2,596 research outputs found

    On the inventory routing problem with stationary stochastic demand rate

    Get PDF
    One of the most significant paradigm shifts of present business management is that individual businesses no longer participate as solely independent entities, but rather as supply chains (Lambert and Cooper, 2000). Therefore, the management of multiple relationships across the supply chain such as flow of materials, information, and finances is being referred to as supply chain management (SCM). SCM involves coordinating and integrating these multiple relationships within and among companies, so that it can improve the global performance of the supply chain. In this dissertation, we discuss the issue of integrating the two processes in the supply chain related, respectively, to inventory management and routing policies. The challenging problem of coordinating the inventory management and transportation planning decisions in the same time, is known as the inventory routing problem (IRP). The IRP is one of the challenging optimization problems in logis-tics and supply chain management. It aims at optimally integrating inventory control and vehicle routing operations in a supply network. In general, IRP arises as an underlying optimization problem in situations involving simultaneous optimization of inventory and distribution decisions. Its main goal is to determine an optimal distribution policy, consisting of a set of vehicle routes, delivery quantities and delivery times that minimizes the total inventory holding and transportation costs. This is a typical logistical optimization problem that arises in supply chains implementing a vendor managed inventory (VMI) policy. VMI is an agreement between a supplier and his regular retailers according to which retailers agree to the alternative that the supplier decides the timing and size of the deliveries. This agreement grants the supplier the full authority to manage inventories at his retailers'. This allows the supplier to act proactively and take responsibility for the inventory management of his regular retailers, instead of reacting to the orders placed by these retailers. In practice, implementing policies such as VMI has proven to considerably improve the overall performance of the supply network, see for example Lee and Seungjin (2008), Andersson et al. (2010) and Coelho et al. (2014). This dissertation focuses mainly on the single-warehouse, multiple-retailer (SWMR) system, in which a supplier serves a set of retailers from a single warehouse. In the first situation, we assume that all retailers face a deterministic, constant demand rate and in the second condition, we assume that all retailers consume the product at a stochastic stationary rate. The primary objective is to decide when and how many units to be delivered from the supplier to the warehouse and from the warehouse to retailers so as to minimize total transportation and inventory holding costs over the finite horizon without any shortages

    Modeling and solving the multi-period inventory routing problem with constant demand rates

    Get PDF
    The inventory routing problem (IRP) is one of the challenging optimization problems in supply chain logistics. It combines inventory control and vehicle routing optimization. The main purpose of the IRP is to determine optimal delivery times and quantities to be delivered to customers, as well as optimal vehicle routes to distribute these quantities. The IRP is an underlying logistical optimization problem for supply chains implementing vendor-managed inventory (VMI) policies, in which the supplier takes responsibility for the management of the customers' inventory. In this paper, we consider a multi-period inventory routing problem assuming constant demand rates (MP-CIRP). The proposed model is formulated as a linear mixed-integer program and solved with a Lagrangian relaxation method. The solution obtained by the Lagrangian relaxation method is then used to generate a close to optimal feasible solution of the MP-CIRP by solving a series of assignment problems. The numerical experiments carried out so far show that the proposed Lagrangian relaxation approach nds quite good solutions for the MP-CIRP and in reasonable computation times

    Locating emergency services with priority rules: The priority queuing covering location problem

    Get PDF
    One of the assumptions of the Capacitated Facility Location Problem (CFLP) is that demand is known and fixed. Most often, this is not the case when managers take some strategic decisions such as locating facilities and assigning demand points to those facilities. In this paper we consider demand as stochastic and we model each of the facilities as an independent queue. Stochastic models of manufacturing systems and deterministic location models are put together in order to obtain a formula for the backlogging probability at a potential facility location. Several solution techniques have been proposed to solve the CFLP. One of the most recently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, is implemented in order to solve the model formulated. We present some computational experiments in order to evaluate the heuristics’ performance and to illustrate the use of this new formulation for the CFLP. The paper finishes with a simple simulation exercise.Location, queuing, greedy heuristics, simulation

    A Two-Echelon Location-inventory Model for a Multi-product Donation-demand Driven Industry

    Get PDF
    This study involves a joint bi-echelon location inventory model for a donation-demand driven industry in which Distribution Centers (DC) and retailers (R) exist. In this model, we confine the variables of interest to include; coverage radius, service level, and multiple products. Each retailer has two classes of product flowing to and from its assigned DC i.e. surpluses and deliveries. The proposed model determines the number of DCs, DC locations, and assignments of retailers to those DCs so that the total annual cost including: facility location costs, transportation costs, and inventory costs are minimized. Due to the complexity of problem, the proposed model structure allows for the relaxation of complicating terms in the objective function and the use of robust branch-and-bound heuristics to solve the non-linear, integer problem. We solve several numerical example problems and evaluate solution performance

    Lagrangian Relaxation for Mixed-Integer Linear Programming: Importance, Challenges, Recent Advancements, and Opportunities

    Full text link
    Operations in areas of importance to society are frequently modeled as Mixed-Integer Linear Programming (MILP) problems. While MILP problems suffer from combinatorial complexity, Lagrangian Relaxation has been a beacon of hope to resolve the associated difficulties through decomposition. Due to the non-smooth nature of Lagrangian dual functions, the coordination aspect of the method has posed serious challenges. This paper presents several significant historical milestones (beginning with Polyak's pioneering work in 1967) toward improving Lagrangian Relaxation coordination through improved optimization of non-smooth functionals. Finally, this paper presents the most recent developments in Lagrangian Relaxation for fast resolution of MILP problems. The paper also briefly discusses the opportunities that Lagrangian Relaxation can provide at this point in time

    A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling

    Get PDF
    We propose an efficient evolutionary multi-objective optimization approach to the capacitated facility location–allocation problem (CFLP) for solving large instances that considers flexibility at the allocation level, where financial costs and CO2 emissions are considered simultaneously. Our approach utilizes suitably adapted Lagrangian Relaxation models for dealing with costs and CO2 emissions at the allocation level, within a multi-objective evolutionary framework at the location level. Thus our method assesses the robustness of each location solution with respect to our two objectives for customer allocation. We extend our exploration of selected solutions by considering a range of trade-offs for customer allocation
    • …
    corecore