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ABSTRACT: The inventory routing problem (IRP) is one of the challenging optimization problems in
supply chain logistics. It combines inventory control and vehicle routing optimization. The main purpose
of the IRP is to determine optimal delivery times and quantities to be delivered to customers, as well
as optimal vehicle routes to distribute these quantities. The IRP is an underlying logistical optimization
problem for supply chains implementing vendor-managed inventory (VMI) policies, in which the supplier takes
responsibility for the management of the customers’ inventory. In this paper, we consider a multi-period
inventory routing problem assuming constant demand rates (MP-CIRP). The proposed model is formulated as
a linear mixed-integer program and solved with a Lagrangian relaxation method. The solution obtained by the
Lagrangian relaxation method is then used to generate a close to optimal feasible solution of the MP-CIRP by
solving a series of assignment problems. The numerical experiments carried out so far show that the proposed
Lagrangian relaxation approach finds quite good solutions for the MP-CIRP and in reasonable computation times.
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1 INTRODUCTION

The inventory routing problem (IRP) is one of the
important and challenging optimization problems in
the management of supply chain logistics. The prob-
lem involves the integration of inventory management
and vehicle routing optimization. The typical main
objective in an IRP is to determine an optimal dis-
tribution policy, consisting of a set of vehicle routes
and delivery quantities that minimize the total inven-
tory holding and transportation costs. This problem
arises in distribution systems implementing a ’Vendor
Managed Inventory’ (VMI) policy. In practice, imple-
menting policies such as VMI has proven to consid-
erably improve the overall performance of the supply
network.

VMI is an agreement between a supplier and his reg-
ular customers according to which customers agree
to the alternative that the supplier decides the tim-
ing and size of the deliveries. This agreement grants
the supplier the full authority to manage invento-
ries at his customers’. This allows the supplier to
act proactively and take responsibility for the inven-
tory management of his regular customers, instead
of reacting to the orders placed by these customers.

The IRP is then an underlying optimization model
for the VMI policy where inventory and distribution
decisions have to be made simultaneously.

2 A BRIEF LITERATURE REVIEW

Since Bell et al. (1983) first investigated the inte-
grated inventory management and vehicle scheduling,
various versions of the inventory routing problems
(IRPs) have been extensively studied. A large va-
riety of solution approaches have also been proposed
for the solution of these problems. Inventory routing
problems can be modeled and approached in different
ways depending on the characteristics of its param-
eters. Different models can be obtained for exam-
ple, when customers consume the product at a stable
or at a variable rate; when the planning horizon is
finite or infinite, and so on. Ferdergruen and Zip-
kin (1984) address a single period IRP with stochas-
tic demands and a fixed fleet vehicle size. Dror and
Ball (1987) decompose a multi-period IRP into series
of single period problem. They study the problem
with constant demands and then propose and com-
pare two solution approaches for the resulting single
period problem. Trudeau and Dror (1992) solve the
similar problem for uncertain demands. Campbell et
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al. (2002) and Campbell and Savelsbergh (2004) also
worked on the multi-period IRPs where the decisions
are executed over a finite horizon. For recent research
devoted to the multi-period IRPs, we refer to e.g. Lei
et al. (2006), Archetti et al. (2007), Yu et al. (2008),
Boudia et al. (2009) and Taarit et al. (2010). Other
fundamental contributions to this body of research
are that of Anily and Federgruen (1990), Gallego and
Simchi-Levi (1990) and Hall (1992). Anily and Feder-
gruen (1990) consider a distribution system with one
warehouse and multiple retailers. The authors take
only transportation costs into account and use fixed
partition policies to derive their solution approach. A
recent thorough review of the literatures on the IRPs
can be found in Andersson et al. (2010).

In a previous work, we focused on the single-vehicle
inventory routing problem (SV-CIRP) (see for exam-
ple Aghezzaf et al. 2011 and Zhong and Aghezzaf
2011). This problem belongs to the class of infinite
planning horizon inventory routing problems. For
this class of problems the appropriate objective func-
tion to be minimized is the total long-run average
transportation and inventory costs. In this paper,
we consider a multi-period inventory routing prob-
lem (MP-CIRP) where the customers consume the
product at a constant rate. This multi-period IRP is
concerned with a distribution system using a fleet of
homogeneous vehicles to distribute a product from a
single depot to a set of customers having stable de-
mands. The considered distribution policies are exe-
cuted over a given finite horizon, for example on a set
T of consecutive periods (or days). The objective is
to determine the quantities to be delivered to the cus-
tomers, the delivery time, and to design the vehicle
delivery routes, so that the total distribution and in-
ventory costs are minimized. The resulting distribu-
tion plan must prevent stockouts from occurring at all
customers during the planning horizon. Based on the
formulation of the SV-CIRP given in (Aghezzaf et al.
2011, Zhong and Aghezzaf 2011) and the distribution
pattern of ’multi-tour’, i.e. a vehicle can make a set
of different tours when it is used (see e.g. Aghezzaf et
al. 2006), we build up a practical linear mixed-integer
model for this MP-CIRP. This proposed model con-
siders the vehicle fleet size as part of the optimization
problem and has to be determined. Also, the initial
inventory levels at the customers have to be deter-
mined in this problem, instead of predefined amounts
as done in some other works (see for example Yu et
al. 2008, Taarit et al. 2010 and references therein).
In addition, a Lagrangian relaxation method to solve
this MP-CIRP is developed and thoroughly discussed.
Numerical experiments demonstrate the effectiveness
of this proposed approach.

The remainder of this paper is organized as follows.
In Section 2, a linear mixed-integer formulation for
the MP-CIRP is presented. In Section 3, a La-

grangian relaxation based approach proposed to de-
compose and solve the considered MP-CIRP is thor-
oughly discussed. In Section 4, some computational
results are presented and compared with the results
obtained by the CPLEX solver. Finally, some con-
cluding remarks are provided in Section 5.

3 FORMULATION FOR THE MP-CIRP

As already mentioned above, the MP-CIRP, discussed
in this paper, consists of a single distribution center
r using a fleet of homogeneous vehicles to distribute
a single product to a set of geographically dispersed
customers S over a given planning horizon. It is as-
sumed that customer-demand rates and travel times
are stable over time. Thus, the objective of this MP-
CIRP is to determine the quantities to be delivered
to the customers, the delivery time, and to design
the vehicle delivery routes, so that the total distribu-
tion and inventory costs is minimized while prevent-
ing stockouts from occurring at all customers during
the whole planning horizon.

To build up our model for the MP-CIRP, some main
assumptions are made below:

• The time necessary for loading and unloading a
vehicle is neglected in the model;

• Inventory capacities at the depot and the cus-
tomers are assumed to be large enough so that
the corresponding capacity constraints can be
omitted in the model;

• Transportation costs are assumed to be propor-
tional to travel times;

• Split deliveries are not allowed, each customer
is always completely replenished by one vehicle,
in the same tour in each period of the planning
horizon.

A more formal description and a proposed linear
mixed-integer formulation of the MP-CIRP are given
in the following paragraphs:

Let H = {1, 2, ..., T} be the planning horizon set of
consecutive periods indexed by t. Let π be the size in
time unit of one period, for example 8 working hours.
Let S be the set of customers indexed by i and j;
and S+ = S ∪ {0}, where 0 represents the depot. A
homogeneous fleet of vehicles V is used to serve these
customers. The other necessary parameters of the
model are given below:

• ψv: the fixed operating cost of vehicle v ∈ V (in
euro per vehicle);
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• κv: the capacity of vehicle v ∈ V (in ton);

• ηjt: the per unit per period holding cost of the
product at customer j ∈ S (in euro per ton per
period);

• ηj0: the initial per unit holding cost of product
at customer j ∈ S (in euro per ton);

• Djt: the demand at customer j ∈ S in period
t ∈ H (in ton), i.e. Djt = djtπ for t ∈ H, where
djt represents the demand rate at customer j (in
ton per hour);

• δ: travel cost of vehicle (in euro per km);

• ν: vehicle average speed (in km per hour);

• trij : duration of a trip from customer i ∈ S+ to
customer j ∈ S+ (in hour);

• ϕjt: the handling cost per delivery at customer
j ∈ S in period t ∈ H (in euro per delivery).

The variables of the model are defined as follows:

• Ijt: the inventory level at customer j ∈ S by the
end of period t ∈ H (in ton);

• Ij0: the initial inventory level at customer j ∈ S
(in ton);

• Qv
ijt: the quantity of product remaining in vehi-

cle v ∈ V when it travels directly to the customer
j ∈ S+ from customer i ∈ S+ in period t ∈ H.
This quantity equals zero when the trip (i, j) is
not on any tour made by vehicle v ∈ V in period
t (in ton);

• qjt: the quantity that is delivered to customer
j ∈ S in period t ∈ H, and 0 otherwise (in ton);

• xvijt: a binary variable sets to 1 if customer
j ∈ S+ is visited immediately after customer
i ∈ S+ by vehicle v ∈ V in period t ∈ H, and 0
otherwise;

• yv: a binary variable sets to 1 if vehicle v ∈ V is
being used, and 0 otherwise;

Thus, the linear mixed-integer formulation for the
multi-period IRP is given as follows:

(MP-CIRP) Minimize

CV =
∑
v∈V

∑
t∈H

∑
i∈S+

∑
j∈S+

(δνtrij + ϕjt)x
v
ijt

+
∑
v∈V

ψvyv +
∑
t∈H

∑
j∈S

ηjtIjt +
∑
j∈S

ηj0Ij0 (1)

Subject to:

∑
v∈V

∑
i∈S+

xvijt ≤ 1, ∀j ∈ S, t ∈ H, (2)

∑
i∈S+

xvijt −
∑
k∈S+

xvjkt = 0, ∀j ∈ S+, t ∈ H, v ∈ V, (3)

Ij1 = Ij0 + qj1 −Dj1, ∀j ∈ S, (4)

Ijt = Ij,t−1 + qjt −Djt, ∀j ∈ S, t ∈ H and t ≥ 2, (5)

∑
v∈V

∑
i∈S+

Qv
ijt−

∑
v∈V

∑
k∈S+

Qv
jkt = qjt, ∀j ∈ S, t ∈ H, (6)

Qv
ijt ≤ κvxvijt, ∀i, j ∈ S+, t ∈ H, v ∈ V, (7)

∑
i∈S+

∑
j∈S+

trijx
v
ijt ≤ π, ∀t ∈ H, v ∈ V, (8)

Ij0 ≤ Ijt ∀j ∈ S, t ∈ H and t = T, (9)

∑
i∈S+

xvijt ≤ yv, ∀j ∈ S, t ∈ H, v ∈ V, (10)

xvijt, y
v ∈ {0, 1} , Ij0, Ijt ≥ 0, Qv

ijt ≥ 0, qjt ≥ 0,

∀i, j ∈ S+, t ∈ H, v ∈ V. (11)

The objective function (1) is similar to the one con-
sidered for SV-CIRP (see e.g. Aghezzaf et al. 2011).
Here also, the same four cost components are consid-
ered. The total fixed operating cost of using the ve-
hicle(s) given by

∑
v ψ

vyv. The total transportation
cost given by

∑
v

∑
t

∑
i

∑
j δνtrijx

v
ijt. The total de-

livery handling cost given by
∑

v

∑
t

∑
i

∑
j ϕjtx

v
ijt.

The total inventory holding cost, including the ini-
tial inventory holding cost and the inventory hold-
ing cost at every end of period t ∈ H, given by∑

t

∑
j (ηjtIjt + ηj0Ij0).

For the restrictions, constraints (2) guarantee that
each customer is visited by each vehicle at most once
in period t. Constraints (3) are the usual flow con-
servation constraints assuring that if a vehicle arrives
at a customer, it must leave after it served this cus-
tomer to a next customer or to the depot. Constraints
(4), (5) are the inventory balance constraints of each
customer. Constraints (6) are the delivered load bal-
ance constraints. These constraints eliminate possible
formation of sub-tours. Constraints (7) ensure that
the quantity carried by a vehicle should not exceed
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the vehicle’s maximum capacity. Constraints (8) in-
dicate that the total travel time of a vehicle should
not exceed the considered horizon length in each pe-
riod. Constraints (9) indicate that the final inventory
level at customer j at the end of period T shall cover
its initial inventory. Constraints (10) indicate that at
every period, a vehicle cannot be used to serve any
customer unless this vehicle is already selected. Con-
straints (11) are the integrality and sign constraints
to be imposed on the variables.

4 LAGRANGIAN RELAXATION FOR
MP-CIRP

The MP-CIRP is an NP-complete problem as it con-
tains the vehicle routing problem (VRP), known to
be NP complete, as a sub-problem in each period.
Large instances of the MP-CIRP are therefore hard
to solve to optimality in a reasonable computational
time. This section discusses a Lagrangian relaxation
approach to decompose and possibly solve or generate
some lower and upper bounds for the problem.

In the proposed Lagrangian relaxation procedure for
MP-CIRP, constraints (6) are assumed to be the com-
plicating restrictions and are relaxed. Along the same
lines as in Taarit et al. 2010, the resulting problem
decomposes into an inventory allocation sub-problem
(denoted by IA-P) and a vehicle routing sub-problem
(denoted by RT-P). These sub-problems involve fewer
variables and constraints respectively and they can be
solved more efficiently by some standard optimization
MIP-solver. Afterwards, a sub-gradient algorithm
(Fisher 1981, Shor 1985) is applied to update the La-
grangian multipliers and derive a lower bound on the
optimal solution of the original problem. The La-
grangian relaxation approach is extensively and suc-
cessfully used to solve complicated mixed-integer pro-
grams (see e.g. Yu et al. 2008, Li et al. 2009).

4.1 Relaxation and decomposition

Reconsider the formulation of MP-CIRP, as men-
tioned above, the constraints that complicate this
model, constraints (6), combine inventory allocation
variables q and flow variables Q. These constraints
are relaxed and incorporated in the objective func-
tion with unrestricted Lagrangian multipliers µjt for
all j ∈ S and t ∈ H. The resulting relaxed problem
(denoted by RP-MPIRP) is then stated as follows:

(RP-MPIRP) Minimize

CVLR =
∑
v∈V

∑
t∈H

∑
i∈S+

∑
j∈S+

(δνtrij + ϕj)x
v
ijt

+
∑
v∈V

ψvyv +
∑
t∈H

∑
j∈S

ηjtIjt +
∑
j∈S

ηj0Ij0

+
∑
t∈H

∑
j∈S

µjt

(
qjt +

∑
v∈V

∑
k∈S+

Qv
jkt −

∑
v∈V

∑
i∈S+

Qv
ijt

)
(12)

Subject to (2)-(5) and (7)-(11).

As in Taarit et al. 2010, the relaxed problem (RP-
MPIRP) can then be decomposed into two sub-
problems: an inventory allocation sub-problem (IA-
P) and a vehicle routing sub-problem (RT-P), stated
below respectively:

The inventory allocation sub-problem (IA-P):
(IA-P) Minimize

CVIA−P =
∑
t∈H

∑
j∈S

ηjtIjt+
∑
j∈S

ηj0Ij0+
∑
t∈H

∑
j∈S

µjtqjt(13)

Subject to (4) - (5), (9) and

∑
t∈H

Djt − Ij0 ≤
∑
t∈H

qjt for all j ∈ S, (14)

Ij0 ≥ 0, Ijt ≥ 0, qjt ≥ 0, ∀j ∈ S,∀t ∈ H. (15)

Note that the sub-problem IA-P can be further de-
composed into independent sub-problems associated
with each customer j (∀j ∈ S). Moreover, a set of
valid constraints (14) are appended to the formulation
of IA-P in order to enhance the relaxed sub-problem.
These constraints prevent stockouts at each customer
over the planning horizon.

Similarly, to enhance the relaxed sub-problem RT-P,
the following valid constraints need to be appended
to the model (Taarit et al. 2010):

Dj1 − Ij0 ≤
∑
v∈V

∑
i∈S+

Qv
ij1 for all j ∈ S (16)

The above inequalities prevent stockouts at each cus-
tomer during the first period of the planning horizon.
Therefore, the sub-problem RT-P is presented as fol-
lows:

(RT-P) Minimize

CVRT−P =
∑
v∈V

∑
t∈H

∑
i∈S+

∑
j∈S+

(δνtrij + ϕj)x
v
ijt

+
∑
v∈V

ψvyv

+
∑
t∈H

∑
j∈S

µjt

(∑
v∈V

∑
k∈S+

Qv
jkt −

∑
v∈V

∑
i∈S+

Qv
ijt

)
(17)
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Subject to (2) - (3), (7) - (8), (10) and (16),

xvijt, y
v ∈ {0, 1} , Qv

ijt ≥ 0, ∀i, j ∈ S+, t ∈ H, v ∈ V (18)

Also note that the sub-problem RT-P can be further
decomposed into independent sub-problems associ-
ated with every period t of the planning horizon H.
The sub-problem RT-P is a mixed-integer program
with fewer variables and constraints than the original
routing problem, and it can be solved more efficiently
by the standard Branch-and-Bound.

4.2 Lagrangian procedure

Based on the above decomposition of the original MP-
CIRP, a lower bound to the optimal solution of the
original problem can be generated for any given La-
grangian multipliers µ. The best lower bound can
be obtained by the optimal Lagrangian multipliers,
solution of the following Lagrangian dual problem of
LR-MPIRP (denoted by DP-MPIRP):

(DP-MPIRP) Maximize D (µjt)

where D (µjt) =

Min
∑
v∈V

ψvyv +
∑
v∈V

∑
t∈H

∑
i∈S+

∑
j∈S+

(δνtrij + ϕj)x
v
ijt

+
∑

t∈H
∑

j∈S ηjtIjt +
∑

j∈S ηj0Ij0

+
∑
t∈H

∑
j∈S

µjt

(
qjt +

∑
v∈V

∑
k∈S+

Qv
jkt −

∑
v∈V

∑
i∈S+

Qv
ijt

)
(19)

is the solution value of the relaxed problem LR-
MPIRP.

To solve the problem DP-MPIRP, the corresponding
sub-problems IA-P and RT-P have to be solved, and
then a sub-gradient algorithm is used to improve the
value of D (µjt). In addition, a Lagrangian heuristic
method is developed to provide a feasible solution of
the MP-CIRP. Thus, the sub-gradient optimization
procedure generates lower bounds and upper bounds
iteratively and tries to update the best lower bound
and upper bound of the problem. The main proce-
dure is summarized in the following algorithm.

Recall the formulation of MP-CIRP, let X =(
xvijt, y

v
)

be the binary variables of the model, Z =(
Qv

ijt, qjt, Ijt, Ij0
)

be the continuous variables, let
P = {(X,Z) : (2) , ..., (11)} be the set of feasible so-
lutions determined by the system of the constraints
(2) - (11). Thus, an instance of the MP-CIRP can
be stated as Min(X,Z)∈PCV (X,Z), where CV is the
cost function (1). In addition, let gjt (∀j ∈ S,∀t ∈ H)

denote the corresponding subgradients in the opti-
mization procedure, where

gjt = qjt +
∑
v∈V

∑
k∈S+

Qv
jkt −

∑
v∈V

∑
i∈S+

Qv
ijt. (20)

Thus, the proposed algorithm is presented as below:

Algorithm 1 (The Lagrangian procedure for MP-
CIRP)

Step 0. (Initialization):

Let LB be the best lower bound, UB be the best upper
bound, and (X∗, Z∗) be the optimal solution found
so far. Let σ be the subgradient agility and k be the
iteration number. Initialize LB = 0, k = 1, initialize
the values for the Lagrangian multipliers µ and the
value for σ ∈ (0, 1).

Step 1. (Initializing the first UB):

Generate a feasible solution (X0, Z0) for the MP-
CIRP by supposing each customer j ∈ S is served
by one vehicle separately, and then solve the corre-
sponding inventory allocation problems to obtain the
objective value CV (X0, Z0) of the MP-CIRP. Let the
current best upper bound UB := CV (X0, Z0), and
update (X∗, Z∗) := (X0, Z0).

Step 2. (Lower bound computation):

Solve the sub-problems IA-P(µk) and RT-P(µk) re-
spectively. Let Ck

IA−P and Ck
RT−P denote the corre-

sponding objective values, then the new lower bound
value is Ck

LR := Ck
IA−P + Ck

RT−P . If this new lower

bound is greater than LB, then set LB := Ck
LR; oth-

erwise set σ := σ/2.

Step 3. (Upper bound computation):

Based on the solutions of IA-P(µk) and RT-P(µk),
the Lagrangian heuristic method (see the algorithm
in Section 4.3) is called to derive a feasible solution
(Xk, Zk). If this solution improves the current best
upper bound, then set UB := CV (Xk, Zk), and up-
date (X∗, Z∗) := (Xk, Zk).

Step 4. (Updating µ):

Set step size sk by sk := σ
(
UB − Ck

LR

)
/ ‖gk‖2,

where gk are the current subgradients, determined by
(20). Update the Lagrangian multipliers in iteration
k + 1: µk+1 := µk + skgk.

Step 5. (Stopping rule):

If (1) k exceeds the maximal number of iterations, or
(2) Ck

LR is not improved for a given number of it-
erations, then output the LB, UB and the current
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optimal solution (X∗, Z∗), and stop; otherwise set
k := k + 1, and then go to Step 2.

4.3 Lagrangian heuristic method

Solving the sub-problems of IA-P and RT-P generates
a lower bound for the MP-CIRP. However due to the
relaxation procedure, solutions obtained by solving
IA-P and RT-P at each iteration are not feasible for
the original problem (MP-CIRP). Therefore, referring
to the IRP heuristic method developed in Aghezzaf et
al. (2006) and the VRP heuristic method developed
in Clarke and Wright (1964), we propose a saving-
based heuristic approach that exploits the Lagrangian
information, to derive a feasible solution for the MP-
CIRP at each iteration.

In brief, the optimal solution of sub-problem IA-P
provides the information on the quantities that have
to be delivered to each customer at each period of
the planning horizon. These quantities can be consid-
ered as customer orders and a vehicle routing prob-
lem is then solved for each period separately. The
resulting solution is feasible if the corresponding con-
straints, such as the vehicle capacity constraints and
the traveling time constraints, are not violated. De-
tailed steps of this algorithm are presented in the fol-
lowing paragraphs.

For each period t ∈ H, we assume that qj is the
quantity to be delivered to the customer j ∈ S. Let
Rt be the set of served customers in period t, i.e.
Rt = {j : qj > 0,∀j ∈ S} ,∀t ∈ H. Note that Rt is
possibly a void set for some t ∈ H. In this case, it
can be neglected and no vehicle route needs to be gen-
erated. The proposed saving-based heuristic method
is then outlined as below:

Algorithm 2 (The Lagrangian heuristic algorithm
for MP-CIRP)

Step 0. (Initialization):

Suppose one vehicle is available for serving the cus-
tomers (i.e. though the traveling time constraint is
satisfied by each tour, it is ignored at first at the level
of multi tour). A temporary multi-tour is initiated
with the basic multi-tours, each serving one of the
customers by the vehicle. There are thus as many
tours in the initial temporary multi-tour as there are
customers in the set Rt.

Step 1. (Savings):

The core of the saving-based heuristic is the process
of combining two tours into one multi-tour to achieve
some cost saving. This is implemented as follows:

• Suppose the current multi-tour L∗ makes n tours.

These n tours are put into a single list of tours
C1, ..., Cn. We then calculate the cost values
CV C1

, ..., CV Cn

for each tour.

• For all 1 ≤ i < j ≤ n, combine tours Ci

and Cj into one tour, denoted by C+ (by
finding the TSP through all customers covered
by both tours plus the depot. If this tour is
infeasible (that is it doesn’t satisfy the travel
time constraint) then it is disregarded and
generate a new multi-tour that makes tours
C1, ..., Ci−1, Ci+1, ..., Cj−1, Cj+1, ..., Cn and
C+. If the cost value CV C+

is smaller than the
sum of cost values of Ci and Cj, then we have
achieved a saving SV := CV Ci

+CV Cj−CV C+

.

• Calculate all combinations of two tours from the
list and the best feasible combination is kept, i.e.
the one which results in the largest saving. This
best feasible combination is then added to the tour
list and the two combined tours are removed from
the list.

Step 2. (Stopping rule):

Repeat Step 1 until no further feasible combination
resulting in a positive saving can be found. Calculate
the total traveling time Tmin for the current multi-
tour L∗, if Tmin > π, then calculate the vehicle num-
ber V N := bTmin/πc + 1, and add the correspond-
ing additional fixed using costs of the vehicles to the
multi-tour cost. Finally output the best feasible multi-
tour and its cost value.

Through calling the Algorithm 2, we find a feasible
solution for each period t ∈ H (Rt 6= φ) separately.
As a consequence, at each iteration of the Lagrangian
relaxation approach, we generate a feasible solution
that is an upper bound for the MP-CIRP using the
above saving-based heuristic algorithm. The best up-
per bound is updated iteratively as long as a better
delivery schedule is obtained. To improve the up-
per bound of the MP-CIRP further, we apply an ad-
justment procedure to the best feasible solution of
the MP-CIRP found by the Lagrangian relaxation
approach. The main goal of this adjustment is to
eliminate the unnecessary deliveries to the customers
during the planning horizon as many as possible, and
to diminish the potential transportation costs in the
meantime.

Roughly speaking, the adjustment procedure is to
try to combine two or more deliveries at customer j
(j ∈ S) into one delivery. As long as a better feasible
solution of the MP-CIRP is found, then this adjust-
ment is called an effective adjustment and it is kept.
Details of the adjustment procedure are presented as
follows:
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Algorithm 3 (The adjustment procedure for MP-
CIRP)

Step 0. (Initialization):

Let UB be the best upper bound and (X∗, Z∗) be
the optimal solution found so far. Let q∗jt ∈ Z∗

(∀j ∈ S,∀t ∈ H) be the current best delivery
schedule and I∗j0 ∈ Z∗ (∀j ∈ S) be the current
best initial inventory level. Let W be the set
of the customers that have more than one de-
livery during the planning horizon, i.e. W ={
j : q∗jm > 0 and q∗jn > 0, for all m,n ∈ T, and m 6= n

}
.

Initialize the iteration number k = 0.

Step 1. (Adjustment):

For all remaining customers in the set W , do the ad-
justment as follows:

(1-a): Select a customer j from W , and delete it
from the set W . For this customer, starting from
the final period during which the delivery takes place,
do the delivery combination. Let qkjt be the cur-
rent delivery schedule, the combination is executed

as qkjm :=
(
q∗jm +

∑
m<n≤T q

∗
jn

)
≤ κ and then set∑

m<n≤T q
k
jn = 0, for q∗jm > 0, q∗jn > 0 and 1 ≤

m < n ≤ T , where κ is the vehicle capacity. In the
same time, adjust the corresponding inventory lev-
els of customer j. For this new delivery schedule,
call the saving-based heuristic approach (Algorithm
2) to find a new feasible solution (Xk, Zk). If this
new solution gives a better objective value such that
CV (Xk, Zk) < UB, then update the current best up-
per bound by UB := CV (Xk, Zk), and update the
current optimal solution by (X∗, Z∗) := (Xk, Zk).

(1-b): For customer j, according to the current
best delivery schedule q∗jt, if there still exist q∗jm >
0 and q∗jn > 0, for 1 ≤ m < n ≤ T , then absorb the
delivered quantities at period m into the initial inven-
tory. Let Ikj0 be the current initial inventory level, the

absorbing is executed as Ikj0 :=
(
I∗j0 +

∑
1≤m<n q

∗
jm

)
and qkjn :=

(
q∗jn +

∑
1≤m<n q

∗
jm

)
≤ κ, and then

set
∑

1≤m<n q
k
jm = 0, for q∗jm > 0, q∗jn > 0 and

1 ≤ m < n ≤ T . At the same time, adjust the cor-
responding inventory levels of customer j. Then call
Algorithm 2 for the new delivery schedule to find a
new feasible solution (Xk, Zk). If a better feasible so-
lution is obtained, then update the current best upper
bound by UB := CV (Xk, Zk), and update the current
optimal solution by (X∗, Z∗) := (Xk, Zk).

Step 2. (Stopping rule):

If there exist remaining customers in set W , then set
k := k + 1 and goto Step 1. Otherwise output UB
and the optimal solution (X∗, Z∗), and stop.

Through the above adjustment procedure (Algorithm
3), we try to eliminate those unnecessary deliveries
during the planning horizon as many as possible, and
meanwhile to diminish the potential transportation
costs. Thus, the upper bound of the MP-CIRP could
be improved as far as possible.

5 NUMERICAL EXPERIMENTS

In this section, we present some numerical experi-
ments to evaluate the performance of the proposed
Lagrangian relaxation approach for the MP-CIRP,
using some randomly generated instances according
to the generation scheme proposed by Yu et al. 2008.
We consider different sets of problem instances with
different customer and planning horizon sizes. Each
problem set is identified by the number of customers
N and time horizons T . The four tested problem sets
are considered: (N = 15, T = 3), (N = 15, T = 6),
(N = 25, T = 3) and (N = 25, T = 6).

More specially, for the set of the instances consisting
of 15 customers (denoted by A15-x-T-y, where ’x’ is
the index of instances and ’y’ is the index of time hori-
zons), the customers are distributed randomly and
uniformly over a square of 30 by 30 km, and the distri-
bution center is always put in the center of the square.
Demand rates of customers are generated randomly
and uniformly between 1 and 3 ton per hour. The
inventory holding costs are generated randomly and
uniformly between 0.1 and 0.15 (in euro per ton per
period). Fixed delivery handling costs are the same
for all customers, which are 25 euro per delivery. A
fleet of homogeneous vehicles with capacity 100 ton
is used to serve these customers. The fixed using cost
for each vehicle is 50 euro. The vehicles can travel up
to 50 km per hour, and the travel cost of vehicle is 1
euro per km per hour. The time unit of one period
π is set to 8 hours in all instances. Whereas for the
set of the instances consisting of 25 customers (de-
noted by A25-x-T-y), the customers are distributed
randomly over a square of 100 by 100 km (in clus-
ters), and the depot is always put in the center of
the square. Demand rates of customers are gener-
ated randomly and uniformly between 0.1 and 3 ton
per hour. The inventory holding costs are also gen-
erated randomly and uniformly between 0.1 and 0.15
(in euro per ton per period) and fixed delivery han-
dling costs are 10 euro per delivery. Again, a fleet of
homogeneous vehicles with capacity 100 ton is used to
serve the customers. The vehicles can also travel up
to 50 km per hour, and the travel cost of vehicle is 1
euro per km. The fixed using cost of one vehicle is 30
euro. Also, the time unit of one period π is still set to
8 hours in all instances. The proposed approach for
the MPRIP is implemented in MATLAB R14 7.0.1
with the callable library of TOMLAB (Holmstrom et
al. 2010) and all instances are tested on a laptop
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with Intel Core(TM)2 CPU T5500 @1.66GHz, 1.0GB
RAM.

To compare our solution values obtained from the La-
grangian relaxation approach, we also solve the gener-
ated instances using AMPL with CPLEX 11.2. All in-
stances are executed on a Dell PC with Pentium(R) 4
CPU @3.00GHz, 1.0GB RAM. Due to a large number
of variables and constraints in the problem, solving
the instances with AMPL is quite time-consuming,
even for the small-size problems. Therefore, we pre-
set the time limitation of running an instance is
8 hours, 10 hours, 12 hours and 15 hours for the
problem sets of (N = 15, T = 3), (N = 15, T = 6),
(N = 25, T = 3) and (N = 25, T = 6) respectively.
The computational results of these different problem
sets are shown in the following tables.

Instances LB(eur) UB(eur) CPU(s) Gap1
A15-0-T-3 676.08 712.67 49.933 5.134
A15-1-T-3 678.35 724.14 52.760 4.878
A15-2-T-3 678.22 715.43 57.609 5.202
A15-3-T-3 655.71 701.92 51.688 6.584
A15-4-T-3 690.22 741.07 58.437 6.862
A15-5-T-3 677.78 730.91 50.781 7.263
A15-6-T-3 624.16 644.12 52.422 3.097
A15-7-T-3 552.91 562.69 52.140 1.737
A15-8-T-3 646.87 678.77 49.985 4.699
A15-9-T-3 648.28 676.18 53.547 4.125
Average 52.930 4.958

Table 1: Results of the instances with (N=15,T=3)

Instances LB(eur) UB(eur) CPU(s) Gap1
A15-0-T-6 1006.93 1258.50 127.341 19.989
A15-1-T-6 997.57 1221.10 98.672 18.305
A15-2-T-6 955.81 1178.00 95.656 18.862
A15-3-T-6 956.75 1289.40 100.110 25.796
A15-4-T-6 1004.76 1264.70 139.090 20.554
A15-5-T-6 1007.98 1268.30 127.400 20.525
A15-6-T-6 888.60 1053.80 110.271 15.676
A15-7-T-6 866.07 1074.20 110.020 19.374
A15-8-T-6 924.78 1175.40 122.733 21.326
A15-9-T-6 947.51 1202.90 132.672 21.228
Average 116.388 20.163

Table 2: Results of the instances with (N=15,T=6)

For different problem sets, Table 1- 2 and Table 5 give
the lower bounds and upper bounds found by the La-
grangian relaxation approach, and the gaps between
lower bounds and upper bounds, i.e. Gap1, where it
is determined by

Gap1 =
UB − LB

UB
× 100%

Instances UB-LR(eur) UB-AMPL(eur) Gap2
A15-0-T-3 712.67 711.39 0.179
A15-1-T-3 724.14 723.18 0.132
A15-2-T-3 715.43 712.34 0.432
A15-3-T-3 701.92 697.48 0.632
A15-4-T-3 741.07 727.05 1.831
A15-5-T-3 730.91 720.82 1.397
A15-6-T-3 644.12 644.12 0
A15-7-T-3 562.68 562.68 0
A15-8-T-3 678.77 670.94 1.153
A15-9-T-3 676.18 676.18 0
Average 0.575

Table 3: Solution comparisons of the Lagrangian re-
laxation approach and AMPL: (N=15, T=3)

Instances UB-LR(eur) UB-AMPL(eur) Gap2
A15-0-T-6 1258.50 1231.40 2.153
A15-1-T-6 1221.10 1174.77 3.794
A15-2-T-6 1178.00 1130.27 4.052
A15-3-T-6 1289.40 1210.03 6.134
A15-4-T-6 1264.70 1227.70 2.925
A15-5-T-6 1268.30 1222.04 3.621
A15-6-T-6 1053.80 1043.52 0.976
A15-7-T-6 1074.20 1031.13 4.009
A15-8-T-6 1175.40 1132.42 3.656
A15-9-T-6 1202.90 1158.95 3.653
Average 3.496

Table 4: Solution comparisons of the Lagrangian re-
laxation approach and AMPL: (N=15, T=6)

In addition, in Table 3- 4 and Table 6, the com-
parisons between the results obtained from the La-
grangian relaxation approach and AMPL are pre-
sented, and the values of Gap2 illustrate the differ-
ence in the upper bounds, where

Gap2 =
UBLR − UBAMPL

UBLR
× 100%

Note that for the problem sets (N = 15, T = 3) and
(N = 15, T = 6), in the limitation of running time,
the most of the instances are solved to optimal-
ity with AMPL. The results shown in the tables
demonstrate the effectiveness of the proposed La-
grangian relaxation approach. Near optimal solu-
tions are found for the problem sets (N = 15, T = 3)
and (N = 15, T = 6) by the Lagrangian relaxation
approach. For these two problem sets, the gaps be-
tween the solutions obtained from the Lagrangian re-
laxation approach and AMPL, in average, are 0.575%
and 3.496% respectively, and the worst case is 1.831%
and 6.134% respectively. The averaged gaps between
the upper bound and lower bound for these two prob-
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Instances LB(eur) UB(eur) CPU(s) Gap1
A25-0-T-3 884.74 1097.50 479.44 19.388
A25-1-T-3 1043.31 1356.80 657.19 23.104
A25-2-T-3 855.28 1094.31 570.58 21.840
A25-3-T-3 806.88 1030.50 600.23 21.788
A25-4-T-3 1066.41 1348.49 644.11 20.918
Average 590.30 21.407

A25-0-T-6 1410.46 1882.60 1042.90 25.080
A25-1-T-6 1782.30 2307.03 1159.56 22.751
A25-2-T-6 1371.52 1907.90 1141.33 28.118
A25-3-T-6 1234.55 1697.10 954.22 26.078
A25-4-T-6 1765.40 2314.35 1109.80 23.722
Average 1081.56 25.147

Table 5: Results of the instances with (N=25,T=3)
and (N=25,T=6)

Instances UB-LR(eur) UB-AMPL(eur) Gap2
A25-0-T-3 1097.50 1087.62 0.900
A25-1-T-3 1356.80 1280.59 5.616
A25-2-T-3 1094.31 1068.06 2.394
A25-3-T-3 1030.50 1017.63 1.249
A25-4-T-3 1348.49 1290.88 4.273
Average 2.886

A25-0-T-6 1882.60 1790.51 4.886
A25-1-T-6 2307.03 2254.43 2.280
A25-2-T-6 1907.90 1813.72 4.932
A25-3-T-6 1697.10 1630.73 3.910
A25-4-T-6 2314.35 2196.17 5.106
Average 4.221

Table 6: Solution comparisons of the LR approach
and AMPL: (N=25, T=3) and (N=25, T=6)

lem sets are 4.958% and 20.163% respectively. Com-
pared with the running time of AMPL, the aver-
aged computation time is only 1 or 2 minutes. On
the other hand, for the problem sets (N = 25, T = 3)
and (N = 25, T = 6), the averaged values of Gap1
are 21.407% and 25.147% respectively, whereas the
averaged values of Gap2 are 2.886% and 4.221% re-
spectively. We observe that the MP-CIRP may be-
come more flexible to make a tradeoff between the
distribution costs and the inventory costs in multi-
ple periods, with the increase of the planning hori-
zon from T = 3 to T = 6. Thus the averaged
values of Gap2 rise to 3.496% and 4.221% for the
problems sets (N = 15, T = 6) and (N = 25, T = 6)
respectively, when they are compared with the cor-
responding values of problem sets with T = 3 (see
Table 4 and Table 6). In terms of the computation
times, high quality solutions can be obtained by the
proposed Lagrangian relaxation approach.

6 CONCLUSION

The considered multi-period inventory routing prob-
lem (MP-CIRP) consists in a single depot distributing
a single product to a set of customers having station-
ary demands, using a fleet of homogeneous vehicles
over a given finite horizon. The objective is to deter-
mine the quantities to be delivered to the customers,
the delivery time, and to design the vehicle delivery
routes, so that the total distribution and inventory
costs are minimized. In this paper, this MP-CIRP
is formulated as a linear mixed-integer program with
some side contraints. A Lagrangian relaxation ap-
proach is proposed to decompose the MP-CIRP and
to derive both lower bound and upper bound for the
problem. Computational results on some medium size
instances demonstrate the effectiveness of the pro-
posed Lagrangian relaxation approach. It can find
high quality solutions for the MP-CIRP in a reason-
able computational time. Numerical experiments on
the large-scale problems are currently in preparation,
and other extensions to the MP-CIRP and its solution
approaches are also under investigation.
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