 1.07 meters, using a Panasonic PT-D7700U-K model DLP 

projector with a refresh rate of 60 Hz and a contrast ratio of 4000:1.  

MEG Data Acquisition 

All recordings were conducted in a one-layer magnetically-shielded room with active 

shielding, based on measurements taken from several magnetometers within the MEG 

array, engaged for environmental noise compensation. Neuromagnetic responses were 

sampled continuously at 1 kHz with an acquisition bandwidth of 0.1– 330 Hz using a 306-

sensor Elekta/MEGIN MEG system (Helsinki, Finland) equipped with 204 planar 

gradiometers and 102 magnetometers. Participants were monitored during data 

acquisition via real-time audio-video feeds from inside the shielded room. Each MEG 

dataset was individually corrected for head motion and subjected to noise reduction using 

the signal space separation method with a temporal extension (correlation limit: .950; 

correlation window duration: 6 seconds; 21). Only data from the gradiometers were used 

for further analysis. 

Structural MRI Processing and MEG Coregistration 

Preceding MEG measurement, four coils were attached to the participant’s head and 

localized, together with the three fiducial points and scalp surface, using a 3-D digitizer 
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(Fastrak 3SF0002, Polhemus Navigator Sciences, Colchester, VT, USA). Once the 

participant was positioned for MEG recording, an electric current with a unique frequency 

label (i.e., 293, 307, 314, and 321 Hz) was fed to each of the coils. This induced a 

measurable magnetic field and allowed each coil to be localized in reference to the 

sensors throughout the recording session. Since coil locations were also known in head 

coordinates, all MEG measurements could be transformed into a common coordinate 

system. With this coordinate system, each participant’s MEG data were co-registered with 

structural T1-weighted MRI data using BESA MRI (Version 2.0) prior to source-space 

analysis. Structural MRI data were aligned parallel to the anterior and posterior 

commissures and transformed into Talairach space. Following source analysis (i.e., 

beamforming), each participant’s 4.0 x 4.0 x 4.0 mm functional images were also 

transformed into Talairach space using the transform that was previously applied to the 

structural MRI volume and spatially resampled. 

MEG Preprocessing, Time-Frequency Transformation, and Sensor-Level Statistics 

Cardiac and blink artifacts were removed from the data using SSP, which was 

subsequently accounted for during source reconstruction (Uusitalo and Ilmoniemi 1997). 

The continuous magnetic time series was then filtered between 0.5 – 200 Hz plus a 60 Hz 

notch filter, and divided into 2500 ms epochs, with the baseline extending from -500 to 0 

ms prior to the onset of the somatosensory paired-pulse stimuli. It should be noted that 

only the “short” duration (i.e., 500 ms) paired pulse somatosensory trials were considered 

in this analysis, and the oddball trials were excluded entirely. The visual stimulation trials 

were also excluded. Epochs containing artifacts were rejected using a fixed threshold 

method, supplemented with visual inspection. Briefly, in MEG, the raw signal amplitude is 

strongly affected by the distance between the brain and the MEG sensor array, as the 

magnetic field strength falls off sharply as the distance from the current source increases. 
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To account for this source of variance across participants, as well as actual variance in 

neural response amplitude, we used an individually-determined threshold based on the 

signal distribution for both signal amplitude and gradient to reject artifacts. Across all 

participants, the average amplitude threshold was 947.79 (SD = 157.74) fT and the 

average gradient threshold was 135.42 (SD = 35.01) fT/s. Across the group, an average 

of 71.48 (SD = 1.93) trials per participant per condition (out of 80 possible trials) were used 

for further analysis. Importantly, none of our statistical comparisons were compromised by 

differences in trial number nor artifact thresholds, as none of these metrics significantly 

differed across attention conditions (trial number: p = .479, BF01 = 3.81; amplitude 

threshold: p = .291, BF01 = 2.86; gradient threshold: p = .404, BF01 = 3.48). 

The epochs remaining after artifact-rejection were averaged across trials to generate 

a mean time series per sensor, and the specific time windows used for subsequent source 

analysis were determined by statistical analysis of the sensor-level time series across all 

conditions and the entire array of gradiometers. Each data point in the time series was 

initially evaluated using a mass univariate approach based on the general linear model. 

To reduce the risk of false positive results while maintaining reasonable sensitivity, a two-

stage procedure was followed to control for Type 1 error. In the first stage, paired-sample 

t-tests were conducted to test for differences from baseline at each data point and the 

output time series of t-values was thresholded at p < .001 to define time-points containing 

potentially significant responses across all participants. In stage two, the time points that 

survived the threshold were clustered with temporally and/or spatially neighboring time 

points that were also above the threshold (p < .001), and a cluster value was derived by 

summing all of the t-values of all data points in the cluster. Nonparametric permutation 

testing was then used to derive a distribution of cluster-values and the significance level 

of the observed clusters (from stage one) were tested directly using this distribution (Ernst 

2004; Maris and Oostenveld 2007). For each comparison 10,000 permutations were 
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computed to build a distribution of cluster values, and the time windows of phase-locked, 

time-domain data that were non-exchangeable with baseline across all participants 

according to these permutation analyses were used to guide subsequent time domain 

source level analysis. 

To investigate the oscillatory responses commonly associated with somatosensory 

processing, we next transformed the same post-artifact-rejection epochs into the time-

frequency domain using complex demodulation (23, 119, 120). Briefly, complex 

demodulation works by first transforming the signal into the frequency space, using a Fast 

Fourier Transform (FFT). This results in a frequency spectrum, inherently containing the 

same power and cross spectrum information as the original signal. From here, this 

frequency spectrum is (de)modulated in a step-wise manner to adopt the center frequency 

of a series of complex sinusoids with increasing carrier frequencies, in a process termed 

"heterodyning." These resulting signals are then low-pass filtered to reduce spectral 

leakage, and thus the nature of this filter inherently determines the time and frequency 

resolution of the resulting data. For this study, the time-frequency analysis was performed 

with a frequency-step of 2 Hz and a time-step of 25 ms between 4 and 100 Hz, using a 4 

Hz lowpass finite impulse response (FIR) filter with a full-width half maximum (FWHM) in 

the time domain of ~115 ms. Importantly, prior to this time-frequency transformation, we 

regressed out the time-domain averaged evoked signal from the single-trial data, in order 

to avoid any “contamination” of the oscillatory data by the evoked response, which is the 

focus of the time-domain analysis. The resulting spectral power estimations per sensor 

were averaged over trials to generate time-frequency plots of mean spectral density, which 

were normalized by the baseline power of each respective bin, calculated as the mean 

power during the -500 to 0 ms time period. The time-frequency windows used for the time-

frequency domain source analysis were again determined by means of a paired-sample 

cluster-based permutation test against baseline across all participants and the entire 
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frequency range (4 – 100 Hz), with an initial cluster threshold of p < .001 and 10,000 

permutations. 

MEG Source Analysis 

Time domain source images were computed using standardized low resolution brain 

electromagnetic tomography (sLORETA; regularization: Tikhonov .01%; 121). The 

resulting whole-brain maps were 4-dimensional estimates of current density per voxel, per 

time sample across the experimental epoch. These data were normalized to the sum of 

the noise covariance and theoretical signal covariance, and thus the units are arbitrary. 

Using the temporal clusters identified in the sensor-level analysis, these maps were 

averaged over time following each somatosensory stimulation (i.e., 25 – 70 ms and 525 – 

570 ms after the onset of the first stimulation) and across both attention conditions. The 

resulting maps were then grand-averaged across the two stimulations to determine the 

peak voxel of the time-domain neural response to the stimuli across participants. From 

this peak, the sLORETA units were extracted per stimulation and attention condition to 

derive estimates of the time-domain response amplitude for each participant.  

Time-frequency resolved beamformer source images were computed using the DICS 

(regularization: singular value decomposition .0001%; 26) approach, which uses the time-

frequency averaged cross-spectral density to calculate voxel-wise estimates of neural 

power and/or coherence. Following convention, we computed noise-normalized, source 

power per voxel in each participant using active (i.e., task) and passive (i.e., baseline) 

periods of equal duration and bandwidth. Such images are typically referred to as pseudo-

t maps, with units (pseudo-t) that reflect noise-normalized power differences (i.e., active 

vs. passive) per voxel. This approach generated three-dimensional participant-level 

pseudo-t maps per attention condition and stimulation (i.e., the first or second stimulation 

in the pair), for each time-frequency cluster identified in the sensor-level analysis. As with 
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the time-domain source analysis, the resulting images were next grand-averaged (i.e., 

across attention condition and stimulation number) and used to derive peak voxel 

locations for each time-frequency response. Using these peak voxel locations, virtual 

sensor data were computed by applying the sensor-weighting matrix derived through the 

forward computation to the preprocessed signal vector, which yielded a time series 

corresponding to the location of interest. These virtual sensor data were then decomposed 

into time-frequency space and averaged across the previously identified time-frequency 

extents (i.e., used in the beamformer analysis) for each response, within each attention 

condition. This resulted in amplitude estimates of each time-frequency domain response 

per participant. 

To address hypotheses regarding fronto-somatosensory connectivity in the time-

frequency domain, peak voxels identified in the DICS power analysis were used as seeds 

for computation of whole-brain cortico-cortical coherence (again using DICS), reflecting 

time-frequency-resolved connectivity between these seeds and all other voxels in the 

brain. Similarly to the power analysis, coherence maps computed from active periods were 

normalized to coherence maps from passive periods, resulting in whole-brain estimates 

of percent-change in coherence from baseline for each participant, stimulation, and 

attention condition. These whole-brain cortico-cortical coherence images were compared 

voxel-wise, and corrected for multiple comparisons using a similar cluster-based 

permutation approach as detailed in the Sensor-Level Statistics section (i.e., initial cluster 

threshold of p < .001; 10,000 permutations). Importantly, due to the persistent concern 

regarding amplitude confounds in MEG measures of functional connectivity (e.g., 

coherence; 122), we also used peak-voxel data from these coherence maps to compute 

repeated-measures ANOVAs of the same conditional connectivity differences, above and 

beyond the effects of amplitude at both sources. All reported clusters for the coherence 

analysis are thus significant above and beyond the effects of amplitude. 
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Statistical Analyses and Software 

To examine the effects of attention condition on SG, a gating ratio (stimulation 

2/stimulation 1) was derived per participant for each attention condition, and a repeated-

measures ANOVA model was used to test for significant differences in this ratio (i.e., as 

[1] a function of attention condition and [2] neural response). It is important to note that 

this ratio was used to test hypotheses, rather than modeling somatosensory gating as a 

within-participant contrast, since such a model would test the effect of gating as (S2 – S1), 

rather than (S2/S1). The prior is problematic for two reasons: (1) it is less comparable to 

previous literature in the field that typically uses the ratio instead, and (2) it biases 

participants with a higher overall amplitude of response (regardless of stimulation) towards 

artificially-high gating estimates, whereas the ratio provides a better control for this 

confound. Simple effects testing for differences in gating ratio between attention conditions 

for each response was then used to guide interpretation of the initial RM-ANOVA results 

(Bonferroni correction: p = .050/4 responses = .0125). For similar reasons, significant 

effects of gating (i.e., regardless of attention condition) were tested on these data using 

one-sample t-tests against the null hypothesis of stimulation 2/stimulation 1 = 1. This 

gating analysis was performed on each of the four responses (i.e., one time domain and 

three time-frequency domain). Additionally, since this initial analysis suggested no effect 

of attention on SG in the time domain response identified at the sensor-level, an 

exploratory analysis was conducted whereby time-varying estimates of evoked response 

amplitude across the epoch were extracted from the peak voxel identified by the sLORETA 

analysis described above. Using these data, time-varying estimates of SG were computed 

(stimulation 2/stimulation 1), and cluster-based permutation testing was used to determine 

whether a significant effect of attention was present during any time window across the 

time period ranging from 0 to 400 ms post-stimulation using a liberal threshold (initial 
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cluster threshold: p < .500; final significance threshold: p < .200; 10,000 permutations). To 

test whether attention condition significantly modulated connectivity between the primary 

somatosensory cortex and other cortical regions during sensory processing, we averaged 

the cortico-cortical coherence images across stimulations 1 and 2 within each attention 

condition and participant, and tested these images against each other using voxel-wise 

paired-samples t-tests corrected for multiple comparisons using cluster-based 

permutation testing (10,000 permutations). All primary data preprocessing, coregistration, 

and sensor- and source-level analyses were performed in the BESA software suite (BESA 

Research v6.1 and BESA MRI v2.0). Cluster-based permutation testing on sensor-array 

and whole-brain cortico-cortical coherence data was performed in BESA Statistics (v2.0), 

and all parametric statistics were computed in JASP (123). Multiple comparisons 

correction for parametric statistics used the Bonferroni approach, with a corrected 

significance threshold set to p = .0125 (p = .050/4 tests). To complement our initial 

frequentist statistical approach, Bayesian analysis was also performed in JASP, using a 

zero-centered Cauchy distribution with a default scale of 0.707.  

Results: 

All participants performed well on the somato-visual oddball task (Figure 10), with a 

mean accuracy of 95.19% correct overall (SD = 7.14%; 95% CI: [92.45, 97.93]). 

Performance did not significantly differ by attention condition (attend somatosensory: 

mean = 96.63%, SD = 6.66%; attend visual: mean = 93.27%, SD = 10.14%; p = .090, BF01 

= 1.25). Importantly, no participant identified the oddball stimuli at a rate of <65%, 

indicating that attention was being effectively directed towards the relevant stimulus 

modality across all participants.  

Neural responses to paired-pulse stimulation 
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Prior to determining the spatial origin of the neural responses to each stimulation, we 

first identified significant neural responses to the somatosensory stimuli. In the time 

domain, this revealed one temporally defined (25 – 70 ms post-stimulus; p < .001) cluster 

after each somatosensory stimulation in sensors over right somato-motor regions (Figure 

11A). For the time-frequency data, three spectrally- and temporally-distinct clusters were 

identified following each somatosensory stimulation. These included an early increase in 

theta activity (4 – 8 Hz, 0 – 250 ms post-stimulus; p < .001), and later decreases in both 

alpha (8 – 14 Hz, 175 – 475 ms post-stimulus; p < .001) and beta (20 – 26 Hz, 100 – 350 

ms post-stimulus; p < .001) activity (Figure 11B). From these source-level images, peak 

voxel time series data were then extracted and averaged over the same time/time-

frequency windows per stimulation and attention condition for subsequent hypothesis 

testing (i.e., for effects of gating and attention).    

Interactions between SG and directed attention on primary somatosensory neural 

responses 

Source reconstruction of each of these neural responses indicated that all four were 

centered on the primary somatosensory cortex. Next, we examined the SG effect 

(stimulation 2/stimulation 1) on each of these source-level responses, as well as the 

impact of directed attention (i.e., toward or away from the somatosensory stimuli) on this 

gating. The evoked (i.e., phase-locked) response exhibited significant gating (t(25) = -

10.40, p < .001), such that the amplitude was reduced in response to the second 

stimulation. The theta (t(25) = -6.38, p < .001; BF10 = 16,087.22, error % = 5.23 x 10-8) and 

beta (t(25) = 2.95, p = .007; BF10 = 6.51, error % = 7.26 x 10-4) responses, but not the  
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Figure 11. Neural responses in primary somatosensory cortex.  

(A) The time domain average of data from a representative sensor over right 
somato-motor cortices (MEG1132), with a time domain source image 
averaged across both stimulations and attention conditions overlaid on the 
plot. (B) A grand-averaged spectrogram from the same sensor (MEG1132). 
Note that the phase-locked (evoked) signal has been regressed out. Time is 
indicated in ms on the x-axis and frequency is indicated in Hz on the y-axis, 
with percent change from baseline indicated by the color bar above. The white 
dashed lines represent the onset of each of the two stimulation pulses. Below 
this plot are frequency-resolved source images of each time-frequency cluster 
identified in the sensor-level data (again grand-averaged over stimulations and 
attention conditions). The response amplitude (in pseudo-t) for each cluster is 
indicated by the color scale bars in between.  
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alpha response (t(25) = -1.77, p = .090; BF01 = 1.25, error % = 3.65 x 10-5), also exhibited 

significant SG when collapsing across both attention conditions. Similar to the evoked 

response, the absolute amplitude of theta activity decreased in response to the second 

stimulation of the pair. For the beta response, this effect was reversed, such that the 

absolute amplitude was higher in response to the second stimulation as compared to the 

first. However, it should be noted that since the beta response was a desynchronization 

(i.e., decrease from pre-stimulus levels), this SG effect should be interpreted as a 

weakened response to the second stimulation relative to the first, which again would be 

interpreted as a gating 

effect. 

A two-way repeated-

measures ANOVA (within-

participants contrasts of 

response [4 levels] and 

attention condition [2 

levels]) indicated 

significant main effects of 

condition (F(1,25) = 6.45, 

p = .018) and frequency 

(F(3,75) = 58.56, p < .001), 

as well as a significant 

condition by response 

interaction (F(3,75) = 

4.032, p = .010), on SG. 

Post-hoc simple effects 

testing indicated that 

 

Figure 12. Phased-locked somatosensory responses are 
gated and attention-invariant.  

The gating of time domain responses was not modulated by attention. 
Box and whisker plots represent the gating ratio (stimulation 2 
amplitude/stimulation 1 amplitude) per attention condition (red and 
blue). Each plot includes the individual data points, median (horizontal 
line), mean (white x), first and third quartile (box), and local minima and 
maxima (whiskers). Points falling outside of the whiskers are more 
than 1.5 times the interquartile range above or below the third and first 
quartiles, respectively, and are plotted as such for visualization 
purposes. These data were included in all analyses. 
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gating of the evoked response was not significantly affected by attention condition (t(25) 

= -0.89, p = .380; Figure 12). Post hoc Bayesian analysis of this effect gave moderate 

evidence for the null hypothesis, suggesting that gating of the evoked response is indeed 

attention-invariant (BF01 = 3.36, error % = 0.03).  

Interestingly, the SG of all three oscillatory responses was altered by directed attention 

(Figure 13). Specifically, the theta response exhibited lower SG ratios when attention was 

directed toward the somatosensory stimuli, relative to when it was directed away (t(25) = 

-3.03, p = .006; BF10 = 7.74, error % = 4.25 x 10-4). The direction of this effect indicates 

that theta response gating was stronger when attention was directed towards the 

somatosensory domain. Similarly, attention towards somatosensory stimulation resulted 

in significantly lower alpha (t(25) = -2.98, p = .006; BF10 = 6.98, error % = 5.90 x 10-4) and 

beta (t(25) = -3.04, p = .005; BF10 = 7.89, error % = 4.00 x 10-4) SG ratios relative to when 

attention was directed away. However, note that since these alpha and beta responses 

were desynchronizations (i.e., decreases relative to baseline), lower SG values reflect 

reduced gating, or even response enhancement. Importantly, no significant main effect of 

attention was found on the neural response amplitude to the stimulations for any of the 

four neural responses (evoked: p = .981, BF01 = 4.83; theta: p = .618, BF01 = 4.29; alpha: 

p = .949, BF01 = 4.82; beta: p = .256, BF01 = 2.63).  

The direction of attention effects on the gating of these multi-spectral responses 

suggested that the early theta component may be an early, “bottom-up” response, while 

the later alpha and beta oscillations were potentially modulated by “top-down” control. 

Essentially, since the somatosensory stimulus was only task-relevant in the “attend 

somatosensory” condition, a declining response to the second stimulus during directed 

attention (such as in the theta response) indicates an earlier alerting component of 

stimulus processing. In contrast, an increasing response to the second somatosensory 

stimulus during directed attention (such as in the alpha and beta responses) indicates  
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Figure 13. Directed attention modulates the gating of somatosensory oscillations.  

Box and whisker plots represent the sensory gating ratio (stim 2 amplitude/stim 1 amplitude) per attention 
condition. Each plot includes the individual data points, median (horizontal line), mean (white x), first and 
third quartile (box), and local minima and maxima (whiskers). Points falling outside of the whiskers are 
more than 1.5 times the interquartile range above or below the third and first quartiles, respectively, and 
are plotted as such for visualization purposes. These data were included in all analyses. It should be 
noted that for the theta synchronization response, higher values indicate reduced gating, whereas for the 
alpha and beta desynchronization responses higher values indicate enhanced gating. Thus, directing 
attention toward somato-sensation enhanced theta-band SG, while the opposite was true for both alpha 
and beta oscillations. *p < .01  
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heightened processing of this relevant stimulus. To test this possibility further, we 

computed whole-brain cortico-cortical coherence maps for each oscillatory response, 

attention condition, and stimulation in each participant, and averaged these maps across 

stimulations to derive voxel-wise coherence estimates per attention condition and 

oscillatory response per participant. These maps represent whole-brain coherence 

between the neural response of interest (e.g., the primary somatosensory alpha response) 

and the activity across the rest of the brain within the same time-frequency window. We 

then tested these whole-brain maps for effects of attention condition on coherence in both 

the alpha and beta frequencies, and corrected for multiple comparisons using cluster-

based permutation testing (initial cluster threshold: p < .001; final significance threshold: 

p < .025; 10,000 permutations). Intriguingly, coherence between the primary 

 

Figure 14. Directed attention modulates inter-regional somatosensory alpha coherence.  

The images on the left of the dashed line in (A) represent whole-brain alpha-band coherence (in % change 
from baseline) with the primary somatosensory cortex as the seed for each attention condition. Scale bars 
are shown above the maps. Maps on the right of the dashed line represent a voxel-wise paired-samples 
t-test of this alpha coherence between the two attention conditions (Left-DLPFC: p = .008, corrected; 
Right-Cuneus: p = .010, corrected), with the color bars to the right indicating uncorrected voxel-wise 
significance. The box and whisker plots on the far right represent the condition-wise coherence 
differences at the peak difference voxel from the overlaid maps (bottom). The features of each plot 
matches those in the box and whisker plots above. These data were included in all analyses. We found 
that coherence between somatosensory and prefrontal cortices was sharply increased during the attend 
somatosensory condition, while such coherence was sharply decreased between the cuneus and 
somatosensory cortices in the same condition.  
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somatosensory alpha response and the left dorsolateral prefrontal cortices was 

significantly increased when attention was directed towards the somatosensory stimuli, 

relative to when it was directed away (Figure 14; p = .004). Further, alpha coherence 

between the primary somatosensory response and the right cuneus was also modulated 

by attention, such that connectivity between these regions decreased when attention was 

directed toward the somatosensory domain (p = .021). No significant cortico-cortical 

coherence differences were observed for the beta response.  

Discussion: 

In this study, we used a novel somato-visual oddball task and whole-brain MEG to 

investigate the impact of directed attention on SG in the somatosensory domain. We found 

that attention toward somatosensation significantly altered the gating of all three 

population-level neural oscillatory responses to the paired-pulse stimuli, and that this 

gating effect differed according to the spectro-temporal profile of the response. 

Specifically, SG of the early theta response was increased when attention was directed 

towards the somatosensory domain, while gating of the alpha and beta responses was 

decreased in the same attentional state. Importantly, this attention effect on SG was not 

present for the evoked (i.e., phase-locked) somatosensory response. Further, all of these 

attentional effects were the most robust in frequencies strongly tied to somatosensory 

processing in previous studies (94-99, 106, 107). These findings, as well as their 

implications and future directions for study, are discussed at length below. 

The current findings have important implications for understanding the basic functional 

role of the spectrally distinct somatosensory responses. Alpha and beta oscillations in the 

primary somatosensory cortices have been tied to anticipatory and attentional processing 

(94, 95, 97-99, 106), and so it is unsurprising that SG in these frequencies was robustly 

affected by directed attention. What is perhaps more surprising, is that the effects of 
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attention on the gating of neural oscillatory responses reversed direction depending on 

the spectro-temporal profile of the response in question. While attention enhanced gating 

of the early theta response, it decreased gating of the later alpha and beta responses. 

This broadly supports the conceptualization of this early theta component as representing 

low-level stimulus recognition and feature encoding (80, 100-102, 105). Essentially, as 

such gating is thought to represent the “filtering” of irrelevant stimulus information at an 

early stage, it is intuitive that enhanced attention towards this stimulus would translate to 

more effective gating. In other words, since the stimulus properties (e.g., amplitude, pulse-

width) were identical for both stimulations, additional processing of these properties would 

be unnecessary or even detrimental, and this effect would only be accentuated when the 

timing (but not the stimulus properties themselves) were relevant. On the other hand, the 

reduction in gating of the later beta and alpha responses as a function of directed attention 

indicates that these responses are representative of modulatory feedback and (at least in 

this case) temporal processing, as the timing of the second stimulus was more salient in 

the “attend somatosensory” condition.  

Further supporting this notion, alpha coherence between the prefrontal cortex and the 

primary somatosensory cortices was higher when attention was directed towards the 

somatosensory domain. This points to a prefrontal modulator of the alpha-somatosensory 

response and, interestingly, this effect was specific to this frequency band. This finding is 

in line with previous reports of a prefrontal modulator of somatosensory processing (124-

126), but importantly, to our knowledge is the first empirical evidence of direct prefrontal-

somatosensory modulation (i.e., prior studies showed only co-activation). Somatosensory 

alpha coherence with the right cuneus was also significantly decreased when attention 

was directed towards the somatosensory domain. This finding is in line with a vast 

literature supporting parieto-occipital alpha desynchronizations as an active dis-inhibition 

of visual processing circuits during specific visual tasks (1, 4, 14, 49, 50, 64, 127-129). 
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Given these previous findings, the relative decrease in somato-visual connectivity 

observed during the attend somatosensory condition represents a “decoupling” of the 

somatosensory and visual processing circuits, in order to facilitate more effective 

performance on the somatosensory task. 

The evidence provided herein for no attentional effect on SG of phase-locked (i.e., 

evoked) primary somatosensory responses is also highly informative. Although more 

recent studies have begun to focus on the oscillatory neural dynamics of SG (78-82), 

historically, the vast majority of this literature has centered around time domain analysis 

of the evoked components. While these studies have provided a foundational 

understanding of the neurophysiological bases of SG, it is clear from this study and others 

that SG of evoked responses is only one part of a complex series of neurophysiological 

phenomena at play. Indeed, our findings align well with previous investigations that often 

find no significant effect of attention on SG of early evoked responses (91-93). Our study 

expands this into the somatosensory domain, and provides the first evidence for the null 

hypothesis of no attentional effect, using post hoc Bayesian analysis. 

In addition to the significance for understanding the population-level neurophysiology 

of somatosensory processing, the implications of this research for previous and future 

studies of clinical populations should also be addressed. Given the vast number of studies 

that have reported SG alterations in patient groups, the fact that most of these studies did 

not control for attentional state across participants raises important concerns. Basically, 

we systematically modulated attention and found robust effects on SG across three well-

documented oscillatory somatosensory responses. Thus, it is possible, perhaps even 

probable, that the known attentional differences in many psychiatric and neurologic 

disorders may have incidentally affected previous findings. Supporting the likelihood that 

attentional differences might be partly responsible for these effects, SG has been 

repeatedly tied to neuropsychological tests of attention function (86, 87, 89), and select 
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components of auditory SG have been found to be modulated by attention (90-93). The 

current results extend this potential confound into the somatosensory domain, and also 

provide evidence for spectrally-specific differences in the nature of the attention effect on 

SG. Future studies are certainly warranted to better understand the actual impact of 

attentional differences on SG. Further, future studies investigating SG in populations 

which vary in attentional abilities (e.g., patient populations or aging samples) should 

attempt to either control for these potential confounds, or to investigate the impact of 

attentional abilities on key SG metrics. With all of this said, it is notable that many previous 

patient-based studies have focused on evoked responses, which to at least some degree 

should be reassuring, as we did not observe attentional effects on these responses. 

Despite its novelty, this study is not without limitations. First, although we were 

successful in directing participant’s attention towards and away from the somatosensory 

domain, the attentional load required for this task was likely only moderate. Future studies 

might systematically increase the attentional load towards the somatosensory domain in 

a step-wise manner, which would show whether the attentional effects on SG observed 

here reach any type of functional plateau. Second, although participants did respond to 

the stimuli presented in this study, these responses were only to the oddball stimuli, and 

thus there was not enough behavioral data for a thorough analysis. Additional research is 

necessary to determine how these attentional effects might affect perception and 

discrimination of somatosensory stimuli. Third, although we found sufficient evidence for 

no effect of attention on the gating of somatosensory responses in the primary 

somatosensory cortex, we are not as confident that such an effect does not exist in 

secondary somatosensory regions (SII). Initial exploratory analyses indicated no such 

effect in the later evoked components usually attributed to this region, and no distinct SII 

peak could be identified using our methods, however, it remains a possibility that such an 

effect might be identified using more targeted methodologies and analytical approaches. 
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Indeed, MEG has even been suggested to be a poor method for measurement of SII 

activity, which is highly variable between participants (80, 84, 101, 130). Finally, we were 

able to identify a prefrontal modulator of somatosensory dynamics in this study, supporting 

our hypothesis that the later alpha response represents “top-down” processing of the 

stimulus. However, conversely, we would also predict that a similar pattern of coherence 

with “bottom-up” regions would exist for the earlier theta response (i.e., from thalamic 

inputs). We found no such pattern of coherence, and though it is possible that this 

connectivity does not exist, it seems more likely that the limited sensitivity of MEG to 

deeper brain structures might have played a limiting role. Regardless, these findings have 

important implications for advancing our basic understanding of somatosensory 

neurophysiology, as well as for our interpretation of previous research in clinical and aging 

populations. 
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CHAPTER 4: ATTENTION AND INTERFERENCE EFFECTS ON OSCILLATORY 

MOTOR SYSTEMS 

The material presented in this chapter was previously published in Wiesman, Koshy, 
Heinrichs-Graham, and Wilson, 2020, Beta and Gamma Oscillations Index Cognitive 
Interference Effects Across a Distributed Motor Network, NeuroImage, in press. 

Introduction: 

The ability to effectively prepare and execute an efficient motor plan is essential to 

normative function. However, this seemingly simple concept belies an extremely complex 

set of cognitive processes, known to involve a network of cortical regions distributed 

across the frontal and parietal lobes. For example, the so-called “motor-strip” of the 

precentral gyrus has been established as the source of population-level vector-codes for 

directed motor plans, with a clearly defined homuncular organization. Directly anterior to 

this primary motor (M1) region is the premotor cortex, which has been found to be 

essential to the planning and execution of complex motor directives, as well as the 

observation and interpretation of motor actions in others (131, 132). The posterior parietal 

cortices have also been implicated in goal-directed movements, and are thought to be 

extremely important in the integration of motor plans with information from stimuli in the 

visual environment (132-134).  

In addition to these well-studied spatial/anatomical characteristics, the spectral and 

temporal properties of the neural responses serving movement are becoming increasingly 

understood. Among the most important spectral features are neural oscillatory responses 

in the beta (~14 – 30 Hz) and gamma (> 30 Hz) frequency-bands. Decreases in 

spontaneous beta synchrony from baseline levels typically begin several hundred 

milliseconds prior to the onset of a movement, and quickly dissipate shortly after the 

movement is terminated. Thus, this response has been termed the peri-movement beta 

event-related desynchronization, or beta ERD (135-144). The beta ERD is most commonly 

localized to the M1 region contralateral to movement, however robust beta ERDs have 
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also been observed in the ipsilateral M1, parietal areas, premotor cortices, supplementary 

motor area, and cerebellum (135-137, 140, 145-149). The function of this response has 

been a topic of intense study for decades, and relevant research generally supports the 

notion that the beta ERD is essential for movement planning. For instance, the amplitude 

of the beta ERD has been found to be altered by cue-related factors (145), movement 

certainty (150-152) and complexity (136), and the similarity between potential movement 

options (153, 154). In contrast, oscillatory movement-related gamma synchronizations 

(MRGS) are commonly reported in the 60 – 90 Hz range, are much more temporally-

constrained than their beta-band counterparts, and are almost exclusively located in the 

contralateral M1 region (148, 155-160). As the name suggests, MRGS responses are also 

increases in synchrony from baseline levels. Due to its relative spatial and temporal 

discreteness, the MRGS has long been interpreted as a neural signature of movement 

execution, however very few studies to date have investigated the potential for this signal 

to be modulated by “higher-order” task demands, such as attentional load and cognitive 

interference.  

Cognitive interference occurs when there is an attentional conflict between two 

opposing stimuli or cognitive domains, such that behavior is impaired in some measurable 

way.  Importantly, the resolution of this interference requires the attentional selection of 

one stimulus or domain and the inhibition of the other. The two most thoroughly studied 

subtypes of cognitive interference are conflicts at the stimulus perception (i.e., stimulus-

stimulus) and response selection (i.e., stimulus-response) stages. To study these different 

forms of interference, a number of cognitive tasks have been developed. Among the most 

established are the Eriksen “flanker” task (see also Chapter 1), where the presence of 

irrelevant distractor stimuli flanking the target stimulus have been found to impair 

performance (stimulus-stimulus interference), and the Simon task, where the spatial 
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location of the target stimulus conflicts with the mapping of pre-potent motor responses 

(stimulus-response interference).  

Despite a substantial literature exploring the effects of attention and the resolution of 

cognitive interference on non-motor neural dynamics (27, 129, 161-169), very little 

research has examined the impact of such interference on the neural dynamics of 

movement. Further, only three studies to date have examined the effects of cognitive 

interference on the oscillatory neural responses that are known to serve motor function. 

Two of these studies (156, 170) examined the effects of stimulus-stimulus interference on 

the beta ERD and MRGS using a flanker task, and both found that the amplitude of the 

beta ERD was greater on trials with attentional distractors present (i.e., higher cognitive 

interference). Interestingly, regarding the MRGS, one found a modulation of only the 

amplitude of this response (170), while the other found only a modulation of the peak 

frequency (156). However, this discrepancy is likely accounted for by the fact that the first 

study did not examine peak frequency, nor fully account for the potential influence of 

differences in reaction time (RT) between task conditions on the MRGS amplitude. A third 

study (158) used the classical version of the established multi-source interference task 

(MSIT) to investigate the influence of subtype-nonspecific cognitive interference on the 

MRGS. Although this study found a modulation of the MRGS amplitude by cognitive 

interference load, like (170) they did not account for the potential confounding influence of 

reaction time differences by condition. While all three of these studies provided essential 

information regarding the effects of cognitive interference on motor-related oscillatory 

dynamics, it remains uncertain how different subtypes of interference might play a role. It 

may be the case that differing subtypes of cognitive interference influence motor 

oscillations differentially, which would provide important and novel information regarding 

the functional significance of these neural responses. Alternatively, it seems equally likely 

that the interference subtypes will not differentially affect these motor oscillations, 
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signifying that these neural responses are important in the resolution of cognitive 

interference in general, but are subtype invariant. Finally, since the previous studies 

examined either only one subtype of interference in isolation (156, 170), or two subtypes 

presented simultaneously (158), the potential for divergent and superadditive effects of 

cognitive interference subtypes on these neural dynamics remains uncertain, as such 

effects could not be examined given the task design in these previous investigations. This 

is particularly important, as the existence of any shared neural resource for the resolution 

of cognitive interference subtypes in the motor system would provide direct evidence for 

a point of interaction between “higher-order” attention networks and “lower-order” motor 

systems. 

In the current study, we use MEG to investigate the potential for divergent and 

superadditive effects of cognitive interference on the neural dynamics supporting 

movement; namely the beta ERD and MRGS responses. Towards this goal, we have 

developed a novel adaptation of the MSIT (Figure 15; see also 161, 169, 171) that consists 

of four trial conditions including Flanker (stimulus-stimulus), Simon (stimulus-response), 

and Multi-Source (combined stimulus-stimulus and stimulus-response) interference, as 

well as a control (no interference) condition. We hypothesized that increased interference 

would lead to enhanced beta ERD responses in key motor regions, aligning with previous 

studies on this topic. Although the stimulus-response subtype might be expected to 

preferentially interfere with motor oscillations, previous reports have found that stimulus-

stimulus interference also affects these neural responses robustly. Thus, we did not have 

specific hypotheses regarding whether differing subtypes of interference would 

differentially impact this response. However, given our previous findings (169), we did 

expect that superadditive effects of Multi-Source interference would manifest in the form 

of an increased MRGS.  
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Methods: 

Participants 

Twenty-three healthy young adults were recruited (Mage = 26.09; age range: 20-33 

years; 16 males; 21 right-handed). Exclusion criteria included any medical illness affecting 

CNS function, any neurological or psychiatric disorder, history of head trauma, current 

substance abuse, and any non-removable metal implants that would adversely affect MEG 

data acquisition. All participants had normal or corrected-to-normal vision. The Institutional 

Review Board at the University of Nebraska Medical Center reviewed and approved this 

investigation. Written informed consent was obtained from each participant following 

detailed description of the study. All participants completed the same experimental 

protocol. 

MEG Experimental Paradigm and Behavioral Data Analysis  

We used a modified version of the MSIT (169) to engage cognitive interference 

networks (Figure 15). Briefly, each trial started with a central fixation cross presented for 

an inter-stimulus interval of 2000-2400 ms that was randomly-varied across trials. A 

vertically-centered row of three equally-spaced integers from 0 to 3 then replaced the 

fixation, and these stimuli were presented for 1500 ms. Two of the number stimuli were 

always identical (task-irrelevant), and the third unique to that trial (task-relevant). Prior to 

beginning the experiment, participants were given a five-finger button pad and instructed 

that the index, middle, and ring finger locations represented the integers 1, 2, and 3, 

respectively. Participants were then instructed that on each trial they would be presented 

with a horizontal row of three integers, and that the objective was to indicate the “odd-

number-out” by pressing the button corresponding to its numerical identity (and not its 

spatial location). The importance of speed and accuracy was also stressed to the 

participant at this point. Using these stimuli, four interference conditions were possible: (1) 
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Control (no interference; e.g.,  0 2 0), (2) Simon (stimulus-response interference; e.g., 2 0 

0), (3) Flanker (stimulus- stimulus interference; e.g., 1 2 1), and (4) Multi-Source (e.g., 2 

1 1). Trial types and responses were pseudo-randomized over the course of the 

experiment, such that no interference condition nor any response was repeated more than 

twice in a row. Participants completed 100 trials of each interference condition, for a grand 

total of 400 trials, and a total recording time of ~24 minutes. Custom visual stimuli were 

programmed in Matlab (Mathworks, Inc., Massachusetts, USA) using Psychophysics 

Toolbox Version 3 (20) and back-projected onto a nonmagnetic screen. For each 

participant, accuracy data were computed as a percentage (correct/total trials). Reaction 

time (RT) data were also extracted for each individual trial and incorrect and no-response 

 

Figure 15. Multi-source interference task paradigm.  

Each trial started with a central fixation cross presented for an inter-stimulus interval 
of 2000-2400 ms. A row of three equally-spaced integers between 0 and 3 then 
replaced the fixation, and these stimuli were presented for 1500 ms. Two of the 
number stimuli were always identical (task-irrelevant), and the third unique to that 
trial (task-relevant). Participants were given a five-finger button pad and instructed 
that the index, middle, and ring finger locations represented the integers 1, 2, and 3, 
respectively. Participants were instructed that on each trial they would be presented 
with a row of three integers, and that the objective was to indicate the “odd-number-
out” by pressing the button corresponding to its numerical identity (and not its spatial 
location). Using these stimuli, four interference conditions were possible: (1) Control 
(no interference), (2) Simon (stimulus-response interference), (3) Flanker (stimulus-
stimulus interference), and (4) Multi-Source. 
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trials were removed. Outliers were excluded based on a standard threshold of ± 2.5 

standard deviations from the mean, and subsequently mean RT values were computed 

for each participant. These metrics (i.e., accuracy and RT) were analyzed for main effects 

of interference condition using two four-way repeated measures ANOVAs, implemented 

in JASP (123). We next tested for superadditive effects of Multi-Source cognitive 

interference on behavior. To this end, we first computed the interference effect of each 

interference condition within each participant (i.e., the Flanker, Simon, and Multi-Source 

conditions) by subtracting each behavioral metric in the Control condition from the same 

metric in each condition (e.g., Simon RT - Control RT). From this, we were left with 

participant-level accuracy and RT values reflecting the difference in task performance 

caused by each type of interference. To test for superadditivity, we computed paired-

samples t-tests separately for accuracy and RT between the Multi-Source interference 

condition and the summed effects of interference from the Simon and Flanker conditions, 

added within each participant. Using these tests, a rejection of the null hypothesis would 

indicate that the simultaneous presentation of two interference types (Multi-Source) affects 

task performance at a different magnitude than what would be expected by an additive 

model (Simon + Flanker). 

MEG Data Acquisition 

All recordings were conducted in a one-layer magnetically-shielded room with active 

shielding engaged for environmental noise compensation. Neuromagnetic responses 

were sampled continuously at 1 kHz with an acquisition bandwidth of 0.1– 330 Hz using 

a 306-sensor Elekta MEG system (Helsinki, Finland) equipped with 204 planar 

gradiometers and 102 magnetometers. Participants were monitored during data 

acquisition via real-time audio-video feeds from inside the shielded room. Each MEG 
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dataset was individually corrected for head motion and subjected to noise reduction using 

the signal space separation method with a temporal extension (tSSS; 21). 

Structural MRI Processing and MEG Coregistration 

Preceding MEG measurement, four coils were attached to the participant’s head and 

localized, together with the three fiducial points and scalp surface, using a 3-D digitizer 

(Fastrak 3SF0002, Polhemus Navigator Sciences, Colchester, VT, USA). Once the 

participant was positioned for MEG recording, an electric current with a unique frequency 

label (e.g., 322 Hz) was fed to each of the coils. This induced a measurable magnetic field 

and allowed each coil to be localized in reference to the sensors throughout the recording 

session. Since coil locations were also known in head coordinates, all MEG 

measurements could be transformed into a common coordinate system. With this 

coordinate system, each participant’s MEG data were co-registered with structural T1-

weighted MRI data in BESA MRI (Version 2.0) prior to source-space analysis. Structural 

MRI data were aligned parallel to the anterior and posterior commissures and transformed 

into standardized space. Following source analysis (i.e., beamforming), each participant’s 

4.0 x 4.0 x 4.0 mm source-level MEG images were also transformed into standardized 

space and spatially resampled. 

MEG Preprocessing, Time-Frequency Transformation, and Sensor-Level Statistics 

Cardiac and ocular artifacts were removed from the data using SSP, and the projection 

operator was subsequently accounted for during source reconstruction (22). The 

continuous magnetic time series was then divided into 3500 ms epochs, with the baseline 

extending from -1600 to -1100 ms prior to movement onset (i.e., button press). 

Importantly, this time window always fell within the visual fixation period, and thus our 

results were not biased by visual differences in the baseline period. Epochs containing 

artifacts were rejected using a fixed threshold method, supplemented with visual 
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inspection. An average of 345.52 (SD = 12.71) trials per participant were used for further 

analysis. The number of accepted trials did not differ across the four conditions (p > .90). 

The artifact-free epochs were next transformed into the time-frequency domain using 

complex demodulation (23), with a frequency range of 4 to 100 Hz, and a time-frequency 

resolution of 2 Hz/25 ms. The resulting spectral power estimations per sensor were then 

averaged over trials to generate time-frequency plots of mean spectral density. These 

sensor-level data were normalized by each respective bin’s baseline power, which was 

calculated as the mean power during the -1600 to -1100 ms time period. The specific time-

frequency windows used for subsequent source imaging were determined by statistical 

analysis of the sensor-level spectrograms across all conditions and the entire array 

of gradiometers. Each data point in the spectrogram was initially evaluated using a mass 

univariate approach based on the general linear model. To reduce the risk of false positive 

results while maintaining reasonable sensitivity, a two stage procedure was followed to 

control for Type 1 error. In the first stage, paired-sample t-tests against baseline were 

conducted on each data point and the output spectrogram of t-values was thresholded at 

p < 0.05 to define time-frequency bins containing potentially significant oscillatory 

deviations across all participants. In stage two, the time-frequency bins that survived the 

threshold were clustered with temporally and/or spectrally neighboring bins that were also 

above the threshold (p < 0.05), and a cluster value was derived by summing all of the t-

values of all data points in the cluster. Nonparametric permutation testing was then used 

to derive a distribution of cluster-values and the significance level of the observed clusters 

(from stage one) were tested directly using this distribution (24, 25). For each comparison, 

1,000 permutations were computed to build a distribution of cluster values. Based on these 

analyses, the time-frequency windows that contained significant oscillatory events across 

all participants were subjected to a beamforming analysis. 
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MEG Source Imaging and Statistics  

Cortical oscillatory activity was imaged using DICS (26), which applies spatial filters to 

time-frequency sensor data in order to calculate voxel-wise source power for the entire 

brain volume. The single images are derived from the cross spectral densities of all 

combinations of MEG gradiometers averaged over the time-frequency range of interest, 

and the solution of the forward problem for each location on a 4.0 x 4.0 x 4.0 mm grid 

specified by input voxel space. Following convention, we computed noise-normalized, 

source power per voxel in each participant using active (i.e., task) and passive (i.e., 

baseline) periods of equal duration and bandwidth. Such images are typically referred to 

as pseudo-t maps, with units (pseudo-t) that reflect noise-normalized power 

differences (i.e., active vs. passive) per voxel. This generated participant-level pseudo-t 

maps for each time-frequency-specific response identified in the sensor-level cluster-

based permutation analysis. MEG pre-processing (including artifact rejection, SSP of 

cardiac and ocular artifacts, and data epoching), time frequency analysis, and imaging 

used the BESA (version 6.1) software suite.  

To initially investigate the spatial location of each time-frequency-specific neural 

response to the task, we computed grand-average maps for each, collapsing across all 

interference conditions. These grand-average maps were used to discern the nature of 

each response, and thus ensure that all responses used for further analysis were of a 

motor origin. Importantly, we focus our interpretation here on those statistical effects that 

occurred in motor-related cortical regions, as this was where our neural responses of 

interest (i.e., the beta ERD and MRGS) were most robust. To examine interference-related 

differences in frequency-specific neural activity, we then computed whole-brain repeated-

measures ANOVAs for each time-frequency response of interest (beta and gamma). From 

the resulting significant clusters, pseudo-t values per participant were extracted from the 
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peak voxel of each cluster, and these were used in post-hoc testing. Post-hoc testing 

consisted of two levels. First, we performed paired-samples t-tests between conditions on 

data from regions exhibiting a significant ANOVA effect, in order to better interpret the 

directionality and statistical significance of these effects. Next, to better understand the 

relative evidence for our effects, including those that did not meet the traditional criteria 

for rejecting the null hypothesis (i.e., p < .05), we computed Bayesian t-tests between 

these conditions to examine whether they presented evidence for or against the null 

hypothesis. Briefly, as opposed to a frequentist statistical approach, where one simply 

rejects or fails to reject the null hypothesis using arbitrary cutoffs (i.e., p–values), Bayes 

Factors (BF10) represent the likelihood of the alternative hypothesis producing the same 

observed pattern in the data as compared to the null hypothesis, and thereby facilitates 

the interpretation of effects that seem to support the null hypothesis (rather than simply 

fail to reject it).  

Finally, we computed whole-brain statistical maps investigating the potential for 

superadditivity of Multi-Source interference on the neural dynamics, similar to the 

comparisons made to test for superadditivity in the behavioral metrics (see above). For 

this analysis, we first performed a voxel-wise subtraction of the control condition map from 

each of the three interference condition maps for each participant per time-frequency 

component (i.e., beta and gamma). This produced participant-level whole-brain 

interference effect maps for each of the Simon, Flanker, and Multi-Source conditions. We 

then summed the voxel-wise values of the Simon and Flanker interference effect maps to 

produce a whole-brain map (per participant, per neural response), which represented the 

null hypothesis of an additive model. To then test the potential for superadditivity 

statistically, whole-brain paired-samples t-tests were computed between the Multi-Source 

interference model maps and these additive-model maps. It is important to note that these 

tests were performed one-tailed, since a two-tailed test would also investigate significant 
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sub-additive effects, and such an analysis was not justified by the behavioral data. The 

end result of this analysis was two spectrally-defined (i.e., one beta and one gamma) 

whole-brain statistical maps showing the cortical regions that exhibited a significantly 

larger interference effect in the Multi-Source condition than what would be expected from 

the additive model (H1: Multi-Source > Simon+Flanker). Once again, pseudo-t values per 

participant were extracted from the peak voxel of each cluster in these maps for further 

testing. To account for multiple comparisons, a significance threshold of p < .01 was used 

for the identification of significant clusters in all whole-brain statistical maps, accompanied 

with a cluster (k) threshold of at least 200 contiguous voxels.  

Results: 

Spectral, Temporal, and Spatial Definitions of Neural Responses to the Task 

Prior to testing for main effects of cognitive interference, we first needed to determine 

the temporal, spectral, and spatial locations of motor-related neural responses to the task, 

regardless of condition. We first transformed the data into time-frequency space, and 

observed robust neural activity in the beta and gamma bands (Figure 16) in sensors near 

the sensorimotor cortices. Specifically, a significant desynchronization was observed in 

the beta band (18 – 26 Hz) from 400 ms before movement to 100 ms after movement 

onset. In addition, we observed a significant synchronization from baseline in the gamma 

band (64 – 84 Hz) beginning 200 ms before movement and persisting until 100 ms after 

movement. Note that we did not image the post-movement beta rebound response (red 

area in top spectrogram) for two reasons. First, this task was ill-designed to investigate 

interference effects on this response, as the temporal offset of the visual stimuli occurred 

during the response and varied trial-to-trial due to variation in RT. Second, this response 

occurred well after movement and we were primarily interested in interference and 

attention effects on the planning and execution of movement.    
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Effects of Cognitive Interference on Task Performance 

Participants performed well on the task, with a mean accuracy of 96.49% (SD = 2.29%) 

and a mean reaction time (RT) of 739.32 ms (SD = 116.80 ms). Repeated-measures 

ANOVAs revealed a significant effect of interference condition on both accuracy (F(3,66) 

= 22.37, p < .001) and RT (F(3,66) = 195.10, p < .001; Figure 17). Post-hoc comparisons 

for accuracy revealed that participants were significantly less accurate in the Simon (t(22) 

= -4.56, p < .001) and Multi-Source (t(22) = -5.43, p < .001) conditions than in the Control 

condition. Further, participants were significantly less accurate in the Multi-Source 

condition than both the Simon (t(22) = -2.60, p = .016) and Flanker (t(22) = -6.49, p < .001) 

conditions. Finally, participants were significantly less accurate in the Simon condition 

compared to the Flanker condition (t(22) = -4.53, p < .001). The results of the post-hoc 

 

Figure 16. Spectral, temporal, and spatial definitions of oscillatory 
motor responses.  

The representative MEG sensor–level spectrograms (top: beta – M0442; bottom: 
gamma – M0432) show the time-frequency representations of neural responses 
identified by cluster-based permutation analysis (see Methods). Time (in ms) is 
denoted on the x-axis, frequency (in Hz) is denoted on the y-axis, and the dashed 
line at 0 ms indicates the motor response. The dashed rectangle surrounding this 
line indicates the time-frequency definitions identified for source imaging by the 
cluster-based permutation test. The color scale bar for percent change from baseline 
is displayed above each plot. Each spectrogram represents group-averaged data 
across all conditions from one gradiometer sensor that was representative of these 
oscillatory neural responses. On the far right is the source-imaged representation of 
each response (beta ERD and MRGS), averaged across all conditions and 
participants, with the color scale bar to the right denoting response amplitude in 
pseudo-t units. 
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comparisons for RT were generally 

similar to the accuracy results. 

Participants were  significantly 

slower to respond on the Simon 

(t(22) = 10.32, p < .001), Flanker 

(t(22) = 15.53, p < .001), and Multi-

Source (t(22) = 19.52, p < .001) trials 

relative to the Control trials. Further, 

participants were significantly slower 

in the Multi-Source condition than 

both the Simon (t(22) = 15.61, p < 

.001) and Flanker (t(22) = 10.50, p < 

.001) conditions. Interestingly, and in 

contrast to the accuracy results, 

participants performed significantly worse on Flanker than Simon trials (t(22) = 4.34, p < 

.001).   

 Upon visual inspection of these data, it became apparent that a superadditive 

effect of Multi-Source interference on task performance was likely. Indeed, paired-samples 

t-tests between the effect of Multi-Source interference and the additive model (Simon 

interference + Flanker interference) were significant for both accuracy (t(22) = -2.25, p = 

.035) and RT (t(22) = 2.13, p = .044), such that the concurrent presentation of the two 

interference sources significantly worsened behavior, as compared to their additive effects 

when presented in isolation (Figure 17).  

Motor-related Neural Oscillations are Modulated by Cognitive Interference Irrespective of 

Subtype 

 

Figure 17. Divergent and superadditive effects of 
cognitive interference subtypes on behavior.  

Results from the behavioral analyses, with reaction time 
and accuracy data for the main effect of interference 
condition (top), and for the superadditivity analyses 
(bottom). Bar graphs represent the mean per condition for 
accuracy (left; % correct) and reaction time (right; ms), 
with error bars representing the standard error of the mean 
(SEM). 
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To investigate potentially-divergent effects of cognitive interference subtypes on 

motor-related oscillatory neural dynamics, we computed whole-brain repeated measures 

ANOVAs for the beta ERD and MRGS participant-level response maps separately. For 

the beta ERD, a robust main effect of condition was observed across four well-established 

motor-network regions, including peaks in bilateral M1 and bilateral posterior parietal 

cortex (PPC; Figure 18). Post-hoc testing revealed that beta activity in all four of these 

regions generally exhibited the same direction of effect. With the exception of the Simon 

condition in the left M1 peak, where the effect was trending, beta suppression in response 

to the interference conditions was significantly higher than in the control condition (all p’s 

 

Figure 18. Divergent effects of cognitive interference subtypes on 
the beta ERD.  

Functional images (above) reflect the significant results of a whole-brain 
repeated-measures ANOVA testing for a main effect of interference condition 
on the beta ERD response, with the color scale bar at the top denoting voxel-
wise significance. Below each image are the average response amplitude 
values (in pseudo-t) per interference condition for the peak voxel (star) in the 
cluster, with error bars denoting the SEM. In virtually all cases, beta ERD 
responses were significantly stronger in the interference conditions than the 
control condition, but did not differ amongst interference conditions.   
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< .05), but did not significantly differ between interference conditions (all p’s > .05). For 

the MRGS, no significant ANOVA effects were found within the canonical motor network. 

We next computed Bayesian post-hoc analysis on the beta ERD interference data to 

examine whether there was greater evidence for or against the null hypothesis of no 

significant difference by interference condition (i.e., H0: Simon = Flanker = Multi-Source). 

In every case, this analysis suggested greater evidence for the null hypothesis than the 

alternative hypothesis (i.e., a difference in beta ERD amplitude between interference 

conditions), although the strength of this evidence only reached what would typically be 

considered as mild to moderate. It should be noted that beta ERD ANOVA effects were 

also observed in the right cerebellum, right dorsolateral prefrontal, and left supramarginal 

cortices, and in the right superior parietal cortex for the MRGS analysis. However, the 

overall response amplitude in these regions was negligible, and thus we do not focus our 

interpretation on these effects.  

The MRGS Indexes Interference Superadditivity in Premotor Cortex 

Next, we examined the source of the superadditive effects of Multi-Source interference 

previously observed on behavior by computing whole-brain superadditivity statistical 

comparisons for the beta ERD and MRGS responses. Briefly, superadditivity suggests 

that the interference effects of the Simon and Flanker subtypes are greater when they are 

presented concurrently, as compared to when they are presented individually, and 

indicates shared neural resources between cognitive processes. To test where these 

shared neural resources reside, we computed whole-brain maps of the additive model 

(i.e., whole-brain Simon interference + whole-brain Flanker interference) and tested these 

against whole-brain maps of the Multi-Source interference effect. Only the MRGS 

response exhibited a superadditive effect of cognitive interference, and this effect was 

spatially constrained to the premotor cortex contralateral to movement (Figure 19). 
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Supporting the association between movement-related gamma oscillations in this region 

and the superadditive effect on behavior, MRGS amplitude values extracted from the peak 

voxel of this cluster significantly covaried with the superadditive effect on accuracy (r = 

.40; p = .036, one-tailed). In other words, participants who exhibited a greater 

superadditive effect of concurrent interference presentation on behavior also exhibited a 

greater MRGS response in the premotor cortex. No significant superadditive effects were 

observed on the beta ERD. 

Discussion: 

Using MEG and a novel adaptation of an established cognitive interference task, we 

probed the potential for divergent and superadditive effects of two subtypes of cognitive 

interference on the oscillatory neural dynamics supporting a simple movement (i.e., a 

button press). Our primary findings were twofold: (1) a robust, but not subtype-specific nor 

compounding effect of cognitive interference on the beta ERD and (2) a more subtle 

 

Figure 19. Superadditive effects of cognitive interference subtypes 
on the MRGS.  

The functional image to the far left displays the results of a whole-brain statistical 
test for superadditivity in the motor-related gamma synchronization (MRGS), 
with the color scale bar at the top representing voxel-wise significance. The bar 
graph (middle) represents the average response amplitude values (in pseudo-
t) for the peak superadditive voxel per interference condition, with error bars 
denoting SEM. The scatterplot to the right represents the relationship between 
response amplitude values extracted from the peak voxel of the whole-brain 
statistical superadditivity image to the left (x-axis; pseudo-t), and the 
superadditive effect of cognitive interference on task accuracy (y-axis; Multi-
Source/Additive). A line of best-fit has been overlaid on the plot, along with the 
correlation coefficient for the relationship. 
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superadditive effect of simultaneously presented cognitive interference subtypes on the 

MRGS in premotor cortex. Below we discuss the significance and implications of these 

findings, as they relate to the established literature regarding oscillatory neural dynamics 

in the human motor system. 

Our finding of a main effect of interference conditions on the beta ERD in M1 is not 

particularly surprising, as this has been the focus of, and consensus among, two previous 

studies on the topic (156, 170). What is perhaps surprising though, is both the spatial 

profile and nature of this effect. Firstly, our finding of an increased beta ERD with increased 

interference was located not only within bilateral M1 cortices (as has been found 

previously), but also across bilateral PPC. No previous studies investigating the effects of 

cognitive interference on motor oscillations have reported such an effect in the PPC, 

however, this is likely attributable to the fact that neither of the previous studies in this area 

performed whole-brain statistical measures at the level of the cortex (156, 170). This 

finding is especially pertinent, as the PPC has been implicated in the integration of motor 

plans and visual information from the environment (132-134), and the beta ERD in this 

region has specifically been found to be modulated by the complexity of the to-be-

executed motor plan in a task utilizing visual sequence stimuli (136). Tentatively, this 

finding and others indicate that beta oscillations in the PPC may serve a role in integrating 

“bottom-up” and “top-down” signals, in the sense that these responses appear to be 

important for integrating top-down motor control with goal-directed processing of bottom-

up visual information. A previous study by Feurra et al. (172) also supports the concept of 

a functional distinction between primary motor and posterior parietal cortices. In this study, 

the authors used non-invasive beta-frequency electrical stimulation over the primary motor 

and posterior parietal cortices, and show that only stimulation of M1, but not of PPC, 

altered the amplitude of TMS-induced motor evoked potentials. Secondly, the post-hoc 

Bayesian analysis of these data indicated that, although the beta ERD did generally 
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increase (i.e., exhibit a greater decrease from baseline) as a function of cognitive 

interference, there was no difference in the amplitude of the beta ERD as a function of 

interference subtype. Further, the amplitude of this response also did not significantly vary 

as to whether these subtypes were presented in isolation or in tandem. This suggests that 

the beta ERD in these distributed motor regions does not index the additive effects of 

cognitive interference, but rather a more general conflict between incoming bottom-up 

visual information and the eventual execution of the appropriate top-down motor response. 

These data also exhibited an interesting, albeit surprising, pattern of behavioral results 

that indicated a superadditive effect of cognitive interference on task performance. To 

investigate the potential for a spectrally-specific oscillatory neural index of this 

phenomenon in the motor system, we computed whole-brain superadditivity statistical 

maps for both the beta ERD and MRGS. Intriguingly, we found that the MRGS, but not the 

beta ERD, exhibited a significant superadditivity effect in premotor cortex contralateral to 

movement. The amplitude of the gamma ERS response at this location was also 

significantly related to the superadditive effect on accuracy, providing further support for 

the relevance of this response to motor interference resolution. The premotor cortices 

have been robustly linked to the planning and execution of complex motor actions (131, 

132); a conceptualization which aligns well with our findings of a compounding effect of 

cognitive interference in this region. In addition, gamma-frequency activity in frontal 

cortices is well supported as being essential for “top-down” control of goal-directed actions 

(173-175). Thus, this finding expands upon this literature by showing that frontal gamma 

signals are also essential for similar top-down control in the context of the attentional 

resolution of cognitive conflict in the motor system. 

A number of previous tasks have found significant relationships between beta-

frequency motor oscillations and behavior (137, 138, 176, 177), however, we found no 

such relationship here. Despite this null finding, we can reasonably infer from the direction 
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of our behavioral and beta ERD findings that the well-known pattern of greater beta 

desynchronizations being related to reduced performance is preserved in this study. In 

contrast, and as mentioned previously, the amplitude of the premotor gamma frequency 

response was significantly correlated with accuracy on the task. This relationship was 

such that, as the gamma amplitude increased, the superadditive effect on accuracy also 

increased. The direction of this relationship further supports our conceptualization of the 

gamma premotor oscillations as a top-down control signal, and lends credence to the link 

between this response and the superadditive effect on behavior.  

Although our findings are novel and of major interest, the limitations of this work should 

also be considered. First, although we modulated the degree of cognitive interference at 

numerous levels, the motor action being integrated with these interference effects was 

exceedingly simple (i.e., a button press). Because of this, we were unable to examine the 

potential for interactive and dissociative effects of varying difficulties of motor complexity 

with stimulus-stimulus versus stimulus-response interference, which might be particularly 

interesting in light of our findings of a non-subtype-specific effect of interference on the 

beta ERD in PPC. Secondly, while our initial frequentist statistical approach showed robust 

evidence for rejection of the null hypothesis in many cases, our post-hoc Bayesian 

approach only indicated mild-to-moderate evidence for its acceptance in others. 

Interestingly, this evidence qualitatively appeared stronger in PPC than in M1 areas, but 

studies with larger sample sizes might further clarify this finding. Thirdly, as described in 

the methods, our task design did not allow careful investigation of the impact of cognitive 

interference on the post movement beta rebound (PMBR) response, and future studies 

should explore this avenue. Finally, the interactions between the brain regions identified 

in this study were not investigated, and thus more in-depth functional connectivity studies 

of this topic would be enlightening.   
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Despite these limitations, these findings provide compelling new evidence for a 

nuanced resolution of cognitive interference across a distributed and spectrally-specific 

series of motor regions. This is important for a number of reasons. For example, we 

establish that, although beta dynamics in the human motor system are affected by 

cognitive conflict, this influence does not differ as a function of interference subtype. This 

indicates that, while some portion of previously reported interference effects on behavior 

are likely due to conflict in the motor system, this cannot account for these effects entirely. 

More generally, these findings provide further evidence that neural activity at the level of 

the motor system is a key component in the attentional processing of cognitive conflict in 

the human brain. In addition, and aligning with our previous investigation (169), we find 

that gamma-frequency activity is specifically impacted by the superposition of distinct 

subtypes of cognitive interference. This provides a potential target to examine the impacts 

of competing stimulus inputs in cognitively taxing environments. By delineating the 

spectral specificity of these interference effects on motor function (i.e., general 

interference on beta oscillations and superadditive effects on gamma oscillations), we also 

provide more precise targets for future studies that might use non-invasive stimulation of 

motor cortices, with the goal of modulating goal-directed performance in health and 

disease. 
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CONCLUSIONS 

 

These studies support the notion that attention systems interact with sensory and 

motor systems in the human brain, and that these interactions are extremely dynamic and 

frequency-dependent. In unison, these findings also give credence to the 

conceptualization of neural oscillations as a mechanism by which attention systems exert 

modulatory control on sensorimotor systems at the endogenous frequencies of each 

respective system: alpha frequencies in occipital cortex; theta, alpha, and beta 

frequencies in primary somatosensory cortex; and beta and gamma frequencies across 

an extended motor network. This should provide optimism for emerging non-invasive and 

invasive therapeutic strategies aimed at targeting spectrally specific neural activity in a 

spatially specific manner, as these techniques might be useful in ameliorating or even 

preventing attentional issues in neurologically afflicted patient groups. Of course, a great 

deal of research is first necessary, investigating the specific aberrations in these patterns 

of attention-sensorimotor interactions in such patient groups. 

In the occipital cortices, we found that artificially enhanced alpha oscillations act to 

gate the functional flow of stimulus information into “later” visual cortices during selective 

attention, and that this gating effect is implemented through interference with fronto-

parietal attention networks also oscillating in the alpha band. Together, these findings 

have established a dynamic bidirectional interplay between visual and fronto-parietal 

networks that is spectrally limited to the alpha band. Importantly, a number of patient 

populations with neurological disorders have been found to exhibit aberrant alpha-

frequency activity in visual regions or during the performance of visual tasks, including 

HIV-associated neurocognitive disorders (45, 178-180), Alzheimer’s disease (181-183), 

and Parkinson’s disease (6, 184, 185). Since these same patient populations often present 

with attentional difficulties as well, future investigations of the role of oscillatory attention-
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vision interactions in these patient groups may provide useful information regarding the 

pathophysiology of these impairments, as well as new targets for frequency-targeted 

therapeutic interventions. 

In the somatosensory system, we found that attention differentially affects the 

functional gating of stimulus information in the theta, alpha, and beta bands. Specifically, 

these findings indicated a role for theta oscillations in initial stimulus recognition, and for 

alpha and beta oscillations in the attentional monitoring and interpretation of stimulus 

features (e.g., timing). Although previous research has suggested the importance of 

alpha/beta oscillations in somatosensory attention, these results extend this literature to a 

well-known metric of inhibition in sensory systems. Beta-frequency oscillations were also 

impacted robustly by the resolution of cognitive interference within the motor system, 

which provides further support for the general utility of beta-frequency neural activity in 

attentional regulation of very tightly coupled somato-motor systems. Future studies might 

directly probe the interplay between somatosensory and motor systems under differing 

attentional demands to provide additional support for this concept. Patients with 

Parkinson’s disease have already been found to exhibit deficient functional connectivity 

between frontal and somato-motor cortices (186-188), and often present with attentional 

deficits that contribute to their risk of debilitating falls (189). Thus, similar studies of 

dynamic interactions between attention and somato-motor systems in this patient group 

would provide essential new information as well. 

En masse, these studies lend credence to the theory that rhythmic patterns of neural 

oscillatory activity are, at least partially, responsible for the temporal organization and 

communication of information in the human brain. Further, the dynamic manipulation of 

these rhythmic patterns of neural activity by varying attentional demands indicates that 

they are essential to the enhancement of contextually defined “signal”, and, in turn, the 

suppression of environmental “noise”, that is required for effective cognitive function. 
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Perhaps more importantly, these findings also suggest that attentional modulation 

commonly occurs in the frequency-bands of oscillatory activity that are essential for the 

sensorimotor system under study. The most robust attention effects that we report across 

these studies align perfectly with the frequencies most essential to the respective 

sensorimotor system (i.e., alpha for somatosensory and visual, beta for motor), and so it 

seems likely that the these “preferred” frequencies are also the frequencies at which these 

sensory systems are most susceptible to modulation, either from endogenous sources 

such as top-down modulation from attention systems, or from exogenous sources of 

interference, such as frequency-targeted visual entrainment. As is apparent from the study 

described in Chapter 1, this susceptibility of sensorimotor circuits to specific input 

frequencies could even be exploited to influence cognitive abilities in mentally demanding 

environments. Further, this work holds promise for invasive and non-invasive methods of 

stimulating these sensorimotor systems with the goal of rectifying the relevant attentional 

deficiencies in patient populations. By targeting these stimulation protocols to the 

endogenous frequency of the sensorimotor system in question, it might be possible to 

correct these attentional impairments with minimal impact on other neural systems. 
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