14 research outputs found

    Toric Border Bases

    Get PDF
    We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining "toric" roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the variables and their inverse. We show that the commutation relations and the inversion relations characterize toric border bases. We explicitly describe the first syzygy module associated to a toric border basis in terms of these relations. Finally, a new border basis algorithm for Laurent polynomials is described and a proof of its termination is given for zero-dimensional toric ideals

    Stable normal forms for polynomial system solving

    Get PDF
    This paper describes and analyzes a method for computing border bases of a zero-dimensional ideal II. The criterion used in the computation involves specific commutation polynomials and leads to an algorithm and an implementation extending the one provided in [MT'05]. This general border basis algorithm weakens the monomial ordering requirement for \grob bases computations. It is up to date the most general setting for representing quotient algebras, embedding into a single formalism Gr\"obner bases, Macaulay bases and new representation that do not fit into the previous categories. With this formalism we show how the syzygies of the border basis are generated by commutation relations. We also show that our construction of normal form is stable under small perturbations of the ideal, if the number of solutions remains constant. This new feature for a symbolic algorithm has a huge impact on the practical efficiency as it is illustrated by the experiments on classical benchmark polynomial systems, at the end of the paper

    Solving Polynomial Systems via a Stabilized Representation of Quotient Algebras

    Get PDF
    We consider the problem of finding the isolated common roots of a set of polynomial functions defining a zero-dimensional ideal I in a ring R of polynomials over C. We propose a general algebraic framework to find the solutions and to compute the structure of the quotient ring R/I from the null space of a Macaulay-type matrix. The affine dense, affine sparse, homogeneous and multi-homogeneous cases are treated. In the presented framework, the concept of a border basis is generalized by relaxing the conditions on the set of basis elements. This allows for algorithms to adapt the choice of basis in order to enhance the numerical stability. We present such an algorithm and show numerical results

    On the asymptotic and practical complexity of solving bivariate systems over the reals

    Get PDF
    This paper is concerned with exact real solving of well-constrained, bivariate polynomial systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based method, and \sOB(N^{12}) for two subresultant-based methods: this notation ignores polylogarithmic factors, where NN bounds the degree and the bitsize of the polynomials. The previous record bound was \sOB(N^{14}). Our main tool is signed subresultant sequences. We exploit recent advances on the complexity of univariate root isolation, and extend them to sign evaluation of bivariate polynomials over two algebraic numbers, and real root counting for polynomials over an extension field. Our algorithms apply to the problem of simultaneous inequalities; they also compute the topology of real plane algebraic curves in \sOB(N^{12}), whereas the previous bound was \sOB(N^{14}). All algorithms have been implemented in MAPLE, in conjunction with numeric filtering. We compare them against FGB/RS, system solvers from SYNAPS, and MAPLE libraries INSULATE and TOP, which compute curve topology. Our software is among the most robust, and its runtimes are comparable, or within a small constant factor, with respect to the C/C++ libraries. Key words: real solving, polynomial systems, complexity, MAPLE softwareComment: 17 pages, 4 algorithms, 1 table, and 1 figure with 2 sub-figure

    Solving polynomial systems via symbolic-numeric reduction to geometric involutive form

    Get PDF
    AbstractWe briefly survey several existing methods for solving polynomial systems with inexact coefficients, then introduce our new symbolic-numeric method which is based on the geometric (Jet) theory of partial differential equations. The method is stable and robust. Numerical experiments illustrate the performance of the new method

    Resultant-based methods for plane curves intersection problems

    Get PDF
    http://www.springeronline.com/3-540-28966-6We present an algorithm for solving polynomial equations, which uses generalized eigenvalues and eigenvectors of resultant matrices. We give special attention to the case of two bivariate polynomials and the Sylvester or Bezout resultant constructions. We propose a new method to treat multiple roots, detail its numerical aspects and describe experiments on tangential problems, which show the efficiency of the approach. An industrial application of the method is presented at the end of the paper. It consists in recovering cylinders from a large cloud of points and requires intensive resolution of polynomial equations

    TR-2012001: Algebraic Algorithms

    Full text link
    corecore