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Nederlandse Samenvatting 

–Summary in Dutch– 

 

 

Individuele bedrijven functioneren niet langer als volledig onafhanke-

lijke entiteiten, ze maken nu veeleer deel uit van een bevoorradingske-

ten. Dat is een van de meest significante paradigmaverschuivingen 

van het huidige bedrijfsmanagement (Lambert and Cooper, 2000). 

Daarom wordt naar het beheer van de verschillende activiteiten binnen 

een bevoorradingsketen, zoals materiaal-, informatie en financiële 

stromen, verwezen als integraal ketenbeheer of supply chain manage-

ment (SCM). SCM impliceert de coördinatie en integratie van die 

verschillende activiteiten binnen en tussen bedrijven, zodat een beter 

globaal resultaat voor de bevoorradingsketen bekomen kan worden. In 

dit proefschrift bespreken we de integratie van twee stappen in de 

bevoorradingsketen, namelijk het voorraadbeheer en de routeplanning. 

Het probleem van het gelijktijdig bepalen van de te leveren hoeveel-

heden en de routes voor de voertuigen staat bekend als het inventory 

routing probleem (IRP).  

Het IRP is een van de belangrijke optimaliseringsproblemen bij het 

integraal keten- en logistiekbeheer. Het streeft naar een optimale inte-

gratie van het voorraadsbeheer en de routeplanning in een toeleve-

ringsnetwerk. Over het algemeen doet IRP zich voor als een onderlig-

gend optimaliseringsprobleem in situaties waar tegelijkertijd beslis-

singen over voorraadoptimalisering en distributie dienen genomen te 

worden. De belangrijkste doelstelling ervan is een optimaal distribu-

tiebeleid op te zetten, dat een set rutten voor de voertuigen, te leveren 

hoeveelheden en leveringstijden bepaalt, die de totale kosten voor de 

voorraadopslag en het vervoer tot een minimum beperken. Dat is een 
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typisch logistiek optimaliseringsprobleem dat optreedt in bevoorra-

dingsketens die “Vendor Managed Inventory” (VMI) implementeren. 

VMI is een overeenkomst tussen een leverancier en de kleinhan-

delaars die regelmatig door die leverancier worden bediend. De over-

eenkomst bepaalt dat de kleinhandelaars ermee instemmen dat de le-

verancier de tijdstippen en de omvang van de leveringen bepaalt. Vol-

gens die overeenkomst verwerft de leverancier de volledige bevoegd-

heid om de voorraden van zijn klanten te onderhouden. Zo kan de 

leverancier proactief handelen en instaan voor het voorraadbeheer van 

zijn regelmatige klanten, in plaats van te wachten tot de kleinhan-

delaars hun bestellingen plaatsen. In de praktijk werd vastgesteld dat 

de implementatie van een strategie zoals VMI de algemene resultaten 

van het netwerk van de bevoorradingsketen verbetert; we verwijzen 

bijvoorbeeld naar Lee and Seungjin (2008), Andersson et al. (2010) 

and Coelho et al. (2014).  

Dit proefschrift focust zich vooral op een single-warehouse-

multiple-retailer systeem (SWMR), waarbij de leverancier een bepaald 

aantal kleinhandelaars bedient vanuit één enkel magazijn. In een eer-

ste opzet veronderstellen we dat het om kleinhandelaars gaat met een 

deterministische, constante vraag en in een tweede opzet wordt aange-

nomen dat alle kleinhandelaars een stochastisch, stationair gebruiksni-

veau vertonen. De eerste doelstelling bestaat erin te bepalen wanneer 

en hoeveel eenheden moeten geleverd worden van de leverancier aan 

het magazijn en vanuit het magazijn aan de kleinhandelaars om de 

totale transport- en voorraadkosten tot een minimum te beperken, 

binnen een eindige tijdshorizon en zonder dat tekorten zich voordoen. 

 De rest van dit proefschrift is als volgt ingedeeld: de twee eerste 

hoofdstukken zijn een algemene inleiding tot IRP en omvatten ook 

een literatuuroverzicht van IRP-gerelateerde papers. In Hoofdstuk 2 

stellen we een aantal benaderingswijzen voor het oplossen van de 

problemen bij de rittenplanning (VRP) die het mogelijk maken een 

efficiënte constructie- en verbeteringsheuristiek te ontwerpen. 
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Hoofdstuk 3 beschouwt een bevoorradingsketen met twee stappen, 

die bestaat uit een SWMR die moet voldoen aan een deterministisch 

vragenpatroon, en met een VMI-strategie. We stellen een optimalise-

ringsbenadering voor met twee fasen voor de coördinatie van de leve-

ringen binnen dit VMI-systeem. In de eerste fase worden rechtstreekse 

leveringen gedaan van de leverancier naar alle kleinhandelaars om zo 

de algemene voorraadkosten te drukken. Vervolgens, in de tweede 

fase, worden de kleinhandelaars geclusterd door gebruik te maken van 

een constructieheuristiek om de transportkosten te optimaliseren en 

tegelijkertijd te voldoen aan een aantal bijkomende beperkingen. De 

betere resultaten van het systeem dat gebruikt maakt van gecoördi-

neerde VMI- leveringen om de voorraden op peil te houden, ten op-

zichte van het systeem met enkel rechtstreekse transporten worden 

weergegeven en besproken bij de vergelijkende analyse. 

In Hoofdstuk 4 wordt het stochastic-inventory-routing probleem 

met meerdere perioden (MP-SIRP) behandeld met als doelstelling de 

totale distributie- en voorraadkosten te drukken. Eerst wordt het pro-

bleem geformuleerd als een lineair gemengd geheeltallig programme-

ringsprobleem waarvoor we een deterministisch gelijkwaardig bena-

deringsmodel (MP-DAIRPα) voorstellen. Dat laatste model kan dan 

worden opgesplitst in twee bekende deelproblemen: een voorraadallo-

catie- en een rittenplanningsdeelprobleem. Het stochastische aspect 

van de vraag wordt behandeld bij het voorraadallocatiedeelprobleem. 

Het rittenplanningsdeelprobleem wordt opgelost als een determinis-

tisch gemengd geheeltallig probleem. Lagrangiaanse relaxatie wordt 

gebruikt om bijna-optimale, uitvoerbare oplossingen voor MP-

DAIRPα te bekomen. De resultaten van de voorgestelde Lagrangiaan-

se relaxatiebenadering op een aantal numerieke voorbeelden worden 

vermeld en grondig besproken. 

Ten slotte worden in Hoofdstuk 5 een aantal slotopmerkingen uit 

recent onderzoek en een aantal richtlijnen voor toekomstige onder-

zoeksprojecten besproken.  



                                               
 

 

 



 

 

 

English Summary 

 

 

One of the most significant paradigm shifts of present business man-

agement is that individual businesses no longer participate as solely 

independent entities, but rather as supply chains (Lambert and Cooper, 

2000). Therefore, the management of multiple relationships across the 

supply chain such as flow of materials, information, and finances is 

being referred to as supply chain management (SCM). SCM involves 

coordinating and integrating these multiple relationships within and 

among companies, so that it can improve the global performance of 

the supply chain. In this dissertation, we discuss the issue of integrat-

ing the two processes in the supply chain related, respectively, to in-

ventory management and routing policies. The challenging problem of 

coordinating the inventory management and transportation planning 

decisions in the same time, is known as the inventory routing problem 

(IRP). 

The IRP is one of the challenging optimization problems in logis-

tics and supply chain management. It aims at optimally integrating 

inventory control and vehicle routing operations in a supply network. 

In general, IRP arises as an underlying optimization problem in situa-

tions involving simultaneous optimization of inventory and distribu-

tion decisions. Its main goal is to determine an optimal distribution 

policy, consisting of a set of vehicle routes, delivery quantities and 

delivery times that minimizes the total inventory holding and transpor-

tation costs. This is a typical logistical optimization problem that aris-

es in supply chains implementing a vendor managed inventory (VMI) 

policy.  
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VMI is an agreement between a supplier and his regular retailers 

according to which retailers agree to the alternative that the supplier 

decides the timing and size of the deliveries. This agreement grants 

the supplier the full authority to manage inventories at his retailers'. 

This allows the supplier to act proactively and take responsibility for 

the inventory management of his regular retailers, instead of reacting 

to the orders placed by these retailers. In practice, implementing poli-

cies such as VMI has proven to considerably improve the overall per-

formance of the supply network, see for example Lee and Seungjin 

(2008), Andersson et al. (2010) and Coelho et al. (2014).  

This dissertation focuses mainly on the single-warehouse, multiple-

retailer (SWMR) system, in which a supplier serves a set of retailers 

from a single warehouse. In the first situation, we assume that all re-

tailers face a deterministic, constant demand rate and in the second 

condition, we assume that all retailers consume the product at a sto-

chastic stationary rate. The primary objective is to decide when and 

how many units to be delivered from the supplier to the warehouse 

and from the warehouse to retailers so as to minimize total transporta-

tion and inventory holding costs over the finite horizon without any 

shortages. 

The remainder of this dissertation is organized as follows. The first 

two chapters present a general introduction to the IRP, as well as a 

literature review of regular papers related to IRPs. We also highlight 

in Chapter 2 some routing solution approaches of the vehicle routing 

problem (VRP) that allows us to design an efficient improvement 

construction-heuristic. 

Chapter 3 considers a two-stage supply chain, consisting of a 

SWMR facing deterministic demands, under a VMI policy. It presents 

a two-phase optimisation approach for coordinating the shipments in 

this VMI system. The first phase uses direct shipping from the suppli-

er to all retailers to minimise the overall inventory costs. Then, in the 

second phase, the retailers are clustered using a construction heuristic 

in order to optimise the transportation costs while satisfying some 

additional restrictions. The improvement of the system’s performance 
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through coordinated VMI replenishments against the system with 

direct shipping only is shown and discussed in the comparative analy-

sis section. 

Chapter 4 considers the multi-period stochastic inventory routing 

problem (MP-SIRP) with the objective of minimizing the total distri-

bution and inventory costs. The problem is first formulated as a linear 

mixed-integer stochastic program for which we propose a determinis-

tic equivalent approximation model (MP-DAIRPα). This latter model 

can be decomposed into two well-known sub-problems: an inventory 

allocation sub-problem and a vehicle routing sub-problem. The sto-

chastic aspect of the demand is accounted for in the inventory alloca-

tion sub-problem. The vehicle routing sub-problem is solved as a de-

terministic mixed-integer problem. Lagrangian relaxation is used to 

determine close to optimal feasible solutions for the MP-DAIRPα. 

Results of the proposed Lagrangian relaxation approach on some nu-

merical examples are reported and thoroughly discussed. 

Finally, some concluding comments from recent research works 

and some directions for future research issues are discussed in this 

Chapter 5. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1 
Introduction 

 

1.1 General Introduction 

The last three decades have witnessed an increased interest of re-

searchers in the various research areas of supply chain management 

(SCM). In particular, the design and optimization problems have been 

arisen in the management of the supply chain operations. Supply chain 

operations involve the processes of sourcing the required materials, 

production of goods using the sourced materials, and transportation of 

these goods to retailers. Supply chain management can basically be 

defined as a set of approaches utilized to efficiently integrate suppli-

ers, manufacturers, warehouses, and stores, so that merchandise is 

produced and distributed in the right quantities, to the right locations, 

and at the right time, in order to minimize the system’s wide costs 

while satisfying service level requirements (Simchi-levi et al. 2003). 

The key feature in supply chain management is the collaboration be-

tween different stages like purchasing, inventory control, production, 

sales and distribution, to achieve overall efficiency and continuous 

improvement.  
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The main concern of each company, which is usually involved in 

the supply chain operation, is to minimize its operational costs and 

maximize its profits. Inventory costs are among these major costs. 

Traditionally, a decentralized inventory system imposes itself for 

managing inventories across multiple stages in the supply chain. Each 

stage is responsible for managing its own inventory independently, 

and places its orders with the supplier based on its individual require-

ments without giving any consideration about others. Typically, retail-

ers or distributors would focus on optimizing their own costs or prof-

its, in spite of being a part of the supply chain, because the decisions 

concerning production and replenishment are made separately and 

independently by the members of that chain. This kind of inventory 

management has some disadvantages for the retailers and the other 

players in the supply chain. It may lead to demand uncertainty for the 

distributor as the time and the number of orders from retailers can 

vary. Hence, the distributor may face difficulty in managing their own 

inventory and scheduling the deliveries in an efficient way. 

Kleywegt et al. (2002) have indicated that the lack of information 

with regard to retailer inventory level in conventional inventory man-

agement can affect the decision at the distributor level. They point out 

that without the visibility of inventory level information to the retail-

ers’, the supplier is unable to determine the priority of shipment be-

tween retailers. Thus, suppliers may possibly end up replenishing non-

critical customers, causing a stock-out problem for other retailers who 

really require items are unable to fulfil their end customer demand. 

Thus, the decisions between the stages in the supply chain need to be 

integrated in a manner that is beneficial for the entire supply chain in 

both operational and economic terms, even though each member of 

the chain has their own different operational goals.  

Vendor managed inventory (VMI) is one of the most widely dis-

cussed partnerships between the members of the supply chain for im-

proving multi-firm supply chain efficiency. Also known as the contin-

uous replenishment or supplier-managed inventory, it was popularized 

in the late 1980’s by Wal-Mart and Procter & Gamble and resulted in 

significant benefits. After this successful application, many companies 
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have followed suit and implemented VMI in their supply chains. For 

example, this model has become very popular in the US retail sector, 

not only for consumable products, but also for electric appliances and 

high tech electronics. Needless to say, this model is also applied in the 

automotive industries in Europe and USA where component suppliers 

have served the assembly lines on VMI contract terms since the end of 

the last millennium. It is said that VMI represents a powerful tool to 

strike out costs from the supply chain if implemented properly (Van 

Weele, 2005). 

VMI is an inventory management policy, in which the supplier as-

sumes, in addition to its inbound inventory, the responsibility of main-

taining inventory at the retailers and ensures that they do not run out 

of stock at any moment. The delivery times and quantities to be deliv-

ered to a retailer is no longer done after the retailer’s orders. The sup-

plier determines the quantity and when the delivery takes place. The 

replenishment is thus proactive as it is based on the available invento-

ry information instead of being reactive in response to retailers’ or-

ders. This policy has many advantages for both the supplier and the 

retailers. The supplier has the possibility of combining multiple deliv-

eries to optimize the truck loading and the routing cost. Moreover, as 

the deliveries are more uniform, the amount of inventory that must be 

held at the supplier can be drastically reduced. On the other hand, the 

retailers no longer need to dedicate resources to the management of 

their inventories. Also, the service level (i.e. product availability) in-

creases, as the supplier can track inventory levels at the retailers to 

determine the precise replenishment urgency. 

One reason why VMI has gained increased popularity nowadays is 

due to the availability of numerous technologies that enable to monitor 

retailer inventories online and cost effective. Accessibility to invento-

ry data becomes much easier. On the contrary, implementing VMI 

does not always lead to improved results. Failure can, for example, 

happen due to the unavailability of the necessary information or due to 

the inability of the supplier to make the right decisions. The large 

amount of data makes it extremely hard to optimize this problem. It 
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involves managing inventory in supply chains and optimizing distribu-

tion, which are two particularly challenging problems. 

The main focus of VMI is on the coordination issue of inventory 

replenishment and transportation. The transportation costs are reduced 

by shipping a large load to several retailers, in a coordinated manner, 

instead of delivering small loads to each retailer respectively. When 

implementing VMI, the crucial decision problem that frequently has to 

be addressed is how to determine optimal policies for the distribution 

of products from the supplier to each of the retailers, which is labelled 

as the inventory routing problem (IRP). 

The IRP is one of the challenging optimization problems in the de-

sign and management of supply and distribution networks. It also pro-

vides a very good starting point for investigating the integration of 

different components in logistics and supply chain, for instance inven-

tory management and transportation, which are traditionally dealt with 

separately. Such integration is expected to lead to a cost reduction in 

logistics and supply chain management. 

Campbell et al. (1998) present a specific description of the IRP, 

which is concerned with the repeated distribution of a single product, 

from a single facility, to a set of n retailers over a given planning hori-

zon of length T, possibly infinite. The retailers consume the product at 

a given rate uj and have the capability to maintain a local inventory of 

the product up to a maximum of Cj. The inventory at retailer j is Ij at 

time 0. A fleet of m homogeneous vehicles, with limited capacity Q, is 

available for the distribution of the product. The objective is to mini-

mize the average distribution costs during the planning period without 

causing stock-outs at any of the retailers.  

The IRP differs from traditional vehicle routing problems (VRP) 

because it is based on retailer usage rather than retailer orders. The 

IRP as defined above is deterministic and static due to our assumption 

that usage rates are known and constant. Obviously, in real-life, the 

problem has come to be stochastic and dynamic.  
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In the remainder of this chapter, we will first review the definition 

and typology of the structure variants of IRP problems such as time 

horizon, demand, structure, routing, inventory policy, inventory deci-

sions, fleet composition, and fleet size, which will be focused in this 

research. Then, in the second part of this chapter, we will discuss the 

contributions of this PhD research. 

1.2 Definition and Typology of the IRP 

Combined inventory management and routing gives rise to a large 

variety of aspects and assumptions. The IRP formulation and models 

are very hard to classify. Therefore, we classify IRPs according to the 

dimensions of the IRP which have been described over the past 30 

years. We then concentrate on the basic versions of the IRP, on which 

most of the research effort is focused. We have adapted the categories 

by Andersson et al. (2010) to classify the IRP according to eight crite-

rions which will be presented in Table 1.1. 

Table 1.1 Structural Variants of the IRP 

Criteria Possible options 

Time horizon Instant Finite Infinite 

Demand Stochastic Deterministic  

Structure One-to-one One-to-many Many-to-many 

Routing Direct Multiple Continuous 

Inventory pol-

icy 

Maximum-

level 

Order-up-to-

level 
 

Inventory de-

cisions 
Lost sales Back-order Nonnegative 

Fleet composi-

tion 
Homogenous Heterogeneous  

Fleet size Single Multiple Unconstrained 

Source: Adapted from Andersson et al. (2010) 
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1.2.1 Time Horizon 

Time refers to the horizon taken into account by the IRP model. The 

instant planning horizon determines the solution that balances the 

transportation and inventory costs at the beginning of every single 

time period based on the inventory level information. When more than 

one visit to a retailer may be required, we are talking about a finite 

problem. In finite planning horizon, the improvement solutions for the 

delivery schedule and the routes for delivery are determined for a spe-

cific period of time. On the other hand, the infinite time horizon solves 

a long-term problem by evaluating the performance of replenishment 

policies and the routing approach that minimizes the total cost aver-

age. When analysing a problem within infinite planning horizon, the 

decisions of distribution strategies are used rather than schedules. 

 

1.2.2 Demand 

The demand pattern is another dimension that differentiates the IRP 

categories. Most researchers assume the retailer demand is determinis-

tic to simplify the problem. However, in reality, the retailer demand 

becomes stochastic. Thus, this classification refers to the time when 

information on demand becomes known. If it is fully available to the 

decision maker at the beginning of the planning horizon, the cases 

then are called deterministic. However, when the method proposed 

incorporates uncertainty with respect to the demand, then the cases 

will be called stochastic. 

1.2.3 Structure 

The number of suppliers and retailers may vary, and therefore Baita et 

al. (1998) classified the topology of the problem into three modes; 

one-to-one, one-to-many and many-to-many, to describe the problem. 

The many-to-one case is included in the one-to-many case; it is not 

well studied and can easily be transformed to a one-to-many topology. 

The one-to-many is the most common case of IRP, where a single 

facility serves a set of retailers using a fleet of vehicles. The central 
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facility is a warehouse where the vehicles start and end their routes 

and where the goods are stored before being delivered to the retailers. 

1.2.4 Routing 

It is essential to differentiate the afore-mentioned three cases when 

classifying the routing component in the IRP. In the direct case, a 

vehicle picks up goods at the central warehouse and then distributes 

all goods to a single retailer before returning to the warehouse. When 

a vehicle can visit more than one retailer on a trip, we denote the case 

as multiple visits. In both instances, the trip starts and ends at the cen-

tral warehouse and the underlying problem is a VRP. The trip can be 

seen as continuous routing, when there is no central warehouse, with 

no start or end. 

1.2.5 Inventory Policy 

Inventory policies describe pre-established rules to replenish retailers. 

The two most common used in the IRP are the order-up-to-level (OU) 

policy and the maximum-level (ML) policy. Under an OU policy, 

each retailer defines a minimum and a maximum inventory level and 

can be visited several times during the planning horizon. The supplier 

monitors the inventory of each retailer and guarantees that no stock-

out will occur. Whenever a retailer is visited, the quantity delivered is 

that to fill its inventory capacity. Instead of imposing that every time a 

retailer is visited, the quantity delivered is such that the maximum 

level of inventory is reached, the only constraint on the shipping quan-

tity is that it must not be greater than the maximum inventory level. 

Hence, under an ML inventory policy, the replenishment level is flex-

ible, but bounded by the capacity available at each retailer. 

 

1.2.6 Inventory Decisions 

There are many inventory decisions that have to be made in the IRP. It 

determines how inventory management is modelled. In this classifica-

tion, we will focus on the decisions concerning the retailers. In deter-

ministic context, the inventory can be nonnegative, where the lowest 

inventory level is fixed either to zero or a level based on the safety 
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stock. If the inventory is allowed to become negative, then back-order 

occurs and the corresponding demand will be served at a later stage. If 

there are no back orders, then the extra demand is considered as lost 

sales. In both cases there may exist a penalty for the stock-out.  

1.2.7 Vehicle Fleet  

The last two criterions refer to fleet composition and size. The fleet 

used to distribute or collect goods can be classified according to com-

position and size. The fleet can be homogeneous, if all vehicles have 

the same characteristics such as speed, fixed cost, variable cost, 

equipment, and size. If the fleet is heterogeneous, some, or all, of the 

characteristics of the vehicles may differ.  

The size of the fleet is an important aspect of the problem. We will 

apply the term single if the fleet consists of one vehicle. If the fleet 

consists of a number of vehicles, we will use multiple to describe this 

situation. This is the case where the distributor owns the fleet and 

cannot purchase extra vehicle capacity. If the distributor has the pos-

sibility to purchase extra vehicle capacity then we will use the term 

unconstrained. 

1.3  PhD Contribution 

We consider a two-stage supply system with uncertain demand, oper-

ating under VMI (see Figure 1). The two-echelon inventory system 

consists of two echelons. The first echelon is the warehouse and sec-

ond one includes several retailers. The warehouse provides inventory 

to the retailers according to the retailers’ demands. The inventory con-

trol policies for the warehouse and retailers are totally different. For 

example, the replenishment interval for the warehouse and retailers 

are not the same, the lead time for the order of the warehouse would 

be larger than the one for the retailers, and the demand during the lead 

time for the warehouse and retailers are also different.  
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Figure 1. A two-echelon inventory system with SWMR 

 

In fact, since the demand rates at the retailers are uncertain, these 

demand rates vary. Thus, the total supply to the warehouse may not 

equal the total demand, resulting in an unbalanced situation between 

the warehouse and the retailers. All back orders may not be fulfilled at 

a constant rate. Therefore, a new replenishment policy and inventory 

control strategy should be implemented to resolve these unbalances in 

replenishment intervals and reorder points.  

In this dissertation, we concentrate on the case of the single-

warehouse with multiple-retailers (SWMR). In this case, a supplier 

serves a set of retailers from a single warehouse. We first start with 

the case where we assume that all retailers face a constant determinis-

tic demand rate, and then we consider a second case where we assume 

that all retailers consume the product at a stochastic stationary demand 

rate. Deliveries to these retailers are made from the warehouse with a 

fleet of vehicles having a limited capacity. The warehouse in turn 

places orders to an outside supplier to fill the demand of the retailers. 

Whenever the warehouse places an order, a fixed cost is incurred. 

Similarly, for each delivery to a retailer, a facility-dependent setup 

cost is charged. In addition, there is a facility-dependent holding cost 

for inventory at each facility in the system. The objective is to decide 

when and how many units to be delivered from the supplier to the 

warehouse and then from the warehouse to retailers so as to minimize 

total transportation and holding costs over a finite horizon without any 

shortages. 
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One main contribution is to propose a two-phase heuristic solution 

approach to minimize the overall inventory and transportation costs of 

the SWMR system under a VMI policy. Roundy (1985) and Chu and 

Leon (2008), amongst others studied the SWMR case before, howev-

er, they assumed that only direct shipping is used to replenish the re-

tailers, i.e., each vehicle visits a single retailer and returns to the ware-

house. Even under this assumption, it is shown that the problem can-

not be solved in polynomial time. Therefore, in the first phase of the 

SWMR system under a VMI policy, retailers are partitioned into sub-

sets in order to minimize the overall inventory costs of the system. 

Then, in the second phase, a VRP procedure is used to solve the rout-

ing in each of the retailer subsets with the objective of minimizing the 

travelled distance and hence the transportation costs. As such, we drop 

the assumption of direct shipments from warehouse to retailers, but 

also include the option of combining multiple outbound shipments in 

so-called milk-runs. To evaluate the impact of VMI and milk-runs on 

the SWMR system, a comparative analysis of the SWMR system be-

fore and after the adoption of VMI and milk-runs is carried out. In 

particular, inventory management practices of the different scenarios 

are examined and their related costs are compared. The obtained re-

sults and the analysis of the solution strategy for deterministic demand 

have been published in Rahim et al. (2014a). 

Another important contribution of this dissertation is the investiga-

tion of the multi-period stochastic inventory routing problem (MP-

SIRP) where the retailers consume the product at a stochastic station-

ary rate. It models the IRP problem as a stochastic multi-period prob-

lem. More precisely, we consider a distribution system in which a 

fleet of homogeneous vehicles is used to distribute some products 

from a single warehouse to a set of retailers consuming it at stationary 

demand rates, during a finite horizon H of consecutive periods (days). 

The objectives are to determine optimal quantities to be delivered to 

the retailers, the delivery times, and the vehicle delivery routes in or-

der to minimize the total distribution and inventory costs. The result-

ing distribution plan must prevent stock-outs from occurring at all 

retailers during the planning horizon and assuring some predetermined 

service level. Based on the formulation of the cyclic IRP model (see, 
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e.g., Aghezzaf et al. 2006) and Multi-period IRP (see, e.g., Zhong and 

Aghezzaf 2012), we formulate a stochastic linear mixed-integer model 

for this MP-SIRP. A deterministic equivalent approximation reformu-

lation (MP-DAIRPα) of the problem is proposed. This latter proposed 

model also determines the optimal vehicle fleet size in each period. A 

Lagrangian relaxation method to solve the proposed MP-DAIRPα is 

developed and thoroughly discussed. Some numerical experiments are 

established to evaluate the effectiveness of the proposed solution ap-

proach. The detailed results for modelling and solving MP-SIRP case 

have been published in Rahim et al. (2014b). 

1.4  Outline of Thesis 

The remainder of this dissertation is organized as follows. Chapter 2 

presents a literature review of regular papers regarding inventory rout-

ing problems and their related variants. As mentioned above, Anders-

son et al. (2010) discusses and classifies the IRPs and their variants 

according to the length of the planning horizon. Without loss of gen-

erality, the classification of reviewed papers is also based on the same 

criteria, by separating the existing work into finite and infinite plan-

ning horizon problems. Since the second phase of our proposed ap-

proach requires the transportation costs to be minimized, we highlight 

some routing solution approaches of the VRP that allow us to design 

an efficient improvement construction-heuristic. 

Chapter 3 analyses the effectiveness of an inventory management 

policy before and after the implementation of VMI and milk-runs in a 

single-warehouse, multiple-retailer and vendor managed inventory 

(SWMR-VMI) system. It begins with partitioning retailers into sub-

sets in order to minimize the overall inventory costs of the system. 

Then, a VRP procedure is used to solve the routing in each of the re-

tailer subsets with the objective of minimizing the travelled distance 

and hence the transportation costs. Finally, a comparative analysis of 

the SWMR system before and after the adoption of VMI and milk-

runs is carried out. 
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Chapter 4 investigates the multi-period stochastic inventory routing 

problem (MP-SIRP) with the objective to minimize the total distribu-

tion and inventory costs. Firstly, we formulate a stochastic linear 

mixed-integer model for this MP-SIRP. Next, a deterministic equiva-

lent approximation reformulation (MP-DAIRPα) of the problem is 

proposed. Then, a Lagrangian relaxation method is proposed to solve 

the MP-DAIRPα. As a result of this method, some numerical experi-

ments are demonstrated to evaluate the effectiveness of the proposed 

solution approach. 

Finally, some concluding remarks from recent research works are 

conveyed in Chapter 5. Apart from that, some directions for future 

research issues are discussed in this chapter. 

 

 

 

 

 



 

 

2 
General Literature Review 

 

2.1  Introduction 

Manufacturers these days are interested in developing competitive 

strategies for coordinating their inventory management and vehicle 

routing in supply chain management (SCM). These two issues have 

traditionally been dealt with separately, but their integration can have 

a dramatic impact on overall system performance (Campbell and 

Savelsbergh 2004). Consequently, the coordination of inventory re-

plenishment and transportation has been studied extensively and many 

approaches have been developed to solve these two activities simulta-

neously, which is commonly referred to as inventory routing problems 

(IRP). The IRP is an important optimization model that captures the 

essential characteristics of vendor managed inventory (VMI) agree-

ments such as inventory control and transportation scheduling.  

Additionally, the IRP applications arise in a variety of industries. 

For instance, Campbell and Savelsbergh (2004) were inspired by the 
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international industrial gas company, Praxair, where one of their activ-

ities is to separate air into gases such as oxygen, hydrogen, nitrogen 

and argon. Then, these gases are transported in their liquid form via 

trucks from the plants to the customers. The IRP is also implemented 

in petrochemical industry, the automotive industry, suppliers of su-

permarkets and department store chains, clothing industry and home 

products. Another application of IRP is in the marine industry where 

ships are used instead of trucks, and several products are often being 

shipped in separate compartments. However, the inventory activities 

are considered as both the sources and the destinations among other 

factors (Moin and Salhi, 2007). The number of these industries seems 

to be increasing, along with the need for approaches to the IRP that 

handle the additional constraints and influential complexities present 

in practical versions of the problem. 

The IRP is a very challenging problem that arises in various distri-

bution systems. It involves managing simultaneously inventory con-

trol and vehicle routing in organizations where one or several ware-

houses are responsible for the replenishment of a set of geographically 

dispersed retailers. These retailers face a demand for products spread 

over time, and are entitled to keep local inventory. Deliveries are 

made using a fleet of capacitated vehicles. 

In the IRP, there are no retailer orders, and the routing decisions 

are dictated by the inventory behaviour of the retailers, which in itself 

is driven by their (daily) demand patterns. Given the retailers’ inven-

tory data and information regarding the retailers’ demand, the supplier 

must subsequently make several decisions over a given planning hori-

zon: 

 Which retailer to visit in each period of the planning horizon? 

 What are the quantities to deliver to each retailer? 

 How to combine these deliveries into routes? 

The goal of the IRP is to minimize the distribution costs in the sys-

tem, over the planning horizon without causing stock-outs at any of 

the retailers. Therefore, in this literature review, we highlight some 
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existing studies of the IRP, which allows us to understand that this 

designation encompasses a wide range of situations that calls for vari-

ous solution methods.  

Moreover, a large variety of IRP research has been proposed and 

discussed in the literature over the last decades. Baita et al. (1998) 

classified the IRP by defining it as a class of problems having the fol-

lowing aspects in common: routing (necessity to organize a movement 

of goods between different sites), inventory (relevance of the volume 

and value of the goods moved), and dynamic behaviour (repeated 

decisions have to be made). Within this class of problems, a classifica-

tion framework was proposed that took into account all the character-

istics of the different approaches encountered in the literature.  

Various models of the IRP exist depending mainly on the nature of 

demand by the retailers (whether it should be treated as deterministic 

or stochastic), and on the length of the planning horizon either (finite 

or infinite). Therefore, in the remaining of this section, our intention is 

to classify the IRP models according to two key characteristics, as 

featured below: 

 Length of the planning horizon, which may be either finite or 

infinite. 

 Demand pattern, which can be either deterministic or stochas-

tic. 

Actually, Baita et al. (1998) defined the IRP is deterministic due to 

the fact that the retailers’ consumption rates are assumed to be known 

and constant. However, when looking at the coordination of inventory 

controlling and transportation scheduling from a practical point of 

view, stochastic models might better describe many real life cases. 

Particularly, when discussing the regular IRP models, Andersson et al. 

(2010) classified the literature according to the length of the planning 

horizon, where the reviewed IRPs were separated into finite and infi-

nite planning horizon problems, and also included both stochastic and 

deterministic cases inside this arrangement. 
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The purpose of this chapter is to develop a comprehensive review 

of the related inventory routing problem (IRP) literature. Figure 2.1 

shows the classification of main literature on the IRP, which is divided 

into stochastic IRP and deterministic IRP. Consequently, we have 

organized our literature review into three parts. In the first part, we 

separate the classical configuration of IRP into finite and infinite 

planning horizon problems, with deterministic IRP, while in the sec-

ond part, we focus on stochastic IRP. In the last part, we discuss an 

overview of the vehicle routing problem (VRP) because of our main 

proposed approach in the second phase of the problem that requires 

transportation costs to be minimized. For the conclusion in this chap-

ter, we identify research gaps between the previous and current issues 

discussed in the IRP literatures. 
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Figure 2.1 Classification of main literature on the Inventory Routing Problem (IRP)

Deterministic IRP 

 

Finite Horizon  
 

 

Infinite Horizon  
 

 Dror et al. (1985) 

 Dror and Ball (1987) 

 Bertazzi et al. (2002) 

 Campbell and Savels-

bergh (2004) 

 Abdelmaguid and 

Dessouky (2006) 

 Archetti et al. (2007) 

 Yu et al. (2008) 

 Archetti et al. (2012) 

 Anily and Federgruen 

(1990) 

 Gallego and Simchi-

Levi (1990) 

 Anily and Federgruen 

(1993) 

 Bramel and Simchi-

Levi (1995) 

 Chan et al. (1998) 

 Aghezzaf et al. (2006) 

 Jung & Mathur (2007) 

 Raa & Aghezzaf (2008) 

Stochastic IRP 

 

Finite Horizon  
 

 

Infinite Horizon  
 

 Bell et al. (1983) 

 Federgruen and Zipkin 

(1984) 

 Golden et al. (1984) 

 Dror and Ball (1987) 

 Herer and Levy (1997) 

 Gaur and Fisher (2004) 

 Bertazi et al. (2013) 

 

 

 

 Minkoff (1993) 

 Berman and Larson 

(2001) 

 Kleywegt et al. (2002) 

 Kleywegt et al. (2004) 

 Adelman (2004) 

 Aghezzaf (2008) 

 Hvattum et al. (2009) 

 Hvattum and 

Løkketangen (2009) 

 

Inventory Routing Problem (IRP) 
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2.2  Deterministic Inventory Routing Problem  

We start by introducing the basic problem of the IRP. The problem is 

defined on a graph G = (V, A) where V = {0,…, n} is the vertex set 

and A is the arc set. Vertex 0 represents the supplier and the vertices of 

V’ = V \{0} represent retailers. Both the supplier and retailers incur 

unit inventory holding costs hj per period (j∈V), and each retailer has 

an inventory holding capacity Cj. The length of the planning horizon is 

p and, at each time period t ∈T = {1,…, p}, the quantity of product 

made available at the supplier is r
t
. We assume the supplier has suffi-

cient inventory to meet all the demand during the planning horizon 

and those inventories are not allowed to be negative. The variables I0t 

and Ijt are defined as the inventory levels at the end of period t, respec-

tively at the supplier and at retailer j. At the beginning of the planning 

horizon, the decision maker knows the current inventory level of the 

supplier and of all retailers (I0t and Ijt for j∈V’), and has full 

knowledge of the demand djt of each retailer j for each time in period 

t. 

There is a set K = {1,…, K} of vehicles available with capacity Qk. 

Each vehicle is able to make one route per time period to deliver 

products from the supplier to a subset of retailers. A routing cost cij is 

associated with arc (i, j) ∈A. The objective of the problem is to mini-

mize the total inventory-distribution cost while meeting the demand of 

each retailer. The replenishment plan is subject to the following con-

straints: 

 The inventory level at each retailer can never exceed its max-

imum capacity. 

 Inventory levels at both the warehouse and the retailers are 

not allowed to be negative. 

 The supplier’s vehicles can perform at most one route per 

time period, each starting and ending at the warehouse. 

 The vehicles’ capacity cannot be exceeded. 

 The final inventory level at each retailer at the end of the hori-

zon shall cover its initial inventory. 
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The solution to the problem should determine which retailer is to 

be served in each time period using which of the supplier’s vehicles, 

and how much to deliver to every visited retailer as well as which 

routes to be used.  

2.2.1  Finite Horizon, Deterministic IRP 

In the early 1980s some studies have started to incorporate inventory 

concerns within the existing vehicle routing literature. These were 

mostly variations of VRP models and heuristics developed to accom-

modate inventory costs. Most of the papers considered consumption 

rate at the retailers as known and deterministic. In a general setting, 

the IRP has a finite time horizon and a one-warehouse multiple-

retailers inventory system dealing with a single product. The ware-

house has enough goods to supply the retailers whose demands are 

known to the supplier at the beginning of the planning period. A ho-

mogeneous fleet of vehicles is available for the distribution of the 

problem and neither the warehouse nor the retailer faces any ordering 

or inventory costs. The objective is to minimize the distribution costs 

during the planning period without causing stock-outs at any of the 

retailers.  

Dror et al. (1985) is among the earliest paper to address the IRP, 

and propose a short term solution approach to take into account what 

happens after the single day planning period. They described this 

problem over a short planning period, e.g. one week, and proposed a 

mixed integer programming model to display effects of present deci-

sions on later periods. The solution is based on the assignment of re-

tailers to their so called optimal replenishment period t, and then cal-

culating the expected increase in cost if the retailer is visited in anoth-

er period. The authors divided the problem based on two major as-

sumptions: (1) once a retailer is visited, the amount of product deliv-

ered fills the retailer’s capacity (order-up-to level policy), and (2) re-

tailers are only visited once during the planning period (e.g. One 

week). Then, they created two subsets out of the retailers set, one con-

taining retailers that must be visited where t falls within the short-term 



20                                           CHAPTER 2 

 

planning period, and the other containing retailers that could be visited 

where t falls outside the short-term planning period.  

They solved the problem in two phases as follows. (1) For the re-

tailers that must be visited, they calculated the costs of visiting the 

retailers earlier than the latest period possible. (2) For retailers that 

could be visited, they computed the future cost difference between 

visiting and not visiting this retailer. Based on these costs, retailers are 

assigned to periods, and VRPs are solved for each period, followed by 

a node interchange improvement. In the solution approaches, the au-

thors then proposed two algorithmic solutions. The first one assigns 

retailers to periods in a first step, and then solves a VRP for each peri-

od. Whereas, the other view is to assign retailers not only to periods, 

but also to vehicles, so that the second part needs only solve one trav-

elling salesman problem (TSP) for each period and each vehicle. In 

the implementation of both solutions, an integer program is solved by 

assigning retailers to vehicles, minimizing transportation and invento-

ry costs. However, in their model, the inventory holding costs are not 

included in the objective function. Only retailers who will reach their 

safety stock level during a particular time interval are serviced and the 

model only considered a fixed number of identical trucks. Their sec-

ond part of algorithm works with the output of the first part, which 

was obtained heuristically and there is no guarantee of its quality. 

Dror and Ball (1987) presented a procedure for reducing the annual 

optimization problem and selecting the set of retailers replenished in a 

short operational time period, with the objective to minimize annual 

costs subject to no retailer shortages. The relationship between the 

annual distribution cost, the fixed delivery cost, and the amount deliv-

ered to the retailers are examined and the retailers to be visited on a 

given day are selected according to these costs. They developed the 

conditions, which enable a transition from a stochastic problem to a 

deterministic problem in which the retailer’s daily demand is treated 

as known. They clarified the problem by fixing the amount delivered 

to each retailer in order to fill up its inventory capacity using order up-

to-level (OU) policy, and in this sense, the amount delivered only 

depends on the period of the delivery since their approach is determin-
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istic. They have simplified real stochastic demands to a deterministic 

approach using three different variables: (1) to penalize early deliver-

ies to retailers with sufficient inventory, (2) to motivate deliveries to 

retailers that are not restrictive (not required by the constraints), and 

(3) to identify retailers that must be served within the planning hori-

zon. Finally, their solution involves assigning retailers to one period of 

the planning horizon through a generalized assignment algorithm, 

solving the VRP for each period of the planning horizon and then 

trying to improve the solution by promoting interchanges not only 

within routes but also within periods.  

Bertazzi et al. (2002) addresses a multi-period model with a deter-

ministic case in which a set of products is shipped from a common 

supplier to several retailers. For each product, a starting level of the 

inventory is given both for the supplier and for each retailer and the 

level of the inventory at the end of the time horizon can be different 

from the starting one. Therefore, each retailer should determine a low-

er and an upper level of the inventory of each product and can be vis-

ited several times during the time horizon. Every time a retailer is 

visited the quantity delivered is such that the maximum level of inven-

tory is reached. This inventory policy is called the OU policy, decreas-

ing the flexibility of the decision maker, but simplifying the set of 

possible decisions of the problem. The authors solved the problem 

heuristically in two steps. The first step creates a feasible solution, and 

the second one improves it as long as a given minimum improvement 

is made to the total cost function. This is achieved by removing all 

possible retailer pairs and computing a series of shortest paths to de-

termine the periods in which the retailers should be reinserted. They 

considered both inventory and transportation costs and it is relevant to 

note that the supplier also incurs inventory costs in their model, which 

was generally not considered in other papers.  

Campbell and Savelsbergh (2004) studied a multi-period IRP mo-

tivated by the application in the industrial gas industry, PRAXAIR, 

which is a large industrial gas company with about 60 production fa-

cilities and more than 10,000 retailers across North America. The 

authors propose a two-phase solution approach. In the first phase, they 
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determine which retailers receive a delivery on each day of the plan-

ning period and decide on the size of the deliveries. In the second 

phase, they then determine the actual delivery routes and schedules for 

each of the days. Their two-phase solution approach was based on the 

idea of a rolling horizon, which is typically used to solve the planning 

model and implement only the first period's decisions, update the 

model to reflect new information to resolve the model, and again im-

plement the imminent decisions. In their rolling horizon framework, 

the authors planned on using only the first j days of the k day schedule 

being constructed. The value of j should be relatively small so as to be 

able to take advantage of new and updated information on inventory 

levels and usage rates. Then, they decomposed the solution process 

into two phases. A delivery schedule is created first, followed by the 

construction of a set of delivery routes. The first phase considered a 

coarse approximation of the problem, with daily decisions, over a k-

day planning horizon. Based on the results of the previous phase, this 

second phase considered a model with decision accuracy in terms of 

minutes rather than days for the first j days, in which they solved a 

sequence of vehicle-routing problems with time windows (VRPTW). 

Abdelmaguid and Dessouky (2006) propose a genetic algorithm 

(GA) approach for solving the integrated inventory distribution prob-

lem with multiple planning periods, in which backorders are permit-

ted. Backorder decisions are generally established in two cases. In the 

first case is when there is insufficient vehicle capacity to deliver to a 

retailer, while the second case is when there is a transportation cost 

saving that is higher than the incurred backorder cost by a retailer. The 

authors designed a suitable genetic representation that focuses on the 

delivery schedule represented in the form of a 2-dimensional matrix 

and leave the vehicle routing part to be solved using any efficient pol-

ynomial time heuristic such as the savings algorithm. The problem is 

decomposed into one routing problem for each time period and one 

inventory problem. The link between the routing and inventory prob-

lem is the delivery quantities. These quantities are also the information 

in the chromosome. In the GA construction phase, they used a ran-

domized version of a previously developed construction heuristic to 

generate the initial random population. In the GA improvement phase, 
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the authors then developed a suitable design which involves two ran-

dom neighbourhood search mechanisms, the crossover and mutation 

operations. The crossover operator exchanges the delivery schedules 

for a set of retailers between two chromosomes. This will preserve the 

retailer inventory feasibility, but may introduce infeasibility in the 

vehicle capacity constraints. Once the infeasibilities are taken care of, 

a mutation operator that transfers part of the delivery quantities to 

different periods is applied. 

Archetti et al. (2007) proposed an exact algorithm to the determin-

istic IRP over a given time horizon. Each retailer defines a maximum 

inventory level. The supplier monitors the inventory of each retailer 

and determines its replenishment policy, guaranteeing that no stock-

out occurs at the retailer. These authors considered the case with only 

one vehicle, no backlogging and using the OU inventory policy, which 

is the quantity delivered by the supplier to the visited retailers is such 

that it reached the maximum inventory level. They developed a 

branch-and-cut algorithm and derived several valid inequalities to 

strengthen the linear relaxation of the model. The authors then com-

pared the optimal solution of this problem, with the optimal solution 

of two problems obtained by relaxing in different ways the determinis-

tic OU policy. The first problem is obtained by relaxing the constraint 

that every time a retailer is visited, the quantity delivered is such that 

the maximum level of the inventory is reached. The second problem is 

obtained by completely relaxing the OU policy, for instance by allow-

ing the shipping quantity to be of any positive value. Computational 

results are presented on a set of randomly generated problem instances 

to evaluate the performance of the algorithm. They showed that by 

relaxing the constraints on the shipment quantities, substantial savings 

can be achieved. 

Yu et al. (2008) consider a multi-period deterministic inventory 

routing problem with split delivery (IRPSD) where the retailers’ de-

mands in each period over a given planning horizon are assumed to be 

constant and must be satisfied without backorder. The delivery to each 

retailer in each period can be split and performed by multiple vehicles. 

In order to solve large scale instances, the authors proposed an ap-
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proximate model for the multi-period IRP. The solution of such an 

approximate model only defines the quantity delivered to each retailer, 

the quantity transported through each directed arc and the number of 

times that each directed arc is visited by vehicles (i.e. a directed arc 

means the connection between two retailers or a retailer and the ware-

house). A more robust Lagrangian relaxation method is developed to 

solve the relaxed problem, which is decomposed into an inventory 

problem, that can be solved by a linear programming algorithm and a 

routing problem, which is then transformed into a minimum cost flow 

algorithm. Moreover, in order to evaluate the quality of the final solu-

tion, a simple local search is used to further improve the quality of the 

routes, leading to a near-optimal solution of the IRPSD. 

For recent study on the multi-period deterministic IRP, Archetti et 

al. (2012) consider the IRP in discrete time, where a supplier has to 

serve a set of retailers over a time horizon. A capacity constraint for 

the inventory is given for each retailer and the service cannot cause 

any stock-out situation. Two different replenishment policies are con-

sidered, the order-up-to level (OU) and the maximum level (ML) poli-

cies. To solve the IRP, the authors developed a powerful hybrid heu-

ristic, which operates with a combination of a tabu search embedded 

within four neighbourhood searches and two mixed integer program-

ming (MIP) models. They called the heuristic HAIR (hybrid approach 

to inventory routing). Their results show that the HAIR performs very 

well on small size instances, with the average error is 0.08% for the 

OU policy and 0.05% for the ML policy. On instances with up to 200 

retailers and a horizon of H = 6 time units, the HAIR substantially 

improves the solutions obtained by a known heuristic for the case of 

the OU policy. 

2.2.2  Infinite Horizon, Deterministic IRP 

The following is a review of infinite horizon with deterministic IRP 

approaches. All the papers described in this section consider the same 

type of systems: a warehouse replenishes geographically dispersed 

retailers by a fleet of capacitated vehicles combining deliveries into 

efficient routes. These retailers face a constant, deterministic demand 
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rate. The appropriate objective is to determine long-term integrated 

replenishment strategies (i.e., inventory rules and routing patterns) that 

minimize the total transportation and inventory costs of the SWMR 

system. It is a strategy consisting of the construction of delivery 

routes, and the computation of the optimal replenishment frequency 

for each route.  

Anily and Federgruen (1990) are among the fundamental contribu-

tions in the study of deterministic IRP with an infinite horizon. By 

using the same setting as above, they restricted that inventories must 

be kept at the retailers but not at the warehouse and an upper and a 

lower bound to the long run on average transportation and retailer 

inventory holding costs are determined. The authors considered a spe-

cific class of replenishment strategies which is fixed partition (FP) 

policies. The authors analysed an FP strategy for the IRP with con-

stant deterministic demand rates and an unlimited number of vehicles. 

The class of replenishment strategies can be described as follows: the 

retailers are partitioned into regions and their demands are allowed to 

be split between several regions. The FP policy is a set of replenish-

ment strategies where each time one of the retailers in a given region 

receives a delivery, this delivery is made by a vehicle that visits all 

other retailers in the region as well using an efficient route. This al-

lowed the authors to transform this problem into a general partitioning 

problem, and to obtain several interesting results. Lower bounds on 

the optimal cost within the class are derived using dynamic programs 

to solve the partitioning problem and a heuristic based on a geograph-

ical division of the retailers is proposed. 

Gallego and Simchi-Levi (1990) analyse the effectiveness of direct 

shipping strategies in the SWMR system. They assumed that the re-

tailers face a constant demand rate and the inventory is only charged 

at the retailers but not at the warehouse. Their problem is to find an 

optimal inventory-routing strategy that consists of determining opti-

mal re-order quantities and vehicle routes. The authors started with 

computing a lower bound of the system-wide cost over all inventory-

routing strategies. An upper bound is identified for the case in which 

direct shipments are carried out by fully loaded trucks. The results 
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showed that the effectiveness of direct shipping is at least 94% when-

ever the economic lot sizes exceed 71% of the vehicle capacity. In 

other words, direct shipping may turn out to be an effective alternative 

to more complex strategies when the economic lot sizes for all retail-

ers are close to the vehicle capacity. Moreover, it is stated that the 

error of direct shipping increases as the lot sizes decrease. 

Anily and Federgruen (1993) consider an extension to their previ-

ous work by Anily and Federgruen (1990) to the case where the cen-

tral warehouse is explicitly considered as a stock-keeping location. 

They considered the same problem as Anily and Federgruen (1990) 

but proposed a power-of-two policies, where the replenishment inter-

vals are power-of-two multiples of the base planning period. The 

problems are compounded by determining a replenishment strategy 

for the warehouse, optimally coordinated with each of the retailers and 

synchronized with the transportation schedules. It is observed that the 

gap between the cost of the proposed strategy and a lower bound for 

the minimum cost is bounded by 6% for large numbers of retailers, 

which is usually better than the gap seen in the system without central 

inventories. In addition, they briefly explained how their results can be 

extended to cases where back-logging is allowed if all retailers face 

identical demand rates. 

Bramel and Simchi-Levi (1995) present a general framework for 

solving several different routing problems. They applied the algorithm 

to two classical problems: the capacitated vehicle routing problem 

(CVRP) and the IRP. They then introduced a new heuristic for general 

routing problems, which is based on formulating the routing problem 

as a location problem commonly called the capacitated concentrator 

location problem (CCLP). This location problem is subsequently 

solved and the solution is transformed back into a solution to the rout-

ing problem. For solving the IRP that involves a more complex cost 

structure, they implemented fixed partition (FP) policies, in which the 

set of retailers is partitioned into disjoint subsets and each subset is 

served separately. As long as a retailer in a subset is visited, all other 

retailers in the set are visited as well. With that, the optimal deliveries 

occur at regular fixed intervals, and the optimal cycle time is deter-
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mined by using the traditional economic order quantity (EOQ) formu-

la. Then, a location based heuristic method is used to solve the prob-

lem, in which some seed sets of the retailers are elected in the first 

phase, then a CCLP is solved in the second phase, and in the final 

phase, the solution to the CCLP is transformed to a feasible solution to 

the IRP. 

Chan et al. (1998) studied the zero inventory ordering (ZIO) poli-

cies and also the fixed partition (FP) policies in the SWMR system. 

The main objective of their study is to characterize the asymptotic 

effectiveness of the class of ZIO policies and the class of FP policies. 

Under the ZIO policy, a retailer is replenished if and only if their in-

ventory level reaches zero. ZIO policies may fail to be optimal, with 

the presence of constraints on the vehicle capacity or the frequency 

with which retailers can be served. Under the FP strategy, a set of 

retailers is partitioned into a number of regions so that each region is 

served separately and independently from all other regions. Besides, a 

heuristic algorithm is developed for partitioning the retailers into re-

gions. The FP policies are constructed by using a two-step procedure: 

(1) partition a given area where the retailers are distributed into sub-

regions, (2) partition the retailers in each such sub-region into sets of 

retailers by solving a bin-packing problem with each set being served 

in an efficient way. Then, they computed a lower bound, built a fixed 

partition solution and gave a probabilistic analysis of the optimal gap 

for this solution. Computational results show that the algorithm is very 

effective on a set of randomly generated problems and it is seen that 

the gap between the heuristic solution (the upper bound) and the lower 

bound is less than 19%. 

Aghezzaf et al. (2006) propose a model that extends the concept of 

vehicle tours to vehicle multi-tours, which is allowing vehicles to per-

form more than one route per period in order to minimize the number 

of vehicles used. The authors discussed a special case of the long-term 

IRP in which a single warehouse, supplying a single product, serves a 

set of retailers implementing economic order quantity (EOQ)-like 

policies to manage their inventories. They presented the cyclic inven-

tory routing problem (CIRP), which is a vehicle can repeatedly travel 
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along the same routes to replenish retailers. The objective of their 

model is to minimize total fleet operation, inventory holding and dis-

tribution costs. To present their model, the authors defined some con-

cepts with regards to ‘cycle times’, such as the minimal cycle time, the 

maximal cycle time and the EOQ cycle time (i.e. the theoretical opti-

mal cycle time). They pointed out that for a tour to be feasible, it is 

necessary that the minimal cycle time does not exceed the maximal 

cycle time. Moreover, the EOQ cycle time might be not actually feasi-

ble and it could turn out to be greater than the maximal cycle time or 

smaller than the minimal cycle time. Thus, in this case, the actual op-

timal cycle time has to be chosen as close as possible to the EOQ cy-

cle time, so it will be exactly the maximal (or minimal) cycle time. 

When the EOQ cycle time falls between the minimal and maximal 

cycle times, it is chosen to be the actual cycle time of the multi-tour. 

They then proposed a nonlinear mixed-integer programming model 

for the considered CIRP. Four different sets of decision variables are 

contained in the model: (1) to determine whether a vehicle is used or 

not, (2) to determine the movements of the vehicles, (3) to correspond 

to the amount delivered to each retailer, (4) to determine the cycle 

time. For the solution of the problem, they implemented a column 

generation for creating new multi-tours (columns), in which sub-

problems are solved using a savings-based approximation method. 

They tested this method to compare solutions obtained with the usual 

model, in which only routes or trips made of one tour is permitted. As 

a result, an average saving on the total cost rate ranging between 12% 

and 16% is achieved when using multi-tours (columns) model.  

Jung and Mathur (2007) propose a power-of-two partitioning poli-

cies that partition retailers into a number of clusters, each of which is 

served separately and independently from all other clusters. The prob-

lem is to make joint inventory and routing decisions so as to minimize 

long-run average cost. The proposed model allows (1) vehicles with 

limited capacity and (2) both the warehouse and retailers to maintain 

inventories. The authors developed an efficient heuristic procedure 

that finds a re-order interval for the warehouse and each retailer, as 

well as the vehicle routes to deliver the associated quantities so as to 

minimize the long-run average inventory and routing cost. They then 
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decomposed the problem into the following three problems: (1) Clus-

tering: partition the retailers into subgroups to be replenished by a 

single vehicle. (2) Sequencing: For each subgroup in (1), specify a 

nestedness sequence which implies that the reorder interval of a higher 

indexed retailer is not lower than the reorder interval of a lower in-

dexed retailer. (3) Inventory policy: given the clustering and the nest-

edness sequence, determine the reorder intervals for each retailer and 

the warehouse. Finally, they compared the performance of the pro-

posed algorithm to some of the possible alternative heuristics. In gen-

eral, the computational results showed that their algorithm outper-

formed other methods and resulted in a cost savings of 2% - 45%. 

 

Later, Raa and Aghezzaf (2008) extend the concept of multi-tour 

presented in Aghezzaf et al. (2006), and adopted the distribution pat-

tern to represent tours by assigning possibly different frequencies to 

different tours. As a result, a cyclic-planning approach is adopted, in 

which a vehicle can repeatedly travel along the same routes to replen-

ish retailers. The authors pointed out that a short tour to retailers with 

high demand rates can be performed more often than a longer tour to 

retailers with lower demand rates. Four nested tasks have to be tackled 

in this problem: (1) partitioning retailers over vehicles by a column 

generation approach, (2) partitioning retailers of a vehicle over differ-

ent tours by a greedy heuristic, (3) determining tour frequencies by an 

iterative procedure, (4) scheduling the deliveries by a greedy algo-

rithm so as to determine the optimal cycle time and the resulting total 

cost rate. To evaluate the performance of their proposed solution ap-

proach, a large number of tests were run on problem instances with 

varying characteristics.   
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Dror et al. 1985 √   √  √   √   √  

Dror and Ball 1987 √   √  √   √   √  

Anily and Federgruen  1990  √  √  √   √    √ 
Gallego and Simchi-Levi 1990  √ √   √   √    √ 
Anily and Federgruen  1993  √  √  √   √    √ 
Bramel and Simchi-Levi 1995  √  √  √   √    √ 
Chan et al.  1998  √  √  √   √   √  

Bertazzi et al.  2002 √   √    √   √   

Campbell and Savelsbergh  2004 √   √  √   √   √  

Abdelmaguid and Dessouky 

 

 

2006 √   √   √   √  √  

Aghezzaf et al. 2006  √  √  √   √   √  

Archetti et al. 2007 √   √    √ √  √   

Jung and Mathur 2007  √  √  √   √    √ 
Yu et al. 2008 √   √  √   √   √  

Raa and Aghezzaf 2008  √  √  √   √   √  

Archetti et al. 2012 √   √    √ √  √   

Source: Adapted from Coelho et al. (2014) 
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2.3  Stochastic Inventory Routing Problem  

Many studies consider the IRP with dynamic deterministic demand, 

which leads to more tractable yet less realistic models compared to 

those with stochastic demand. On the other hand, stochastic inventory 

routing problem (SIRP) models are intractable in that only very small 

instances can be solved optimally (Hvattum and Løkketangen 2009). 

The IRP defined above is deterministic and static because consump-

tion rates are fixed and known beforehand. In real life the supplier 

does not always know in advance exactly how much each retailer will 

consume (stochastic demand), nor is this consumption static (dynamic 

demand). The basic idea behind the SIRP is the same as in the deter-

ministic IRP, except that the level of realism and the difficulty of solv-

ing the problem are increased, given that some data are known only in 

a probabilistic sense and realizations of such data are revealed gradu-

ally to the decision maker. The unknown data can be the demand, the 

travelling time, the travelling cost, etc. It is easy to observe that many 

characteristics of the problem are stochastic in real life. These include 

demand, travelling times, vehicle loading and unloading times, even 

the availability of the road network. 

In the SIRP, instead of knowing the consumption rate for each re-

tailer, the supplier knows (or estimates) a probability distribution for r 

consumption. In this sense, the problem is no longer deterministic and 

future demands are uncertain. In the classical version of the SIRP, 

retailer demands are mutually independent. The stochasticity added to 

the problem creating a probability that shortages might occur. In order 

to discourage shortages, a penalty is imposed whenever a retailer runs 

out of stock, and this penalty is usually modelled as being proportional 

to the amount of unsatisfied demand. Unsatisfied demand is typically 

considered as lost demand, that is, there is no backlogging. Since deci-

sions are made based on partially available information, decisions can 

lead to expensive course-correcting measures.  

The knowledge of the supplier with respect to the dynamic prob-

lem can differ according to the problem at hand. The data can be com-

pletely unknown and periodically revealed, but usually the supplier 
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knows the information in some statistical way, such as a probability 

distribution estimated from historical data. The objective of the SIRP 

remains the same as in deterministic case, in which to minimize the 

overall inventory and transportation costs in the SWMR system, while 

avoiding retailers’ stock-outs. The supplier must determine a distribu-

tion policy that accommodates the stochastic and unknown future 

parameters with a finite or infinite planning horizon. 

2.3.1 Finite Horizon, Stochastic IRP 

Bell et al. (1983) are among the pioneer researchers to discuss the 

stochastic IRP, to use forecasts to make the stochastic demands seem 

deterministic to the model. They proposed a linear programming mod-

el to solve a deterministic simplification of the problem. They used 

heuristics to generate forecasts of the unknown demand. Possible de-

livery routes are created heuristically, and continuous variables repre-

sent the amount to be delivered to the retailers. They solved a mixed 

integer programs with up to 800,000 variables and 200,000 constraints 

to near optimality. Due to the immense size of the model, Lagrangian 

relaxation is applied, after which the problem is decomposed into sub-

problems (one for each vehicle) and an upper bound is obtained for 

the problem. A heuristic based on the Lagrangian relaxation approach 

is used to find a feasible solution (a lower bound) to the problem. It 

was observed that the gap between the upper and the lower bounds is 

at most 2% in the computational experiments performed. However, 

the heuristics used to generate forecasts was very simple, based on a 

simple exponential smoothing model tested with only 10 different 

values for the smoothing parameter. 

Federgruen and Zipkin (1984) adopted the first approach to ac-

commodate inventory and shortage costs in a random demand envi-

ronment. The authors extended some of the available methods for the 

deterministic vehicle routing problem (VRP) to the case where the 

demand of the different retailers is considered as a random variable. 

They analysed a problem where the inventory levels are known to the 

supplier, who has to decide how much of a scarce resource to deliver 

to each retailer and how to route the fleet of vehicles. After the deliv-
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eries are made, the demand is realized and the inventory, transporta-

tion and stock-out costs are computed. The authors proposed a nonlin-

ear mixed-integer programming model. The solution approach is 

based on the observation that if the second set of variables is fixed, the 

problem decomposes into an inventory allocation problem and one 

travelling salesman problem (TSP) for each vehicle. The algorithm 

constructs an initial set of routes, with a feasible assignment of retail-

ers to vehicles, and then calculates changes, using a modified inter-

change heuristic based on the r-opt methods of the VRP. In the second 

part, an exact algorithm based on generalized Benders’ decomposition 

is proposed to solve the problem. They tested their heuristic algorithm 

with 50 retailers and 75 retailers problem and their results showed that 

a saving of 6% - 7% can be achieved in operating costs and conse-

quently reducing the number of required vehicles by no less than 20%. 

Golden et al. (1984) developed a heuristic for the optimization of 

an integrated delivery planning system for a large energy-product 

company that distributes liquid propane. They used a threshold to 

decide the retailers with the aim to minimize the daily operational 

costs, while attempting to ensure a sufficient level of products at each 

retailer location. Based on degrees of urgency, all retailers with inven-

tory below a given threshold were considered as potential retailers to 

be visited. To be more specific, the approach undertaken is as follows: 

for each retailer, an ‘emergency level’ equal to the ratio of his current 

inventory level to his tank capacity is computed. All the retailers 

whose emergency levels are higher than a chosen critical level are 

designated as ‘potential’ retailers. Retailers are then ranked using the 

ratio of emergency to delivery cost, and a TSP is then iteratively built. 

The ranked retailers are added one at a time to the itinerary, until the 

total tour duration exceeds a pre-established maximum duration, Tmax. 

The tour is then split into routes. If no feasible solution is found, Tmax 

is decreased, and the procedure is repeated. Results from the simulated 

comparison of the proposed heuristic showed that the heuristics had a 

superior performance. The number of gallons/hour delivered was im-

proved by 8.4%, with the number of stock-outs reduced by 50% and 

total costs were reduced by 23%. 
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Dror and Ball (1987) presented a procedure for reducing the long-

term problem into short period problem that can be solved with the 

use of standard routing algorithms. The reduction procedure considers 

the definition of single-period costs that reflects long-term costs, the 

definition of safety stock level and a specification of the retailer subset 

to be considered during a single period. The authors constructed a 

replenishment routes, by taking into account the probability distribu-

tion function (PDF) of the retailers’ demands. The authors used results 

based on one retailer, a deterministic demand system to compute ‘in-

cremental costs’ incurred during the year-long planning whenever a 

retailer is replenished in the coming week before his inventory drops 

to zero. Using these incremental costs, as well as the costs charged for 

stockouts and the demand PDF of each retailer, the authors then com-

puted the expected cost Ei (t) for replenishing a specific retailer i on 

any day t. Under some assumptions, they showed the existence of t*, 

the optimal replenishment day, that minimizes Ei (t). In order to solve 

the problems, they developed a four-step heuristic: (1) retailers to be 

included in the coming week’s schedule are selected based on their t*. 

(2) a linear-programming-based on generalized assignment algorithm 

is solved to assign the retailers to delivery days. (3) a modified version 

of Clarke and Wright algorithm is used to build efficient routes for 

each day during the time period. (4) local improvements are made to 

obtain better solution.  

Herer and Levy (1997) built and evaluated a heuristic for the me-

tered inventory routing problem (MIRP). The MIRP involves a central 

warehouse, a fleet of trucks with a finite capacity, and a set of retail-

ers, for each of whom there is an estimated consumption rate, and a 

known storage capacity. In the standard IRP, the retailer pays for the 

delivery in full when it is made (note that the timing of the delivery is 

determined by the supplier). In contrast, under the MIRP, the retailer 

pays for the inventory he uses, as he uses it. Thus, under the MIRP 

formulation, the supplier and not the retailer, pays for the inventory 

held at the retailer. The authors developed a heuristic method for de-

termining the amount of capacity to be installed at each retailer. The 

problem is solved on a rolling horizon basis, taking into consideration 

holding, transportation, fixed ordering, and stock-out costs. They used 
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the concept of temporal distances, which was taken by the traditional 

Clarke and Wright algorithm and modified it by adding the temporal 

distance into the savings calculation. The temporal distance gives the 

solution method some flexibility by allowing retailers to be joined in 

the same route even when assigned to different periods. A simulation 

study is carried out to demonstrate the effectiveness of the procedure. 

Gaur and Fisher (2004) analysed a periodic version of the problem 

where they assume a time-varying demand repeated over a week long 

period. They considered the fixed partitioning (FP) policy, in which 

the set of retailers is partitioned into disjoint subsets (called regions or 

clusters), with each region served separately and independently from 

all other regions. Because demand is time varying, they allowed two 

types of routes within each cluster: (1) shared routes that visit every 

store in the cluster with low-volume day, (2) direct shipments to indi-

vidual stores in the cluster with high-volume day. The authors solved 

the routing part problem by a randomized sequential matching algo-

rithm, with two main ideas: (1) repeated application of the generalized 

minimum weight matching algorithm, (2) randomized splitting of 

clusters, whereas the inventory management part is handled by stating 

a maximum time between deliveries. The computational results 

demonstrated that the potential cost savings on the inventory routing 

module and additional savings were obtained in truck assignment and 

workload balancing. 

Recently, Bertazi et al. (2013) formulated the Stochastic IRP using 

dynamic programming, with a goal of minimizing the total inventory, 

distribution and shortage costs. An order-up-to level policy is applied 

to each retailer and an inventory cost is applied to any positive inven-

tory level, while a penalty cost is charged and the excess demand is 

not backlogged whenever the inventory level is negative. They de-

signed a hybrid rollout algorithm aimed at finding better quality solu-

tions of the problem. Rollout algorithms are a class of heuristic algo-

rithms that can be used to solve deterministic and stochastic dynamic 

programming problems. This algorithm applied a sampling approach 

to generate demand scenarios for the current period and considered the 

average demand for future ones. The authors then compared the hy-
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brid rollout algorithm with the classical benchmark algorithm. The 

computational results showed that the rollout algorithm significantly 

dominates the benchmark algorithm, in particular when the variance 

increases. Moreover, the rollout algorithm tends to perform better than 

the benchmark algorithm in instances with a higher inventory cost. 

2.3.2 Infinite Horizon, Stochastic IRP 

Minkoff (1993) proposes a heuristic approach based on a Markov 

decision model to a problem somewhat similar to the IRP, called the 

delivery dispatching problem (DDP), which is too tough to solve be-

cause of its dynamic and stochastic nature. The problem is to deter-

mine a procedure for deriving itinerary assignments for each available 

vehicle that will minimize the long-run average costs of operating the 

system. He simplified the objectives function, making it a sum of 

smaller and simpler objective functions, one for each retailer and 

solved the problem heuristically. The heuristic is based partly on a 

decomposition of the problem by retailer, where retailers’ sub-

problems generate penalty functions that are applied to a master dis-

patching problem. He then described how to compute bounds on the 

algorithm's performance, and applied it to several examples with good 

results. The heuristic resulted in substantial reductions of computation 

time for determining dispatches, while maintaining good quality in 

dispatching performance. The author also provided a method for cal-

culating bounds on the degree of sub-optimality of the heuristic for 

particular instances.  

Berman and Larson (2001) use dynamic programming to solve the 

case where the demand probability distributions are known, adjusting 

the amount of goods delivered to each retailer so as to minimize the 

expected costs, comprising costs of earliness, lateness, product short-

fall, and returning to the warehouse nonempty. The unique structures 

of their approach are as follows: (1) modelling the product usage and 

emptiness as stochastic processes which is called a Wiener process 

model; (2) providing incremental costs for early deliveries as well as 

late deliveries;(3) allowing the amount of product delivered to be de-

termined by the driver which is not known until the driver is on scene 
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at the retailers’ location, at which point the retailer is either restocked 

to capacity or left with some residual empty capacity, which is deter-

mined by stochastic dynamic programming. The authors have pro-

posed four different versions of the dynamic program for solving the 

problems, utilizing two different state variables and allowing the pos-

sibility of ‘dumping’ excess product on the homeward leg of the tour. 

Certain properties of the dynamic programming model were derived 

that allow rapid and efficient computation of optimal delivery policies. 

Kleywegt et al. (2002) formulated a Markov decision process for 

the stochastic inventory routing problem with direct deliveries 

(IRPDD), which consider only one delivery per trip, with the objective 

to maximize the expected total discounted value over an infinite hori-

zon. They included constraints for the number of vehicles available, 

and allowed only direct deliveries. Immediate reward functions are 

composed of individual retailer immediate rewards (revenue minus the 

sum of travel, inventory and shortage costs), and an optimal expected 

value is the total discounted sum of all rewards. For their solution, 

they proposed an approximate dynamic programming approach, and 

studied the impact of the number of retailers, the number of vehicles, 

and the coefficient of variation of retailer demand. In general, compu-

tational experiments were conducted to demonstrate the practicability 

of using dynamic programming approximation methods for the 

IRPDD, and the optimal solutions were obtained on instances with up 

to 60 retailers and up to 16 vehicles. They concluded that taking avail-

able information about the future into account, through dynamic pro-

gramming approximation methods, provides more benefits if the 

available information about the future is more accurate. 

Kleywegt et al. (2004) extended the formulation and the approach 

from their previous research in Kleywegt et al. (2002), to handle mul-

tiple deliveries per trip using a Markov decision process. They used 

the same model but in this case they limited the routing to at most 

three retailers per route, instead of using one delivery per trip. The 

problem is formulated to maximize the expected discounted value 

over an infinite horizon as a discrete time Markov decision process. 

Retailer demands are stochastic and independent from each other, and 
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the supplier knows the joint probability distribution of their demands, 

which does not change over time. Although the demands are stochas-

tic, the cost of each decision is known to the supplier. Thus, the au-

thors took into account travelling costs, shortages that are proportional 

to the amount of unsatisfied and lost demand and holding costs. These 

models considered the revenue is proportional to the quantities deliv-

ered. They presented a solution approach that uses decomposition and 

optimization to approximate the value function. Specifically, the over-

all problem is decomposed into smaller sub-problems, and an optimi-

zation problem is defined to combine the solutions of the sub-

problems in such a way that the value of a given state of the process is 

approximated by the optimal value of the optimization problem. Com-

putational experiments demonstrated that their approach allows the 

construction of near optimal policies for small instances and these 

policies were better than their earlier policies that were proposed in 

their previous research. In this study, they obtained their optimal solu-

tions on instances with up to 15 retailers and five vehicles. 

Adelman (2004) considers a new approach to Stochastic IRP that 

approximates the future costs of current actions using optimal dual 

prices of a linear program. In the paper, the author did not restrict the 

number of retailers to be served in a route, except for the limits result-

ing from maximal route duration and vehicle capacity. He used the 

approximation, but takes a different approach. Instead of obtaining the 

approximate value of retailer i, Vi, through a heuristic sequential pro-

cedure, he obtained them as optimal dual prices from either of two 

linear programming relaxations of the underlying control problem. 

The control policy is called price directed because it uses these opti-

mal prices to approximate future costs. His linear program takes into 

account inventory dynamics and economics simultaneously, rather 

than sequentially, allocating transportation costs and solving all local 

dynamic programs. He then implicitly optimizes overall itineraries 

that are generated by solving nonlinear discrete knapsack problems. 

During test instances, he compared the price directed policy against 

the other policies in the literature. The computational results showed 

that the price directed policy dominates all other policies in every 

instance. The median performance of the price-directed policy was 7% 
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from the lower bound, compared with 24.6% for Minkoff's procedure, 

29.6% for the myopic policy, and 44.1% for direct shipment (which 

assigns exactly one retailer per route). 

Aghezzaf (2008) studies the case where retailer demand rates and 

travel times are stochastic but have constant averages and bounded 

standard deviations. The author used robust optimization to determine 

the cyclic distribution plan through a non-linear mixed integer pro-

gramming formulation which is feasible for all possible realizations of 

demand and travel times. To guarantee that a generated cyclic distri-

bution plan is robust, it is enhanced with two simple and effective 

components. The first one is related to the use of 'fixed' safety stocks, 

which is reserved at the retailers. These safety stocks are used to 

hedge against any possible increase in demand rates and/or travel 

time. The second component is the 'mobile' safety stock, which is an 

extra amount of the product carried by the vehicle during each of its 

tours. This 'mobile' stock is used to guarantee that no additional or 

extra replenishments will take place to exclusively restore any particu-

lar safety stock. Monte Carlo simulation is used to improve the plan's 

critical parameters such as replenishment cycle times and safety stock 

levels. The results show that when the travel time variability increases 

the number and the magnitude of the stock-outs increases, neverthe-

less the plan remains practically robust even at a travel time variability 

level of 10% on average. Moreover, the magnitude of stock-outs in-

creases from 1.2% of the realized demand to more than 20% when the 

travel time variability increases to 20% on average. 

Hvattum et al. (2009) proposed a policy for the markov decision 

process (MDP) that maximizes the expected total discounted value 

over an infinite horizon, where the value is based on rewards and costs 

associated with the process. These rewards/costs are calculated based 

on four components, which include the travel costs, the holding costs 

at retailers’ locations, penalties for stock-outs at the retailers, and pos-

sibly some revenue gathered for each delivery that is made. Even 

though their problem has an infinite planning horizon, most of the 

stochasticity can be captured in a finite scenario tree. In order to solve 

the problems, the authors created a scenario tree to capture the sto-
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chastic IRP, formulated a scenario tree problem (STP) for a given 

state (i.e., a given set of inventory levels), and then estimated that the 

solution of the STP will correspond to decent decisions with respect to 

the underlying MDP. The main heuristic investigated in this paper is 

based on greedy randomized adaptive search procedure (GRASP), 

which successively increases the volume delivered to retailers. In 

GRASP, each iteration involves the construction of a solution from 

scratch, making greedy choices that are somewhat randomized in or-

der to get different results from each iteration. The evaluations of the 

possible choices that can be made during the construction are updated 

as new solution evolves, and hence it is said to be adaptive. 

Hvattum and Løkketangen (2009) describe the stochastic IRP by a 

discounted, infinite horizon markov decision problem. The authors 

investigated the progressive hedging algorithm (PHA) for solving the 

scenario tree based problems. This algorithm can be suitable for a 

large scale problem, by giving an effective decomposition, but there 

are no guarantees of convergence for non-convex problems. The PHA 

was examined as an alternative method for solving the sub-problems 

arising for each epoch under the scenario tree based regime. The prob-

lem is modelled as a discounted, infinite horizon MDP, and the opti-

mal policy is thus the replenishment strategy that minimizes the total 

cost. In the MDP, the following sequence of events is assumed. First, 

the current inventory at each retailer can be observed. Second, vehicle 

routes are constructed and delivery is made. Third, the actual demand 

is observed and the inventory levels are updated, taking into account 

possible stock-outs. Holding costs are then calculated after demand is 

observed. The state of this MDP is uniquely identified through the 

current inventory levels of each retailer, and the transition probabili-

ties are given once an action has been selected. In order to improve the 

solution processes, the standard algorithm is extended with locking 

mechanisms, dynamic multiple penalty parameters, and heuristic in-

termediate solutions. The results obtained are interesting. For some 

problems, the PHA produces good results alone, while on others the 

combination of the PHA and a previously developed GRASP in Hvat-

tum et al. (2009) gives a much more robust result than any of the 

methods used separately. 
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Bell et al. 1983 √   √  √    √  √  

Federgruen and Zipkin 

 

1984 √   √  √    √  √  

Golden et al. 

 

1984 √   √  √   √   √  

Dror and Ball 

 

1987 √   √  √   √   √  

Minkoff 

 

1993  √  √  √   √    √ 

 

 

 

Herer and Levy 1997 √   √  √    √  √  
Berman and Larson 

 

2001  √  √  √   √  √   

Kleywegt et al. 

 

2002  √ √   √   √    √ 
Gaur and Fisher 

 

 

2004 √   √  √   √   √  

Kleywegt et al. 

 

2004  √  √  √   √   √  

Adelman 2004  √  √  √   √   √  

Aghezzaf 

 

2008  √  √  √   √   √  

Hvattum et al. 

 

2009  √  √  √   √   √  

Hvattum and Løkketangen 2009  √  √  √   √   √  

Bertazi et al. 

 

2013 √   √  √   √  √   

 

 

Source: Adapted from Coelho et al. (2014) 
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2.4 Vehicle Routing Problem  

The vehicle routing problem (VRP) creates a central role of distribu-

tion management. Most of companies and organisations have engaged 

in the delivery and pick-up of products every day. The problem is 

concerned with the construction of a plan that consists of trips, starting 

from a central warehouse, for vehicles servicing retailers with known 

demand. The fundamental objectives are to find the minimal number 

of vehicles, the minimal travel time or the minimal costs of the trav-

elled routes. In other words, the VRP is used to design optimal routes 

for a fleet of vehicles to service a set of retailers, given a set of con-

straints. In practice, the objectives and constraints of the VRP are 

highly flexible because conditions differ from one setting to the next 

such as e.g. vehicle capacity or time interval in which each retailer has 

to be served, revealing the capacitated vehicle routing problem 

(CVRP) and the vehicle routing problem with time windows 

(VRPTW) respectively. The real-world problems mostly encompass 

the capacity and time constraints. In the last decades, many extensions 

of the basic VRP have been studied and most algorithmic research and 

software development in this area focus on a limited number of proto-

type problems.  

Dantzig and Ramser (1959) are among the first to describe and de-

fine the VRP, as follows: 

A number of identical vehicles with a given capacity are located at 

a central depot. They are available for servicing a set of customer 

orders, (all deliveries, or, alternatively, all pickups). Each customer 

order has a specific location and size. Travel costs between all loca-

tions are given. The goal is to design a least cost set of routes for the 

vehicles in such a way that all customers are visited once and vehicle 

capacities are adhered to. 

The authors introduced the VRP to the research community and 

presented the first heuristic for the problem. Basically, this algorithm 

iteratively matches vertices, or vertices and partial routes, to form a set 

of vehicle routes. The VRP can be formally defined as follows. Let G 
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= (V, A) be a graph where V = {v0 , vi, ..., vn} is a vertex set, and A = {( 

vi, vj) : vi, vj∈V, i ≠ j} is an arc set. Vertex v0 represents a warehouse, 

while the remaining vertices correspond to retailers. Also, A is associ-

ated with a cost matrix (cij) and a travel time matrix (tij). If these ma-

trices are symmetrical, as is commonly the case, then it is standard to 

define the VRP on an undirected graph G = (V, E), where E = {( vi, vj) 

: vi, vj∈V, i<j} is an edge set. Each retailer has a non-negative demand 

qi and a service time ti. A fleet of m identical vehicles of capacity Q is 

based at the warehouse. The number of vehicles is either known in 

advance or treated as a decision variable.  

The VRP consists of designing a set of at most m delivery or col-

lection routes in such a manner that: 

 Each route starts and ends at the warehouse. 

 Each retailer is visited exactly once by exactly one vehicle. 

 The total demand of each route does not exceed vehicle ca-

pacity, Q. 

 The total duration of travel and service time on each route 

does not exceed a preset limit D. 

 Total routing cost is minimized.  

Nowadays, much progress has been made in this area and several 

variants of the basic routing problems have been put forward. Strong 

formulations have been proposed, together with polyhedral studies and 

exact decomposition algorithms. Numerous heuristics have also been 

developed for solving the VRP. For example, in the real world appli-

cation that solves VRP, it is important to perform a fast selection of 

methods such as constructive heuristics, neighbourhood operators and 

escaping mechanisms, which produces the desired improvement on 

the objective function. 

Therefore, in this study, we give an overview of the most important 

heuristics for the VRP literature, and highlight some of the solution 

approaches that inspired us when designing the heuristic described in 

the next chapter. Consequently, in the following section, we examine 

three different classes of classical heuristics which are constructive 

https://www.google.be/search?client=firefox-a&rls=org.mozilla:en-US:official&channel=sb&biw=1280&bih=642&q=define+consequently&sa=X&ei=yzZ7U_rKIaqA7Qa5h4H4CA&ved=0CC4Q_SowAA
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methods, two phase algorithms and tour improvement heuristics. The 

constructive methods produce an approximately optimal tour for the 

distance matrix. The two phase algorithms, is to cluster first-route 

second procedures, whereby during the first phase, it groups or clus-

ters demand nodes and then designs optimal routes in the second 

phase. The tour improving heuristics attempt to discover a better tour 

given an initial one. 

2.4.1  Constructive Methods 

Construction methods were among the first heuristics for the VRP and 

still form the principal of many software implementations for various 

routing applications. These construction algorithms start from an emp-

ty solution and iteratively build routes by inserting one or more retail-

ers at each iteration, until all the retailers are routed. Construction 

algorithms are further subdivided into sequential and parallel, depend-

ing on the number of eligible routes for the insertion of a retailer. Se-

quential methods expand only one route at a time, whereas parallel 

methods consider more than one route simultaneously.  

The most commonly used heuristic is the algorithm of Clarke and 

Wright (1964). This algorithm is based on a savings concept that is an 

estimate of the cost reduction obtained by serving two retailers se-

quentially in the same route, rather than in two separate ones. For 

example, the savings obtained by merging routes (0,… i, 0) and (0, j,0) 

are equal to sij= ci0+ c0j− cij. The purpose of this algorithm is to cluster 

the retailers into routes. The savings algorithm finds pairs of retailers 

for which it is beneficial to combine them in a route and links as many 

of the pairs as possible. In the heuristic, a list of retailer pairs is gener-

ated and sorted in a descending order according to the savings. Then, 

from the top of the sorted list of retailer pairs, one pair of retailers is 

considered at a time. Each time when a pair of retailers’ i-j is consid-

ered, it is evaluated if the two routes that visit i and j should be com-

bined. Only if this can be done without deleting a previously estab-

lished direct connection between two retailer pairs, and if the total 

demand on the resulting route does not exceed the vehicle capacity 

restriction, then the routes are combined. This algorithm is inherently 
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parallel since more than one route is active at any given time. Howev-

er, it may easily be implemented in a sequential fashion. 

Several enhancements have been proposed in order to improve the 

effectiveness of the savings method, (1) multiplying cij by a positive 

weight λ (Golden et al. 1977), (2) accelerating the savings computa-

tion (Paessens 1988), (3) making use of efficient data structures to 

speed up the computations (Nelson et al. 1985), (4) optimizing the 

route merges in a global fashion through the use of a matching algo-

rithm (Altinkemer and Gavish 1991, Wark and Holt 1994). The first 

enhancement by Golden et al. (1977) is useful in avoiding circumfer-

ential routes that tend to occur in the original Clarke and Wright algo-

rithm. The next two enhancements by Paessens (1988) and Nelson et 

al. (1985) are probably of little use these days given the state of the art 

in computer technology and improvement heuristics. The last en-

hancement presented by Altinkemer and Gavish (1991) and Wark and 

Holt (1994) is used to solve matching problems, which is highly time 

consuming and not worth the effort in comparison with other heuris-

tics. 

There exist other insertion heuristics for obtaining a feasible rout-

ing plan for the VRP. Two well-known methods are those proposed by 

Mole and Jameson (1976) and Christofides et al. (1979). Starting from 

an empty plan, the routes are established by iteratively inserting visits, 

which will incur the smallest additional costs. Mole and Jameson 

(1976) implemented a sequential version, in which only one route is 

constructed at a time. The selection of retailer is based on the extra 

distance resulted from the insertion of the retailer to the route, and the 

distance between the retailer and the warehouse. While Christofides et 

al. (1979) developed a more effective two-phase insertion heuristic 

using both sequential and parallel route constructions. In the first 

phase, a set of feasible routes are determined. In the second phase, a 

set of single-retailer routes are defined based on the routes obtained in 

the first phase. The remaining unrouted retailers are then inserted ac-

cording to the difference between the best and the second-best inser-

tion cost. 
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Another constructive method to obtain feasible routing plan is the 

iterative insertion (Golden 1991). The algorithm starts from an empty 

plan, where routes are developed by iteratively inserting visits that 

will incur the smallest additional cost. The insertion procedure takes a 

sub-tour of k nodes and attempts to determine which node should join 

the sub-tour next and then determines where in the sub-tour it should 

be inserted. The most known of these algorithms is the nearest inser-

tion algorithm. The nearest insertion algorithm starts with a sub-graph 

consisting of only one node, i. Then, the algorithm defines node k  

such that cik is minimal and forms the sub-tour i-k-i. In the selection 

step, the algorithm will find again node k which is not already in the 

sub-tour. Thus, in the insertion step, this algorithm finds the arc (i, j) 

in the sub-tour which minimizes cik+ ckj − cij.  

2.4.2  Two Phase Algorithms 

In the two-phase heuristics, solving the VRP is decomposed into two 

parts, clustering retailers into subsets, each of which corresponds to a 

route, and routing the retailers in each subset. According to the order 

of solving these two parts, the heuristics can be divided into cluster-

first-route-second methods and route-first-cluster-second methods. 

In the cluster-first-route-second methods, retailers are first grouped 

into clusters and the routes are then determined by suitably sequencing 

the retailers within each cluster. Different clustering strategies are 

proposed in the literature. Gillett and Miller (1974) developed a sweep 

algorithm which divides retailers into clusters by rotating a ray centred 

at the warehouse. The approach explores a solution in two phases. It 

starts with assigning retailers to vehicles, and then decides on the se-

quence in which each vehicle visits the retailers assigned to it. This 

approach explores the retailers circularly, in increasing polar angle 

around the warehouse. In this order, each retailer is successively in-

serted at the end of the current route until the vehicle capacity con-

straint is reached. If this insertion is not feasible, then a new route is 

initiated. A vehicle route is optimized by solving the corresponding 

TSP. 
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Fisher and Jaikumar (1979) have probably developed the best-

known cluster-first-route-second algorithm. In the first step, the algo-

rithm chooses m retailers to be the seeds to the cluster zones, and a 

vehicle is allocated to each of these retailers. Then, it computes the 

insertion costs of adding each retailer j to each cluster k. Next, the 

clusters are created by solving a generalized assignment problem 

(GAP) based on the retailer weights. Once the clusters have been de-

termined, the TSPs are solved optimally using a constraint relaxation 

based approach. 

Some of the procedures for selecting the seeds are described in 

Bramel and Simchi-Levi (1995). This algorithm determines route 

seeds by solving a capacitated location problem, where m retailers are 

selected by minimizing the total distance between each retailer and its 

closest seed, and by imposing that the total demand associated with 

each seed be at most Q. Once seeds have been determined and the 

single-retailer routes are initialized, the remaining retailers are inserted 

in the current routes by minimizing insertion costs. 

Foster and Ryan (1976) and Renaud et al. (1996) presented a so 

called petal algorithm, which first generates a large number of feasible 

routes and then selects the final subset by solving a set partitioning 

problem. The overall performance of petal algorithms is generally 

superior to that of the sweep algorithm. 

In most of the route-first-cluster-second methods, a giant TSP tour 

over all the retailers is constructed and then decomposed into feasible 

vehicle routes. The basic route-first-cluster-second method was first 

put forward by Beasley (1983), where a central warehouse is sur-

rounded by a number of retailers. The author first formed a 'giant tour' 

from the warehouse around all the retailers and back to the warehouse. 

This tour can be formed in a number of different ways. The key to the 

approach is that it is very easy to optimally partition such a tour into a 

set of feasible vehicle routes.  
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Another example of such algorithms can be found in Haimovich 

and Rinnooy Kan (1985) and Bertsimas and Simchi-Levi (1996), but 

they are not competitive with the cluster-first-route-second methods. 

2.4.3 Tour Improving Heuristics 

Given a solution, for example, generated by construction heuristics, 

we can apply some modifications to the solution to improve its quali-

ty. A large number of improvement heuristics have been proposed for 

this purpose, such as moving a retailer from one route to another, ex-

changing two retailers’ positions in the solution in order to obtain 

neighbour solutions of possibly better cost. According to the number 

of routes modified at a time, the algorithms can be divided into intra-

route operators, which work on a single route, and inter-route opera-

tors, which modify multiple routes at the same time. 

One of the famous intra-route operators and the best-known im-

provement heuristics for VRP are the λ-opt heuristics. This λ-opt ex-

change is very simple and useful. It involves exhaustively considering 

exchanges of retailers in different routes. The 2-opt method was intro-

duced by Lin (1965) and consists of eliminating two edges from the 

current solution and examining the ways to reconnect them. If a cost-

saving combination is found, it is implemented. The procedure is re-

peated until no improvement is obtained. Lin (1965) also developed 

the 3-opt heuristic method which is quite similar to the 2-opt method, 

but it introduces more flexibility in modifying the existing solution. 

Firstly, it removes three edges from a tour and then reconnects the 

resulting three paths in order to form a tour. The procedure stops at a 

local minimum where no further improvement can be obtained. 

Another intra-route operator is the Or-opt method proposed by Or 

(1976) which consists of displacing three, two or one edges to another 

cheaper location, until no improvement can be found. The interchang-

es allowed are thus restricted to 3-opt interchanges, where three arcs 

are removed and replaced by other three arcs. The solution is obtained 

when no insertion of arcs can decrease the cost of the tours any fur-

ther.  
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Van Breedam (1994) classified the inter-route operators into four 

groups: i.e. string cross that exchanges two chains of nodes by cross-

ing two edges, string exchange that exchanges two chains of nodes, 

string relocation that moves a chain of nodes to another route and 

string mix that consists of both string exchange and string relocation. 

In the literature, the string relocation with one single-vertex chain, 

which is also called insertion move, is very frequently used due to its 

simplicity, cheap computational cost and robustness. It can be viewed 

as a fundamental component undertaken by most operators. For ex-

ample, swapping two nodes can be implemented by two insertion 

moves. 

2.5 Conclusions 

In the class of deterministic IRP, the majority of the models presented 

in the literature above optimize the inventory holding costs at the re-

tailers but not at the warehouse. Thus, the model examined in this 

dissertation attempts to take into account all inventories and their re-

lated costs at the warehouse as well as at the retailers. Therefore, we 

extend the SWMR model proposed by Roundy (1985) and Chu and 

Leon (2008). In general, their models only considered the transporta-

tion costs as fixed costs. This means that there is no harmonization 

between inventory and transportation costs. Accordingly, we have to 

optimize the overall inventory and transportation costs at the ware-

house as well as the retailers while satisfying some additional re-

strictions. In order to integrate these problems, some effective routing 

optimization procedures for VRP need to be used to design an effi-

cient heuristic for the SWMR system. More details on these methods 

will be discussed in the next chapter. 

The multi-period IRP case has been studied before in particular by 

Zhong and Aghezzaf (2012). They solved the multi-period IRP with 

deterministic demand rates. In this dissertation, we have extended 

their work to consider a multi-period stochastic inventory routing 

problem (MP-SIRP) where the retailers consume the product at a sto-

chastic stationary rate. The IRP is stochastic when the demands of 

retailers are uncertain. Even though the stochastic nature of the IRP 
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input data, deterministic models have been extensively considered. 

The main reason is that, besides the complexity of the stochastic mod-

els solution approaches, it is often difficult to obtain the necessary 

information to derive probability distribution that represent the prob-

lem correctly. To solve the MP-SIRP, most research works have fo-

cused on heuristic solution approaches due to its NP-hard complexity. 

Furthermore, some methods need to be applied to decompose the inte-

grated problem into sub-problems in order to determine upper and 

lower bounds. More details on the methods for the MP-SIRP will be 

discussed in Chapter 4. 



 

 

 

 

 

 

3 
Analysis of the Single-Warehouse, Multiple-

Retailer System Operating Under VMI 

 

 

3.1 Introduction 

Vendor managed inventory (VMI) is an integrated inventory man-

agement policy in which the supplier assumes, in addition to its own 

inbound inventory, the responsibility of maintaining inventory at the 

retailers, and ensuring that they will not run out of stock at any mo-

ment. The replenishment of the retailers is thus no longer triggered by 

retailers placing orders, but instead it is the supplier who determines 

when each of the retailers is replenished, and what the replenishment 

quantities are. The supply is thus proactive, as it is based on the avail-

able inventory information, instead of being reactive, in response to 

retailers’ orders. This proactive policy has many advantages for both 

the supplier and the retailers. On one hand, the supplier has the possi-

bility to combine multiple deliveries to optimize truck loading and to 

minimize transportation costs. Moreover, since the supplier has direct 

information about retailers’ demand, deliveries will become more 

uniform and predictable. As a consequence, the amount of inventory 

that must be held at the supplier can be drastically reduced. On the 
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other hand, retailers do not need to dedicate resources to the manage-

ment of their inventories any longer. Furthermore, the service levels 

towards the retailers (i.e., product availability) can increase, as the 

supplier can track inventory levels and subsequently take into account 

the replenishment urgency. 

VMI has gained popularity thanks to the availability of many tech-

nologies that enable to monitor retailer inventories in an online and 

cost-effective manner. Inventory data can be made accessible much 

easier. However, this does not guarantee that implementing VMI al-

ways leads to improved results. Failure can happen, for example due 

to the unavailability of sharing the right pieces of information, or due 

to the inability of the supplier to make the right decisions. These two 

problems have to be solved in an integrated manner when implement-

ing VMI, which only adds to the complexity of the situation where 

managing inventory in a supply chain and optimizing transportation 

between stages are already particularly challenging problems. 

In this chapter, we consider a two-stage supply system with deter-

ministic demand, operating under VMI. In particular, we focus on the 

single-warehouse, multiple-retailer (SWMR) case in which a supplier 

serves a set of retailers from a single warehouse. We assume that all 

retailers face a deterministic, constant demand rate. Deliveries to these 

retailers are made from the warehouse with a fleet of vehicles having a 

limited capacity. The warehouse in turn is replenished from an outside 

source. Incoming shipments into the warehouse have to be coordinat-

ed with outgoing shipments to the retailers in order to minimize the 

total cost. This total cost consists of inventory holding costs at the 

central warehouse and all retailers, costs for incoming shipment into 

the warehouse, and outbound shipment costs for the retailer replen-

ishments. The optimization problem of minimizing the total of inven-

tory and transportation costs encountered in this VMI system is known 

in the literature as the inventory routing problem (IRP). 

This SWMR case has been studied before in particular by Roundy 

(1985) and Chu and Leon (2008), amongst others. However, they as-

sumed that only direct shipping is used to replenish the retailers, i.e., 
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each vehicle visits a single retailer and returns to the warehouse. Even 

under this assumption, it is shown that the problem cannot be solved 

in polynomial time. 

We propose a two-phase heuristic solution approach to minimize 

the overall inventory and transportation costs of the SWMR system 

under a VMI policy. In the first phase, retailers are partitioned into 

subsets in order to minimize the overall inventory costs of the system. 

Then, in the second phase, a vehicle routing problem (VRP) procedure 

is used to solve the routing in each of the retailer subsets with the ob-

jective of minimizing the travelled distance and hence the transporta-

tion costs. As such, we drop the assumption of direct shipments from 

warehouse to retailers, but also include the option of combining mul-

tiple outbound shipments in so-called milk-runs (see Figure 3.1). To 

evaluate the impact of VMI and milk-runs on the SWMR system, a 

comparative analysis of the SWMR system before and after the adop-

tion of VMI and milk-runs is carried out. In particular, inventory man-

agement practices in the different scenarios are examined and their 

related costs are compared. 

 

Figure 3.1. (i) A direct shipping tour (ii) A milk-runs tour 

The remainder of this chapter is organized as follows. Section 3.2 

reviews the model and solution approaches related to SWMR-VMI. 

Section 3.3 presents the formal description of the integrated SWMR-
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VMI deterministic model. Section 3.4 reviews existing direct shipping 

solutions and Section 3.5 describes the proposed two-phase approach 

for milk-run solutions. A detailed analysis of an illustrative supply 

chain example is given in Section 3.6 whereas Section 3.7 provides 

conclusions and directions for future research. 

3.2 Review of Models and Solution Approaches related to 

SWMR-VMI 

An important stream of research related to the SWMR is the one that 

takes transportation costs explicitly into account. Federgruen and Zip-

kin (1984) were probably among the first to integrate the inventory 

allocation and routing problems. They have considered a plant with a 

limited amount of available inventory serving a set of retailers with 

random periodic demand rates. The objective of their model is to allo-

cate available inventory in the warehouse to the retailers in a way that 

minimizes total transportation costs at the end of the period. They 

modelled the problem as a nonlinear mixed integer program, and pro-

posed an approximation method for its solution. Federgruen et al. 

(1986) extended the work by Federgruen and Zipkin (1984) to the case 

in which the product considered is perishable. Chien et al. (1989) sim-

ulated a multiple period planning model based on a single period ap-

proach and formulated it as a mixed integer programming problem. 

Campbell et al. (1998) studied a two-phase heuristic based on a linear 

programming model. In the first phase, they calculated the exact visit-

ing period and quantity to be delivered to each retailer. Then, in the 

second phase, retailers are sequenced into vehicle routes. Bertazzi et 

al. (2002) proposed a fast local search algorithm for the single vehicle 

case in which an Order-up-to level (OU) inventory policy is applied. 

Aghezzaf et al. (2006) formulated a model for the long-term IRP when 

demand rates are stable and economic order quantity-like policies are 

used to manage the inventory of the retailers. The authors then pro-

posed a column generation based heuristic. Other examples of recent 

contributions in the SWMR system were carried out by Aghezzaf 

(2008), Solyali and Sural (2011), Solyali and Sural (2012), Aghezzaf 

et al. (2012) and Rahim and Aghezzaf (2012), Archetti et al. (2012), 

Coelho et al. (2012a, 2012b), Coelho and Laporte (2013a, 2013b). 
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In the context of replenishment strategies, Gallego and Simchi-

Levi (1990, 1994) considered a direct shipping approach whereby 

every vehicle visits only a single retailer during every one of its trips. 

Retailers have deterministic demand rates and no shortages or back-

logs are allowed. They assumed that a sufficient number of vehicles, 

each with a limited capacity, is available and that the storage capaci-

ties at the retailers are sufficiently large. Kim and Kim (2000) also 

examined a direct shipping method, but allowed for more than one trip 

per vehicle and time period. They formulated the problem as a mixed 

integer linear program and proposed a Lagrangian heuristic to solve it. 

More recent works in the direction of direct shipping strategies with 

deterministic demand can be found in Zhao et al. (2007), Bertazzi 

(2008), Li et al. (2008), Li et al. (2010). Barnes-Schuster and Bassok 

(1997) extended the direct shipping strategy to the case of independent 

stochastic stationary demand rates. Through simulation studies, they 

demonstrated that when the truck capacities are close to the mean of 

the demand, direct shipping strategy performs well. Kleywegt et al. 

(2002) developed an approach that is designed for a different setting in 

which vehicle routes are limited and only allowed for direct shipping. 

They introduced and modelled this as a Markov decision process and 

developed an approximate dynamic programming method in order to 

obtain good quality solutions with a reasonable computational effort. 

Direct shipping strategies are shown to be effective alternative to more 

complex strategies when the economic lot sizes for all the retailers are 

close to the capacities of the vehicles. However, it may not be the 

ideal policy when many retailers require significantly less than a vehi-

cle load. 

When a direct shipping strategy is proven ineffective, a milk-run 

approach should be considered, where each vehicle serves multiple 

retailers in one delivery (one route). For this reason, most studies con-

centrated on a special type of distribution policies called fixed parti-

tion (FP) policies, as they are easily implemented and effective in 

many situations. Anily and Federgruen (1990, 1993) are among the 

first to adopt the ideas of FP policy. They analysed the replenishment 

strategy where the set of retailers is partitioned into regions and each 

region is served independently. If a retailer in some region is visited, 
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all retailers in that region are visited. Viswanathan and Mathur (1997) 

extended the work of Anily and Federgruen (1990) for the multi-

period, multi-product problem. They presented a new heuristic that 

generates a stationary nested joint replenishment policy for the prob-

lem with deterministic demands. Then, they adopted a power-of-two 

policy and the results showed that when the replenishment periods are 

power-of-two multiples of a common base planning period, better 

performance can be achieved. Chan et al. (1998) investigated the ef-

fectiveness of the class of FP policies and zero inventory ordering 

(ZIO) policies, and constructed an effective algorithm resulting in an 

FP policy that is asymptotically optimal. Jung and Mathur (2007) ex-

tended the replenishment strategy discussed in Anily and Federgruen 

(1993) by allowing a different reorder intervals for each retailer in a 

cluster. They developed a three-step heuristic and the solution is 

rounded to fit the power-of-two policy constraints. Interesting studies 

in this research stream are found in Chan et al. (2002), Anily and 

Bramel (2004), Gaur and Fisher (2004), Zhao et al. (2008), Raa and 

Aghezzaf (2008, 2009), Chu and Shen (2010) and Bertazzi et al. 

(2013). 

An extension of this research line is concerned with models that 

involve location-inventory network design, integrating the location 

and inventory decisions. Barahona and Jensen (1998) studied a practi-

cal distribution network design problem for computer spare parts. 

Their model takes into account the inventory costs at the various 

warehouses. Erlebacher and Meller (2000) developed an analytical 

model to minimize the total fixed operating costs and inventory hold-

ing costs incurred by warehouses, together with the transportation 

costs. Shen et al. (2003) and Daskin et al. (2002) considered a case 

where retailers face uncertain demands following a poisson distribu-

tion. Shen et al. (2003) studied a facility location problem in which the 

facilities manage their inventory through an (r,Q) policy, while Daskin 

et al. (2002) presented an efficient solution based on Lagrangian re-

laxation approach. Meanwhile, Shu et al. (2005) solved the problem 

for general demand distributions. Shen and Qi (2007) defined a model 

for the stochastic supply chain design problem. Ozsen et al. (2008) 

introduced the capacitated warehouse location model with risk pooling 
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(CLMRP), which captures the interdependence between capacity is-

sues and the inventory management at the warehouses. Chen et al. 

(2011) studied a reliable inventory-location model to optimize facility 

location decisions, allocation of retailers and management of invento-

ry in case warehouses are at risk of disorder. More recent contribu-

tions in this research area are found in Tancrez et al. (2012), Berman 

et al. (2012), and Hamedani et al. (2013). In all these models, the in-

ventory holding costs at the warehouse are ignored. The model exam-

ined here does not consider the design issue. However, it takes into 

account all the inventories at the warehouse as well as at the retailers.  

In this chapter, we extend the SWMR model proposed by Roundy 

(1985) and Chu and Leon (2008) to allow for travel cost optimization. 

Roundy (1985) introduced two new types of policies, namely, integer-

ratio policies and power-of-two policies. Power-of-two policies are a 

subset of the class of integer-ratio policies in which each facility or-

ders at a power-of-two multiple of a base planning period. Roundy has 

shown that for the SWMR inventory model, the cost rate of the opti-

mal power-of-two policy is within 6% of the cost percentage of any 

feasible policy. This result has made power-of-two policies very at-

tractive. The complexity of each of the two policies developed by 

Roundy (1985) is O(nlog(n)), where n is the total number of retailers. 

Chu and Leon (2008) considered the same problem as Roundy and 

proposed a solution method which only considers feasible power-of-

two policies. Instead of successively checking whether the optimal 

reorder period of the warehouse falls within a certain interval Roundy 

(1985), Chu and Leon (2008) proposed a method that takes advantage 

of the property and that the total average cost of the system is convex. 

The approaches proposed by Roundy (1985) and Chu and Leon 

(2008) regarded the transportation costs as fixed costs. This means 

that there is no coordination between retailers to minimize the trans-

portation and fleet costs. Therefore, in order to integrate the inventory 

management and routing cost optimizations, we extended these ap-

proaches to include routing optimization. Some effective routing op-

timization procedures for VRP were used to design an efficient heuris-
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tic for the SWMR. Laporte et al. (2000) classified the constructive 

techniques for solving the VRP into two main groups. The first group 

consists of methods that combine existing routes using a savings 

method, and the second group consists of techniques assigning verti-

ces to vehicle routes using an insertion cost. In this chapter, we adopt 

the savings heuristic developed by Clarke and Wright (1964) and the 

improvement heuristic developed by Lin (1965) for the routing part of 

the problem. 

3.3 The Integrated SWMR-VMI Deterministic Model 

In this Section, the two-echelon single-warehouse multiple-retailer 

vendor managed inventory (SWMR-VMI) system is formally de-

scribed in a mathematical model. This model enables to attain the 

optimal system order policy, i.e. minimizing the sum of all operational 

costs. For the model development, let R be the set of retailers, indexed 

by j, and R
+
 = R∪{0} the set of facilities, where 0 indicates the ware-

house. We also define the following parameters: 

 tij : trip duration from facility i∈R
+
 to facility j∈R

+
; 

 τij : transportation cost from facility i∈R
+ 

to facility j∈R
+
; 

 ϕ0 : fixed ordering cost incurred by the warehouse each time it 

places an order; the ordering cost is assumed independent of 

the order quantity; 

 ϕj : fixed cost per delivery to retailer j∈R; the delivery cost is 

assumed independent of the replenishment quantity; 

 h0 : inventory holding cost rate per unit per period in ware-

house 0; 

 hj : inventory holding cost rate per unit per period at retailer j; 

 dj : constant demand rate per period faced by retailer j. 

A solution to the problem is an order policy, which is described as 

the time between consecutive replenishments, or the replenishment 

interval, for all facilities in R
+
. All these replenishment intervals will 

be a power-of-two multiple of a base planning period, denoted as TB. 
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Furthermore, for any retailer j, either of the two following cases 

must hold: (1) the retailer’s replenishment interval, denoted Tj, is a 

power-of-two multiple of the warehouse’s replenishment interval, 

denoted by T0, or (2) vice versa, that is T0 is a power-of-two multiple 

of Tj. 

Case 1: Tj is a power-of-two multiple of T0 

In the first situation, replenishments of retailer j (with a replenishment 

quantity of djTj) can always be initiated at the moment when an in-

bound shipment in the warehouse arrives. As a result, the warehouse 

serves as a cross-dock and never holds any inventory destined for that 

retailer. The resulting inventory cost rate for retailer j in this first case 

is denoted 
1

jIC , and is given by:  

jjj

j

j

j Tdh
T

IC
2

1
=1 


 (3.1) 

Case 2: T0 is a power-of-two multiple of Tj 

In the second situation, a replenishment of retailer j (with a replenish-

ment quantity of djTj) can only be initiated at the moment an inbound 

shipment in the warehouse arrives every T0/Tj times. The other times, 

replenishments are made from inventory in the warehouse. As a result, 

the warehouse does hold inventory for that retailer. The resulting in-

ventory cost rate for retailer j in this second case, denoted 
2

jIC , is 

then given by:  
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       (3.2) 

Thus, given all the replenishment intervals, the total inventory 

cost rate IC is:  
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(3.3) 

The second element in the total cost rate is the transportation cost 

rate. When milk-runs are used, decisions have to be made about clus-

tering retailers and designing a trip per cluster, i.e., a VRP has to be 

solved. We assume that all the retailers in the same cluster have the 

same replenishment interval. The notation used for the milk-runs is the 

following: V is the set of available vehicles, indexed by v; R
v 

is the 

cluster of retailers served by vehicle v∈V; Trip
v
is the (shortest possi-

ble) milk-run trip that visits all retailers in R
v
; ijvji

v   Trip),(
=  is 

the transportation cost of making Trip
v
; and T

v
 is the replenishment 

interval of all retailers in R
v
. The transportation cost rate when using 

milk-runs, TCMR, is then given by:  

         
v

v

Vv
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T
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
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

=  (3.4) 

The total cost rate TCRMR, which is the sum of the inventory cost 

rate ICMR and the transportation cost rate TCMR, can then be written as 

follows:  
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For any Trip
v
 visiting cluster R

v
 with interval T

v
 to be feasible 

however, two conditions have to be met. First, the time between con-

secutive iterations, i.e., the interval T
v
, must be longer than the dura-

tion of the trip, which results in a lower bound for the interval T
v
, de-

noted v

minT :  
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Second, the total quantity delivered to all retailers in the trip cannot 

exceed the vehicle capacity k, which results in an upper bound for the 

interval T
v
, denoted v

maxT :  
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Apart from the first term, TCRMR (3.5) is separable per clus-

ter/vehicle, and therefore, the intervals T
v
 can be optimized individual-

ly. The two possible cases identified above reappear here. 

Case 1:T
v 
≥ T0 

In this case, the warehouse never holds inventory for retailers in R
v
, 

and the last term of the cost rate function is zero. The interval value 

T
v*

 that minimizes the cost rate for vehicle v is as follows:  
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Case 2: T
v 
< T0 

In this case, the warehouse does hold inventory for retailers in R
v
, and 

the last term of the cost rate function is non-zero. The interval value 

T
v*

 that minimizes the cost rate for vehicle v is then:  
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Since there is also a minimum and maximum value for the interval 

T
v
, the optimal interval 

v

optT  is as follows:  
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The problem to be solved is then to partition the set of retailers R 

into feasible clusters R
v
, design a minimum cost trip per cluster, de-

termine integer values for all T
v 

and T0, such that the total cost rate 

TCRMR is minimized. To solve this SWMR-VMI problem efficiently, 

we propose an algorithm that combines a solution method for the di-

rect shipping with an effective heuristic for the VRP as explained be-

low. 

3.4 Review of Classical Direct Shipping Solutions 

To solve the SWMR-VMI problem, firstly, we describe the modelling 

algorithms developed in Roundy (1985) and the extension developed 

by Chu and Leon (2008). 

3.4.1  Roundy’s Algorithm 

For the case of direct shipping, all retailers are in separate clusters, 

and the total cost rate TCRDS is:  
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(3.11) 

Apart from the first term, TCRDS (3.11) is separable per retailer, 

and therefore, the intervals Tj can be optimized individually. Again, 

there are the same two possible cases. 
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Case 1: Tj ≥ T0 

The interval value τ’j that minimizes the cost rate for retailer j is as 

follows:  

 

jj

jjj

j
dh

002
=





  (3.12) 

Case 2: Tj < T0 

The interval value 
j  that minimizes the cost rate for retailer j is then:  

 
jj

jjj

j
dhh )(

2
=

0

00



 
  (3.13) 

It is easy to verify that τ’j ≤ τj. 

Since TCRDS is convex in T0, the optimal solution to the relaxed 

problem (without integer-ratio or power-of-two restrictions) given T0, 

is the following:  
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jj

T

T  (3.14) 

Roundy’s Algorithm starts by assuming that T0 falls within the 

leftmost interval. After finding the optimal Tj based on (3.14) for all 

retailer j, optimal T0 can be calculated by solving the relaxed problem 

(3.11). This procedure is repeated by successively assuming T0 falls 

within each interval on the right until the calculated optimal T0 falls 

within the same interval, in which the optimal solution is found. The 

algorithm introduced by Roundy (1985) assumes that no shortage or 

backlogging is permitted. Without loss of generality, replenishment is 

assumed to be instantaneous. Moreover, the base planning period TB is 

assumed fixed, and only power-of-two policies are employed, i.e., the 

order intervals are all power-of-two multiples of TB: 
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k

j TT 2= kj ≥ 0 and integer, ∀j               (3.16) (16) 

3.4.2  Chu and Leon’s Solution Algorithm 

The algorithm proposed by Chu and Leon (2008), which extends the 

method developed in Roundy (1985), is the algorithm we will adopt in 

the direct shipping phase of our solution procedure. The method starts 

by allowing T0 be a power-of-two of TB. The proposed method then 

finds the corresponding optimal power-of-two multiples Tj for each 

retailer j, and calculates the corresponding total cost rate of the sys-

tem. Then, T0 is iteratively increased to the next power-of-two period 

until the total cost rate of the system increases. At this point, the opti-

mal power-of-two policy is found (see Figure 3.2). 

 

 

 

 

 

Figure 3.2. Steps of the algorithm of Chu and Leon (2008). 

The optimal power-of-two solutions, denoted t’j and tj, are obtained 

by rounding the optimal solutions τ’j and τj to the nearest power-of-

two multiples of TB. 
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Thus, this algorithm has proven that for a given T0, the optimal 

power-of-two policy is given by Chu and Leon (2008):  


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Based on (3.17), and the fact that TCRDS is convex in T0, Chu and 

Leon proposed an iterative heuristic that monitors the changes in total 

cost rate if interval Ti is used instead of interval Tj. The heuristic for 

the SWMR system is summarized as follows (see Chu and Leon, 

2008): 

 Calculate τ’j=   jjjjj dh/2 00   and τj=   jjjjj dhh )/(2 000   , 

∀j ∈ R and round these to the nearest power-of-two to obtain 

t’j and tj. Find tmin = min{t’j : j ∈ R} and tmax = max{tj : j ∈ R}. 

Let i = 0, T0 = tmin , T
0
={Ø}, and TCRDS(T

0
) = ∞.  

 Choose Tj according to condition (3.17). Set i = i +1.Let T
i 
= 

{T0, T1,…, Tn} and calculate TCRDS(T
i
) using (3.11). If 

TCRDS(T
i
) < TCRDS(T

i-1
), go to Step 2. Otherwise, the best 

power-of-two policy has been found and is given by T
* 

= T
i-1

. 

Stop.  

 If T0 <tmax, set T0=2T0 and go back to Step 1. Otherwise, the 

optimal T0 is in the range [tmax, ∞]. For any T0 ≥tmax, the opti-

mal Tj remain the same as the values last calculated (in Step 

1). Therefore, given these optimal Tj ,∀j,T0 can be found by 

first minimizing (3.11) with respect to T0 and then rounding 

the solution such that B

k

B

k

B

k TTTT 222=22 0

1 
 with k in-

teger. Stop.  

3.5 Solution Approach for SWMR-VMI with Milk Runs 

This section presents a solution approach for the problem presented in 

Section 3. Our method uses the work of Roundy (1985) and Chu and 

Leon (2008) for the case of direct shipping as a starting point, and 
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then builds upon it to be able to tackle the case of milk-runs. The solu-

tion framework is illustrated in Figure 3.5 and consists of the follow-

ing steps. 

We start by initializing the set of clusters, with each retailer in a 

separate cluster, i.e., the direct shipping case. We then use the algo-

rithm of Chu and Leon (2008) presented above to find the replenish-

ment interval for each retailer as well as the warehouse. These power-

of-two order intervals are then used in the next phase, the vehicle rout-

ing problem phase. 

For the vehicle routing problem phase, the retailers are clustered 

per replenishment interval. We then use the savings heuristic of Clarke 

and Wright (1964) for each of the clusters. This algorithm is based on 

a saving concept (see Figure 3.3). The main purpose of this algorithm 

is to optimize the transportation costs and to select retailers who can 

be replenished in a milk-run rather than with separate direct ship-

ments. The solution must satisfy the restrictions that every retailer is 

visited exactly once, where the demanded quantities are delivered, and 

the total demand on every route must be within the vehicles capacity 

restriction. The transportation costs are specified as the cost of driving 

from the warehouse to any other point of the retailers. 

 

Figure 3.3. Illustration of the savings concept 

For every cluster of retailers (who have the same replenishment in-

terval after the previous step), we first perform the savings procedure 

as follows:  
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 Compute the savings, 
ijjiijS   00= , of combining every 

possible pair of retailers i and j in the cluster. Order the sav-

ings Sij in a decreasing order.  

 Find the first feasible link in the list which can be used to ex-

tend one of the two ends of the currently constructed route.  

 If the route cannot be expanded further, terminate the route. 

Choose the first feasible link in the list to start a new route.  

 Steps 2 and 3 are repeated until no further feasible links can 

be chosen. 

In the final step, routing plans with lower costs can then be ob-

tained using improvement heuristics that try to apply elementary mod-

ifications to the current solution. Thus, the best-known improvement 

heuristics for VRP, which is called a 2-opt improvement heuristic is 

applied to further reduce transportation costs. The 2-opt exchange is a 

very simple, yet very useful, improvement heuristic. It involves ex-

haustively considering exchanges of two retailers in different routes 

(see Figure 3.4). This consists of deleting and re-inserting sub-routes. 

The possible sub-routes are inserted into the existing solution, and the 

cheapest alternative is retained. If no cheaper alternative is found, the 

solution is restored and no improvement is realized. However, if a 

profitable reconnection is identified, it means that the solution can be 

improved. Thus, routing plans with lower costs can be obtained by 

using improvement heuristics that apply modifications to the current 

solution. 

 

Figure 3.4. A basic arc interchange in the 2-opt procedure 
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During the vehicle routing problem phase, every route determines a 

new retailer cluster. If these retailer clusters are the same as before, 

then we stop the process. Otherwise, we return to the initial step to 

recalculate cycle times for each of the clusters from the central ware-

house. Then, we can calculate the total cost for each of the clusters in 

the SWMR-VMI system. 

To examine the impact of introducing milk-runs, we calculate the 

change in total inventory and transportation costs for each of the re-

tailers and the warehouse. 

 

Figure 3.5. Solution framework for the SWMR-VMI system with 

milk-runs  

3.6 A Detailed Analysis of an Illustrative Supply Chain      

Example 

In this particular case, we consider 15 retailers as illustrated in Figure 

3.6. These retailers are scattered around the warehouse and have de-

mand rates that are assumed to be stable, adding up to 6.341 tons/hour 
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for all 15 retailers. We assume that a fleet of vehicles is available for 

product replenishment from the warehouse. The data of this case is 

obtained from Aghezzaf et al. (2006). 

         

Figure 3.6. An example case with 15 retailers  

Table 1 shows the distances (in kilometres) between the different 

retailers. Travel times can be obtained from Table 3.1 by considering 

an average speed of 50 km/hour for each vehicle. We assume that all 

vehicles in the fleet have a capacity of 60 tons and a transportation 

cost of €0.10 per kilometre. We also assume that the fixed ordering 

cost of the warehouse is €75 and all retailers have the same fixed cost 

per delivery of €50. Finally, we assume that there is a difference in 

inventory holding cost rates at the warehouse versus at the retailers, 

with (hj - h0) > 0. 

For the illustrated 15-retailers example (see Figure 3.6), the follow-

ing distribution pattern is considered where all retailers are served in a 

direct shipping tour, and the vehicle that leaves the warehouse, serves 

a retailer and then returns to the warehouse. If only one vehicle is 

used, the minimal cycle time of the vehicle is its total travel time, i.e. 

195.6 hours, while the maximal cycle time is 72.9 hours. This tour 

solution is not feasible because the minimal cycle time exceeds the 

maximal cycle time. Therefore, when using the direct shipping tour 

for routing vehicles, adding more vehicles would be necessary for 

replenishing the 15 retailers or using a vehicle with a larger capacity. 
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Table 3.1. Distance matrix (in km) for the example case 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 - 270 480 490 330 550 430 140 260 240 150 240 360 200 430 320 

1  - 740 560 580 680 650 420 530 440 210 410 450 260 400 170 

2   - 500 490 410 190 350 370 320 540 590 750 660 600 800 

3    - 630 160 310 480 630 290 390 720 850 670 180 710 

4     - 770 590 290 160 470 490 190 300 350 750 520 

5      - 220 540 630 310 490 760 910 740 340 810 

6       - 340 430 210 440 610 770 630 430 740 

7        - 160 230 250 270 420 310 470 450 

8         - 340 400 230 380 350 630 510 

9          - 240 450 600 440 320 540 

10           - 370 480 280 290 320 

11            - 160 170 650 330 

12             - 210 770 310 

13              - 570 170 

14               - 570 

15                - 
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Let us now consider what happens if a vehicle makes a TSP single-

tour through 15 retailers. The best single-tour starts from the ware-

house, goes to each retailer and then returns back to the warehouse at 

the end of the tour. Here we obtain an infeasible solution, since the 

minimal cycle time exceeds the maximal cycle time. The minimal 

cycle time of this tour is 66 hours, while the maximal cycle time is 

9.46 hours. For the distribution of TSP single-tour solution to be fea-

sible, some of the retailers must be clustered and served in one sub-

tour of the vehicle.  

To arrive at a feasible and a better solution, we use our solution 

method as presented above. In the first step, we start from the direct 

shipping solution and use the method of Chu and Leon (2008) to find 

the power-of-two order intervals for each retailer as well as the ware-

house. We use TB = 1 hour. 

Initialization: 

Step 0: 'j =   jjjjj dh/2 00   and j =   jjjjj dhh )/(2 000   , 

∀j∈ R and round these to the nearest power-of-two.  

'j = {'1, '2, '3, '4, '5, '6, '7, '8,'9,'10,'11,'12,'13,'14, '15} 

={63.09, 39.56, 73.53, 34.10, 90.75, 56.30, 47.69, 45.03, 70.84, 62.97, 

33.68, 40.40, 72.15, 72.19, 85.94} hours, and t'j ={ t'1, t'2, t'3, t'4, t'5, t'6, 

t'7, t'8, t'9, t'10, t'11, t'12, t'13, t'14, t'15}={64, 32, 64, 32, 64, 64, 64, 32, 64, 

64, 32, 32, 64, 64, 64} hours. 

j = {1, 2, 3, 4, 5, 6, 7, 8,9,10,11, 12,13,14, 15} ={70.54, 

43.33, 87.52, 38.13, 99.75, 65.01, 56.12, 52.00, 83.35, 77.12, 38.58, 

45.17, 89.98, 88.41, 160.78} hours, and tj ={ t1, t2, t3, t4, t5, t6, t7, t8, t9, 

t10, t11, t12, t13, t14, t15} ={64, 32, 64, 32, 128, 64, 64, 64, 64, 64, 32, 32, 

64, 64, 128} hours. 

We find tmin = min{t’j:j∈R} = 32 hours and tmax = max{tj:j∈R} = 128 

hours. i = 0; T0 = tmin = 32 hours; and TCRDS(T
0
) = ∞. 
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Iteration 1: 

Step 1: We set i = 1 and choose Tj according to condition (17): T
1
={T0, 

T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15}={32, 64, 32, 

64, 32, 64, 64, 64, 32, 64, 64, 32, 32, 64, 64, 64} and find TCRDS(T
1
) = 

€70.00 using (3.11). Since TCRDS(T
1
) <TCRDS(T

0
), we go to Step 2.

 

Step 2: Set T0 = 64 hours and return to Step 1. 

Iteration 2: 

Step 1: i = 2 and T
2
={T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, 

T13, T14, T15}={64, 64, 32, 64, 32, 64, 64, 64, 64, 64, 64, 32, 32, 64, 64, 

64}. We find TCRDS(T
2
) = €68.44, which is less than TCRDS(T

1
), so we 

go to Step 2. 

Step 2: Set T0 = 128 hours and return to Step 1. 

Iteration 3: 

Step 1: i = 3 and T
3 

={T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, 

T13, T14, T15}={128, 64, 32, 64, 32, 128, 64, 64, 64, 64, 64, 32, 32, 64, 

64, 128}. We find TCRDS(T
3
) = €77.17, which is more than TCRDS(T

2
). 

Therefore, the optimal power-of-two policy is T
2
. 

In the next step, we solve the VRP problem in order to reduce 

transportation costs. The problem is to define the allocation of retailers 

to routes, determine the sequence in which the retailers shall be visited 

on a route, and decide which vehicle shall cover which route. 

To solve the constrained VRP sub-problems, firstly, we calculate 

the transportation costs between all pairs of points, as shown in Table 

3.2, where 0 represents the warehouse. Because the costs are symmet-

ric, only the upper half of the table is filled out. The transportation 

cost is given by τij = δ . v . tij euro per tour, where tij represents the 

travel time between the pairs of retailers at a speed of v km per hour, 

and δ is the travel cost per km. 
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Table 3.2. Transportation cost between the different retailers 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 - 54.0 96.0 98.0 66.0 110.0 86.0 28.0 52.0 48.0 30.0 48.0 72.0 40.0 86.0 64.0 

1  - 148.0 112.0 116.0 136.0 130.0 84.0 106.0 88.0 42.0 82.0 90.0 52.0 80.0 34.0 

2   - 100.0 98.0 82.0 38.0 70.0 74.0 64.0 108.0 118.0 150.0 132.0 120.0 160.0 

3    - 126.0 32.0 62.0 96.0 126.0 58.0 78.0 144.0 170.0 134.0 36.0 142.0 

4     - 154.0 118.0 58.0 32.0 94.0 98.0 38.0 60.0 70.0 150.0 104.0 

5      - 44.0 108.0 126.0 62.0 98.0 152.0 182.0 148.0 68.0 162.0 

6       - 68.0 86.0 42.0 88.0 122.0 154.0 126.0 86.0 148.0 

7        - 32.0 46.0 50.0 54.0 84.0 62.0 94.0 90.0 

8         - 68.0 80.0 46.0 76.0 70.0 126.0 102.0 

9          - 48.0 90.0 120.0 88.0 64.0 108.0 

10           - 74.0 96.0 56.0 58.0 64.0 

11            - 32.0 34.0 130.0 66.0 

12             - 42.0 154.0 62.0 

13              - 114.0 34.0 

14               - 114.0 

15                - 
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Table 3.3. Quantities delivered to each of the retailers 

Retailers 
Demand 

(ton/hour) 

Inventory 

holding 

cost (€) 

Cycle time 

(hour) 

Delivery 

(ton) 

1 0.209 0.25 64 13.38 

2 0.622 0.30 32 19.90 

3 0.322 0.17 64 20.61 

4 0.798 0.25 32 25.54 

5 0.134 0.29 64 8.58 

6 0.429 0.20 64 27.46 

7 0.381 0.18 64 24.38 

8 0.503 0.20 64 32.19 

9 0.217 0.18 64 13.89 

10 0.269 0.15 64 17.22 

11 0.823 0.21 32 26.34 

12 0.598 0.25 32 19.14 

13 0.247 0.14 64 15.81 

14 0.348 0.15 64 22.27 

15 0.441 0.07 64 28.22 
  

The replenishment quantity for each retailer is obtained by multi-

plying its cycle time with its demand rate. The resulting replenishment 

quantities are given in Table 3.3. The inventory holding cost rates are 

varying across at the retailers (see Table 3.3) and the inventory hold-

ing cost rate at the warehouse is 0.05. 

The savings Sij are calculated for each pair of retailers and present-

ed in Table 3.4. Again, only the upper half of the table is completed, 

since the savings are symmetric due to symmetrical costs. We are now 

ready to continue with the vehicle routing problem phase of the algo-

rithm presented in Section 3.5, to find feasible routes for the clustered 

retailers. 
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Table 3.4. Savings transportation cost between the different retailers 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 - 2 40 4 28 10 -2 0 14 42 20 36 42 60 84 

2  - 94 64 124 144 54 74 80 18 26 18 4 62 0 

3   - 38 76 122 30 24 88 50 2 0 4 148 20 

4    - 22 34 36 86 20 -2 76 78 36 2 26 

5     - 152 30 36 96 42 6 0 2 128 12 

6      - 46 52 92 28 12 4 0 86 2 

7       - 48 30 8 22 16 6 20 2 

8        - 32 2 54 48 22 12 14 

9         - 30 6 0 0 70 4 

10          - 4 6 14 58 30 

11           - 88 54 4 46 

12            - 70 4 74 

13             - 12 70 

14              - 36 

15               - 
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Figure 3.7. A VRP tour solution  

Table 3.5. Distribution results for the different tours 

Tours 
Vehicle load 

(ton) 

Capacity utili-

zation (%) 
Total cost (€) 

V1 = (6, 5, 3) 56.64 94.4 61.29 

V2 = (13, 15, 1) 57.41 95.7 58.55 

V3 = (14, 9, 10) 53.38 89.3 59.29 

V4 = (8, 7) 56.58 94.3 59.02 

V5 = (12, 11) 45.47 75.9 62.97 

V6 = (2, 4) 45.44 75.7 65.67 
 

A VRP is solved for two sets of retailers: those with a cycle time of 

64 hours {1, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15}, and those with a cycle 

time of 32 hours {2, 4, 11, 12}. The result of the savings heuristic is 

shown in Figure 3.7. The retailers of the first set are assigned to four 

routes: route V1= (6, 5, 3) with a total demand of 56.64 tons, route V2= 

(13, 15, 1) with a total demand of 57.41 tons, route V3= (14, 9, 10) 

with a total demand of 53.38 tons, route V4= (8, 7) with a total demand 

of 56.58 tons. The retailers in the other set are assigned to two routes: 

route V5= (12, 11) which delivers 45.47 tons, and route V6= (2, 4) 

which delivers 45.44 tons. 

In Table 3.5, the vehicle load and the total cost rate TCRMR for each 

of the sub-tours are clearly shown. From the results above, it shows 
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that the truck loading is optimized efficiently with the average capaci-

ty utilization for all tours being 87.48%. 

As can be seen in Figure 3.7, sub-tour V3= (14, 9, 10) can be im-

proved. This improvement is found in the 2-opt heuristic that we apply 

next (see Figure 3.8). The existing route (0-14-9-10-0) is changed to a 

new route (0-10-14-9-0). This decreases total transportation costs from 

€114 to €100. 

 

Figure 3.8. Solution of the sub-tour problem (improvement heuris-

tic)  

 

 

Figure 3.9. Solution of the VRP problem (savings + improvement 

heuristic)  
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Figure 3.9 shows the new solution for the SWMR-VMI after the 

savings and improvement heuristics. We now have six retailer clusters 

(one per route), which is different from the initial clustering (where 

we had one cluster for each retailer). Thus, the solution procedure 

starts a new iteration and will evaluate the reorder intervals for these 

new clusters. 

Table 3.6. Inventory and transportation costs with direct shipping 

Retailers DSIC  (€/hour) 
DSTC  (€/hour) 

1 3.63 0.84 
2 6.22 3.00 

3 3.70 1.53 

4 6.56 2.06 

5 3.20 1.72 

6 4.70 1.34 

7 4.15 0.44 

8 5.17 0.81 

9 3.20 0.75 

10 3.24 0.47 

11 6.16 1.50 

12 5.60 2.25 

13 3.06 0.63 

14 3.62 1.34 

15 2.94 1.00 

Total cost 65.15 19.68 

 

Table 3.7. Inventory and transportation costs with milk-runs 

Retailers Clusters MRIC (€/hour) MRTC (€/hour) 

V1 = (6, 5, 3) 9.26 2.03 

V2 = (13, 15, 1) 7.28 1.27 

V3 = (10,14, 9) 7.73 1.56 

V4 = (8, 7) 8.15 0.88 

V5 = (12, 11) 10.59 2.38 

V6 = (2, 4) 11.61 4.06 

Total cost 54.62 12.18 
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Table 3.6 shows the total of the inventory costs, ICDS, and round 

trip transportation costs, TCDS, for every retailer with direct shipping. 

Table 3.7 shows the total costs of the inventory, ICMR, and transporta-

tion, TCMR, for every retailers cluster after the adoption of VMI and 

milk-runs. As we know, before implementing VMI and milk-runs, 

each retailer is exclusively served by a vehicle in trip visiting that 

retailer only. Then, once VMI and milk-runs are implemented, some 

retailers are clustered and served in a sub-tour of the trip made by the 

vehicle.  

Table 3.8. Summary of results for inventory and transportation costs 

 
Milk-runs 

(€/hour) 

Direct shipping 

(€/hour) 
Gap (%) 

Inventory cost 54.62 65.15 16.16 

Transportation 

cost 
12.18 19.68 38.10 

Total cost 66.80 84.83 21.25 

 

Table 3.8 gives the comparisons between the results obtained by 

the inventory management policy before and then after the adoption of 

VMI and milk-runs. From the table above, we can see that the inven-

tory cost is reduced by 16.16% and the transportation cost is decreased 

by 38.10% when implementing VMI and milk-runs in the system. 

Therefore, the total cost of the inventory and transportation costs in 

the system after implementing VMI and milk-runs is reduced by 

21.25%. 

In addition, Table 3.9 gives the summary of the results for the main 

characteristics of the distribution pattern. For example, the vehicle 1 

with a 60 tons capacity makes the tour V1 = (6, 5, 3). The tour has Tmin 

= 26 hours, Tmax = 67.8 hours and T
v
= 64 hours. The maximal cycle 

time is higher than the theoretical optimal cycle time. The actual cycle 

time is therefore, 64 hours, giving a total cost rate for this tour equal 

of €61.29/hour and the total demand is 56.64 tons. 
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Table 3.9. Summary results for characteristics of the distribution pattern 

Vehicle 

capacity 
Tour 

v

minT  v

maxT  vT  
v

optT  
Vehicle load 

(ton)  

Total cost 

(€/h) 

60 tons 

V1 = (6, 5, 3) 26.00 67.80 64.00 64.00 56.64 61.29 

V2 = (12, 11) 15.20 42.22 32.00 32.00 57.41 62.97 

V3 = (13, 15, 1) 16.20 66.89 64.00 64.00 53.38 58.55 

V4 = (10, 14, 9) 20.00 71.94 64.00 64.00 56.58 59.29 

V5 = (2, 4) 26.00 42.25 32.00 32.00 45.47 65.67 

V6 = (8, 7) 11.20 67.87 64.00 64.00 45.44 59.02 

      314.92 366.79 

80 tons 

V1 = (6, 5, 3, 14) 28.40 64.88 64.00 64.00 78.91 64.32 

V2 = (4, 11, 12) 18.40 36.05 32.00 32.00 71.01 69.23 

V3 = (13, 15, 1, 10) 18.00 68.61 64.00 64.00 74.62 60.76 

V4 = (9, 8, 7) 17.60 72.66 64.00 64.00 70.46 61.55 

V5 = (2) 19.20 128.62 32.00 32.00 19.90 59.22 

      314.90 315.08 

100 tons 

V1 = (9, 6, 5, 3, 14) 28.80 68.97 64.00 64.00 92.80 65.99 

V2 = (2, 4, 12, 11) 33.40 35.20 32.00 33.40 94.89 76.16 

V3 = (13, 15, 1, 10) 18.00 85.76 64.00 64.00 74.62 60.76 

V4 = (8, 7) 11.20 113.12 64.00 64.00 56.58 59.02 

      318.89 261.93 
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From the table above, we also can evaluate the results of the vehi-

cle storage capacity restrictions. In this case, capacities of 60 tons, 80 

tons and 100 tons are used for delivering the product to each of the 

retailers clusters. The vehicle capacity factor is used to show that our 

solution approach not only helps to decide on the fleet size, but can 

also be used to select the most appropriate vehicle type for a particular 

problem in this instance. For the size of 15 retailers which are clus-

tered by the same set partitions, the result shows that the average total 

cost rate is €366.79 when using a small vehicle of 60 tons, €315.08 

when using a vehicle of 80 tons and €261.93 when using a larger ve-

hicle of 100 tons. Therefore, we can see that the smaller the delivery 

quantities to each of the clusters, the lesser the number of retailers 

who are replenished per tour and more tours are made. Moreover, it 

also increases the number of vehicles and transportation costs. How-

ever, in this case a smaller vehicle capacity is utilized efficiently in-

stead of a larger one. 

Based on the assessment results summarized above, we will then 

investigate the possibility of generalizing the deterministic model to 

more complex stochastic inventory systems. One of the significant 

approaches is proposed by Chu and Shen (2010), to express the effect 

of demand variability and analyse its impact on the distribution strate-

gy for the SWMR system, under a VMI policy. Therefore, in future 

research, we will be expanding the approach to the stochastic case 

where demand at each retailer has an average and standard deviation, 

and introducing safety stocks at the warehouse and each retailer site to 

ensure a certain target service level. 

3.7 Conclusions 

Managing inventory and routing in a supply chain is a very challeng-

ing optimization problem. In this chapter, we propose a global solu-

tion approach for a two-stage supply chain implementing vendor man-

aged inventory (VMI). We focused on the problem, denoted by 

SWMR-VMI, where a single-warehouse delivers a single product to a 

set of independent retailers. These retailers draw the required material 

from the warehouse to satisfy their given individual demands. The 
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warehouse, in turn, places orders to an outside supplier to fill the ac-

cumulated demands of the retailers. 

An approach is proposed to minimize the overall inventory and 

transportation costs of the SWMR-VMI system while satisfying the 

retailers demands. The approach integrates two effective algorithms, 

one for inventory management and the second for routing optimiza-

tion. In particular, the algorithms proposed by Roundy (1985) and 

improved by Chu and Leon (2008) is used to solve the single-

warehouse multiple-retailers direct shipping problem, and the heuristic 

of Clarke and Wright (1964) is used to solve the VRP sub-problem. 

The results of the proposed approach allowed us to investigate the 

effectiveness of an inventory management policy before and after 

implementation of VMI and milk-runs in a two-stage supply chain. 

We discovered that the transportation cost is relevant, the effect of 

VMI and milk-runs can result in a significant inventory and transpor-

tation cost savings. 

Further research will focus on adapting this solution approach to 

enrich IRP problems, including larger sets of retailers, driving-time 

restrictions on the vehicles and their drivers, delivery time windows at 

the retailers, heterogeneous vehicle fleets, multiple warehouses, mul-

tiple products etc. Numerous experiments on large-scale problems are 

currently under investigation. Finally, the basic assumption that de-

mand rates are constant is not always valid. So, it is worthwhile to 

investigate how the approach can be extended to explicitly take some 

demand variability into consideration. We will be extending this re-

search to the stochastic case in the future research. 
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4 
Modelling and Solving Multi-Period Stochastic 

Inventory Routing Problem 

 

4.1 Introduction 

The previous chapter of this dissertation focuses on the single-

warehouse, multiple-retailer vendor managed inventory (SWMR-

VMI), in which all retailers face a deterministic, constant demand rate. 

We consider a two-stage supply system where a supplier serves a set 

of retailers from a single warehouse using a fleet of vehicles having a 

limited capacity. The objective is to minimize the overall inventory 

and transportation costs of the SWMR system, under a VMI policy. 

We proposed a two-phase optimization approach for coordinating the 

shipments in this VMI system. The first phase uses direct shipping to 

minimize the overall inventory costs. Then, in the second phase, the 

retailers are clustered using a construction heuristic in order to opti-

mize the transportation costs while satisfying some additional re-

strictions. The proposed solutions for the SWMR-VMI problem as-

sumed that retailers demand rates were constant. However, in the real-

istic problems, demand rates are not usually constant and are stochas-
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tic. Thus, the problem is better modelled as a multi-period replenish-

ment problem with stochastic stationary demand rates. 

In this chapter, we are concerned with a multi-period stochastic in-

ventory routing problem (MP-SIRP) where the retailers consume the 

product at a stochastic stationary rate. More precisely, we consider a 

distribution system in which a fleet of homogeneous vehicles is used 

to distribute some product from a single warehouse to a set of retailers 

consuming it at stationary demand rates, during a finite horizon H of 

consecutive periods (days). The objective is to determine optimal 

quantities to be delivered to the retailers, the delivery times, and the 

vehicle delivery routes, so that the total distribution and inventory 

costs are minimized. The resulting distribution plan must prevent 

stock-outs from occurring at all retailers during the planning horizon 

and assuring some predetermined service level. Based on the formula-

tion of the cyclic IRP model (see, e.g., Aghezzaf et al. 2006) and Mul-

ti-period IRP (see, e.g., Zhong and Aghezzaf 2012), we formulated a 

stochastic linear mixed-integer model for this MP-SIRP. A determin-

istic equivalent approximation reformulation (MP-DAIRPα) of the 

problem is proposed. This latter proposed model also determines the 

optimal vehicle fleet size, in each period. Moreover, initial inventories 

are typically set to predefined amounts in previous works (see for 

example Yu et al. 2008, Taarit et al. 2010 and references therein). A 

Lagrangian relaxation method to solve the proposed MP-DAIRPα is 

developed and thoroughly discussed. Numerical experiments demon-

strate the effectiveness of the proposed solution approach. 

The remainder of this chapter is organized as follows. In Section 

4.2, we review major papers on the modelling of MP-SIRP. In Section 

4.3, a stochastic linear mixed-integer formulation for the multi-period 

inventory routing problem with stochastic stationary demand rates, 

MP-SIRP, is presented. Then a deterministic equivalent approxima-

tion model, MP-DAIRPα, is proposed. In Section 4.4, an illustrative 

example for the MP-SIRP is presented to illustrate the proposed mod-

el. In Section 4.5, a Lagrangian relaxation based decomposition ap-

proach is proposed to solve this deterministic equivalent approxima-

tion model MP-DAIRPα and is thoroughly discussed. In Section 4.6, 
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some computational results are presented and compared with the re-

sults obtained by CPLEX. Finally, some concluding remarks are pro-

vided in Section 4.7. 

4.2 Review of Major Papers on the Modelling MP-SIRP 

Since Bell et al. (1983) first investigated the integrated inventory 

management and vehicle scheduling, varied versions of the IRP have 

been studied. A large variety of solution approaches have also been 

proposed to solving these problems. The IRP can be modelled and 

approached in many different ways depending on the characteristics of 

its parameters. Different models can be obtained for example, when 

retailers consume the product at a stable or at a variable rate; when 

retailer-demands are assumed deterministic or stochastic; when the 

planning horizon is finite or infinite, and so on. A classification of IRP 

models can be found in Andersson et al. (2010) and a recent thorough 

review of the literatures on IRPs during the last thirty years can be 

found in Coelho et al. (2013).  

Ferdergruen and Zipkin (1984) address a single period IRP with 

stochastic demands and a fixed fleet vehicle size. Their work was 

extended by Federgruen et al. (1986) to consider multiple products. 

Aghezzaf (2008) considers the case of a cyclic IRP where retailer 

demand rates and travel times are stochastic but stationary and pro-

poses a model that generates optimal robust distribution plans. All 

these contributions assume a stationary demand rate for the product(s). 

Dror and Ball (1987) decompose a multi-period IRP into series of 

single period problems. They studied the problem of constant de-

mands and then proposed and compared two solution approaches for 

the resulting single period problem. Trudeau and Dror (1992) solved a 

similar problem with uncertain demands. Campbell et al. (2002) and 

Campbell and Savelsbergh (2004) also worked on multi-period IRPs 

where the decisions are executed over a finite horizon. For recent re-

search devoted to the multi-period IRPs, we refer to, e.g., Lei et al. 

(2006), Archetti et al. (2007), Yu et al. (2008), Boudia et al. (2009) 

and Taarit et al. (2010). These papers consider periodic demands 

which are not necessarily constant over time. 
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Berman and Larson (2001) used stochastic dynamic programming 

to determine deliveries in an IRP with uncertain demands. Kleywegt 

et al. (2002, 2004) formulated a Markov decision process model of the 

stochastic inventory routing problem, and proposed the approximation 

dynamic programming methods to solve the problem. Hvattum and 

Løkketangen (2009) and Hvattum et al. (2009) solved the IRP with 

uncertain retailer-demands heuristically. They used scenario trees and 

a progressive hedging algorithm. Bertazzi et al. (2013) formulated the 

stochastic IRP as a dynamic program and have solved it by means of a 

hybrid rolling horizon algorithm. Solyali et al. (2012) modelled and 

solved the IRP problem when the probability distribution of the retail-

ers is not fully specified as a robust mixed integer program. 

Another important line of research consists of contemplating loca-

tion decisions together with production, inventory and routing. Inte-

grated supply chain models taking into account location and transpor-

tation aspects are investigated, among others, by Daskin et al. (2002), 

Ambrosino and Scutella (2005), Berger et al. (2007) and Shen and Qi 

(2007). A comprehensive review of these and other models can be 

found in Shen (2007). The multi-period version of the problem is dis-

cussed by Laporte and Dejax (1989) and Salhi and Nagy (1999). The 

stochastic location-transportation problem is studied among others by 

Laporte et al. (1989) and Albareda-Sambola et al. (2007). More re-

cently, Klibiet al. (2010) investigated the stochastic multi-period loca-

tion-transportation version of the problem, allowing multiple transpor-

tation options. Ma and Dai (2010) studied a stochastic dynamic loca-

tion-routing-inventory problem in a two-echelon multiproduct distri-

bution system. Likewise, integrating production, inventory and trans-

portation has also been thoroughly studied. Some relevant contribu-

tions in this area are, among others, Fumero and Veccilly (1999), Park 

(2005), Lei et al. (2006), Boudia et al. (2007), Bard and Nananukul 

(2009), Chen (2010) and Safaeia et al. (2010). 

4.3 Modelling and Reformulating the MP-SIRP 

As mentioned above, the MP-SIRP, discussed in this chapter, consists 

of a single distribution centre using a fleet of homogeneous vehicles to 
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distribute a single product to a set of geographically dispersed retailers 

over a given planning horizon. It is assumed that retailer-demand rates 

are stochastic and stationary, and that travel-times are constant over 

time. The objective of this MP-SIRP is to determine optimal quantities 

to be delivered to the retailers, delivery time, and vehicle delivery 

routes, so that the total distribution and inventory costs is minimized, 

while preventing stock-outs from occurring at all retailers and assur-

ing some predetermined service level during the entire planning hori-

zon. 

To formulate our model for the MP-SIRP, the following assump-

tions are made: 

 The time required for loading and unloading a vehicle is ne-

glected in the model. 

 Inventory capacities at the warehouse and at the retailers are 

assumed to be large enough so that the corresponding capaci-

ty constraints are omitted in the model. 

 Transportation costs are assumed to be proportional to travel 

times. 

 Split deliveries are not allowed, each retailer is always com-

pletely replenished by a single vehicle. 

The relevant variables, parameters as well as a linear mixed-integer 

formulation of the MP-SIRP are described in the following subsec-

tions: 

Let H = {1, 2, ..., T} be the planning horizon set of consecutive pe-

riods indexed by t, and H
+
 = H∪{0}. Let τt  be the size in time units of 

period t, for example 8 working hours. Let S be the set of retailers 

indexed by i and j; and S
+
 = S∪{r}, which represents the warehouse. A 

fleet of vehicles V is used to serve these retailers. The other relevant 

parameters of the model are given below: 

 φjt : the fixed handling cost (in euros) per delivery at location 

jS
+ 

(retailers and warehouse) in period tH; 
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 ηjt : the per unit per period holding cost of the product at loca-

tion jS
+ 

(in euros per tons per period); 

 ψ
 v 

: the fixed operating cost of vehicle vV (in euros per ve-

hicle); 

 δv : travel cost of vehicle vV (in euros per km); 

 κ
v
 : the capacity of vehicle vV (in tons); 

 νv : average speed of vehicle vV (in km per hour); 

 θij : duration of a trip from retailer iS
+ 

to retailer jS
+ 

(in 

hour); 

 djt : the stochastic stationary demand rate at retailer j (in tons 

per hour) in period tH. We assume that djt is normally dis-

tributed with average Dj=E(djt) and standard deviation σj; 

 Ij0 : the initial inventory levels (in tons) at each retailer jS. 

The variables of the model are defined as follows: 

  
 
   

: the quantity(in tons) of product remaining in vehicle vV 

when it travels directly to location jS
+ 

from location iS
+ 

in 

period tH. This quantity equals zero when the trip (i,j) is not 

on any tour of the route travelled by vehicle vV in period t; 

 qjt : the quantity (in tons) delivered to location jS in period 

tH, and 0 otherwise; 

 Ijt : the inventory level at location (retailers and warehouse) 

jS
+ 

by the end of period tH (in tons); 

  
 
   
 : a binary variable set to 1 if location jS

+ 
is visited imme-

diately after location iS
+ 

by vehicle vV in period tH, and 0 

otherwise; 

  
 
 
 : a binary variable set to 1 if vehicle vV is being used in 

period t, and 0 otherwise. 

Thus, if we let Ijr be the initial inventory level at the warehouse, the 

linear mixed-integer formulation for the multi-period IRP is given as 

follows: 
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MP-SIRP: Minimize 
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Constraints (4.2) ensures that each retailer is visited at most once in 

period t. Constraints (4.3) assures that if a vehicle arrives at a retailer, 

it must leave after it has served it to a next retailer or to the ware-
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house. Constraints (4.4) ensures that vehicles complete their routes 

within one travel period, so the total travel time of a vehicle should 

not exceed the planned total working hours in each period. Constraints 

(4.5) determine the quantity delivered to a retailer, and these con-

straints also eliminate sub-tours. The vehicle capacity constraints are 

given by (4.6) and assures that the variables  
 
   
  cannot carry any 

cumulated flow unless  
 
   
  equals 1. Constraints’ (4.7) is the invento-

ry balance equations at the retailers. Constraints (4.8) indicate that the 

final inventory level at retailer j at the end of period T is of the same 

magnitude as its initial inventory. Constraints (4.9) indicate that a 

vehicle cannot be used to serve any retailer unless it is selected. The 

objective function (4.1) includes four cost components, namely total 

fixed operating cost of using the vehicle(s), total transportation cost, 

total delivery handling cost and total inventory holding cost at the end 

of each period. Since demand rates are stochastic, the resulting opti-

mization problem is stochastic and thus requiring a stochastic optimi-

zation treatment.  

Now, observe that if the objective is to provide an optimal solution 

to the MP-SIRP that satisfies the stochastic demand in each period 

with some predetermined level of confidence (1-α), constraints (4.7) 

must be replaced by new restrictions that guarantee: 

Probability ),1(I 1-tj,  








 
 

T

ts

T

ts

sjsjt dq for all jS,tH

  

Notice that the restrictions I ,t-1  ∑   t  ≥∑     τ 
 
   

 
    for all jS, 

tH are obtained as linear combinations of constraints (4.7). Using 

conditions (4.10), we obtain a deterministic equivalent approximation 

model for the multi-period stochastic inventory routing problem, de-

noted MP-DAIRPα and given by: 
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Constraints (4.10) prevent stock-outs from occurring at each retail-

er with a confidence level (1-α) during each period of the planning 

horizon. Thus, they guarantee a service level of 100(1-α)% defined by 

the standard normal value zα. 

For constraints (4.10), we assume that the per hour demand rates of 

the retailers are normally distributed,  H

jjt

h

jt dENd ),(~ , with the 

same average demand rates (in tons) per hour in period t. If we denote 

by )(
1

h

jt

h

P

jt dD
t







 the demand rate in period t. Thus, we can calculate 

the average demand in period t, that is: 

 

The variance of demand rate in period t, is given by: 
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. If τt = τ for all periods, then the 

standard deviation, that is                . 

In the sequel, we focus on this equivalent deterministic approxima-

tion problem MP-DAIRPα and discuss a decomposition approach for 

its solution.  
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4.4 An Illustrative Example for the MP-SIRP 

Firstly, we start by introducing a small example case with 7 retailers 

for the single-period stochastic inventory routing problem (SP-SIRP) 

to illustrate the behaviour of our proposed model. We then extend 

from the single-period setting to a multi-period. Also, in the multi-

period model, we present a small illustrative example for the multi-

period stochastic inventory routing problem (MP-SIRP). 

In this example case, we consider 7 retailers which are scattered 

around the warehouse (see Figure 4.1), and average demand rates of 

retailers djt are generated randomly and uniformly between 0.1 and 3 

tons per hour with a standard deviation σ of 5% of the average over 

the planning horizon and the standard normal value zα is set to 1.64. A 

fleet of homogeneous vehicles V with a capacity of vehicle κ
v
 is 30 

tons, is available for the distribution of the product. The fixed operat-

ing cost of the vehicle ψ
 v
 is €50 per vehicle. The vehicle’s average 

speed νv is 50 km per hour, and the travel cost δv is €1 per km. The 

inventory holding costs ηjt for each retailer is generated randomly and 

uniformly between 0.1 and 0.5 (in euro per ton per hour). We assume 

that the fixed delivery handling cost φjt is the same for all retailers and 

the size in time units τt of period t is set to 8 hours. The values of these 

parameters are then displayed in Table 4.1. 

    
Figure 4.1. An example case with 7 retailers 
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Table 4.1. Parameters and delivery quantity to each of the retailers for 

the SP-SIRP 

Retailers 

Average 

demand 

(ton/hour) 

Inventory 

holding cost 

(€) 

Delivery 

cost (€) 

Delivery 

quantity 

(ton) 

1 2.23 0.112 25 19.44 

2 2.54 0.131 25 30.00 

3 2.99 0.117 25 30.00 

4 1.58 0.130 25 19.12 

5 1.31 0.109 25 10.56 

6 2.60 0.144 25 30.00 

7 1.35 0.115 25 10.88 

 

The generated 7-clients instance of the SP-SIRP is solved by 

AMPL, with CPLEX 11.2. The solution is graphically displayed in 

Figure 4.2 and the quantity delivered to each of the retailers is pre-

sented in Table 4.1. In the solution, only one vehicle is used to replen-

ish the product to each of the retailers. As illustrated in Figure 4.2, the 

retailers are assigned to five routes {(2), (3), (5,1), (6), (7,4)}. For 

example, route {(5, 1)} delivers 10.56 tons and 19.44 tons respectively 

to retailer 5 and retailer 1, with a total demand of 30 tons. For this 

case, the solution gives the optimal objective value of €307. 

 

Figure 4.2. A VRP tour solution for the SP-SIRP 
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Now, in order to get a better understanding of the MP-SIRP model, 

we then construct a small example to illustrate the MP-SIRP model, 

based on the above 7 retailers instance (see Figure 4.1). We consider 

again another 7 retailers who are scattered around the warehouse, and 

the average demand rates of the retailers are generated randomly and 

uniformly between 0.1 and 3 tons per hour with a standard deviation 

of 5% on average over the planning horizon and the standard normal 

value zα is set to 1.64. We also consider that the planning horizon set 

contains 3 consecutive periods and the size in time unit of each period 

is set to 8 hours. We follow the same notations and the same values 

for the vehicle’s parameters, as well as the retailers’ parameters such 

as the coordinate positions, and the delivery handling cost. The inven-

tory holding costs for the retailers in each period is generated random-

ly and uniformly between 0.1 and 0.5 (in euro per ton per hour). The 

values of these parameters are then shown in Table 4.2. 

Table 4.2. Parameters of the retailers for the MP-SIRP 

Retailers 
Average demand 

(ton/hour) 

Inventory holding       

cost (€) 
Delivery 

cost (€) 

 t=1 t=2 t=3 t=1 t=2 t=3  

1 2.23 2.23 2.23 0.112 0.108 0.109 25 

2 2.54 2.54 2.54 0.131 0.131 0.135 25 

3 2.99 2.99 2.99 0.117 0.115 0.131 25 

4 1.58 1.58 1.58 0.130 0.147 0.125 25 

5 1.31 1.31 1.31 0.109 0.121 0.146 25 

6 2.60 2.60 2.60 0.144 0.143 0.104 25 

7 1.35 1.35 1.35 0.115 0.114 0.124 25 

 

We solve the MP-SIRP problem by using AMPL, with CPLEX 

11.2. Subsequently, the resulting optimal solution shows that a fleet of 

two vehicles is required to replenish these 7 retailers. The delivery 

routes in each period are shown below, with the optimal objective 

value of €745. 
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 Period: t = 1, Vehicle: V = V2 :{(1), (2,7), (3), (4), (5), (6)} 

 Period: t = 2, Vehicle: V = V1 :{(1), (2), (4, 6, 3, 7)} 

 Period: t = 3, Vehicle: V = V2 :{(2), (5), (3, 6)} 

The results’ of the optimal solution of retailers for MP-SIRP is 

graphically presented in Figure 4.3. From the Figure 4.3(b), we can 

see that the vehicle V1, in period t = 2, construct three routes of solu-

tion in which the vehicle makes three separate tours: {(1), (2), (4, 6, 3, 

7)}. For instance, within the time period of 8 hours in t = 2, the vehi-

cle V1 starts the direct shipping tour to retailer 1 and delivers 23.66 

tons, and then returns back to the warehouse. Similar to retailer 2, 

vehicle V1 also makes the direct shipping tour and delivers 30 tons, 

and then returns back to the warehouse. Next, the vehicle V1 makes a 

multi-tour to deliver the products to retailer (4, 6, 3, and 7). Firstly, the 

vehicle arrives at retailer 4 and delivers 8.06 tons, and then the vehicle 

delivers 4.81 tons to retailer 6. The vehicle continues the tour to retail-

er 3 and delivers 11.90 tons, and finally goes to retailer 7 and delivers 

5.23 tons. In the above case, it is clearly shown that the vehicle load is 

optimized efficiently with the vehicle capacity of 30 tons, and within 

the time period, only one vehicle is used for replenishing the retailers. 

Furthermore, for the full replenishment plan for all the retailers in the 

example is presented in Figure 4.4. 

Apparently, from the results of both the examples above, both cas-

es are solved to optimality. In terms of cost value, the result of the SP-

SIRP is far better than that of the MP-SIRP. The objective value of the 

SP-SIRP is expressed in term of cost rate. From a long-term point of 

view, it represents the resulting average distribution and inventory 

costs when using a vehicle to replenish the retailers. The objective 

value of the MP-SIRP represents the total distribution and inventory 

costs for the use of a vehicle to carry out the replenishment, over the 

given planning horizon. As indicated previously, when demand rates 

are stochastic or volatile, it makes sense that the problem is modelled 

as a multi-period inventory routing problem with stochastic stationary 

rate. 

 



96                                                             CHAPTER 4 

 

 

 

 

 

 

 

 

 
 
 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. The optimal solution of the 7 retailers for MP-SIRP. 

b) Period: t = 2, Vehicle: V = V1 
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c) Period: t = 3, Vehicle: V = V2 
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Figure 4.4. The replenishment plan for the 7 retailers of the MP-SIRP. 
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4.5 Lagrangian Relaxation for MP-DAIRPα 

The MP-DAIRPα is an NP-complete problem as it contains the vehi-

cle routing problem (VRP) as a sub-problem in each period. As a con-

sequence, large instances of the MP-DAIRPα are hard to solve to op-

timality in a reasonable computational time. This section discusses a 

Lagrangian relaxation approach to decompose and possibly solve or 

generate some lower and upper bounds for the problem.  

In the proposed Lagrangian relaxation procedure for MP-DAIRPα, 

constraints (4.5) are assumed to be the complicating restrictions. If 

they are relaxed, the resulting problem can be decomposed, along the 

same lines as in Taarit et al. (2010), into an inventory allocation sub-

problem (denoted by IA-P) and a vehicle routing sub-problem (denot-

ed by RT-P). These sub-problems involve fewer variables and con-

straints respectively and can be solved more efficiently by some 

standard optimization MIP-solver. Note, however, that the resulting 

inventory allocation problem in our case is inherently stochastic. It 

requires thus a special treatment and in particular inclusion of safety 

stocks to hedge against the variability of the demand. A sub-gradient 

algorithm (Fisher 1981, Shor 1985) will be used to update the Lagran-

gian multipliers and derive a lower bound on the optimal solution of 

the original problem. The Lagrangian relaxation implementation is 

carried out along the same lines as in the successful implementations 

used to solve complicated mixed-integer programs (see, e.g., Fisher 

1985, Yu et al. 2008, Li et al. 2009). 

4.5.1 Relaxation and Decomposition 

Constraints (4.5) in the reformulation MP-DAIRPα combine inventory 

allocation variables q and shipment flow variables Q. If these con-

straints are relaxed and incorporated in the objective function with 

unrestricted Lagrangian multipliers  jt for all jS
+ 

and tH, then the 

resulting relaxed problem, denoted by LR-MPIRPα, can be stated as 

follows: 



MODELLING AND SOLVING MP-SIRP                                      99 

 

 
    













 Ht Vv Si Sj

v

ijtjtijvv

v

t

v

LR xvyCV )()(            









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Ht Vv

jtjt QQqI       (4.11) 

Subject to:  

(4.2) - (4.4), (4.6) and (4.8) – (4.10) 

The two sub-problems, IA-P and RT-P, resulting from the relaxed 

problem LR-MPIRPα are shown below. Observe that the stochastic 

aspect of the demand rates is taken into account in the inventory allo-

cation sub-problem. This latter sub-problem is also strengthened with 

some additional safety stock related restrictions. 

The inventory allocation sub-problem IA-P: 

IA-P: Minimize 


  


 


Ht Sj

jtjt

Ht Sj

jtjtPIA qICV )(   (4.12) 

Subject to:  

 (4.8) and (4.10) 

,0,0,00  jtjtj qII   ∀ jS, ∀tH 

Note that the sub-problem IA-P can be further decomposed into in-

dependent sub-problems associated with each retailer jS. 

The routing sub-problem RT-P having as main objective to mini-

mize transportation costs is given below: 
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RT-P: Minimize 
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Ht Vv

jt QQ (4.13) 

Subject to:  

(4.2) - (4.4), (4.6) and (4.9) 

,0},1,0{,  v

ijt

v

t

v

ijt Qyx   ∀ jS
+
, tH, tH, vV 

In order to enhance the relaxed sub-problem RT-P, the following 

valid inequalities, extending those given in Taarit et al. (2010), are 

appended to the model: 

,)( 1011 
  


Vv Si

v

ijjjj QIzdE   ∀jS  (4.14) 

These inequalities prevent stock-outs from occurring, with some 

level of confidence, at each retailer during the first period of the plan-

ning horizon guaranteeing the required service level. Note also that 

the sub-problem (RT-P) can further be decomposed into independent 

sub-problems each limited to only one period of the planning horizon 

H. The sub-problem RT-P is a mixed-integer program but with fewer 

variables and constraints than the original inventory routing problem. 

It can thus be solved relatively more efficiently, than the original 

problem, by effective standard Branch-and-Bound based solvers. 
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4.5.2 Lagrangian Procedure 

Using the above decomposition of the problem MP-DAIRPα, a lower 

bound on its optimal value can be generated for any given vector of 

Lagrangian multipliers  . The best lower bound can be obtained from 

the optimal vector of Lagrangian multipliers, the solution of the fol-

lowing Lagrangian dual problem of LR-MPIRPα, denoted by LD-

MPIRPα. 

LD-MPIRPα: Maximize L(  t)  

Where L( jt) = 

Minimize 












 

       Ht Vv
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ijtjtijvv
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v

t

v Ixvy  )(

                   

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
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
 

     Vv Sk

v

jkt

Vv Si

v

ijtjt

Ht Vv

jt QQq (4.15) 

is the solution value of the relaxed problem LR-MPIRPα. 

To solve the problem LD-MPIRPα, the corresponding sub-

problems IA-P and RT-P are first solved, and then a sub-gradient al-

gorithm is used to improve the value of L( jt). In addition, a Lagran-

gian heuristic method is developed to provide a feasible solution of 

the MP-DAIRPα. Thus, the sub-gradient optimization procedure gen-

erates lower bounds and upper bounds iteratively and updates the best 

lower bound and upper bound of the problem. The main procedure is 

summarized below. 

Reconsider the formulation of MP-DAIRPα, let X = (   
     

 ) be 

the binary variables of the model, Z = (  
       t    t) be the continuous 

variables and let P = {(X, Z) : (4.2) - (4.6),…,(4.8) - (4.10)} be the set 

of feasible solutions satisfying the constraints (4.2) - (4.6) and (4.8) - 

(4.10). An instance of the MP-DAIRPα can thus be stated as minimize 
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(X, Z)PCVα (X, Z), where CVα is the cost function of the model MP-

DAIRPα. In addition, if we let   t(jS, tH) denote the corresponding 

sub-gradients in the optimization procedure, these can be determined 

as shown below: 


   


Vv Sk

v

jkt

Vv Si

v

ijtjtjt QQqg   (4.16)  

The proposed algorithm can thus be summarized as follows: 

Algorithm 1: ( The Lagrangian procedure for MP-DAIRPα) 

Step 0. (Inialization): 

Let LB be the best lower bound, UB be the best upper bound, and 

(X*;Z*) be the best feasible solution found so far. Let   be the sub-

gradient agility and k be the iterations counter. Initialize LB = 0, k = 1, 

the values for the initial Lagrangian multipliers   and the value for 

 (0; 1). 

Step 1. (Computing the first UB): 

Generate a feasible solution (X0; Z0) for the MP-DAIRPα by making 

each retailer jS be served separately, and then solving the corre-

sponding inventory allocation problems to obtain the objective value 

CVα(X0; Z0) of the MP-DAIRPα. Let the current best upper bound 

UB:= CVα (X0; Z0) and update (X*; Z*):= (X0; Z0). 

Step 2. (Computing the lower bound): 

Solve the sub-problems IA-P( k) and RT-P( k) respectively. Let 

  
     and   

      denote the corresponding objective values, then 

the new lower bound value is given by   
   :=   

    +  
    . If this 

new lower bound is greater than LB, then set LB :=   
  ; otherwise set 

  :=    . 



MODELLING AND SOLVING MP-SIRP                                      103 

 

Step 3. (Computing the upper bound): 

Based on the solutions of IA-P( k) and RT-P( k), the Lagrangian 

heuristic method (see the algorithm in Section 4.3) is called to derive a 

feasible solution (Xk; Zk) If this solution improves the current best 

upper bound, then set UB := CVα(Xk; Zk), and update (X*; Z*) := (Xk; 

Zk). 

Step 4. (Updating  ): 

Set step size sk by sk :=  (UB-  
  ) /‖  ‖

2

, where gk are the current 

sub-gradients, determined by (4.16). Update the Lagrangian multipli-

ers in iteration k + 1:  k+1:= k +skgk. 

Step 5. (Stopping rule): 

If (1) k exceeds the maximal number of iterations, or (2)   
   is not 

improved for a given number of iterations, then output the LB, UB and 

the current optimal solution (X*; Z*), and stop; otherwise set k := k + 

1, and then go to Step 2. 

4.5.3 Lagrangian Heuristic Method 

Solving the sub-problems of IA-P and RT-P generates a lower bound 

for the MP-DAIRPα. However due to the relaxation, solutions ob-

tained by solving IA-P and RT-P at each iteration are usually not fea-

sible for the original problem MP-DAIRPα. Therefore, referring to the 

IRP heuristic method developed in Aghezzaf et al. (2006) and the 

VRP heuristic method developed in Clarke and Wright (1964), we 

propose a saving-based heuristic approach that exploits the Lagrangi-

an information to derive a feasible solution for the MP-DAIRPα at 

each iteration. 

The optimal solution of the sub-problem IA-P provides information 

on the quantities that should be delivered to each retailer during each 

period of the planning horizon. These quantities can be considered as 
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retailer orders and a vehicle routing problem is then solved for each 

period separately. The resulting solution is feasible if the correspond-

ing constraints, such as the vehicle capacity constraints and the travel-

ing time constraints, are not violated. Detailed steps of this algorithm 

are presented in the following paragraph. 

For each period tH, we assume that qj is the quantity to be deliv-

ered to the retailer jS. Let SRt be the set of the be served retailers in 

period t, i.e., SRt = {j : qj> 0; ∀  ∈  }∀ H. Note that SRt can possibly 

be an empty set for some tH. In this case no vehicle route needs to 

be generated in that period. The proposed saving-based heuristic 

method is outlined below: 

Algorithm 2: (The Lagrangian heuristic algorithm for MP-DAIRPα) 

Step 0. (Initialization): 

Suppose one vehicle is available for serving the retailers at first. A 

temporary route is initiated with the basic tours, each serving one of 

the retailers by the vehicle (i.e., ignore the restriction for the total 

travelling time of the route made by the vehicle, but each separated 

vehicle tour in the route should satisfy the traveling time constraint). 

Thus, there are as many tours in the initial temporary route as there are 

retailers in the set SRt. 

Step 1. (Improvement Step): 

The core of the saving-based heuristic is the process of combining two 

tours into one route to achieve some cost saving. This is implemented 

as follows: 

 Suppose the current route L* makes n tours. These n tours are 

put into a single list of tours C
1
, ..,C

n
. We then calculate the 

cost values CV
C1

,…, CV
Cn 

for each tour. 

 For all 1 ≤i<j≤n, combine tours C
i
 and C

j
 into one tour, denot-

ed by C
+ 

(by finding the TSP through all retailers covered by 
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both tours plus the warehouse. If this tour is infeasible (that is 

it doesn't satisfy the travel time constraint) then it is disregard-

ed and a new route is generated that makes tours C
1
, ..,C

i-1
, 

C
i+1

,…, C
j+1

, C
j+1

,…, C
n
 and C

+
. If the cost value CV

C+ 
is 

smaller than the sum of cost values of C
i
 and C

j
, then we have 

achieved a saving SV := CV
Ci 

+ CV
Cj

 - CV
C+

.  

 By calculating all the combinations of two tours from the list, 

the best feasible combination is kept, i.e., the one which results 

in the largest saving. This best feasible combination is then 

added to the tour list and the two combined tours are removed 

from the list. 

Step 2. (Stopping rule): 

Repeat Step 1 until no further feasible combination resulting in a posi-

tive saving can be found. Calculate the total travelling time Tmin for the 

current route L*, if Tmin>τt, then calculate the vehicle number V, N := 

[Tmin/τt] + 1, and add the corresponding additional fixed operating 

costs of the vehicles to the route cost. Finally we get the output of the 

best feasible route and its cost value. 

By calling Algorithm 2, we find a feasible solution for each period 

t H (SRt ≠ Ø) separately. As a consequence, at each iteration of the 

Lagrangian relaxation approach, we generate a feasible solution that is 

an upper bound for the MPDAIRPα using the above saving-based 

heuristic algorithm. The best upper bound is updated iteratively each 

time a better delivery schedule is obtained. To improve the upper 

bound of the MP-DAIRPα further, we apply an adjustment procedure 

to the best feasible solution of the MP-DAIRPα found by the Lagran-

gian relaxation approach. The main goal of this adjustment is to elimi-

nate the unnecessary deliveries to the retailers, during the planning 

horizon, reducing by the way potential transportation costs. 

The adjustment procedure tries thus to combine two or more deliv-

eries to a retailer j (jS) into one delivery. If a better feasible solution 

of the MP-DAIRPα is found, this adjustment is considered to be effec-
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tive and is consequently kept. Details of the adjustment procedure are 

presented below: 

Algorithm 3: (The adjustment procedure for MP-DAIRPα) 

Step 0. (Initialization): 

Let UB be the best upper bound and (X*; Z*) be the best feasible solu-

tion found so far. Let  
 
  Z* for all (jS, tH) be the current best 

delivery schedule and  
 
   Z* for all (jS) be the current best initial 

inventory level. Let W be the set of the retailers that have more than 

one delivery during the planning horizon, i.e., W={j:  
 
  > 0 and 

 
 
  >0, for some m, nH, and m≠n}. Initialize the iteration number 

k=0. 

Step 1. (Adjustment): 

For all the remaining retailers in the set W, do the adjustment as fol-

lows:  

(1-a): Select a retailer j from W, and delete it from the set W. For 

this retailer, starting from the final period during which the delivery 

takes place, do the delivery combination. If we let  
 
   be the current 

delivery schedule, as a result of this combination we obtain 

 
 
  :=( 

 
   ∑  

 
       )≤k and then ∑  

 
        )=0,  

 
   >0, and 

1 ≤ m<n≤ T, where k is the vehicle capacity. At the same time, adjust 

the corresponding inventory levels of retailer j. For this new delivery 

schedule, call the saving-based heuristic approach (Algorithm 2) to 

find a new feasible solution (Xk; Zk), If this new solution gives a better 

objective value such that CVα (Xk; Zk)<UB, then update the current 

best upper bound by UB := CVα (Xk; Zk), and update the current best 

feasible solution by (X*;Z*) := (Xk; Zk) 

(1-b): For retailer j, according to the current best delivery schedule 

 
 
  , if there still exist  

 
  >0 and  

 
  >0, for 1≤ m<n ≤ T, then include 
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the delivered quantities at period m in the initial inventory. If we let 

 
 
   be the current initial inventory level, as a result of this inclusion 

we obtain  
 
  := ( 

 
  +∑  

 
       ) and  

 
  := ( 

 
  +∑  

 
       )≤ k 

and then set ∑  
 
        = 0, for  

 
  > 0,  

 
  > 0 and 1 ≤ m<n ≤ T. 

At the same time, adjust the corresponding inventory levels of retailer 

j. Then call Algorithm 2 for the new delivery schedule to find a new 

feasible solution (Xk; Zk). If a better feasible solution is obtained, then 

update the current best upper bound by UB := CVα (Xk; Zk), and update 

the current best feasible solution by (X*; Z*) := (Xk; Zk). 

Step 2. (Stopping rule): 

If there are still retailers in set W, then set k := k + 1 and go to Step 1. 

Otherwise output UB and the current best solution (X*;Z*), and stop.  

If with this adjustment procedure, some unnecessary deliveries 

during the planning horizon are eliminated, then some additional sav-

ings in the total transportation cost can be realized. This in turn can 

improve the upper bound of the MP-DAIRPα.  

4.6 Computational Results 

In this section, we present some numerical experiments to evaluate the 

performance of the proposed Lagrangian relaxation approach for the 

MP-DAIRPα, using some randomly generated instances according to 

the generation scheme proposed by Yu et al. (2008). We consider 

different sets of problem instances with different retailer and planning 

horizon sizes. Each problem instances set is identified by the number 

of retailers N and time horizon T. The four tested problem instances 

sets that are considered in this analysis are: (N=15; T=3), (N=15; 

T=6), (N=25; T=3) and (N=25; T=6).  

More specifically, for the set of the instances consisting of 15 re-

tailers (denoted by Y15-x-T-y, where 'x' is the index of instances and 

'y' is the index of time horizons), the retailers are scattered randomly 

and uniformly over a square of 30 by 30 km, and the distribution cen-
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tre is always put in the centre of the square. Average demand rates of 

retailers are generated randomly and uniformly between 1 and 3 tons 

per hour with a standard deviation of 5% of the average over the plan-

ning horizon and the standard normal value zα is set to 1.64. The in-

ventory holding costs are generated randomly and uniformly between 

0.1 and 0.15 (in euros per tons per period). Fixed delivery handling 

costs are the same for all the retailers, which are €25 per delivery. A 

fleet of homogeneous vehicles with a capacity of 60 tons is used to 

serve these retailers. The fixed operating cost of vehicle is €50 per 

vehicle. The vehicles can travel up to 50 km per hour, and the travel 

cost of a vehicle is €1 per km per hour. The time unit of one period τt 

is set to 8 hours in all instances. 

For the set of the instances consisting of 25 retailers (denoted by 

A25-x-T-y), the retailers are scattered randomly over a square of 100 

by 100 km (in clusters), and the warehouse is always placed in the 

centre of the square. Demand rates of the retailers are generated ran-

domly and uniformly between 0.1 and 3 tons per hour with a standard 

deviation of 5% of the average over the planning horizon and the 

standard normal value zα is set to 1.64. The inventory holding costs 

are also generated randomly and uniformly between 0.1 and 0.15 (in 

euros per tons per period) and fixed delivery handling costs are €10 

per delivery. Again, a fleet of homogeneous vehicles with a capacity 

60 tons is used to serve the retailers. The vehicles can also travel up to 

50 km per hour, and the travel cost of the vehicle is €1 per km. The 

fixed operating cost of vehicle is €30 per vehicle. Also, the time unit 

of one period τt is still set to 8 hours in all instances. The proposed 

Lagrangian relaxation approach for MP-DAIRPα is implemented in 

AMPL and all instances are tested on a PC with Intel (R) Core i7-

3770 CPU @3.40GHz, 32.0GB RAM. 

4.6.1  Effect of Changing the Vehicle Capacity 

In order to evaluate the performance of our solution approach, the 

vehicle capacity is set between 60 tons and 80 tons. For different in-

stances sets, Tables 4.3, 4.4 and 4.5 show the upper bounds found by 
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the MP-DAIRPα with AMPL, and the gaps of the vehicle capacity 

restriction, i.e. Gap1, determined by: 

%1001
80

6080 



UB

UBUB
Gap  

We observe that for all the problem sets, the average gap between 

the upper bound of 60 tons and the upper bound of 80 tons is around 

0.22%, with the lowest gap being 0.16% and the highest gap being 

0.29%, while the computational time is set to 1 and 2 hours, and the 

MIP gap tolerance for all instances is reached below 5%. Also, for all 

instances, the average optimal objective value for 60 tons is €1581.81, 

while the average optimal objective value for 80 tons is €1227.41. 

On one hand, with the increase in vehicle capacity, the number of 

vehicles used decreases, which results in the decrease of transportation 

costs. On the other hand, when the vehicle capacity increases, the 

number of direct deliveries tends to increase, which makes it easier to 

find optimal routes in each period by the heuristic method. 

Table 4.3. Results of the MP-DAIRPα AMPL with instances       

(N=15; T=3) 

Instances 
MP-DAIRPα UB-AMPL 

60 tons (€) 80 tons (€) Gap1 (%) 

Y15-0-T-3 967.00 726.50 0.25 

Y15-1-T-3 882.00 721.00 0.18 

Y15-2-T-3 851.59 690.50 0.19 

Y15-3-T-3 900.58 681.50 0.24 

Y15-4-T-3 878.63 717.00 0.18 

Y15-5-T-3 953.88 695.50 0.27 

Y15-6-T-3 828.80 615.50 0.26 

Y15-7-T-3 654.00 527.50 0.19 

Y15-8-T-3 780.29 655.50 0.16 

Y15-9-T-3 886.35 674.50 0.24 

Average 858.31 670.50 0.22 



110                                                             CHAPTER 4 

 

Table 4.4. Results of the MP-DAIRPα AMPL with instances      

(N=15; T=6) 

Instances 
MP-DAIRPα UB-AMPL 

60 tons (€) 80 tons (€) Gap1 (%) 

Y15-0-T-6 1647.00 1229.00 0.25 

Y15-1-T-6 1556.00 1230.50 0.21 

Y15-2-T-6 1413.50 1124.00 0.20 

Y15-3-T-6 1538.00 1158.50 0.25 

Y15-4-T-6 1472.29 1167.00 0.21 

Y15-5-T-6 1635.50 1204.00 0.26 

Y15-6-T-6 1375.17 1016.00 0.26 

Y15-7-T-6 1363.00 966.50 0.29 

Y15-8-T-6 1340.00 1124.00 0.16 

Y15-9-T-6 1516.50 1141.00 0.25 

Average 1485.70 1136.05 0.23 
 

Table 4.5. Results of the MP-DAIRPα AMPL with instances             

(N=25; T=3) and (N=25; T=6) 

Instances 
MP-DAIRPα UB-AMPL 

60 tons (€) 80 tons (€) Gap1 (%) 

A25-0-T-3 1319.88 1044.50 0.21 

A25-1-T-3 1662.37 1322.00 0.20 

A25-2-T-3 1347.75 1029.00 0.24 

A25-3-T-3 1211.64 976.00 0.19 

A25-4-T-3 1678.87 1347.50 0.20 

Average 1444.10 1143.80 0.21 

A25-0-T-6 2379.97 1795.50 0.25 

A25-1-T-6 3042.50 2345.50 0.23 

A25-2-T-6 2299.48 1802.50 0.22 

A25-3-T-6 2048.22 1581.50 0.23 

A25-4-T-6 2925.58 2271.50 0.22 

Average 2539.15 1959.30 0.23 
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4.6.2  Performance Comparison of the Lagrangian Relaxation 

          and AMPL 

To compare the solution values obtained from the Lagrangian relaxa-

tion approach, we have solved the problem MP-DAIRPα directly for 

the generated instances using CPLEX 12.5. Due to the large number 

of variables and constraints in the problem MP-DAIRPα, solving these 

instances with AMPL is quite time-consuming, in particular, when the 

size of the instances grows bigger. Therefore, for the problem sets of 

(N=15; T=3) and (N=15; T=6), we have decided to preset 1 hour as a 

limitation of the running time, and for the problem sets of (N=25; 

T=3) and (N=25; T=6), we preset 2 hours as a limitation of running 

time. The computational results of these two different problem in-

stances are shown in the following tables. 

For different instance sets, Tables 4.6, 4.7 and 4.8 show the lower 

bounds and upper bounds found by the Lagrangian relaxation ap-

proach, and the gaps between lower bounds and upper bounds, i.e. 

Gap2, determined by: 

%1002 



LR

LRLR

UB

LBUB
Gap  

In addition, Tables 4.9, 4.10 and 4.11 present the comparisons be-

tween the results obtained from the Lagrangian relaxation approach 

and AMPL, and the values of Gap3 illustrate the difference in the two 

upper bounds, where: 

%1003 



LR

AMPLLR

UB

UBUB
Gap  

The results shown in the tables demonstrate the effectiveness of the 

proposed Lagrangian relaxation approach. Near optimal solutions are 

found for the problem sets (N=15, T=3) and (N=15, T=6) by the La-

grangian relaxation approach. For these two problem sets, the gaps 

between the solutions obtained from the Lagrangian relaxation ap-
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proach and AMPL, in average, are 1.65% and 5.02%, respectively, 

and the worst cases are 4.07% and 6.66% respectively. The average 

gaps between the Lagrangian upper and lower bounds for these two 

problem sets are 5.62% and 18.79%, respectively. The computational 

time of the Lagrangian relaxation approach varies between 3 and 6 

minutes for these instances.  

Table 4.6. Results of the LR approach (N=15; T=3) 

Instances 

(60 tons) 

Lagrangian Relaxation (LR) Solutions 

LB (€) UB (€) 
CPU time 

(s) 

Gap2 

(%) 

Y15-0-T-3 929.92 967.00 108.35 3.83 

Y15-1-T-3 793.83 890.30 79.46 10.84 

Y15-2-T-3 802.20 864.16 80.50 7.17 

Y15-3-T-3 837.05 933.85 85.22 10.37 

Y15-4-T-3 869.04 915.88 104.63 5.11 

Y15-5-T-3 916.33 968.51 115.91 5.39 

Y15-6-T-3 789.32 846.28 103.48 6.73 

Y15-7-T-3 654.00 654.00 119.56 0.00 

Y15-8-T-3 775.14 803.77 114.71 3.56 

Y15-9-T-3 857.61 886.35 144.98 3.24 

Average 822.44 873.01 105.68 5.62 
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Table 4.7. Results of the LR approach (N=15; T=6) 

Instances 

(60 tons) 

Lagrangian Relaxation (LR) Solutions 

LB (€) UB (€) 
CPU time 

(s) 

Gap2 

(%) 

Y15-0-T-6 1393.41 1711.81 241.60 18.60 

Y15-1-T-6 1349.99 1627.22 209.35 17.04 

Y15-2-T-6 1243.36 1503.67 163.72 17.31 

Y15-3-T-6 1233.79 1624.01 242.00 24.03 

Y15-4-T-6 1240.43 1549.87 341.37 19.97 

Y15-5-T-6 1407.08 1709.92 254.16 17.71 

Y15-6-T-6 1212.50 1433.47 240.82 15.42 

Y15-7-T-6 1210.31 1460.24 235.66 17.12 

Y15-8-T-6 1118.96 1425.84 195.94 21.52 

Y15-9-T-6 1285.01 1589.61 332.32 19.16 

Average 1269.48 1563.57 245.69 18.79 
 

Table 4.8. Results of the LR approach (N=25; T=3) and (N=25; T=6) 

Instances 

(60 tons) 

Lagrangian Relaxation (LR) Solutions 

LB (€) UB (€) 
CPU time 

(s) 

Gap2 

(%) 

A25-0-T-3 1130.55 1390.15 119.84 18.67 

A25-1-T-3 1509.15 1937.40 80.47 22.10 

A25-2-T-3 1188.70 1487.57 123.60 20.09 

A25-3-T-3 1000.10 1233.81 129.69 18.94 

A25-4-T-3 1504.33 1794.87 129.98 16.19 

Average 1266.57 1568.76 116.72 19.20 

A25-0-T-6 2073.63 2542.53 339.93 18.44 

A25-1-T-6 2696.40 3272.11 286.27 17.59 

A25-2-T-6 1834.65 2433.63 265.14 24.61 

A25-3-T-6 1610.83 2135.01 203.12 24.55 

A25-4-T-6 2524.29 3169.49 194.67 20.36 

Average 2147.96 2710.55 257.83 21.11 
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When the size of the instances increases, as for the problem sets 

(N=25, T=3) and (N=25, T=6), the averaged values of Gap2 are 

19.20% and 21.11%, respectively, whereas the average values of 

Gap3 are 7.38% and 6.14%, respectively. Observe that the increase of 

the planning horizon from T=3 to T=6 creates more flexibility for the 

MP-DAIRPα to achieve a trade-off between the distribution costs and 

the inventory costs. Consequently, the averaged values of Gap3 rise to 

5.02% and 6.14% for the problems sets (N=15, T=6) and (N=25, 

T=6), respectively, when they are compared with the corresponding 

values of problem sets with (N=15, T=3) and (N=25, T=3). Finally, 

observe that, in terms of computational time, quite good solutions can 

be obtained by the proposed Lagrangian relaxation approach within a 

few minutes, while the solver for the original problem takes many 

hours of the running time. 

Table 4.9. Solution comparisons of the Lagrangian relaxation ap-

proach and AMPL (N=15; T=3) 

Instances 

(60 tons) 

LR Solutions     

UB (€) 

AMPL Solutions  

UB (€) 
Gap3 (%) 

Y15-0-T-3 967.00 967.00 0.00 

Y15-1-T-3 890.30 882.00 0.93 

Y15-2-T-3 864.16 851.59 1.45 

Y15-3-T-3 933.85 900.58 3.56 

Y15-4-T-3 915.88 878.63 4.07 

Y15-5-T-3 968.51 953.88 1.51 

Y15-6-T-3 846.28 828.80 2.07 

Y15-7-T-3 654.00 654.00 0.00 

Y15-8-T-3 803.77 780.29 2.92 

Y15-9-T-3 886.35 886.35 0.00 

Average 873.01 858.31 1.65 
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Table 4.10. Solution comparisons of the Lagrangian relaxation ap-

proach and AMPL (N=15; T=6) 

Instances 

(60 tons) 

LR Solutions     

UB (€) 

AMPL Solutions 

UB (€) 
Gap3 (%) 

Y15-0-T-6 1711.81 1647.00 3.79 

Y15-1-T-6 1627.22 1556.00 4.38 

Y15-2-T-6 1503.67 1413.50 6.00 

Y15-3-T-6 1624.01 1538.00 5.30 

Y15-4-T-6 1549.87 1472.29 5.01 

Y15-5-T-6 1709.92 1635.50 4.35 

Y15-6-T-6 1433.47 1375.17 4.07 

Y15-7-T-6 1460.24 1363.00 6.66 

Y15-8-T-6 1425.84 1340.00 6.02 

Y15-9-T-6 1589.61 1516.50 4.60 

Average 1563.57 1485.70 5.02 

 

Table 4.11. Solution comparisons of the Lagrangian relaxation ap-

proach and AMPL (N=25; T=3) and (N=25; T=6) 

Instances 

(60 tons) 

LR Solutions     

UB (€) 

AMPL Solutions 

UB (€) 
Gap3 (%) 

A25-0-T-3 1390.15 1319.88 5.05 

A25-1-T-3 1937.40 1662.37 14.20 

A25-2-T-3 1487.57 1347.75 9.40 

A25-3-T-3 1233.81 1211.64 1.80 

A25-4-T-3 1794.87 1678.87 6.46 

Average 1568.76 1444.10 7.38 

A25-0-T-6 2542.53 2379.97 6.39 

A25-1-T-6 3272.11 3042.50 7.02 

A25-2-T-6 2433.63 2299.48 5.51 

A25-3-T-6 2135.01 2048.22 4.07 

A25-4-T-6 3169.49 2925.58 7.70 

Average 2710.55 2539.15 6.14 
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4.7 Concluding Remarks 

We investigated the multi-period inventory routing problem (MP-

SIRP) in which a single warehouse is distributing a single product to 

a set of retailers consuming it at stochastic stationary demand rates, 

using a fleet of homogeneous vehicles over a given finite horizon. The 

objective is to determine the optimal quantities to be delivered to the 

retailers, the delivery time, and to design vehicle delivery routes, so 

that the total distribution and inventory costs are minimized while 

some service level is guaranteed at each retailer during each period of 

the planning horizon. The MP-SIRP is first formulated as a linear 

mixed-integer program and then a deterministic equivalent approx-

imation model, MP-DAIRPα, is proposed. In this deterministic 

model, the stochastic demand constraints are replaced with deter-

ministic ones guaranteeing some predetermined service level at each 

retailer. A Lagrangian relaxation approach is used to decompose the 

MP-DAIRPα and to derive both the lower and upper bounds for it. 

The two sub-problems resulting from this decomposition are an inven-

tory allocation and a vehicle routing optimization problem in each 

period. The stochastic aspect of the demand rates is taken care of 

within the inventory allocation sub-problem through provision of 

safety stocks at the retailers. Computational results on some medium 

size instances demonstrate the effectiveness of the proposed Lagran-

gian relaxation approach. Good quality solutions for the MP-

DAIRPα were found within a reasonable computational time. Nu-

merical experiments on large scale problems and other deterministic 

approximation to the MP-SIRP are currently under investigation. 
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5 
Conclusions 

 

5.1  Concluding Summary 

In this dissertation, we study the integrated inventory and routing 

management with the main objectives: (1) to analyze the effectiveness 

of an inventory management policy before and after the implementa-

tion of vendor managed inventory (VMI) and milk-runs in a single-

warehouse, multiple-retailer (SWMR) system, and (2) to investigate 

the multi-period stochastic inventory routing problem (MP-SIRP). 

More specifically, in the first situation, we assume that all the retailers 

face a deterministic and constant demand rate whereas in the second 

condition, we assume that all the retailers consume the product at a 

stochastic stationary rate. In both cases, the supplier serves a set of 

retailers from a single warehouse and deliveries to these retailers are 

made from the warehouse with a fleet of vehicles having a limited 

capacity. The warehouse in turn is replenished from an outside source. 

Incoming shipments into the warehouse have to be coordinated with 
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outgoing shipments to the retailers in order to minimize the total cost. 

This total cost consists of inventory holding costs at the central ware-

house and all the retailers, costs for incoming shipment into the ware-

house, and outbound shipment costs for the retailer replenishments. 

The objective in both the situation is to decide when and how many 

units to be delivered from the supplier to the warehouse and from the 

warehouse to retailers respectively in order to minimize total distribu-

tion and inventory holding costs over the finite horizon without any 

shortages. 

For the class of infinite horizon with deterministic IRP, we dis-

cussed an optimization approach, for a two-stage supply chain imple-

menting VMI with the objective to minimize the overall inventory and 

transportation costs of the SWMR system. We then propose a two-

phase heuristic solution approach, one for inventory management and 

the second for routing optimization.  

For the inventory management problem, retailers are partitioned in-

to subsets in order to minimize the overall inventory costs of the sys-

tem. In this phase, we start by initializing the set of clusters, with each 

retailer in a separate cluster, i.e., the direct shipping case. We then use 

the algorithms proposed by Roundy (1985) and improved by Chu and 

Leon (2008) to find the replenishment interval for each retailer as well 

as the warehouse. These power-of-two order intervals are then used in 

the next phase. 

For the routing problem, a VRP procedure is used to solve the rout-

ing in each of the retailer subsets with the objective of minimizing the 

travelled distance and the transportation costs. As such, we drop the 

assumption of direct shipments from warehouse to retailers, but also 

include the option of combining multiple outbound shipments in the 

so-called milk-runs. In this phase, the retailers are clustered per re-

plenishment interval. Then, we use the savings heuristic of Clarke and 

Wright (1964) for each of the clusters in order to optimize the trans-

portation costs and to select retailers who can be replenished in a 

milk-run rather than with separate direct shipments.  
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The results of the proposed approach allowed us to investigate the 

effectiveness of an inventory management policy before and after the 

implementation of VMI and milk-runs in a two-stage supply chain. 

We discovered that the transportation cost is relevant as the effect of 

VMI and milk-runs can result in a significant inventory and transpor-

tation cost savings. Additionally, we evaluated the results of the vehi-

cle storage capacity restrictions. The vehicle capacity factor is used to 

show that our solution approach not only helps to decide on the fleet 

size, but can also be used to select the most appropriate vehicle type 

for a particular problem in this instance. 

For the class of finite horizon with stochastic IRP, we investigated 

the MP-SIRP where the retailers consume the product at a stochastic 

stationary rate. In particular, we considered a distribution system in 

which a fleet of homogeneous vehicles is used to distribute some 

products from a single warehouse to a set of retailers consuming it at 

stochastic stationary demand rates, during a finite horizon of consecu-

tive periods. The objective is to determine optimal quantities to be 

delivered to the retailers, delivery time, and to design vehicle delivery 

routes, so that the total distribution and inventory costs are minimized 

while some service level is guaranteed at each retailer during each 

period of the planning horizon. 

Based on the formulation of the cyclic IRP model (see, e.g., 

Aghezzaf et al. 2006) and Multi-period IRP (see, e.g., Zhong and 

Aghezzaf 2012), the MP-SIRP is first formulated as a linear mixed-

integer program and then a deterministic equivalent approximation 

model, MP-DAIRPα, is proposed. In this deterministic model, the 

stochastic demand constraints are replaced with deterministic ones 

guaranteeing some predetermined service level at each retailer. This 

latter proposed model also determines the optimal vehicle fleet size in 

each period. 

To solve the problem, a Lagrangian relaxation approach is used to 

decompose the MP-DAIRPα and to derive both lower and upper 

bounds for it. The two sub-problems resulting from this decomposi-

tion are an inventory allocation and a vehicle routing optimization 
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problem in each period. The stochastic aspect of the demand rates is 

taken care of within the inventory allocation sub-problem through the 

provision of safety stocks at the retailers.   

Computational results demonstrate the effectiveness of the pro-

posed Lagrangian relaxation approach. More specifically, we consid-

ered different sets of problem instances with different retailers and 

planning horizon sizes. Each problem instances set is identified by the 

number of retailers N and time horizon T. The four tested problem 

instances sets that are considered in this analyses are: (N=15; T=3), 

(N=15; T=6), (N=25; T=3) and (N=25; T=6). To compare the solution 

values obtained from the Lagrangian relaxation approach, we have 

solved the problem MP-DAIRPα directly for the generated instances 

using AMPL CPLEX 12.5. In terms of computational time, relatively 

better solutions could be obtained by the proposed Lagrangian relaxa-

tion approach within a few minutes, while the solver of the original 

problem takes many hours to complete a run. 

5.2  Further Extensions 

For the SWMR-VMI problem, further research will focus on adapting 

the model with more complex distribution patterns including larger 

sets of retailers, driving-time restrictions on the vehicles and their 

drivers, delivery time windows at the retailers, heterogeneous vehicle 

fleets, multiple warehouses, multiple products etc. For instance, in this 

dissertation, we assumed that a vehicle can make a tour at any time of 

day. However, in most real-case situations, the driving time of the 

vehicles is restricted. Deliveries can only occur during the day. Thus, 

replenishment cycle times are allowed during the day, on weekdays, 

so a vehicle can only drive 8 hours a day, and 5 days a week. Conse-

quently, it is worthwhile to investigate how the SWMR-VMI approach 

can be extended to explicitly take into consideration some demands 

and travel times variability. These two parameters need to be taken 

into account during the development of the distribution plan, because 

it will become the case in more realistic problems and will increase 

the performance of the solution approach. We believe that this is an 
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interesting extension of the SWMR problem and it may be suitable for 

a distribution system with multiple clusters of retailers. 

In the second part, the model and solution approaches presented in 

the multi-period stochastic inventory routing problem (MP-SIRP) 

consider that the retailer-demand is stochastic stationary rates. Beyond 

the possible algorithmic extensions to the multi-period stochastic in-

ventory routing problem, future research could be extended to ac-

commodate more complex distributions such as non-stationary sto-

chastic demand, multiple products, heterogeneous vehicle fleet, retail-

er time windows for delivery, etc. For instance, the demand for prod-

ucts is not only stochastic stationary rates, but may also be non-

stationary. This leads to an irregular pattern of the decision when to 

produce, and how much. This challenging problem needs to be solved 

efficiently. Also, one of the approaches to hedge against the variability 

of demand rates at each retailer is to introduce safety stock, which are 

called ‘fixed’ safety stock (kept at the retailers) and ‘mobile’ safety 

stock (carried by the vehicle during each of the tours). This approach 

needs to be very effective in resolving the issue of uncertainty. More-

over, with respect to the proposed Lagrangian relaxation approach, 

more intelligent heuristic/meta-heuristic or approximation methods are 

worth being investigated, so that the upper bound of the problem 

could be further improved, especially in large-size instances.  
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