1,200 research outputs found

    Prospects for Declarative Mathematical Modeling of Complex Biological Systems

    Full text link
    Declarative modeling uses symbolic expressions to represent models. With such expressions one can formalize high-level mathematical computations on models that would be difficult or impossible to perform directly on a lower-level simulation program, in a general-purpose programming language. Examples of such computations on models include model analysis, relatively general-purpose model-reduction maps, and the initial phases of model implementation, all of which should preserve or approximate the mathematical semantics of a complex biological model. The potential advantages are particularly relevant in the case of developmental modeling, wherein complex spatial structures exhibit dynamics at molecular, cellular, and organogenic levels to relate genotype to multicellular phenotype. Multiscale modeling can benefit from both the expressive power of declarative modeling languages and the application of model reduction methods to link models across scale. Based on previous work, here we define declarative modeling of complex biological systems by defining the operator algebra semantics of an increasingly powerful series of declarative modeling languages including reaction-like dynamics of parameterized and extended objects; we define semantics-preserving implementation and semantics-approximating model reduction transformations; and we outline a "meta-hierarchy" for organizing declarative models and the mathematical methods that can fruitfully manipulate them

    Constraint-Enabled Design Information Representation for Mechanical Products Over the Internet

    Get PDF
    Global economy has made manufacturing industry become more distributed than ever before. Product design requires more involvement from various technical disciplines at different locations. In such a geographically and temporally distributed environment, efficient and effective collaboration on design is vital to maintain product quality and organizational competency. Interoperability of design information is one of major barriers for collaborative design. Current standard CAD data formats do not support design collaboration effectively in terms of design information and knowledge capturing, exchange, and integration within the design cycle. Multidisciplinary design constraints cannot be represented and transferred among different groups, and design information cannot be integrated efficiently within a distributed environment. Uncertainty of specification cannot be modeled at early design stages, while constraints for optimization are not embedded in design data. In this work, a design information model, Universal Linkage model, is developed to represent design related information for mechanical products in a distributed form. It incorporates geometric and non-geometric constraints with traditional geometry and topology elements, thus allows more design knowledge sharing in collaborative design. Segments of design data are linked and integrated into a complete product model, thus support lean design information capturing, storage, and query. The model is represented by Directed Hyper Graph and Product Markup Language to preserve extensibility and openness. Incorporating robustness consideration, an Interval Geometric Modeling scheme is presented, in which numerical parameters are represented by interval values. This scheme is able to capture uncertainty and inexactness of design and reduces the chances of conflict in constraint imposition. It provides a unified constraint representation for the process of conceptual design, detailed design, and design optimization. Corresponding interval constraint solving methods are studied

    05171 Abstracts Collection -- Nonmonotonic Reasoning, Answer Set Programming and Constraints

    Get PDF
    From 24.04.05 to 29.04.05, the Dagstuhl Seminar 05171 ``Nonmonotonic Reasoning, Answer Set Programming and Constraints\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Computational aerodynamics and artificial intelligence

    Get PDF
    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics

    Description Logic for Scene Understanding at the Example of Urban Road Intersections

    Get PDF
    Understanding a natural scene on the basis of external sensors is a task yet to be solved by computer algorithms. The present thesis investigates the suitability of a particular family of explicit, formal representation and reasoning formalisms for this task, which are subsumed under the term Description Logic

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    Feasible Form Parameter Design of Complex Ship Hull Form Geometry

    Get PDF
    This thesis introduces a new methodology for robust form parameter design of complex hull form geometry via constraint programming, automatic differentiation, interval arithmetic, and truncated hierarchical B- splines. To date, there has been no clearly stated methodology for assuring consistency of general (equality and inequality) constraints across an entire geometric form parameter ship hull design space. In contrast, the method to be given here can be used to produce guaranteed narrowing of the design space, such that infeasible portions are eliminated. Furthermore, we can guarantee that any set of form parameters generated by our method will be self consistent. It is for this reason that we use the title feasible form parameter design. In form parameter design, a design space is represented by a tuple of design parameters which are extended in each design space dimension. In this representation, a single feasible design is a consistent set of real valued parameters, one for every component of the design space tuple. Using the methodology to be given here, we pick out designs which consist of consistent parameters, narrowed to any desired precision up to that of the machine, even for equality constraints. Furthermore, the method is developed to enable the generation of complex hull forms using an extension of the basic rules idea to allow for automated generation of rules networks, plus the use of the truncated hierarchical B-splines, a wavelet-adaptive extension of standard B-splines and hierarchical B-splines. The adaptive resolution methods are employed in order to allow an automated program the freedom to generate complex B-spline representations of the geometry in a robust manner across multiple levels of detail. Thus two complementary objectives are pursued: ensuring feasible starting sets of form parameters, and enabling the generation of complex hull form geometry
    • …
    corecore