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Abstract 
 
 
 
One of the assumptions of the Capacitated Facility Location Problem (CFLP) is that 

demand is known and fixed. Most often, this is not the case when managers take some 

strategic decisions such as locating facilities and assigning demand points to those 

facilities. In this paper we consider demand as stochastic and we model each of the 

facilities as an independent queue. Stochastic models of manufacturing systems and 

deterministic location models are put together in order to obtain a formula for the 

backlogging probability at a potential facility location.  

Several solution techniques have been proposed to solve the CFLP. One of the most 

recently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, is 

implemented in order to solve the model formulated. We present some computational 

experiments in order to evaluate the heuristics’ performance and to illustrate the use of 

this new formulation for the CFLP. The paper finishes with a simple simulation 

exercise. 
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1. Introduction 

 
 Transportation costs and location-specific fixed costs are often a major 

component of the price (cost) of goods. The Facility Location Problem (FLP), 

introduced by (Balinski 1965) addresses the problem of locating a new set of facilities 

in such a way that the sum of those two costs is minimized. 

 Another concern when designing and operating a manufacturing system is the 

capacity the system tolerates: given the processing facilities, what is the maximum rate 

of order receipt that can be accepted so that all the orders can be satisfied? The 

Capacitated Facility Location Problem (CFLP) is a variant of the FLP, which includes 

capacities for the facilities. With the inclusion of the capacities, an open facility that is 

the least cost source for a demand node may not be able to serve any of the demand at 

that node. 

 The capacities of the facilities as well as the demand at each of the demand 

nodes have been assumed to be known deterministic parameters. In this paper we relax 

these assumptions by considering that the demand is stochastic following a given 

probability distribution and where capacity at each facility results from the probability 

of losing or backlogging the demand. 

 Stochastic models on manufacturing systems give us some important results, 

using analytical techniques such as stochastic processes, queuing theory and reliability 

theory, which allow the computation of the referred probabilities as a function of arrival 

and service rates.  In this paper we introduce these considerations in the CFLP.  The 

objective is to find the best location of facilities (the one that minimizes total 

transportation and fixed costs) maintaining the probability of losing /backlogging 

demand on a small level. 
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 The CFLP considers that distinct potential facility sites present different fixed 

costs for locating a facility, that facilities being sited are constrained to a given capacity 

level on the demand they can serve and that we do not know, a priori, the optimal 

number of facilities to be opened. These assumptions make from the CFLP a complex 

problem that is difficult to solve. There is a vast literature concerning the development 

and testing of new algorithms that search for the solution to the problem. 

   The most common approach to solving the CFLP is the use of Lagrangean 

heuristics. These heuristics are based on a Lagrangean relaxation and some method for 

solving the Lagrangean dual problem. More recently Greedy Heuristics, Tabu Search 

and Genetic Algorithms have been proposed to solve the CFLP. Based on previous 

research we will propose a heuristic algorithm to solve the new version of the model. 

 The paper is organized as follows: in section 2 we describe the Single Source 

Capacitated Facility Location Problem; in section 3 we give a brief description of 

stochastic manufacturing models whose results are to be used in section 4 in order to 

formulate the Queue Length Capacitated Facility Location Problem. In section 5 we 

describe heuristics to solve the problem and finally in section 6 we offer some 

numerical examples. 

 The motivation for the paper results from the fact that this model may allow a 

rapid analysis of many manufacturing alternatives enabling the firm to take rapid 

decisions both in the design and in the operation phases, and to obtain some competitive 

advantages in costs resulting from vantages on the stock management policy. 

2.  The Single Source Capacitated Facility Location Problem (SSCFLP) 
 

 Facility Location Problems (FLP) deserved a special place in Location Literature 

in the second half of last century. Some important summaries of the state of the art can 
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be found in (Balinski and Spielberg, 1969), (ReVelle et al., 1970), (Guignard and 

Spielberg, 1977), (Cornuejols, 1978) or (Krarup and Pruzan, 1983). 

The FLP derives its name from the analogy to decision problems concerning the 

location of plants or facilities (e.g. factories, warehouses, schools) so as to minimize the 

total cost of serving clients (e.g. depots, retail outlets, students). (Krarup and Pruzan, 

1983) refer their own experience as consultants where they have utilized FLP 

formulations as the basis for providing decision inputs to real-world problems regarding 

the number, size, design, location, and service patterns for such widely varied ‘plants’ 

as high-schools, hospitals, silos, slaughterhouses, electronic components, warehouses, 

as well as traditional production plants. As referred by the same authors the FLP permits 

in a sense the broadest framework. Neither the number of plants to be located nor the 

transportation or communication pattern is predetermined. Furthermore, the basic 

formulation of FLP lends itself readily to sensitivity analyses. In addition, FLP invites 

modifications which may permit more ‘realistic’ modeling. While FLP is basically a 

discrete, static, deterministic, one-product, fixed-plus-linear costs minimization problem 

formulation, it can be modified to accommodate dynamic, stochastic, multi-product, 

nonlinear cost minimization formulations. 

The first explicit formulation of FLP is frequently attributed to (Balinski, 1966) 

whose expository article on integer programming includes the mixed-integer 

formulation. The paper was presented at the IBM Scientific Symposium on 

Combinatorial Problems in March 1964 but remained unpublished until 1966. However, 

FLP’s are also dealt with in the pioneering papers by (Kuehn and Hamburger, 1963) and 

(Manne, 1964).  
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FLP, Plant Location Problems consider situations in which a commodity is 

supplied from a subset of plants, selected from a set of potential location sites, to satisfy 

the demand of a set of clients. There are fixed costs for opening the plants and 

transportation costs to supply the commodity or the standard product-mix from potential 

location sites to clients. The decision maker seeks for a combination of minimum costs 

in terms of the plants to be opened and the allocation of clients within the subset of open 

plants. 

The simplest formulation of FLP is the Uncapacitated Facility Location Problem 

(UFLP). It considers that the plants have unlimited capacity. There are several 

application for the UFLP, for example, bank account location (Cornuejols et al., 1977), 

economic lot sizing (Krarup and Blide, 1977), machine scheduling (Hansen and 

Kaufman) or portfolio management (Beck and Mulvey). 

Let { }m,...,1I =  be a set of customers which are to be served from plants located in 

a subset of sites from a given set { }n,...,1J =  of potential sites. For each site Jj ∈ , the 

fixed cost of opening the plant at j is jf . The cost of assigning site j to customer i isijc . 

 Considering, 

 





=
otherwise                                     0

icustomer    serves jfacility  if       1
ijX  

 





=
otherwise                        0

opened is   jfacility  if       1
jY  

 

 the model can be formulated as follows: 
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The CFLP considers a situation in which the plants have a capacity expressed in 

units of demand and also assumes that each client can be served from different open 

plants. Several applications for CFLP have been studied in literature: optimal lot sizing 

decisions in production planning ( Krarup and Blide) , telecommunications network 

design ( Kochman and McCallum).  

 Let ia , Ii ∈ , be the customer’s demands and jb  the facility’s capacity, 

then the CFLP is formulated as:  
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When an additional restriction that forces each customer to be served only from a 

single facility is added we obtain the Single Source Capacitated Facility Location 

Problem (SSCFLP). The single source issue is typical for real life situations where 

multiple deliveries may increase the cost of maintaining and updating the inventory.  
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This problem is in general more difficult to solve because the decision variables 

are binary. Another assumption of the SSCFLP considers that transportation costs from 

facilities to markets are linear according to the quantity transported (i.e., there are no 

economies of scale and the production costs at a facility are linear in the quantity 

produced once an initial fixed cost has been incurred). This problem has been widely 

studied in the literature, and for review purposes, see as an example Sridharan (1995).  

 

 

The objective function minimizes the cost of assigning customers to open facilities 

and the cost of establishing such facilities. Constraint set 2.9 can be referred to as the 

capacity constraints (or the facility constraint), and ensures that the customer demand 

served by a certain facility does not exceed its capacity. Constraint set 2.10 can be 

referred to as the demand constraints (or the customer constraints), and ensures that 

each customer is assigned to exactly one facility. Finally, constraint set 2.11 ensures that 

the assignments are made only to open facilities. In this model all decision variables are 

binary. 

Constraint set 2.9 and constraint set 2.11 may be concentrated in the following 

constraint:  
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(2.12)                  j                      YbXa
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Nevertheless, in order to facilitate the formulation of the new model we will keep 

the initial configuration.     

     

3. Stochastic Models for Manufacturing Systems  
 
 Stochastic models for manufacturing systems have been developed for more 

than half a century. These models were developed as an attempt to provide analytical 

formulas that would predict the performance of manufacturing systems. For a good 

review see (Suri et al.  1993). Models which explicitly make use of queuing theory were 

first developed to solve machine interference problems. Interference problems result 

from the non-synchronized use of the machines and are concretized when down 

machines are interfering with operating ones. Queuing theory is the most common 

methodology for solving this type of problems. For a good review on early models, see 

(Stecke et al. 1985), and for a detailed mathematical description of the models and their 

applications see (Buzacott et al. 1993).  

 The two traditional forms of organizing manufacturing systems are the job shop 

and the flow lines. The main difference between the two forms consists of the fact that 

the flow lines system requires all jobs to visit all machines and work centres in the same 

sequence which is not the case in the job shops, where we may alter the sequence. Job 

shops obey to two different configurations: produce-to-order, where the job order 

arrives from outside the shop (stocks are not allowed) and produce-to-stock, where the 

job orders will be influenced by the stock levels. In this paper we are concerned with 

produce-to-stock systems. Produce-to-stock operations should reduce the delay in filling 

customer’s orders and may lead to increased sales. The cost of keeping inventories is 
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also expected to be higher with this system leading to the need for careful stock 

management. 

   ‘System design’ is the term used to specify the rules that determine how 

production authorizations are generated. In this paper we restrict the discussion to single 

stage manufacturing facilities. Completed items of each product are kept in an output 

store. As customers arrive, their demands are met by delivering to them items from the 

output store. If all demands cannot be met immediately, two alternatives will be 

considered: lost sales and back-logged demand (where the customer waits until his 

required demand is met). 

 Now, consider the well known Production Authorization (PA) Cards System. In 

a simple formula the system works as follows: each item produced by the 

manufacturing facility has a tag associated, and when an item of a given product is 

delivered to a customer the tag is removed and becomes a production authorization or 

PA card for that product. The PA card can be directed to the production facility as soon 

as it is generated or wait until a batch of PA cards accumulates. The notation used in 

this paper is quite close to the one used by (Buzacott et al. 1993). For a complete 

description of the models or to find out about other models on the same line of research 

refer to this textbook.           

For the purposes of this paper we will consider a single stage manufacturing 

system that produces items of a single product type to stock. Completed items are kept 

in a store from which customer demands are met. Customers arrive according to a 

process{ },...2,1,  =nAn , nA  is the arrival time of the nth customer. Let us assume that 

each customer asks for only one unit of the product. If a customer’s demand cannot be 

met from available stock, the customer will wait until his demand can be satisfied. The 

manufacturing process of items involves the transformation of the raw material by 
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processing it on a single machine. Items are processed one at a time and the processing 

time of the nth item is ...2,1 , =nSn  

Consider the PA mechanism that stops production as soon as the number of 

items in store reaches a target level, say Z (we will denote Z as the capacity level). 

Production authorization, in this case, is transmitted to the manufacturing facility only 

when the number of completed items is fewer than this target. Additionally, let us 

assume that there is a single production unit to process the items. When there are r 

finished items in the output store, r of these tags are attached, one for each of the 

finished items. The remaining Z-r tags will be available at the machine acting as PA 

cards. Consider the additional assumption that the store is full at time zero.  

Let  ( )tI  be the inventory, that is, the number of finished items, in the output 

store, ( )tR be the number of items delivered to customers, ( )tB be the number of 

customers backlogged, and ( )tC  be the number of PA cards available at the machine at 

time t. Then 

( ) ( ) ( ) ( )
( ) ( ) ( ){ }
( ) ( ) ( )
( ) ( ) ( ){ } (11)                                                                              ,min

(10)                                                                                           

(9)                                                                               ,min

(8)                                                                     

ZtDtAtC

tRtAtB

tAtDZtR

tRtDZtCZtI

−=
−=

+=
−+=−=

 

 
 where , ( )tA is the number of customers that arrived during ( ]t,0  and ( )tD is the 

number of items produced during ( ]t,0 .  

 Equation (8) states that the inventory equals the number of tags not available, i.e. 

the total number of tags (Z) minus the number of available tags (resulting from the 

products sold during ( ]t,0   and not yet replenished by products produced in the same 

period of time). Equation (9) tells us that the number of sold items will be equal to 

demand whenever there is a sufficient number of items to meet this demand (initial 

stock plus production). The number of customers backlogged equals demand minus 
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effective sales (equation 10) and the number of available PA cards equals demand 

minus production, with an upper bound of Z (equation 11). 

 Let ( )tN be the number of jobs in the single server queuing system described 

earlier. Then, 

( ) ( ) ( ) (12)                                                                                                                          tDtAtN −=  

i.e., the number of jobs in the system is equivalent to the number of tags that became 

available in ( ]t,0  minus the ones that were attached to new items produced in this time 

period. 

 Subtracting equation (10) from equation (8) results in the following expression 
 

 
( ) ( ) ( ) ( ) ( ) (13)                                                                                              tNZtAtDZtBtI −=−+=−  

 
( ) 0>tI  implies ( ) 0=tB (i.e. whenever there is a positive inventory backlogging 

is zero) and ( ) 0>tB implies ( ) 0=tI (we have backlogging when inventory is zero).  

Using result (13) we have that 

( ) ( ){ } (14)                                                                                                                              +−= tNZtI  
 

and 
 

( ) ( ){ } (15)                                                                                                                              +−= ZtNtB  
 
 Assuming an M/M/1 model where the customer arrival process is Poisson with 

rate λ and the processing times are exponentially distributed with mean 
µ
1 , then we 

have, from queuing theory that  
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 Backlogging probability will be the same as the probability of having zero 

inventories, and can be computed as  
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{ } ( ){ } ( ){ } ( ){ } (18)                                        1100 ZZtNPZtNPtBPIP ρ=−≤−=>=>==  
  
 We may also also consider a single facility produce-to-stock system in which 

customer demands not met by items of the output store are lost. Again, assuming thet 

customers arrive according to a Poisson process with rate λ which is independent of the 

sequence of processing times and that the processing times are iid with exponential 

distribution with mean 
µ
1 , then in this case N(t) is a birth-death process on the state 

space { }Z,...,0S= . Solving the flow balance equations one obtains:  

   

{ } ( )
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1

1
1

=
−
−== +Z

n

nNP
ρ

ρρ
 

and the probability of lost sales (inventory is zero) 
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1
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−== +Z

Z
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 Given that this last expression is numerically more difficult to work when 

comparing with expression (18) we will limit our analysis to the backlogging case. 

4. The Queue Length Capacitated Facility Location Problem  
 
4.1. Model formulation 
 
 The queue length capacitated facility location problem (QLCFLP) explicitly 

constrains the capacity of each facility to a given queuing policy. Imposing a limit ρ  to 

the backlogging probability at each of the facilities results in the following formulation: 
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 is the utilization factor.  

 Backlogging may be defined as the number of customers in a queue waiting for 

the product or service. Imposing a limit to the backlogging probability is equivalent to 

restricting the demand assigned to each facility.  

 The arrival rate at a facility site j is defined as the sum of the frequencies 

of all demand points assigned to this facility. µ is the service rate. In order to have a 

stationary system one should add the restriction that the service rate is large enough to 

cover the arrival rate, i.e. 
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 Using definition (28) expression (22) can be rewritten as 
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(29)                                                                                                   
1

Z
n

i
iji Xf ρµ≤∑

=
  

which is linear on the decision variables. For a given limit ρ and for a given service rate 

µ  the capacities are defined by Z, the maximum number of items that can be reached. 

 In comparison with the traditional SSCFLP one would expect a much smaller 

sensitivity of the solution to variations in the capacity level. It is only for small capacity 

levels that the impact seems to be relevant. Figure 1 illustrates the case where 5.0=ρ . 

0.94

0.95

0.96

0.97

0.98

0.99

1

200 400 600 800 1000Z  
Figure 1: graph of the fuction ( ) Z 5.0 Zf = on the domain 10-1000. 

 
4.2. Numerical examples 

 As a numerical exercise we randomly generated five examples of different size 

and solved the QLCFLP for three capacity levels (Z). The coordinates of the demand 

points were generated with a uniform distribution in 50x50 square. Distances between 

demand points are Euclidean. The population at each demand point was generated from 

a uniform distribution between 80 and 800. Demand was fixed at 10% of the population. 

Fixed costs were generated from a uniform distribution between 400 and 800. 

 Table 1 shows the objective value and best locations for each of the examples 

for the different capacity levels. As expected we do not find many variations in the 

results. We give additional information concerning computation time in a Pentium(r ) 

III processor with 128 MB of RAM.       



 16

Table 1 : some numerical results for the QLCFLP 
  

Z=500 
   

Z=1000 
   

Z=5000 
  

NL x ND Objective Locations CPU time Objective Locations CPU time Objective Locations CPU time 
 
30 x 30 

 
1389.35 

 
1;7 

 
02m52s 

 
1389.35 

 
1;7 

 
02m50s 

 
1389.35 

 
1;7 

 
02m52s 

40 x 40 1494.62 10;27 04m46s 1494.62 10;27 04m37s 1494.62 10;27 04m30s 
45 x 45 1524.44 31;40 02m00s 1524.44 31;40 01m43s 1524.44 31;40 02m32s 
50 x 50 1963.77 28;30;46 33m48s 1962.61 28;30;46 21m28s 1962.61 28;30;46 49m17s 
60 x 60 1983.26 28;39;47 40m15s 1983.26 28;39;47 19m19s 1982.92 28;39;47 20m07s 
NL : number of potential locations 
ND : number of demand nodes  
 
 
5.   A Heuristic algorithm to solve the QLCFLP  
 
5.1. Review of Literature 
 
 The SSCFLP is a combinatorial optimization problem that belongs to the class 

of NP-hard problems. The traditional approach for solving this problem focuses on 

obtaining good Lagrangean duals, whose solutions improve the lower bounds provided 

by LP relaxation. Both capacity and demand constraints have been relaxed, obtaining in 

the first case uncapacitated facility location subproblems and in the second a number of 

knapsack problems. Some of those Lagrangean Relaxations can be found in (Barceló et 

al. 1984, Beasley 1988 or Barceló et al. 1991). 

 As suggested by Krarup and Pruzan (1983) the FLP is a “hard nut to crack, or, to 

use a more precise characterization, that it is highly unlikely that an exact polynomial 

time bounded algorithm can ever be devised for its solution”. These same authors 

carachterize the problem in terms of computational complexity, to demonstrate that 

indeed it belongs to the class of combinatorial optimization problems termed NP-hard.     

 Several heuristics have been developed for the CFLP. Jacobsen (Jacobsen 1983) 

generalizes heuristics for the Uncapacitated Plant Location Problem to the capacitated 

case. The heuristics are ADD, DROP, SHIFT, ALA (alternative location-allocation) and 

VSM (vertex substituting method). The ADD and DROP procedures are greedy 

heuristics, where in the first case a facility is added at each of the iterations and in the 
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second case a facility is dropped. The chosen facility is always the one where the largest 

saving on costs is obtained. Both methods are considered construction methods since no 

revision on early decisions is allowed. More sophisticated heuristics are based on the 

idea of improving on a known solution.  A good example is the Teitz and Bart ( Teitz et 

al.1968) Vertex Substitution Method. 

 Cornuejols (Cornuejols et al. 1991) compare several relaxations for the CFLP 

with classical greedy or interchange heuristics. The authors compute various lower 

bounds on the objective value relaxing subsets of constraints either completely or in a 

Lagrangean fashion. The subsets of constraints considered are: demand constraints, 

capacity constraints, non-negativity and integrality constraints. Based on their 

experiments the authors suggest the use of a Lagrangean heuristic to solve large 

instances of CFLP. 

 Beasley (Beasley 1993) presents a framework for developing Lagrangean 

heuristics with respect to the location problems: p-median, uncapacitated warehouse 

location and capacitated warehouse location with or without single source constraints. 

The author concludes that the heuristics presented in the paper for the four location 

problems is able to generate optimal or near optimal solutions at reasonable computing 

cost. 

 Concerning the SSCFLP, (Delmaire et al. 1999), propose a Reactive GRASP 

heuristic, a Tabu Search Heuristic, and two different hybrid approaches that combine 

elements of the GRASP and the Tabu Search methodologies. 

 Holmberg (Holmberg et al. 1999) propose an exact algorithm  for the 

capacitated facility location problem with single sourcing. Their procedure is based on 

Lagrangian heuristics using subgradient optimization. The authors combine a strong 
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dual approach (the Lagrangian dual) with a strong primal (the repeated matching 

heuristic).  

 Cortinhal and Captivo (Cortinhal et al. 2003) use a Lagrangean relaxation to 

obtain lower bounds for the SSCPLP, and Lagrangean heuristics followed by search 

methods and one Tabu Search metaheuristic to obtain upper bounds. The same authors, 

(Cortinhal et al. 2004), use genetic algorithms to solve the SSCPLP.  

5.2. Heuristics 
 
 Solving the CPLP comprises two sub-problems: finding the optimal location of 

the facilities and the assignation of demand points to each one of the open facilities. In 

fact, for any vector Y  of location variables the optimal solution for the flow variables 

( )YX  can be retrieved by solving the associated transportation problem: 
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 In the heuristic procedure we used a Reactive-GRASP algorithm and two 

different types of neighbourhood search: shift neighbourhood and swap neighbourhood.   

 Reactive GRASP, proposed by Prais and Ribeiro (Prais et al. 2000), is a 

procedure in which the parameter is self-adjusted according to the quality of the 

solutions previously found. Instead of fixing the value of the parameter γ , which 

determines which elements will be placed in the restricted candidate list, R-GRASP 
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randomly selects this parameter value from a discrete set { }m1,...,γγ . The probability 

distribution used in the γ selection will be updated after the execution of each block of 

iterations considering the quality of the solutions obtained by each of the γi. 

 Let ϕ be the greedy function for a minimization problem. The Restricted 

Candidate List (RCL) contains all the candidate solutions within a given distance of the 

top candidate as a function of ϕ. The threshold value can be expressed as: 

( )              minmax ϕϕγ −  
 

 The Reactive GRASP selects the best value of γ, by measuring the goodness of 

each possible value γ and defining an automated selection criterion for this parameter’s 

value at the different iterations of the process. 

 The algorithm we used to solve our problem comprises the following steps: 

1- Set initial probabilities 
v

1
Pi = with i=1,...,v. Pi is the probability of choosing a given 

parameter iγ=γ . V is the number of candidates for γ. In our particular case we 

considered v=10 and a set of candidates { }1 ,   ...  , 1.0     

2- For each of the blocks of iterations k=1,...,num_blocks, repeat the following steps: 

2.1- For a given number of iterations r=1,...,num_iterations repeat: 

2.1.1- Randomly select iγ=γ  from { }v1,...,γγ using probabilities iP  with i=1,...,v. 

2.1.2- Construction phase: construct a greedy randomized solution, considering the 

selected value of γ . 

2.1.4- Apply local search. 

2.2.- Update γ ’s utility  ( )γut . We considered the utility of γ as given by the average 

deviation of the objectives found using this particular γ from the best value for the 

objective found so far. 
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2.3. Compute new probabilities Pi using the following expression: 
( )

( )∑
=

=
v

1

i
i

ut
P

j
jut γ

γ
 

2.4. Go back to step 2.1 and start a new block of iterations. 

The greedy function used in step 2.1.2 was formulated as  

j
Ci

ijjj Cf
j

/













∆+= ∑

∈

ϕ  

where, ∆ij is the increment in the objective value for serving client i from plant j and Cj 

is the set of all unassigned clients that fit into location j. At each step of the construction 

phase one plant is opened and several clients are assigned to it. The capacity constraints 

are never violated by partial solutions. Within each plant, clients are ordered by 

increasing values of the ∆ij.  

In the local search phase we used the well known Teizt and Bart algorithm. 

 For each group of facility locations the following sub-algorithm was 

implemented to solve the corresponding transportation problem.  

1. Construct an initial solution: assign each demand point to its closest facility 

location.  

2. Explore Shift neighbourhood: starting with the first demand point in your list 

change its actual allocation by all other possible allocations, one at a time 

and compute the respective transportation problem’s objective. If the 

solution improves (lower objective) keep the new allocation, otherwise 

restore the initial allocation. Repeat the procedure for all demand points in 

the list.     

3. Explore Swap neighbourhood: starting with the first demand point in your 

list swap its actual allocation with all other demand point’s allocations, one 

at a time computing the respective transportation problem’s objective. If the 
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solution improves (lower objective) keep the new allocations, otherwise 

restore the initial allocations. Repeat the procedure for all demand points in 

the list. 

  We explore both neighbourhoods for all demand points and repeat the searching 

process while there are improvements to the solution. 

 In the Capacitated Facility Location Problem there is no a priori information 

about the number of facilities to be located. In our algorithm we started with one facility 

and applied an algorithm, which increases the number of facilities by one unit at each 

block of iterations. The algorithm stops when there are no improvements in the 

objective by locating one extra facility.  

  Some other authors apply a neighbourhood search, which allows opening or 

closing facilities; see as an example (Delmaire et al. 1999). 

  

5.3. Numerical examples 

 In order to evaluate the heuristics we randomly generated 30 examples using the 

same procedure described in section 4.2. Each of the examples was solved for the 

optimal using the LINGO commercial package and the heuristics described in the 

previous points. Table 2 shows the results regarding the experiments. 

As shown in table 2, the results are quite close: from the twenty examples we 

didn’t reach the minimum objective in five of the examples. The heuristics allow some 

important savings in computing times even for small examples.  
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Table 2: Heuristics statistics. 

 LINGO HEURISTICS (10 bocks 10 iter) 
 Objective Locations CPU time Objective Locations CPU time 
EXAMPLE    (sec)   (sec) 

1 1275,64 5;28 127,2 1275,64 5;28 26,42 
2 1376,32 3;11 154,8 1376,32 3;11 29,01 
3 1308,87 5;24 139,2 1308,87 5;24 24,66 
4 1244,58 7;12 70,8 1244,58 7;12 44,71 
5 1439,62 7;30 138,6 1439,62 7;30 22,85 
6 1395,58 2;24 137,4 1395,58 2;24 63,55 
7 1338,24 8;10 136,8 1338,24 8;10 64,76 
8 1313,01 19;25 83,4 1351,75 -- 29,01 
9 1324,72 7;22 144,6 1325,59 -- -- 
10 1336,51 29;30 133,2 1386,94 -- -- 
11 1409,55 1;8 264 1409,55 1;8 33,59 
12 1275,83 4;22 126 1290,56 -- -- 
13 1298,87 10;25 183,6 1298,87 10;25 61,96 
14 1287,75 19;29 252,6 1287,75 19;29 23,13 
15 1243,1 13;22 210 1243,1 13;22 24,33 
16 1279,65 2;11 190,2 1279,65 2;11 21,2 
17 1370,32 8;28 154,2 1370,32 8;28 44,87 
18 1363,04 6;21 187,2 1363,04 6;21 39,22 
19 1279 6;28 211,8 1279 6;28 38,45 
20 1250,29 20;26 191,4 1250,29 20;26 24,17 
21 1355,67 7;30 82,8 1355,67 7;30 44,05 
22 1270,33 24;28 144 1270,33 24;28 24,88 
23 1234,12 18;27 244,8 1234,12 18;27 24,39 
24 1336,9 2;26 129 1336,9 2;26 33,06 
25 1354,75 16;20 249 1354,75 16;20 23,73 
26 1302,29 16;30 191,4 1302,29 16;30 26,64 
27 1260,3 4;15 144,6 1292,43 -- -- 
28 1296,69 7;23 154,2 1296,69 7;23 22,58 
29 1247,54 3;7 73,2 1247,54 3;7 34 
30 1254,24 15;19 144,6 1254,24 15;19 24,33 

 
   

 
 
 
 
  

 
                   Number of distinct solutions (%) 

 
16% 

  
                   Average deviation (%) 0.34% 
                   Maximum deviation (%) 4% 

  
                   Average CPU time – LINGO 259.82 s 
                   Average CPU time – Heuristics 33.59 s 
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6. A simulation exercise  
 
 Since stochastic systems in general are easy to simulate and an objective 

function can be computed for each of the simulated scenarios, simulation can be 

combined with optimization algorithms in order to optimize many real life problems. 

For a good presentation of the role of simulation in optimization techniques, refer to the 

textbook by (Gasovi 2003). 

 One of the assumptions of the model formulated in previous sections consists of 

observing a stochastic demand whose arrival rate follows a Poisson distribution. A 

simple exercise developed in this section consists of simulating one arrival process at 

each one of the demand points for one hundred simulations. Then, we solved the 

QLCFLP and check if the solution changes at each one of the simulations. We used the 

heuristic described in the previous section to solve each of the problems. 

Across the different examples we maintain the distance matrix, as well as the 

location of the demand points. The only parameter changing is the arrival rate at each of 

the demand points. These rates were simulated from a Poisson distribution with a 

specific parameter (average) for each demand point. For simplicity only we considered 

twenty demand points. The average arrival rate at each of the demand points is shown in 

the following table: 

Table 3: A Simulation Exercise: Average arrival rate. 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

λ 72 40 30 68 19 24 15 75 48 71 47 25 72 56 77 37 66 50 78 47 
 

If we consider, as an example a service rate of two hundred (µ = 200) and a 

maximum of two hundred tags available ( Z = 200), the left hand side of equation …. 

for different capacity levels, measured in terms of utilization ratio ( ρ  ) are the ones in 

table 4:   
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Table 4: A Simulation Exercise: Capacities. 

 

 

 

 

 

   

We run the simulations for the extreme cases and compare the objectives for the 

extreme cases, where ρ =0,1 and ρ =0,9. The results are shown in figure 2a) and in 

figures 2b) respectively. 
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Figure 2a): Objective values : ρ =0,9 

. 
 

 

ρ  LHS 
0,1 197,7106 
0,2 198,397 
0,3 198,7996 
0,4 199,0858 
0,5 199,3081 
0,6 199,4898 
0,7 199,6436 
0,8 199,777 
0,9 199,8947 

Average Objective 870,5968 
Standard Deviation 11,20544 
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Figure 2b): Objective values : ρ =0,1 

The resulting graphs suggest that in spite of in some exceptional cases the objectives 

may be different; the average objective is quite similar when we change the upper limit 

for the utilization ratio. The standard deviations in both cases are relatively low.   

 
7.  Conclusions  
 

This paper considers a new formulation for the Single Source Capacitated Facility 

Location Problem in which capacity constraints result from imposing an upper bound to 

the probability of customers’ demand being backlogged. Demand is assumed to be 

stochastic, following a Poisson distribution and coincides with the arrival rate of a 

Markovian M/M/1 queuing process. 

Theory on stochastic manufacturing systems as well as some numerical examples 

suggests that solutions in this new model become less sensitive to variations in 

capacities. 

Average Objective 870,7439 
Standard Deviation 8,857857 
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Knowing the probability distribution of the demand, it is possible to simulate 

demand. Some simulated examples show that the results do not vary much across the 

different scenarios. 

Finally, greedy heuristics seems to behave well when solving this new 

formulation of the Single Source Capacitated Facility Location Problem. 



 27

 

References 

Balinski, M. L. Integer Programming: Methods, uses, computations. Management 

Science,1965, 12, 253-313. 

Balinski, M. L. On finding integer solutions to linear programs. Proc. IBM Scientific 

Symposium on Combinatorial Problems, 1966. 225-248. 

Balinski, M. L. and K. Spielberg. Methods for integer programming: algebraic, 

combinatorial, and enumerative. Progress in Operations Research, 1969. 195-292.   

Barceló, J. and J. Casanovas. A heuristis algorithm for the Capacitaed Plant Location 

Problem European Journal of Operational Research, 1984, 15(2),212-226. 

Barceló, J. E. Fernandéz and K. Jörnsten. Computational results from a new Lagrangean 

Relaxation algorithm for the Capacitated Plant Location Problem. European Journal 

of Operational Research,1991, 53, 38-45. 

Beasley, J. E..  An algorithm for solving large capacitated warehouse location problems. 

European Journal of Operational Research , 1988, 33, 314-325. 

Beasley, J. E. Lagrangean heuristics for location problems. European Journal of 

Operational Research, 1993, 65, 383-399. 

Buzacott, J. and J. Shanthikumar. Stochastic Models of Manufacturing Systems. 

Prentice Hall Publishers. 1993. 

Cornuejols, G., R. Sridharan and J.M. Thizy. A comparison of heuristics and relaxations 

for the Capacitated Plant Location Problem. European Journal of Operational 

Research, 1991, 50, 280-297. 

Cornuejols, G. Analysis of algorithms for a class of location problems. Technical 

Report no. 382, SORIE, Cornell University. 



 28

Cortinhal, J. and M. E. Captivo. Upper and lower bounds for the single source 

capacitated location problem. European Journal of Operational Research, 2003, 151, 

333-351.   

Cortinhal, J. and M. E. Captivo.Genetic algorithms for the single source capacitated 

location problem. in Metaheuristics Computer Decision-Making. Edited by Mauricio 

Resende e Jorge Pinho de Sousa. Kluwer Academic Publishers.2004. pp 187-216.   

Delmaire, H., J. A. Díaz and E. Fernández. Reactive GRASP and Tabu search based 

heuristics for the Single Source Capacitated Plant Location Problem. INFOR, 1999, 

37, no. 3.  

Gasovi, A. Simulation-based optimization: an overview. Kluwer Academic 

Publishers.2003. 

Guignard, M. and K. Spielberg. Algorithms for exploiting the structure of the simple 

plant location problem. Annals of Discrete Math, 1977. 1, 247-228.  

Holmberg, K. Exact solution methods for uncapacitated location problems with convex 

transportation costs. European Journal of Operational Research, 1999, 114. 127-

140.  

Jacobsen, S. K. Heuristics for the capacitated plant location model. European Journal of 

Operational Research, 1983, 12, 253-261. 

Krarup, J. and M. Pruzan. The simple plant location problem: Survey and synthesis. 

European Journal of Operational Research, 1983, 12. 36-81. 

Kuehn, A.A. and M.J. Hamburger. A heuristic program for locating warehouses. 

Management Science, 1963, 9, 643-666. 

Manne, A. S. Plant location under economies-of-scale- decentralization and 

computation. Management Science, 1964, 11, 213-235.     



 29

Prais, M. and C.C. Ribeiro. Reactive GRASP an application to a Matrix Decomposition 

Problem in TDMA traffic assignment. INFORMS Journal on Computing, 2000,12, 

vol.3. 

ReVelle, C.S., D. Marks and J.C. Liebman. An analysis of private and public sector 

location models. Management Science, 1970. 16, 692-707.   

Rönnqvist,  M., S. Tragantalerngsak and J, Holt. A repeated matching heuristic for the 

single-source capacitated facility location problem. European Journal of Operational 

Research, 1999, 116, 51-68. 

Suri, R., J. Sanders and M. Kamath. Performance Evaluation of Production Networks  

in  Logistics of Production and Inventory edited by S. Graves, A. Kan and P. Zipkin. 

Elsevier Science Publishers, 1993, 199-274. 

Sridharan R. The capacitated plant location problem. European Journal of Operational 

Research, 1995, 87, 203-213. 

Stecke, K. and J. Aronson. Review of operator/machine interference models. 

International Journal of Production Research, 1985, 23, 129-151. 

Teizt, M.B. and Bart, P. Heuristic methods for estimating the generalized vertex median 

of weighted graph. Operations Research, 1968, 16(5), 955-961. 

      



 30

Acknowledgments 

 

This research has been possible thanks to the grant SFRH/BD/2916/2000 from the 

Ministério da Ciência e da Tecnologia, Fundação para a Ciência e a Tecnologia of the 

Portuguese government., and grant SEC2003-1991 from the Ministry of Education and 

Science, Spain. 

 

 

 


