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Abstract

One of the assumptions of the Capacitated Fadilityation Problem (CFLP) is that
demand is known and fixed. Most often, this is that case when managers take some
strategic decisions such as locating facilities asdigning demand points to those
facilities. In this paper we consider demand aglsstic and we model each of the
facilities as an independent queue. Stochastic masfemanufacturing systems and
deterministic location models are put together ideo to obtain a formula for the
backlogging probability at a potential facility ktoon.

Several solution techniques have been proposedive she CFLP. One of the most
recently proposed heuristics, a Reactive Greedyptda Search Procedure, is
implemented in order to solve the model formulaMtk present some computational
experiments in order to evaluate the heuristicsfgpmance and to illustrate the use of
this new formulation for the CFLP. The paper fimshwith a simple simulation

exercise.
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1. Introduction

Transportation costs and location-specific fixedsts are often a major
component of the price (cost) of goods. The Fgcilibcation Problem (FLP),
introduced by (Balinski 1965) addresses the proldénocating a new set of facilities
in such a way that the sum of those two costs msmized.

Another concern when designing and operating aufaaturing system is the
capacity the system tolerates: given the procedsiifities, what is the maximum rate
of order receipt that can be accepted so thathall drders can be satisfied? The
Capacitated Facility Location Problem (CFLP) isaaiant of the FLP, which includes
capacities for the facilities. With the inclusiohtbe capacities, an open facility that is
the least cost source for a demand node may nableeto serve any of the demand at
that node.

The capacities of the facilities as well as thended at each of the demand
nodes have been assumed to be known determingengters. In this paper we relax
these assumptions by considering that the demarstoshastic following a given
probability distribution and where capacity at e&atility results from the probability
of losing or backlogging the demand.

Stochastic models on manufacturing systems giveamse important results,
using analytical techniques such as stochasticegs®s, queuing theory and reliability
theory, which allow the computation of the referpedbabilities as a function of arrival
and service rates. In this paper we introduceetltesisiderations in the CFLP. The
objective is to find the best location of facilgiglthe one that minimizes total
transportation and fixed costs) maintaining thebpholity of losing /backlogging

demand on a small level.



The CFLP considers that distinct potential fagibites present different fixed
costs for locating a facility, that facilities bgisited are constrained to a given capacity
level on the demand they can serve and that weaotidkmow, a priori, the optimal
number of facilities to be opened. These assumptioake from the CFLP a complex
problem that is difficult to solve. There is a véstrature concerning the development
and testing of new algorithms that search for tiiateon to the problem.

The most common approach to solving the CFLEhésuse of Lagrangean
heuristics. These heuristics are based on a Lagaangelaxation and some method for
solving the Lagrangean dual problem. More rece@itgedy Heuristics, Tabu Search
and Genetic Algorithms have been proposed to stileeCFLP. Based on previous
research we will propose a heuristic algorithmdive the new version of the model.

The paper is organized as follows: in section 2describe the Single Source
Capacitated Facility Location Problem; in sectiorw8 give a brief description of
stochastic manufacturing models whose results@afeetused in section 4 in order to
formulate the Queue Length Capacitated Facilitydtion Problem. In section 5 we
describe heuristics to solve the problem and finali section 6 we offer some
numerical examples.

The motivation for the paper results from the féett this model may allow a
rapid analysis of many manufacturing alternativesbéing the firm to take rapid
decisions both in the design and in the operatimasps, and to obtain some competitive
advantages in costs resulting from vantages osttiek management policy.

2. The Single Source Capacitated Facility LocatioRroblem (SSCFLP)
Facility Location Problems (FLP) deserved a spgiace in Location Literature

in the second half of last century. Some importamhmaries of the state of the art can



be found in (Balinski and Spielberg, 1969), (Re¥edit al., 1970), (Guignard and
Spielberg, 1977), (Cornuejols, 1978) or (Krarup &ndzan, 1983).

The FLP derives its name from the analogy to decigiroblems concerning the
location of plants or facilities (e.g. factoriesan@houses, schools) so as to minimize the
total cost of serving clients (e.g. depots, retaitlets, students). (Krarup and Pruzan,
1983) refer their own experience as consultants revhtbey have utilized FLP
formulations as the basis for providing decisiopuits to real-world problems regarding
the number, size, design, location, and serviceepet for such widely varied ‘plants’
as high-schools, hospitals, silos, slaughterhouslestronic components, warehouses,
as well as traditional production plants. As reddrby the same authors the FLP permits
in a sense the broadest framework. Neither the eurmbplants to be located nor the
transportation or communication pattern is predeieed. Furthermore, the basic
formulation of FLP lends itself readily to sensiyvanalyses. In addition, FLP invites
modifications which may permit more ‘realistic’ madoshg. While FLP is basically a
discrete, static, deterministic, one-product, fepddis-linear costs minimization problem
formulation, it can be modified to accommodate dgita stochastic, multi-product,
nonlinear cost minimization formulations.

The first explicit formulation of FLP is frequentbttributed to (Balinski, 1966)
whose expository article on integer programming ludes the mixed-integer
formulation. The paper was presented at the IBMe@dic Symposium on
Combinatorial Problems in March 1964 but remainegdublished until 1966. However,
FLP’s are also dealt with in the pioneering pajpgréKuehn and Hamburger, 1963) and

(Manne, 1964).



FLP, Plant Location Problems consider situationswinich a commodity is
supplied from a subset of plants, selected fromtakpotential location sites, to satisfy
the demand of a set of clients. There are fixedscésr opening the plants and
transportation costs to supply the commodity orsta@dard product-mix from potential
location sites to clients. The decision maker sdeks combination of minimum costs
in terms of the plants to be opened and the allmcatf clients within the subset of open
plants.

The simplest formulation of FLP is the Uncapacdakacility Location Problem
(UFLP). It considers that the plants have unlimiteapacity. There are several
application for the UFLP, for example, bank accdoottion (Cornuejols et al., 1977),
economic lot sizing (Krarup and Blide, 1977), maehischeduling (Hansen and

Kaufman) or portfolio management (Beck and Mulvey).

Let | ={l...,m} be a set of customewghich are to be served from plants located in

a subset of sites from a given skt{L...n} of potential sites. For each sjtgJ, the

fixed cost of opening the plantjas fj. The cost of assigning site j to customerdj;is

Considering,

X = 1 if facility jservescustomeri
o otherwise

Y. =

{1 if facility j isopened
J

0 otherwise

the model can be formulated as follows:



min Zmlznlcu X +Zn: £},
=1

i=1 j=1
st.
Zn:xij =1 O
j=1
X;-Y, <0 O, j
X, 0{og} Oi, j
Y, 0{og} m]

The CFLP considers a situation in which the pléwige a capacity expressed in
units of demand and also assumes that each clienbe served from different open
plants. Several applications for CFLP have beediatuin literature: optimal lot sizing

decisions in production planning ( Krarup and BJidetelecommunications network
design ( Kochman and McCallum).

Let & ,i0l, be the customer’'s demands ath the facility’s capacity,

then the CFLP is formulated as:

min Zmzzn:qjx” + n f.Y,
i=1 j=1 j=1

st.

zn:xij =1 Oi (2.5)
=1

Zm:ai X, <bY, 0i,0j (2.6)
i=1

0<X; <1 Oi, O (2.7)
Y, 0{oy 0j (2.8)

When an additional restriction that forces eachamsr to be served only from a
single facility is added we obtain the Single SeurCapacitated Facility Location
Problem (SSCFLP). The single source issue is tygarareal life situations where

multiple deliveries may increase the cost of mammg and updating the inventory.



This problem is in general more difficult to solkecause the decision variables
are binary. Another assumption of the SSCFLP censithat transportation costs from
facilities to markets are linear according to themfity transported (i.e., there are no
economies of scale and the production costs atciitfaare linear in the quantity
produced once an initial fixed cost has been ir)rrThis problem has been widely

studied in the literature, and for review purpose® as an example Sridharan (1995).

min Zm:Z”:Cij X +Zn: fyY,
=1

i=1 j=1
st.
>aX, <b, Oj (2.9)
i=1
Z;xij =1 i (2.10)
=
X;-Y, <0 0i,0j (2.12)
X, 0{oy 0§, 0 (2.12)
Y, 0{oy Oj (2.13)

The objective function minimizes the cost of assigrcustomers to open facilities
and the cost of establishing such facilities. Camst set 2.9 can be referred to as the
capacity constraints (or the facility constrairghd ensures that the customer demand
served by a certain facility does not exceed ifsacdy. Constraint set 2.10 can be
referred to as the demand constraints (or the mestaeonstraints), and ensures that
each customer is assigned to exactly one facHityally, constraint set 2.11 ensures that
the assignments are made only to open facilitrethis model all decision variables are
binary.

Constraint set 2.9 and constraint set 2.11 maydneentrated in the following

constraint:



> aX;shy, Oj (2.12)
i=1

Nevertheless, in order to facilitate the formulataf the new model we will keep

the initial configuration.

3. Stochastic Models for Manufacturing Systems

Stochastic models for manufacturing systems haaen ldeveloped for more
than half a century. These models were developeghastempt to provide analytical
formulas that would predict the performance of nfactwring systems. For a good
review see (Sumt al. 1993). Models which explicitly make use of que&uiheory were
first developed to solve machine interference motd. Interference problems result
from the non-synchronized use of the machines amd cancretized when down
machines are interfering with operating ones. Quguheory is the most common
methodology for solving this type of problems. Bogood review on early models, see
(Steckeet al. 1985), and for a detailed mathematical descripbibiine models and their
applications see (Buzacattal. 1993).

The two traditional forms of organizing manufachgrisystems are the job shop
and the flow lines. The main difference betweentthe forms consists of the fact that
the flow lines system requires all jobs to visltrabchines and work centres in the same
sequence which is not the case in the job shopsremlve may alter the sequence. Job
shops obey to two different configurations: prodtmerder, where the job order
arrives from outside the shop (stocks are not athwand produce-to-stock, where the
job orders will be influenced by the stock levdis.this paper we are concerned with
produce-to-stock systems. Produce-to-stock opermsbould reduce the delay in filling

customer’s orders and may lead to increased silescost of keeping inventories is



also expected to be higher with this system leadonghe need for careful stock
management.

‘System design’ is the term used to specify thkes that determine how
production authorizations are generated. In thgepave restrict the discussion to single
stage manufacturing facilities. Completed itemsath product are kept in an output
store. As customers arrive, their demands are meebvering to them items from the
output store. If all demands cannot be met immebjiattwo alternatives will be
considered: lost sales and back-logged demand éwther customer waits until his
required demand is met).

Now, consider the well known Production Authoriaat(PA) Cards System. In
a simple formula the system works as follows: eatdm produced by the
manufacturing facility has a tag associated, anénwvan item of a given product is
delivered to a customer the tag is removed andrbesa production authorization or
PA card for that product. The PA card can be dag¢b the production facility as soon
as it is generated or wait until a batch of PA saadcumulatesThe notation used in
this paper is quite close to the one used by (Batzat al. 1993). For a complete
description of the models or to find out about otm@dels on the same line of research
refer to this textbook.

For the purposes of this paper we will consideingls stage manufacturing
system that produces items of a single product tgpock. Completed items are kept
in a store from which customer demands are mettothess arrive according to a

proces$A, ,n=12,..}, A, is the arrival time of theth customer. Let us assume that

each customer asks for only one unit of the pradfiet customer’s demand cannot be
met from available stock, the customer will waitilhis demand can be satisfied. The

manufacturing process of items involves the trams&ion of the raw material by

10



processing it on a single machine. ltems are peatksne at a time and the processing
time of thenthitemis S ,n=12...

Consider the PA mechanism that stops productiosca®m as the number of
items in store reaches a target level, say Z (wkdenhote Z as the capacity level).
Production authorization, in this case, is trangdito the manufacturing facility only
when the number of completed items is fewer thas thrget. Additionally, let us
assume that there is a single production unit tcgss the items. When there are r
finished items in the output store, r of these tags attached, one for each of the
finished items. The remaining Z-r tags will be dable at the machine acting as PA
cards. Consider the additional assumption thastiwe is full at time zero.

Let 1(t) be the inventory, that is, the number of finisfitns, in the output
store, R(t)be the number of items delivered to customesf)be the number of

customers backlogged, a@{t) be the number of PA cards available at the machine

time t. Then
I(t)=z-cft)=z+D()-R{t) (8)
R(t) = min{z + D(t), A(t)} 9)
B(t) = Alt)- R(t) (10)
c(t) = min{A(t)- D(t),z} (11)

where A(t)is the number of customers that arrived dur(og] and p()is the

number of items produced durirﬁgt].

Equation (8) states that the inventory equalsitimber of tags not available, i.e.
the total number of tags (Z) minus the number dilable tags (resulting from the
products sold during{o,t] and not yet replenished by products producedhénsame
period of time). Equation (9) tells us that the m@mof sold items will be equal to
demand whenever there is a sufficient number ohstéo meet this demand (initial

stock plus production). The number of customersklogged equals demand minus

11



effective sales (equation 10) and the number oflaMa PA cards equals demand
minus production, with an upper bound of Z (equafid).

Let N(t)be the number of jobs in the single server quesiysem described

earlier. Then,
N(t)= Alt)-D(t) (12)
i.e., the number of jobs in the system is equivaterthe number of tags that became

available in(o,t] minus the ones that were attached to new itemdupeal in this time

period.

Subtracting equation (10) from equation (8) ressuitthe following expression

1(t)-B(t)=z+D(t)- Alt)=z - N(t) (13)
1(t)>0 implies B(t)=0(i.e. whenever there is a positive inventory bagglog

is zero) andB(t) > 0implies | (t) = 0(we have backlogging when inventory is zero).
Using result (13) we have that

I(t)={z- NG} (14)

and

B(t)={N(t)- 2z}’ (15)
Assuming an M/M/1 model where the customer arrpraicess is Poisson with

rate Aand the processing times are exponentially digegbwvith meanl, then we

7]

have, from queuing theory that

P{N =n} = (L- p)o" (16)

and .

P{N<nf=1-p™ 17)

Backlogging probability will be the same as thehability of having zero

inventories, and can be computed as

12



P{1 =0} =P{B(t)>0} = P{N(t)>z} =1- P{N(t)< z -1} = p* (18)

We may also also consider a single facility pradtestock system in which
customer demands not met by items of the outpue sice lost. Again, assuming thet
customers arrive according to a Poisson processraieA which is independent of the
sequence of processing times and that the processnes are iid with exponential

distribution with meanl, then in this case N(t) is a birth-death processhe state

u

spaces={o,....z}. Solving the flow balance equations one obtains:

forn=0,...,Z (29)

and the probability of lost sales (inventory is@er
P{l :o}:% forn=0,..,Z (20)
Given that this last expression is numerically endlifficult to work when
comparing with expression (18) we will limit ouraysis to the backlogging case.
4. The Queue Length Capacitated Facility Location Rblem
4.1. Model formulation
The queue length capacitated facility locationbbemm (QLCFLP) explicitly
constrains the capacity of each facility to a gigereuing policy. Imposing a limi to

the backlogging probability at each of the fa@tiresults in the following formulation:

13



min Zmlzn:qjx” +Zml:ijj (21)
=

i=1 j=1
st.
pl<p Oj (22)
Z X; =1 O (23)
j=1
X; =Y, <0 0i, Oj (24)
X; 0{oy Oi, O (25)
Y, o{og} Oj (26)
where,

Zfreqixij
p; = a= 0 (27)

i

is the utilization factor.

Backlogging may be defined as the number of custerm a queue waiting for
the product or service. Imposing a limit to the klagging probability is equivalent to
restricting the demand assigned to each facility.

The arrival rate at a facility site j is defineslthe sum of the frequencies
of all demand points assigned to this facilillyis the service rate. In order to have a
stationary system one should add the restrictian tthe service rate is large enough to

cover the arrival rate, i.e.

m
Zfreqix i
b= g (28)
i

Using definition (28) expression (22) can be r&en as

14



> tx, s uflp (29)
i=1

which is linear on the decision variables. Foregilimit pand for a given service rate
u the capacities are defined by Z, the maximum nurabi&ems that can be reached.

In comparison with the traditional SSCFLP one wioakpect a much smaller
sensitivity of the solution to variations in thepeaity level. It is only for small capacity

levels that the impact seems to be relevant. Fifjullestrates the case where 05.

0.95

0.94

200 400 z 600 800 1000

Figure 1: graph of the fuctiori(z)=%/05 on the domain 10-1000.

4.2. Numerical examples

As a numerical exercise we randomly generated dxeemples of different size
and solved the QLCFLP for three capacity levels @)e coordinates of the demand
points were generated with a uniform distributian50x50 square. Distances between
demand points are Euclidean. The population at daaand point was generated from
a uniform distribution between 80 and 800. Demaad fixed at 10% of the population.
Fixed costs were generated from a uniform distiiloubetween 400 and 800.

Table 1 shows the objective value and best logatior each of the examples
for the different capacity levels. As expected we bt find many variations in the
results. We give additional information concerncmgnputation time in a Pentium(r )

[l processor with 128 MB of RAM.
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Table 1 : some numerical results for the QLCFLP

Z=500 Z=1000 Z=5000

NL Xx ND  Objective Locations CPUtime Objective Locéions CPUtime Objective Locations CPU time

30x30 1389.35 1,7 02m52s 1389.35 1,7 02m50s 1389.35 1,7 02m52s
40x40 1494.62 10,27 04md6s 1494.62 10;27 04m3494.62 10,27 04m30s
45x45 1524.44 3140 02m00s 1524.44 31,40 01m4324.44 31;40 02m32s
50x 50 1963.77 28;30;4633m48s 1962.61 28;30;4621m28s 1962.61 28;30;4649ml7s
60 x 60 1983.26 28;39;4740m15s 1983.26 28;39;4719m19s 1982.92 28;39;4720m07s

NL : number of potential locations
ND : number of demand nodes

5. A Heuristic algorithm to solve the QLCFLP
5.1. Review of Literature

The SSCFLP is a combinatorial optimization probligrat belongs to the class
of NP-hard problems. The traditional approach folvisg this problem focuses on
obtaining good Lagrangean duals, whose solutioqsane the lower bounds provided
by LP relaxation. Both capacity and demand consisdiave been relaxed, obtaining in
the first case uncapacitated facility location solbfems and in the second a number of
knapsack problems. Some of those Lagrangean Relagatan be found in (Barce#b
al. 1984, Beasley 1988 or Barcedthal. 1991).

As suggested by Krarup and Pruzan (1983) the Bla&?*hard nut to crack, or, to
use a more precise characterization, that it islizignlikely that an exact polynomial
time bounded algorithm can ever be devised forsdgkition”. These same authors
carachterize the problem in terms of computatiac@hplexity, to demonstrate that
indeed it belongs to the class of combinatoriairation problems termed NP-hard.

Several heuristics have been developed for thePRCBacobsen (Jacobsen 1983)
generalizes heuristics for the Uncapacitated Rlacation Problem to the capacitated
case. The heuristics are ADD, DROP, SHIFT, ALAdalative location-allocation) and
VSM (vertex substituting method). The ADD and DR@PRocedures are greedy

heuristics, where in the first case a facility dded at each of the iterations and in the

16



second case a facility is dropped. The chosentfa@$lalways the one where the largest
saving on costs is obtained. Both methods are dereil construction methods since no
revision on early decisions is allowed. More soptéded heuristics are based on the
idea of improving on a known solution. A good exdenis the Teitz and Bart ( Tei&t
al.1968) Vertex Substitution Method.

Cornuejols (Cornuejolst al. 1991) compare several relaxations for the CFLP
with classical greedy or interchange heuristicse HButhors compute various lower
bounds on the objective value relaxing subsetsoobiraints either completely or in a
Lagrangean fashion. The subsets of constraintsidenesl are: demand constraints,
capacity constraints, non-negativity and integyalitonstraints. Based on their
experiments the authors suggest the use of a Lgegaanheuristic to solve large
instances of CFLP.

Beasley (Beasley 1993) presents a framework fareldping Lagrangean
heuristics with respect to the location problemsngdian, uncapacitated warehouse
location and capacitated warehouse location witlvitinout single source constraints.
The author concludes that the heuristics presemtdtie paper for the four location
problems is able to generate optimal or near optsoktions at reasonable computing
cost.

Concerning the SSCFLP, (Delmaieeal. 1999), propose a Reactive GRASP
heuristic, a Tabu Search Heuristic, and two difiedeybrid approaches that combine
elements of the GRASP and the Tabu Search methgidslo

Holmberg (Holmberget al. 1999) propose an exact algorithm for the
capacitated facility location problem with singleuscing. Their procedure is based on

Lagrangian heuristics using subgradient optimizatibhe authors combine a strong
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dual approach (the Lagrangian dual) with a stromignad (the repeated matching
heuristic).

Cortinhal and Captivo (Cortinhat al. 2003) use a Lagrangean relaxation to
obtain lower bounds for the SSCPLP, and Lagrandeamistics followed by search
methods and one Tabu Search metaheuristic to obygier bounds. The same authors,
(Cortinhalet al. 2004), use genetic algorithms to solve the SSCPLP.

5.2. Heuristics

Solving the CPLP comprises two sub-problems: figdihe optimal location of
the facilities and the assignation of demand pdimtsach one of the open facilities. In
fact, for any vectory of location variables the optimal solution for thew variables

X(V) can be retrieved by solving the associated tramagpon problem:

min z[v)=Y3 ¢, X, (30)
i=1 j=1

St.

pi° <P 0 (31)
> X; =1 O (32)
=1

X; =Y <0 Oi,0j (33)
X, 0{oy Oi, O (34)

In the heuristic procedure we used a Reactive-GRAorithm and two
different types of neighbourhood search: shift hbaurhood and swap neighbourhood.

Reactive GRASP, proposed by Prais and RibeiroigRsaal. 2000), is a
procedure in which the parameter is self-adjustecoming to the quality of the
solutions previously found. Instead of fixing thalue of the parametey, which

determines which elements will be placed in thdricted candidate list, R-GRASP

18



randomly selects this parameter value from a discset{y;....y,,}. The probability
distribution used in thg selection will be updated after the execution atheblock of
iterations considering the quality of the solutiagained by each of thg

Let ¢ be the greedy function for a minimization problefrhe Restricted
Candidate List (RCL) contains all the candidateiohs within a given distance of the

top candidate as a function¢f The threshold value can be expressed as:

Yrax = Prin)

The Reactive GRASP selects the best valug by measuring the goodness of
each possible valugand defining an automated selection criteriontfiig parameter’s
value at the different iterations of the process.

The algorithm we used to solve our problem conagribie following steps:

1- Set initial probabilitiesr, =%With i=1,...,v. Ris the probability of choosing a given

parametery=y;. V is the number of candidates fgr In our particular case we

considered v=10 and a set of candiddtes ... ,1}
2- For each of the blocks of iteratioks1,...,num_blocks, repeat the following steps:
2.1- For a given number of iterations 1,...,num _iterations repeat:
2.1.1- Randomly select=vy; from {y,.....y,}using probabilities, with i=1,...,v.
2.1.2- Construction phase: construct a greedy mambd solution, considering the
selected value of .

2.1.4- Apply local search.

2.2.- Updatey s utility uty). We considered the utility of as given by the average
deviation of the objectives found using this pauie yfrom the best value for the

objective found so far.
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utly;
2.3. Compute new probabilities Pi using the follogvexpressionP, :\,(—)

Zut(y )

j=1
2.4. Go back to step 2.1 and start a new blockeodiions.
The greedy function used in step 2.1.2 was forredlats

8, :[fj +_2Aij]/\cj\
inc

where,Aij is the increment in the objective value for segvclient i from plant j and Cj
is the set of all unassigned clients that fit ilttcation j. At each step of the construction
phase one plant is opened and several clientssargnad to it. The capacity constraints
are never violated by partial solutions. Within legaolant, clients are ordered by
increasing values of thij.
In the local search phase we used the well knowzt &ad Bart algorithm.

For each group of facility locations the followingub-algorithm was

implemented to solve the corresponding transporigiroblem.

1. Construct an initial solution: assign each demamiagitpto its closest facility
location.

2. Explore Shift neighbourhood: starting with the ffidt@mand point in your list
change its actual allocation by all other possHillecations, one at a time
and compute the respective transportation probleotgective. If the
solution improves (lower objective) keep the nevoddtion, otherwise
restore the initial allocation. Repeat the procediar all demand points in
the list.

3. Explore Swap neighbourhood: starting with the fadtsmand point in your
list swap its actual allocation with all other demagpoint’s allocations, one

at a time computing the respective transportatimblpm’s objective. If the
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solution improves (lower objective) keep the newocadtions, otherwise
restore the initial allocations. Repeat the procedar all demand points in
the list.
We explore both neighbourhoods for all demanadhtscand repeat the searching
process while there are improvements to the salutio
In the Capacitated Facility Location Problem theseno a priori information
about the number of facilities to be located. In algorithm we started with one facility
and applied an algorithm, which increases the nurobéacilities by one unit at each
block of iterations. The algorithm stops when theme no improvements in the
objective by locating one extra facility.
Some other authors apply a neighbourhood searbith allows opening or

closing facilities; see as an example (Delmeiral. 1999).

5.3. Numerical examples

In order to evaluate the heuristics we randomlyegated 30 examples using the
same procedure described in section 4.2. Each eofetamples was solved for the
optimal using the LINGO commercial package and hieeristics described in the
previous points. Table 2 shows the results reggrttia experiments.

As shown in table 2, the results are quite closmnfthe twenty examples we
didn’t reach the minimum objective in five of theaenples. The heuristics allow some

important savings in computing times even for sragiimples.
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Table 2: Heuristics statistics.

LINGO HEURISTICS (10 bocks 10 iter)
Objective Locations CPU time Objective Locations CB time
EXAMPLE (sec) (sec)

1 1275,64 5;28 127,2 1275,64 5;28 26,42
2 1376,32 3;11 154,8 1376,32 3;11 29,01
3 1308,87 5;24 139,2 1308,87 5;24 24,66
4 124458 7;12 70,8 124458 7;12 44,71
5 1439,62 7;30 138,6 1439,62 7;30 22,85
6 1395,58 2;24 137,4 1395,58 2;24 63,55
7 1338,24 8;10 136,8 1338,24 8;10 64,76
8 1313,01 19;25 83,4 1351,75 -- 29,01
9 1324,72 7,22 1446 1325,59 -- --
10 1336,51 29;30 133,2 1386,94 -- --
11 1409,55 1;8 264 1409,55 1;8 33,59
12 1275,83 4,22 126 1290,56 -- --
13 1298,87 10;25 183,6 1298,87 10;25 61,96
14 1287,75 19;29 252,6 1287,75 19;29 23,13
15 1243,1 13;22 210 1243,1 13;22 24,33
16 1279,65 2;11 190,2 1279,65 2;11 21,2
17 1370,32 8;28 154,2 1370,32 8;28 44,87
18 1363,04 6;21 187,2 1363,04 6;21 39,22
19 1279 6;28 211,8 1279 6;28 38,45
20 1250,29 20;26 191,4 1250,29 20;26 24,17
21 1355,67 7;30 82,8 1355,67 7;30 44,05
22 1270,33 24,28 144 1270,33 24,28 24,88
23 1234,12 18;27 244.8 1234,12 18;27 24,39
24 1336,9 2;26 129 1336,9 2;26 33,06
25 1354,75 16;20 249 1354,75 16;20 23,73
26 1302,29 16;30 1914 1302,29 16;30 26,64
27 1260,3 4;15 1446 1292,43 -- --
28 1296,69 7,23 154,2 1296,69 7;23 22,58
29 124754 3,7 73,2 1247,54 3,7 34
30 1254,24 15;19 144,6 1254,24 15;19 24,33

Number of distinct solutions (%) 16%

Average deviation (%) 0.34%

Maximum deviation (%) 4%

Average CPU time — LINGO 259.82 s

Average CPU time — Heuristics .588s
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6. A simulation exercise

Since stochastic systems in general are easyntolaie and an objective
function can be computed for each of the simulaednarios, simulation can be
combined with optimization algorithms in order tptimize many real life problems.
For a good presentation of the role of simulatioptimization techniques, refer to the
textbook by (Gasovi 2003).

One of the assumptions of the model formulatepré@vious sections consists of
observing a stochastic demand whose arrival ratewis a Poisson distribution. A
simple exercise developed in this section consistsimulating one arrival process at
each one of the demand points for one hundred ationk. Then, we solved the
QLCFLP and check if the solution changes at eaehafrihe simulations. We used the
heuristic described in the previous section toes@ach of the problems.

Across the different examples we maintain the distamatrix, as well as the
location of the demand points. The only paramétanging is the arrival rate at each of
the demand points. These rates were simulated &oRvisson distribution with a
specific parameter (average) for each demand peartsimplicity only we considered
twenty demand points. The average arrival rat@elh ef the demand points is shown in
the following table:

Table 3 A Simulation ExerciseAverage arrival rate.

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 72 40 30 68 19 24 15 75 48 71 47 25 72 56 77 37 BB 78 47

If we consider, as an example a service rate of hwodred (= 200) and a

maximum of two hundred tags available ( Z = 208§ keft hand side of equation ....
for different capacity levels, measured in termsitiifzation ratio (Z) ) are the ones in

table 4:
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Table 4 A Simulation ExerciseCapacities.

P LHS
0,1 197,7106
0,2 198,397
0,3 198,7996
0,4 199,0858
0,5 199,3081
0,6 199,4898
0,7 199,6436
0,8 199,777
0,9 199,8947

We run the simulations for the extreme cases andpece the objectives for the
extreme cases, Wher,5=0,1 and,B:O,Q. The results are shown in figure 2a) and in

figures 2b) respectively.

940

920 +

900 -

880

860
840 ‘
820

Average Objective 870,5968
Standard Deviation 11,20544

Figure 2a): Objective values p=0,9
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940

920 -

900

880 -

860

840

820

Average Objective 870,7439
Standard Deviation 8,857857
Figure 2b): Objective values p=0,1
The resulting graphs suggest that in spite of imes@xceptional cases the objectives
may be different; the average objective is quitgilsir when we change the upper limit

for the utilization ratio. The standard deviatiom$¥oth cases are relatively low.

7. Conclusions

This paper considers a new formulation for the Bir8purce Capacitated Facility
Location Problem in which capacity constraints hesom imposing an upper bound to
the probability of customers’ demand being backemjgDemand is assumed to be
stochastic, following a Poisson distribution andnca@es with the arrival rate of a
Markovian M/M/1 queuing process.

Theory on stochastic manufacturing systems as ageiome numerical examples
suggests that solutions in this new model beconse kensitive to variations in

capacities.

25



Knowing the probability distribution of the demanitl,is possible to simulate
demand. Some simulated examples show that thetsednilnot vary much across the
different scenarios.

Finally, greedy heuristics seems to behave well nwismlving this new

formulation of the Single Source Capacitated Fgcilocation Problem.
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