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ABSTRACT  

ATWO-ECHELON LOCATION-INVENTORY MODEL FOR A MULTI-
PRODUCT DONATION-DEMAND DRIVEN INDUSTRY 

 
 

 by  

Milad Khajehnezhad 

 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Professor Wilkistar Otieno 

 
 

This study involves a joint bi-echelon location inventory model for a donation-demand 

driven industry in which Distribution Centers (DC) and retailers (R) exist. In this model, 

we confine the variables of interest to include; coverage radius, service level, and 

multiple products. Each retailer has two classes of product flowing to and from its 

assigned DC i.e. surpluses and deliveries. The proposed model determines the number of 

DCs, DC locations, and assignments of retailers to those DCs so that the total annual cost 

including: facility location costs, transportation costs, and inventory costs are minimized. 

Due to the complexity of problem, the proposed model structure allows for the relaxation 

of complicating terms in the objective function and the use of robust branch-and-bound 

heuristics to solve the non-linear, integer problem.  We solve several numerical example 

problems and evaluate solution performance. 
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CHAPTER 1:  INTRODUCTION 

According to the Council of Supply Chain Management Professionals (CSCMP), 

“Supply chain management encompasses the planning and management of all activities 

involved in sourcing and procurement, conversion, and all logistics management 

activities. It also includes coordination and collaboration between suppliers, 

intermediaries, third party service providers, and customers. Generally, supply chain 

management (SCM) integrates supply and demand management within and across 

companies.  SCM is therefore an integrating function with the primary responsibility of 

connecting major business functions and business processes within and across companies 

into a comprehensive and effective business model. It includes all of the logistical 

activities as noted above, as well as manufacturing operations, marketing, sales, product 

design, finance, and information technology.  The primary focus of logistical activities is 

the planning, implementation, and control of the efficient, effective forward and reverse 

flow and storage of goods, services and related information between the point of origin 

and the point of consumption in order to meet customers' requirements. It also 

encompasses sourcing and procurement, production planning and scheduling, assembly, 

and customer service”. [http://cscmp.org/] 

Today’s manager increasingly understands that holistic optimization of the logistic 

system leads to increased cost savings and customer satisfaction. Estimates show that the 

aggregate cost of any supply chain network typically includes: (i) inventory cost, (ii) cost 

associated with the establishment of distribution centers, and (iii) freight costs, all of 

which are interdependent.  For example, transportation economics shows there are 

tradeoffs between the number of fixed service location and the resulting transportation 
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costs since opening many distribution centers may result in lower unit transportation 

costs, and high customer service, at the expense of higher fixed location costs. Similarly, 

there are tradeoffs between fixed location costs and inventory costs. Opening fewer 

distribution centers will result low inventory costs due to ‘risk-pooling’ effects (Eppen, 

1979). 

Overall, the cost of an integrated supply chain system is said to represent 10-15 percent 

of the total sales in many companies (Marra, Ho, and Edwards, 2012).Therefore, the 

ability to optimally integrate these supply chain cost elements is a major challenge. Yet 

this ability also represents tremendous advantage to a company in the current increasingly 

competitive market. Strategic decisions such as facility location are long-term and tactical 

decisions such as inventory management are short-term. Hence, the relationship between 

the strategic and tactical elements of a supply chain is considered in most supply chain 

optimization models.  

1.1. Components of Supply Chain Management 

Supply chain management consists of three components; planning, implementation, and 

control (Ozsen, 2004). The planning occurs at three levels: strategic, tactical, and 

operational planning. Figure 1 details the components of planning in the supply chain.  



 

Figure 1-Supply Chain Management Components

 

1.2 Inventory Management Model with Risk Pooling

This section provides a brief review 

related to the problem addressed in this work. Detailed discussion about inventory

management models appear in 

Figure 2 illustrates the inventory profile in a distribution center (or any stocking

for a given product. It can be seen that with time, 

the customer demand and increases when 

is a specific inventory level

decreases to the r, a replenishment order 

placing an order until the 

order fulfillment lead time. 

 

Supply Chain Management Components 

1.2 Inventory Management Model with Risk Pooling 

brief review of some inventory management models 

related to the problem addressed in this work. Detailed discussion about inventory

ppear in a paper by Graves, Rinnoy Kan, and Zipkin

the inventory profile in a distribution center (or any stocking

It can be seen that with time, the inventory level decreases 

customer demand and increases when inventory is replenished. The reorder point

specific inventory level and it means that each time when the inventory level 

, a replenishment order is placed. The time which is needed

placing an order until the inventory replenishment arrives at the DC is defined as

lead time. Generally, the total inventory includes of two 

3 

 

 

some inventory management models that are 

related to the problem addressed in this work. Detailed discussion about inventory 

Zipkin (1993). 

the inventory profile in a distribution center (or any stocking facility) 

the inventory level decreases because of 

. The reorder point (r) 

inventory level 

which is needed from 

is defined as the 
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working inventory and the safety stock. The working inventory represents product that 

has been ordered from the supplier or plant due to demand requirements, but not yet 

shipped from the distribution center to satisfy customer demand. Safety stock is the 

inventory level allocated for buffering the system against stock-out given uncertainty in 

demand during the ordering lead time. 

 

Figure 2- Inventory profile changing with time 

 

 

Figure 3- Inventory profile for deterministic demand with (Q, r) policy 



5 

 

 

 

A common inventory control policy broadly used is the order quantity/reorder point (Q, r) 

inventory policy. When using this policy, each time the inventory level decreases to 

reorder point r, a fixed order quantity Q will be placed for replenishment. When the 

demand is deterministic with a consistent demand rate, the inventory profile is a series of 

identical triangles shown in Figure 3. Each of these triangles has the same height (the 

order quantity Q), and the same width denoted as the replenishment time interval. In this 

case, the optimal order quantity and replenishment time interval can be determined by 

using an economic order quantity (EOQ) model, which takes into account the trade-off 

between fixed ordering costs, transportation costs and working inventory holding costs. 

Although the EOQ model uses the deterministic demands, it has proved to provide very 

good approximations for working inventory costs of systems using (Q, r) policy under 

demand uncertainty (Axsater, 1996). 

A typical approach for the (Q, r) inventory policy is addressed by Axsater (1996). First, 

the stochastic demand is replaced with its mean value and then the optimal order 

quantity, Q is determined using the deterministic EOQ model. Finally, the optimal 

reorder point under uncertain demand is calculated based on the order quantity Q. 

 

Figure 4- Safety stock and service level under normally distributed demand 
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A distribution center facing demand uncertainty may not always have enough stock to 

cushion the volatile demand. If the reorder point (r) in terms of inventory level is less 

than the demand during the order lead time, stock-out may occur. Type I service level is 

defined as the probability that the total inventory on-hand exceeds demand (as shown in 

Figure 4). It requires that if demand is normally distributed with mean µ  and standard 

deviation σ and the ordering lead time is L , the optimal safety stock level to guarantee a 

service level α  is )1(. 2σα Lz ,  

where αz  is a standard normal score such that: )2( ) z(zPr αα =≤  

Eppen (1979) proposes the “risk pooling effect” based on the total safety stock in an 

inventory system. This effect shows that the safety stock cost can be significantly reduced 

by aggregating retailers to be fed by a single centralized (or fewer) warehouse(s). 

Particularly, Eppen considers a single period problem with N retailers and one supplier. 

Each retailer i has normally distributed demand with mean iµ and standard deviation iσ

and the correlation coefficient of demand for retailers i and j is ijρ . The order lead time 

from the supplier to all these retailers is the same and is given as L. Eppen compares two 

operational orientations of a retailer supply chain; centralized and decentralized mode. In 

the decentralized mode, each retailer orders independently to minimize its own expected 

cost. In this mode the optimal safety stock for retailer i is )3(iLz σα ,  

the total safety stock in the system is calculated by )4(
1

Lz
N

i
i∑

=

σα  

In the centralized mode, all the retailers are aggregated and a single quantity is ordered 

for replenishment, so as to minimize the total expected cost of the entire system. In this 
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case the demand at each retailer follows a normal distribution ),( 2
iiN σµ , the total 

uncertain demand of the entire system during the order lead time will also follow a 

normal distribution with mean )5(
1
∑
=

N

i
iL µ  , 

and standard deviation )6(2
1

1 11

2 ∑∑∑
−

= +==

+
N

i
ijj

N

ij
i

N

i

iL ρσσσ ,  

therefore, the total safety stock of the distribution centers in the centralized mode is, 

)7(2
1

1 11

2 ∑∑∑
−

= +==

+
N

i
ijj

N

ij
i

N

i

iLz ρσσσα ,  

thus, if the demands of all the N retailers are independent, the optimal safety stock can be 

expressed by     )8(
1

2∑
=

N

i

iLz σα
      (Eppen, 1979) 

 which is less than  )9(
1
∑
=

N

i

iLz σα  

This model illustrates the significant saving in safety stock costs due to risk pooling. As a 

result, for an inventory system that has multiple distribution centers operating with (Q, r) 

policy and Type I service level under demand uncertainty, the total inventory cost 

consists of working inventory costs and safety stock costs. In addition, the optimal 

working inventory costs can be estimated with a deterministic EOQ model, and the safety 

stock costs can be reduced by risk pooling. Given the developments above, we now turn 

attention to the notion of risk pooling in the location modeling literature. 

Shen (2000), Shen, Coullard, and Daskin (2003), and Daskin, Coullard, and Shen (2002), 

developed a location model with risk pooling (LMRP) that considers the impact of 
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working inventory and safety stock costs on facility location decisions. The system in the 

LMRP context consists of a single facility and multiple retailers some of which are 

chosen to act as distribution centers (DCs). The DCs maintain safety stock to serve their 

assigned retailers. The work of these authors is seminal in the sense that order 

frequencies at the distribution centers are modeled explicitly as decision variables. 

Integrated location-inventory models prior to the LMRP did not model inventory policies 

explicitly. Instead the earlier work approximated the inventory-related costs and included 

these costs in the objective function.  

The LMRP succeeds in determining the optimal location of the DCs and the order 

frequency from the DCs to the customers simultaneously. However, the LMRP assumes 

infinite capacity at the DCs, which is usually not the case in practice. Having constrained 

capacity may affect not only the number and location of the DCs, but also the inventory 

that can be stored at the DCs and consequently the order frequency as well as the 

assignment of customers to the DCs. Ozsen et.al (2008) developed a LMRP model with 

capacity constraints in DCs that would be more realistic. They called this model the 

capacitated facility location model with risk pooling (CLMRP) and are the focus of this 

thesis. 

In the thesis, a joint location-inventory problem for a donation-demand driven service 

industry setting is proposed.  The strategic decisions include facility location decisions, 

while the tactical issues include assignment of retailers to facilities, amount of inventory 

to be held in DCs (Warehouses) for repositioning to other retail locations, (deliveries and 

surplus), and transportation decisions. The objective function of the model involves 3 

main components: total facility location costs which is the annual cost for leasing or 
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acquiring DCs in selected nodes (location problem), total transportation costs which 

includes the annually total product-types movements due to deliveries and surpluses 

between DCs and their assigned retailers, and total inventory costs, including the average 

inventory costs and safety stock costs. The model answers these questions such that the 

total system cost is minimized: How many DCs are needed in the system? Where are the 

locations of the DCs? And what are the assignments of retailers to these DCs?  

In the numerical example section we develop a large set of representative problems based 

on actual operational data.  Three sets of problem sizes are presented: 30, 45, and 60 node 

problems.  Product arrives to the system as donations from consumers who deliver their 

reusable goods to a donation center.  These are the total number of nodes in the company 

system of donation centers.  The donation centers can be an existing retailer center 

(Sales\Donation centers), Attended Donation centers or ADCs (donation-only centers), 

and existing Distribution centers or DCs. The model wants to locate a number DCs 

among all these nodes in a way that minimizes the total system cost.  The total system 

cost includes fixed location costs, transportation costs, and inventory costs. Each node 

(retailer center, ADC, or existing DC) can be a potential point to locate a new DC. Also 

each retailer center has two flows to and from its assigned DC for product repositioning 

(surpluses and deliveries). Both kinds of flows are uncertain. 

Product level surpluses materialize when customer donations received at a retail center 

are higher than retail demand at a specific store location. This often occurs because of the 

wide variance in retail store size (which limits inventory space), or the need to reposition 

excess volume of the product by shipping back to the warehouse (DC) for repositioning 

to other retail locations.  As a result, annual surpluses of all product types are measured 
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by the number of Gaylord for the product type that is shipped back to the warehouse in a 

year. Deliveries are made based upon the demands.  When there is  a retailer shortage for 

any product type, the required replenishment volume is picked up on demand from the 

warehouse and delivered to the retail center; hence annual deliveries of any product type 

are defined by the number of Gaylord loads for the product that is shipped from the 

warehouse to the retailer in a year. Also, in spite of different kinds of products in the 

system, just two of them have the most demands and donations. In this thesis, these 

product types are referred to as Hard lines and Soft lines.  

There is no production plant in the proposed supply chain network, so this problem is 

defined as a two-echelon supply chain design with uncertainties in deliveries and surplus. 

As far as we know, this study could be the first in the literature that considers both 

demand and donation (product reuse) in retailer centers for a multi-product system. 

Another issue of importance is to consider coverage radius, especially from the 

perspective of a network spanning large geographic regions.  Coverage radius is the 

maximum distance between any retailer and its assigned warehouse. Perishable products 

such as blood or consumer packaged products face this important attribute of supply 

chain network design. Additionally, soaring fuel costs and environmental awareness 

pressure from various governmental and non-governmental entities necessitate the need 

to include coverage radius in network models, with the aim of decreasing in 

transportation costs.  The broader impact will be a decrease in corporate carbon 

footprints. 

The focal issue which is considered in the proposed model is the minimum number of 

retailers that can be assigned to a DC. In many actual supply chain contexts, it is not 
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economical to purchase or lease a DC for only two or three retailers, Thus in the spirit of 

the work by Eppen (1979), the “Risk Pooling” effect factors prominently in stochastic 

location-inventory problems. Figure 5 illustrates risk pooling effect in details (µ and 2σ  

stand for average and variance of demand respectively). 

 

                       (1)      (2) 

Figure 5- Risk pooling effect 

The amounts of Safety stock in 1 and 2 are proportionate with

)10(2
4

2
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2
2

2
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so it follows that the safety stock in (2) is less than safety stock in (1), because of risk 

pooling effect and centralization of a single warehouse instead of two. This leads to a 

decrease in total system inventory costs. 
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CHAPTER 2: LITERATURE REVIEW  

Severe contest in today’s universal market forces companies to be better in designing and 

managing their supply chain networks. There are three levels of decision making namely, 

strategic, tactical, and operational decisions in designing a supply chain network.  These 

decisions are made objectively to decrease operation costs and an increase service level 

to customers, especially when all the three levels are integrated. Strategic decisions are 

long-term while tactical and operational decisions are considered mid-term and short-

term respectively. In reality these decision are dependent to each other.  For example, 

strategic location decisions have a major effect on shipment and inventory costs, which 

subsequently affect the operational decisions. Each of these decisions has been 

considered separately in literature. 

Hopp and Spearman (1996), Nahmias (1997), and Perez and Zipkin (1997), focus on 

inventory control and discuss inventory policies for filling retailer orders. These policies 

are evaluated based on the service levels, inventory costs, shipping costs and shortage 

costs. Alternatively, location models tend to focus on determining the number and 

location of facilities, as well as retailer assignments to each facility. For a review on 

location modeling, we propose papers by Daskin and Owen (1998, 1999) who are leaders 

in this area of research. In addition, in their paper, they provide a review for dynamic and 

stochastic facility location models. Drezner (1995) has extensively worked on location 

modeling problems as well.  

One of the first works in incorporating location models and inventory costs is an article 

by Baumol and Wolf (1958).They state that inventory costs should add a square root term 
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to the objective function of the uncapacitated fixed charge location problem (UFLP).This 

condition leads to an NP-Hard problem. 

Nozick and Turnquist (1998, 2001a, 2001b) incorporate inventory costs assuming the 

demands arrive in a Poisson manner and a base stock inventory policy (one-for-one 

ordering system). In 1998, they use an approximation of inventory costs (a linear function 

of the number of DCs) into the objective function of the fixed charge location problem 

(FLP). In 2001, they minimize inventory costs and unfulfilled demands, incorporating 

them repetitively into the fixed installation costs. Nozick (2001) considers a fixed charge 

location problem with coverage restriction. Another paper which solves a location model 

with a fixed inventory cost through Dantzig-Wolfe decomposition is presented by 

Barahona and Jenson (1998). Erlebacher and Meller (2000) formulate an analytical model 

for a location-inventory model in which the demand points are continuously placed. 

Shen (2000), Shen et al. (2003), and Daskin et al. (2002) present a joint location-

inventory model in which location, shipment and nonlinear safety stock inventory costs 

are included in the same model. In these works, the ordering decisions are based on the 

EOQ model. Daskin et al. and Shen et al. utilize Lagrangian relaxation and Column 

Generation respectively to solve this problem. In fact, they present the location model 

with risk pooling (LMRP).  Teo and Shu (2004) introduce a joint location-inventory 

model that considers a multilevel inventory cost function and solve this problem with 

column generation.  

Miranda and Garrido (2004a, 2004b) present two articles; in the first one, each retailer 

represents a cluster of final demands. In addition, they present an exciting comparison 
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between traditional approach in which location and inventory decisions are made 

independently and simultaneous (inventory location decisions). In the second one they 

consider capacity constraints in the FLP models, limiting the average demand to be 

allocated to each distribution center.  

Eskigun et al. (2005) introduce a location-inventory model that considers pipeline 

inventory costs based on the expected lead time from plants to the DCs. The lead time is 

formulated as the function of the amount of demand assigned to that distribution center. 

For locating cross docking, this model is too efficient. Eppen (1979) investigates the 

effects of risk pooling and shows that when facing independent demands, the total 

expected safety stock costs are remarkably less in the centralized state than in the 

decentralized mode. The inventory costs add a concave function to the objective function 

of LMRP. In his paper, the inventory policy is based on an estimation of EOQ.  

Shen and Qi (2007) develop a model in supply chain system with uncertainty in demands. 

They determine the number and location of the DCs and also the assignment of retailers’ 

demands to the DCs. They apply routing costs instead of direct shipments which is much 

more realistic and use Lagrangian relaxation in the solution algorithm. Sourirajan et al. 

(2007, 2009) develop an integrated network design model that simultaneously considers 

the operational aspects of lead time (based on queuing analysis) and safety stock. In the 

first paper, they use Lagrangian relaxation and in the second one, they utilize Genetic 

algorithm. They then present a comparative analysis of these two algorithms.  

Ozsen et al. (2008) develop a capacitated location model with risk pooling in which they 

consider capacity constraints based on maximum inventory accumulation. They use 
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Lagrangian relaxation as a solution algorithm. Ozsen et al. (2009) also present a multi-

sourcing capacitated location model with risk pooling. Shen (2005) and Balcik (2003) 

study a multiproduct extension of LMRP. 

Most distribution network design models have concentrated on minimizing fixed facility 

location costs and transportation costs. In literature, some issues related to customer 

satisfaction, such as lead time, have rarely been studied.  Eskigun et al. (2005) propose a 

supply chain network design considering facility location, lead time, and transportation 

mode. They use Lagrangian relaxation method to solve the problem and to find efficient 

solutions in a reasonable amount of time 

Uster et al. (2008) present a three level supply chain network in which the decisions 

variables are the location of a warehouse and inventory replenishment. The objective 

function is to minimize transportation and inventory costs. In this problem they only 

consider the location of one warehouse and the inventory replenishment policy is based 

on power-of-two policy. They utilize the proposed heuristic methods to solve the problem 

and they show the efficiency of the algorithms. They find solutions within a 6% gap of 

the lower bound for different experiments.  

Ozsen, Daskin, and Coullard (2009) consider a centralized logistics system in which a 

single company owns the production facility and the set of retailers and establishes 

warehouses that will replenish the retailers’ inventories. They analyze the potential 

savings that the company will achieve by allowing its retailers to be sourced by more 

than one warehouse probabilistically, through the use of information technology. They 

investigate the effect of multi-sourcing in a capacitated location-inventory model that 
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minimizes the sum of the warehouse location costs, the transportation costs, and the 

inventory costs. The model is formulated as a nonlinear integer-programming problem 

(INLP) with an objective function that is neither concave nor convex. They solve the 

model with a Lagrangian relaxation algorithm and test different experiments with various 

numbers of nodes and finally get the reasonable results in terms of the time and quality of 

solutions. Ultimately, they conclude that multi-sourcing becomes a more valuable option 

as transportation costs increase, i.e., constitute a larger portion of the total logistics cost. 

Additionally, they show that in practice only a small portion of the retailers need to be 

multi-sourced to achieve significant cost savings. 

Ghezavati et al. (2009) present a new model for distribution networks considering service 

level constraint and coverage radius. To solve this nonlinear integer programming (INLP) 

model they use a new and robust solution based on genetic algorithm. Another paper was 

introduced by Sukun Park et al. (2010). They consider a single-sourcing network design 

problem for a three-tier supply chain consisting of suppliers, distribution centers and 

retailers, where risk-pooling strategy and lead times are considered. The objective is to 

determine the number and locations of suppliers and DCs, the assignment of each DC to a 

supplier and each retailer to a DC, which minimizes the location, transportation, and 

inventory costs. The problem is formulated as a nonlinear integer programming model, 

and a two-phase heuristic algorithm embedded in a Lagrangian relaxation method is 

proposed as a solution procedure. After sensitive analysis, it is shown that the proposed 

solution algorithm is efficient. 

Chen et al. (2011) study a reliable joint inventory-location problem that optimizes facility 

locations, customer assignments, and inventory management decisions when facilities are 
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under disruption risks (e.g., natural disasters). To avoid high penalty costs due to losing 

customer service, the customers who were assigned to a failed facility, could be 

reassigned to an operational facility. The model is formulated as an integer programming 

model. Objective function, including the facility construction costs, expected inventory 

holding costs and expected customer costs under normal and failure scenarios, should be 

minimized. A polynomial-time exact algorithm for the relaxed nonlinear sub-problems 

embedded in a Lagrangian relaxation procedure is proposed to solve the problem. 

Numerical examples show the efficiency of the proposed algorithm in computational time 

and finding near-optimal solutions.  

O Berman, D Krass, and MM Tajbakhsh (2012) present a location-inventory model with 

a periodic-review (R, S) inventory policy that is taken by selecting the intervals from an 

authorized choices menu. Two types of coordination are introduced: partial and full 

coordination where each DC may select its own review interval or the DCs have same 

review intervals respectively. The problem is to determine the location of the DCs to be 

opened, the assignment of retailers to DCs, and the inventory policy parameters at the 

DCs such that the total system cost is minimized. The model is a kind of INLP (integer 

nonlinear programming) problem and Lagrangian relaxation procedure is performed to 

solve the problem. Computational results show that location and inventory costs increase 

due to full coordination. On the other hand, the proposed algorithm seems to be efficient 

and reliable. As a result, they show that full coordination, while enhancing the 

practicality of the model, is economically justifiable. 

Atamtürk et al. (2012) study several stochastic joint location-inventory problems. In 

particular, they investigate different issues such as uncapacitated and capacitated 
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facilities, correlated retailer demand, stochastic lead times, and multiple products. This 

problem is formulated as a conic quadratic mixed-integer problem and they add valid 

inequalities including extended polymatroid and cover cuts to boost the formulations and 

also develop computational results. Finally they show that this kind of formulation and 

solution methods would lead to more general modeling framework and faster solution 

times. 

Hyun-Woong Jin (2012) studies some important issues on the distribution network design 

such as incorporating inventory management cost into the facility location model. This 

paper deals with a network model in which decisions on the facility location such as the 

number of DCs, their locations, and inventory decisions are made.  Inventory decisions in 

their case include order quantity and the level of safety stock at each DC. The difference 

between this work and previous works is the classification of costs into operational costs 

and investment costs. A Lagrangian relaxation method is proposed to solve this problem. 

Amir Ahmadi Javid and Nader Azad (2012) propose a novel model to simultaneously 

optimize location, assignment, capacity, inventory, and routing decisions in a stochastic 

supply chain system. Each customer’s demand is stochastic and follows a normal 

distribution, and each distribution center keeps a certain amount of safety stock in terms 

of its assigned customers. They use a two-stage solution algorithm. In the first stage, they 

reformulate the model as a mixed-integer convex problem and solve it with an exact 

solution method. Then in the second stage, they apply this solution as an initial point for a 

heuristic method including “Tabu Search” and “Simulated Annealing” to find the 

optimum or near optimum solution for the original problem. Different numerical 
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examples show that the proposed solution algorithm works highly effectively and 

efficiently. 

Jae-Hun Kang and Yeong-Dae Kim (2012) present a supply chain network consisting of 

a single supplier, with a central distribution center (CDC), multiple regional warehouses, 

and multiple retailers. The decision variables are the location and number of warehouses 

among a set of candidates, assignments of retailers to the selected warehouses, and 

inventory replenishment plans for both warehouses and retailers to minimize the 

objective function. The objective function that comprises of warehouse operation costs, 

inventory holding costs at the warehouses and the retailers, and transportation costs from 

the CDC to warehouses as well as from warehouses to retailers. They formulate the 

problem as a non-linear mixed integer programming (MINLP) model and propose an 

integrated solution method using Lagrangian relaxation and sub-gradient optimization 

methods. In the results section, they state that the solution algorithm is relatively efficient 

because the randomly numerical examples give good solutions in reasonable time. 

Hossein Badri, Mahdi Bashiri ,Taha Hossein Hejazi (2012) define a new mathematical 

model for multiple echelon, multiple commodity Supply Chain Network Design (SCND) 

and consider different time resolutions for tactical and strategic decisions. Expansions of 

the supply chain in the proposed model are planned according to cumulative net profits 

and fund supplied by external sources. Furthermore, some features, such as the minimum 

and maximum utilization rates of facilities, public warehouses and potential sites for the 

establishment of private warehouses, are considered. To solve the model, an approach 

based on a Lagrangian relaxation (LR) method has been developed, and some numerical 

analyses have been conducted to evaluate the performance of the designed approach. 
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In another paper, Sri Krishna Kumara, and M.K. Tiwari (2013) consider the location, 

production–distribution and inventory system design model for a supply chain in order to 

determine facility locations and their capacity to minimize total network cost. Because 

the demands are stochastic, the model considers risk pooling effect for both safety stock 

and RI (Running Inventory). Two cases, due to benefits of risk pooling, are studied in the 

model; first, when retailers act independently and second, when DCs and retailers are 

dependent to each other and work jointly. The model is formulated as a mixed integer 

nonlinear problem and divided into two stages. In the first stage the optimal locations for 

plants and flow relation between plants-DCs and DCs-retailers are determined. At this 

stage the problem has been linearized using a piece-wise linear function. In the second 

stage the required capacity of opened plants and DCs is calculated. The first stage 

problem is further divided in two sub-problems and in each of them, the model 

determines the flow between plants-DCs and DCs-retailers respectively using Lagrangian 

relaxation. Computational results show that main the problem’s solution is within the 

8.25% of the lower bound and significant amount of cost saving can be achieved for 

safety stock and RI costs when DCs and retailers work jointly. 

Jiaming Qiu and Thomas C. Sharkey (2013) consider a class of dynamic single-article 

facility location problems in which the facility must determine order and inventory levels 

to meet the dynamic demands of the customers over a finite horizon. The motivating 

application of this class of problems is in military logistics and the decision makers in 

this area are not only concerned with the logistical costs of the facility but also with 

centering the facility among the customers in each time period, in order to provide other 

services as well. Both the location plan and inventory plan of the facility in the problem 
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must be determined while considering these different metrics associated with efficiency 

of these plans. Effective dynamic programming algorithms for this class of problem are 

provided for both of these metrics. These dynamic programming algorithms are utilized 

in order to construct the efficient frontier associated with these two metrics in polynomial 

time. Computational testing indicates that these algorithms can be used in planning 

activities for military logistics. 

In the current competitive business world, leading-edge companies respond to a dynamic 

environment promptly with various and flexible strategies. These strategies are used to 

make optimum decision regarding allocation of company income to the major sources 

including activities or services. 

Gharegozloo et al. (2013) present a location-inventory problem in a three level supply 

chain network under risk uncertainty. The (r,Q) inventory control policy is used for this 

problem. Additionally, stochastic parameters such as procurement, transportation costs, 

demand, supply, capacity are presented in this model. Risk uncertainty in this case is due 

to disasters as well as man-made events. Their robust model determines the locations of 

distribution centers to be opened, inventory control parameters (r,Q), and allocation of 

supply chain components simultaneously. This model is formulated as a multi-objective 

mixed-integer nonlinear programming in order to minimize the expected total cost of 

such a supply chain network comprising location, procurement, transportation, holding, 

ordering, and shortage costs. They apply an efficient solution algorithm on the basis of 

multi-objective particle swarm optimization for solving the proposed model and the final 

numerical examples and sensitive analysis show the efficiency and performance of the 

algorithm. 
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2.1 Research Contribution 

As was presented in literature review section, most of the location- inventory models do 

not consider “coverage radius” constraint as an important parameter in determining 

service level to end customers. Coverage radius is the maximum distance between any 

retailer and its assigned warehouse. Increasing fuel cost, supply of perishable products 

and environmental impact due to transportation, are the most important factors that drive 

the consideration of coverage radius. In The first contribution in our study is the addition 

of coverage radius as a constraint. This not only makes the problem and solutions more 

realistic but also it is specific to the company in the case study. 

Secondly, our model is related to a demand-donation driven supply network and we 

consider the case of an industry in the Southeastern Wisconsin region. In this model, each 

retailer has two flows, to and from its assigned DC i.e. surpluses (S) and deliveries (D) 

both with uncertainty. In most previous work, demand is the only flow in all retailer 

points. Having two flows in the model leads to different inventory levels in warehouses 

due to the average and standard deviation of difference between surpluses and deliveries 

for any assigned retailer. The real data from the company in the case study shows that all 

demands are larger than donations in any retailer point for any product type. We 

specifically make the proposed model robust enough to accept scenarios in which 

donations could be larger than demands in any retailer for any product type. 

In most literature, multiple products have not been taken into account in a joint location-

inventory model. The third contribution is that the proposed model considers multiple 

commodities in a donation-demand driven network, hence realistic. In addition, our 
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model considers a set of constraints related to the minimum number of retailers that can 

be assigned to an opened DC for any product type. Because of high annual leasing or 

purchasing costs for a typical warehouse, this assumption is important. As a result, the 

research contributions in this study are summarized as follows: 

We propose a “Generalized location-inventory model” for a donation-demand driven 

industrial supply chain network.  In this model, we integrate the minimum number of 

retailers that are assigned to an opened DC and the coverage radius as constraints in a 

multi-commodity supply chain system. Specific to the company modeled in this study, 

each retailer point referred to as a donation/demand center is a potential location for 

opening a DC (distribution center).  
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CHAPTER 3: PROBLEM DEFINITION, ASSUMPTIONS, AND 
MODEL FORMULATION  

 

3.1 Problem Definition 

As was discussed in the introductory section, this study involves a joint location 

inventory model using data from a donation-demand driven industry in the Southeastern 

Wisconsin region. This bi-echelon model involves warehouses (herein also referred to as 

Distribution Centers (DC)) and retailers (R) (herein also referred to as Donation/Demand 

Centers).  In this model, we restrict our variables to include; coverage radius, service 

level, and multiple products. Each retailer has two flows to and from its assigned DC i.e. 

surpluses (S) and deliveries (D). Surpluses result when product-type donations are higher 

than the demand therefore the excess volume of the product is shipped back to the 

warehouse (DC) due to limited inventory space in retailer point (herein referred to as a 

node).Conversely, deliveries result when the product demand is higher than the 

donations, hence more products should be shipped from the warehouse to the retailer. 

Among the retailer nodes, there are specified nodes that are strictly donation only points, 

as such they do not have any product demand and no products are delivered into them 

from any warehouse. Such a node is referred to as Attended Donation Centers (ADC). 

Figure6 is a schematic representation of the company’s supply chain network. Here, only 

three DCs and seven retailers are used for explanation purposes. 
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Figure 6- schematic representation of the company’s supply chain network 

The two flows between each retailer and its assigned DC are completely dependent. This 

means that in this model, deliveries and surpluses cannot occur simultaneously. Annual 

deliveries are stochastic, independent and normally distributed (i.n.d). So we can suppose 

that the deliveries (D) to each retailer (i) from its assigned DC (j) for a given product type 

(k) is a random variable with average of 
ikDµ and variance of 2

ikDσ .  Similarly, annual 

surpluses are also i.n.d. and the surpluses from a retailer (i) to its assigned DC (j) for a 

given product type (k) are also stochastic with an average and variance of
iksµ and 2

iksσ

respectively. Generally, an actual supply chain network for this problem can be 

represented in Figure 7. 

Warehouses                                            Donation/Demand Centers 
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Figure 7- An actual supply chain network for the company 

 

3.1.1 Parameters Description 

:
j

f  Annual fixed location cost for a DC in location j 

:jid  Transportation cost for each unit of product type (in Gaylord) per unit            

 distance (miles) between nodes i and j based on current fuel and labor cost 

:jil  Distance traveled between node i and j in direct shipment (in miles) 

:h  Annual holding cost per unit of each product type in DC j  

:αZ  Normal standardized score with a risk factor of alpha  

:2

ikDσ  Annual variance of deliveries for product type k to retailer i 
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:2

iksσ  Annual variance of surpluses of product k from retailer i to the assigned DC 

:2
ikσ  Annual total variance of deliveries and surpluses of a product type k of retailer i 

:
ikDµ  Annual average deliveries of product type k to retailer i 

:
ikSµ  Annual average surpluses of a product type k from retailer i 

:N  Maximum number of possible DCs in system 

:M  Minimum number of retailers (R) to be assigned to any DC 









Else

z ji

0

         

radius coverage by the determined iretailer cover can  j DC candidate If1

:  

:β  Weighted factor assigned to the transportation cost 

:θ  Weighted factor assigned to the inventory cost 

 

3.2 Assumptions 

1. Although the real problem includes various products, for modeling purposes, we 

only consider two product types with the highest demand and donations i.e. Hard 

Lines (HL) and Soft Lines (SL). 

2. jid (The transportation cost) includes fuel cost and labor cost. By assuming that 

each truck has a capacity of 25Gaylord, and transportation cost per unit distance 
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for each truck is $2.12 (this includes both fuel and labor costs) [company data], 

so jid is $2.12/25 = $ 0.0854. 

3. The holding cost (h ) is fixed for both product types. 

4. The average demand for a given product type is larger than the average donation 

of the same product type for any retailer.  This assumption stems from two 

sources: real data from the company and anecdotal, that for any retailer to exist 

despite seasonal effects, the annual average demand has to exceed the donation. 

Otherwise the node will become an ADC. However, the proposed model is 

generalized whereby donation could be larger than demand for a product type or 

vice versa.  

5. For calculating the safety stock cost in the objective function, we need 2
ikσ to be 

calculated as follows: 
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6. We only consider direct shipments i.e. multi-location routing is not allowed. 

7. It is assumed that DCs will be located in any of the existing nodes. This 

assumption follows from discussions with the company experts. 

8. The “big circle distance” calculator is used to determine the distance between 

node i and j.  This formula uses the latitudes and longitudes to calculate the 
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distance between any two locations. For a more realistic estimation of the 

distances, 14% of the estimated distance is added. jil  is calculated based on the 

estimated distance multiplying two. The reason for that is because of direct 

shipment which in a truck leaves node i, reached to j, and then returns to i again. 

9. M is the minimum number of retailers that can be assigned to any DC.  In this 

model, we assume that M is five.  This value was given by experts within the 

company.  In brief, factors such leasing or purchasing costs of DC facilities were 

used to determine the realistic value of M.  

10. Another factor that is considered in this model is the coverage radius. Normally, 

coverage radius is prominent in modeling perishable and essential goods.  Due to 

recently soaring fuel prices in recent years, it is inevitable to include coverage 

radius as one of the main factors in regional facility location models. Besides 

increasing transportation costs, environmental conditions have an important role 

in determine the coverage radius, especially given that the model depicts s supply 

network in U.S.A.’s mid-western region that experiences harsh winters.  In 

addition, environmental pollution policies and penalties also force distributors to 

ensure minimal transportation in their networks.  In this model, 50, 75 and 100 

miles are used as case scenarios. 

 

3.3 Model Formulation 

Based on the problem definition, parameter description and assumptions, this problem is 

formulated as a joint location-inventory problem for a bi-level supply chain to determine 

number of DCs, DC locations, and assignments of retailer to those DCs.  The proposed 
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model is minimization problem that seeks to optimize the total annual cost including: 

fixed facility location costs, transportation costs, and inventory costs. As was discussed 

before, it is re-emphasized that there are two flows between each retailer and each DC i.e. 

deliveries from any DC to any retailer and surpluses from any retailer to any DC.  On the 

other hand, there is only surplus flow between any ADC and its assigned DC. Based on 

the objective function, decision variables in this model are defined as: 
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So the formulation of model is expressed as follows: 
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The objective function consists of four terms. The first term is the total system location 

costs where fj is the fixed location cost for any candidate DC. The second term is the total 

system transportation costs between DCs and retailers for all products types. The third 

term is the system average inventory costs (for all DCs). The fourth term is the total 

system safety stock cost i.e. for all and all products types. If the number of DCs increases, 

total system location and safety stock costs increase while the system transportation cost 

decreases. However, if the number if DCs decreases, total system location and safety 

stock costs decrease while the system transportation cost increases. In addition, the 

average system inventory cost does not change with a change in the number of open DCs. 

As such, the model is a trade-off between these cost terms in objective function with 

respect to the model constraints.  

The model constraints include: Constraint 17 demonstrates that a retailer can be assigned 

to any open DC within the coverage radius. Constraint 18 ensures single-sourcing, 

meaning that only one DC should serve a retailer for any specified of product type. 

Constraint 19 ensures that the minimum number of retailers that can be assigned to a DC 

for a given product is met. Lastly, constraints 20 and 21 restrict the decision variables to a 

binary range.

 

The model is an INLP (Integer Nonlinear Program) within the family MINLP (Mixed 

Integer Nonlinear Programs).It is a combinatorial optimization model because it has a 

finite solution set. However, finding the best solution among all feasible solutions is 

difficult; hence this problem is an NP-hard because its complexity and the time needed to 

solve the problem increases exponentially as the number of nodes increases. The solution 

algorithm is discussed in the next chapter. 
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3.3.1 Research Contribution: Generalized location-inventory model 

The proposed inventory-location model in section 3.3 is specific to the company in our 

case study.  This model assumes that demand is always larger than donation for any 

retailer and product type. As a result, total deliveries are assumed to always be larger than 

total surpluses between any DC and its retailers. This assumption could be reasonable, 

however due to seasonality or other special circumstances, this can be violated. So next, 

we present a robust generalized model that can accommodate both instances 

simultaneously.  

)27(}))({:

)26(}))({:

)25(1,0

)21(,,1,0

)20(1,0

)24()().1(

)23()(.

)19(,

)18(,1

)17(,,

:

)22())(()1(

))()(1(

))(()1(

))(()(.

2

2

2

2

∑∑∑∑

∑∑∑∑

∑∑

∑∑

∑

∑

∑∑∑

∑∑∑ ∑∑

∑∑∑∑ ∑∑

∑ ∑∑∑∑∑∑

<−∈′′

≥−∈′

∈∀=

∈∈∈∀=

∈∀=

∈∀−≤−−

∈∀−≥

∈∈∀≥

∈∈∀=

∈∈∈∀≤

−−+

−−−+

−−++

−+++=

′′∈

′′∈

′∈

i k
jikik

i k
jikDS

i k
jikik

i k
jikDS

j

jik

j

i k
jikSDj

i k
jikSDj

i
jik

j
jik

jjijik

i k
jikDS

jj
jcom

i k
jikDS

jj i k
jikikjcom

i k
jikDS

jj
jcom

j i k
jikikjcom

j i k
jikSDjcom

j i k
jikSDjiji

j
jj

YYjj

YYjj

Jjt

JjKkIiY

JjX

JjYBt

JjYtB

KkJjPY

KkIiY

JjKkIiXzY

ST

Yth

YYthz

YthYthz

YthYdlXfWMin

ikik

ikik

ikik

ikik

ikik

ikik

ikik

ikikikik

σµµ

σµµ

µµ

µµ

µµθ

µµσθ

µµθσθ

µµθµµβ

α

α

 



33 

 

 

 

In this formulation, B is a large number. For example >10000, which must be larger than the 

highest difference (
ikik SD µµ − ) and jt is a binary decision variable that is 1 for a DCj if the 

function 0))(( ≥−∑∑
i k

jikSD Y
ikik

µµ and is 0 if the function 0))(( ≤−∑∑
i k

jikSD Y
ikik

µµ . These two 

conditions have been added as constraints (23) and (24). Also, we restate the cost terms in the 

objective function to include the added model parameters. 
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CHAPTER 4: SOLUTION ALGORITHM AND PARAMETERS 
SETTING 

 

4.1 Solution Algorithm 

The proposed joint location-inventory model is a nonlinear integer programming where 

all the decision variables are binary. Besides its combinatorial nature, the nonlinear term 

is non-convex which makes the optimization model very difficult to solve. First, the 

original INLP model (P0) is reformulated as a mixed-integer nonlinear programming 

(MINLP) problem with fewer zero-one variables (P1). P1 has concavity in the objective 

function and linear constraints hence also difficult to solve. P1 is then relaxed of the 

concavity in the objective function and it is reformulated as a new model with nonlinear 

constraints and a linear objective function (P2), retaining the properties of problem P1, 

but simpler to solve. P2can be solved using the “SCIP” solve in GAMS to get optimal or 

near optimal solutions. The original model (P0) is rewritten as below: 
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The original INLP model (P0) is very difficult to solve especially for large networks due 
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to the potentially large number of binary variables.  As shown in proposition 1 below, the 

assignment variables (jikY ) in the model can be relaxed as continuous variables without 

changing the optimal integer. This allows us to reformulate (P0) as a MINLP problem 

with fewer binary variables, most of them appearing in linear form. 

Proposition1. The continuous variables jikY take 0-1 binary values when (P1) is globally 

optimized or locally optimized for fixed 0-1 values for jX . (You and Grossmann, 2008) 

Proposition 1 means that the following problem (P1), yields integer values on the 

assignment variables jikY when it is globally optimized or locally optimized for fixed 

binary integer values of jX , so P0 is reformulated as P1 as below: 
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Another problem that exists in model P1 is that the objective function has concavity 

which is complicated to solve.  P1 is therefore relaxed into another model (P2) that does 
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not have concavity in objective function; hence another non-negative continuous variable 

“ jU “is defined to replace the square root term in objective function. This variable is 

described as follow: 
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Because the non-negative variable jU has a positive coefficient in the objective function, 

and this problem is a minimization problem, (29) can be further relaxed using the 

following inequality: 
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The reformulated model is expressed as P2 below: 
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P2 and P1 can be trivially shown to be equal but with linear objective function and 

quadratic terms in the constraints. As shown by You and Grossmann (2008), the 

following proposition can be established for problem P2. 

Proposition2. In the global optimal solution of problem P2 or a local optimal solution 

with fixed binary values for jX , all the continuous variables jikY take on integer values (0 

or 1). 

Now we just need to solve P2 to get the global optimal or near optimal solutions for P1 

and P0. This is accomplished using “SCIP” solver in GAMS. In the next section, the 

SCIP solver, used to solve P2 is briefly presented. 

 

4.1.1 SCIP Solver in GAMS  

SCIP (Solving Constraint Integer Programs) was developed at the Konrad-Zuse-Zentrum 

fuerr Informationstechnik in Berlin (ZIB). SCIP is only available for users with a GAMS 

academic license. SCIP is a framework for solving Constrained Integer Programming, 

especially to address the needs of Mathematical Programming experts who want to have 

total control of the solution process and access all internal information of the solver. 

SCIP can also be used as a pure MIP solver or as a framework for branch-cut-and-price. 

Within GAMS, the MIP and MIQCP solving facilities of SCIP are available. SCIP has 

different features and plugins to handle constrained integer programming. In the 

following discussion, we briefly present these plugins and their roles in solving 

constraints integer programming through SCIP solver (Achterberg, 2007). 

Constraint handlers  

Each constraint handler provides algorithms to handle constraints with the same class. 
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The initial task is to check a given solution for feasibility with respect to all constraints of 

its type existing in the problem instance. So the resulting procedure would be a complete 

enumeration of all potential solutions because no additional information is available. Also 

to improve the efficiency in finding a solution, the constraint handlers may use pre-

solving methods, propagation methods, linear relaxation, and branching decisions. 

Presolvers 

In addition to constraint based pre-solving algorithms, SCIP perform dual pre-solving 

reductions with respect to the objective function.  

Cut Separators 

In SCIP, there are two different types of cutting planes. The first type involve constraint-

based cutting planes, that are valid inequalities or even facets of the polyhedron described 

by a single constraint or a subset of the constraints of a single constraint class. The 

second type of cutting planes is general purpose cuts, which use the current LP relaxation 

and the integrality conditions to generate valid inequalities. Generating those cuts is the 

task of cut separators.  

Domain Propagators 

As same as “Cut Separators”, there are two different Domain Propagations: Constraint 

based (primal) algorithms, and objective function (dual) based algorithms. An example is 

the simple objective function propagator that tightens the variables’ domains with respect 

to the objective bound cxcT ˆ< with ĉ being the objective value of the current best primal 

solution. 
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Variable Pricers 

Several optimization problems are modeled with a huge number of variables. In this case, 

the full set of variables cannot be generated in advance. Instead, the variables are added 

dynamically to the problem whenever they may improve the current solution. In mixed 

integer programming, this technique is called column generation. SCIP supports dynamic 

variable creation by variable pricers. They are called upon during sub-problem processing 

and have to generate additional variables that reduce the lower bound of the sub-problem. 

If they operate on the LP relaxation, they would usually calculate the reduced costs of the 

not yet existing variables with a problem specific algorithm and add some or all of the 

variables with negative reduced costs. Note that since variable pricers are part of the 

model, they are always problem class specific. Therefore, SCIP does not contain any 

“default” variable pricers. 

 Branching Rules  

If the LP solution of the current subproblem is fractional, the integrality constraint 

handler calls the branching rules to split the problems into subproblems. Usually, a 

branching rule creates two subproblems by splitting a single variable’s domain. 

Node Selectors 

Node selectors decide which of the leaves in the current branching tree is selected as next 

sub-problem to be processed. This choice can have a large impact on the solver’s 

performance, because it influences the search speed for the feasible solutions and the 

development of the global dual bound. 
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 Primal Heuristics  

SCIP provides specific infrastructure for diving and probing heuristics. Diving heuristics 

iteratively resolves the LP after making a few changes to the current sub-problem, usually 

aiming at driving the fractional values of integer variables to integrality. Probing 

heuristics are even more sophisticated. Besides solving LP relaxations, they may call the 

domain propagation algorithms of the constraint handlers after applying changes to the 

variables’ domains, and they can undo these changes by backtracking. Other heuristics 

such as rounding heuristics, objective diving heuristic, and improvement heuristics are 

also used in SCIP solver. 

Relaxation Handlers 

SCIP provides specific support for LP relaxations: constraint handlers implement 

callback methods for generating the LP, additional cut separators may be included to 

further tighten the LP relaxation, and there are a lot of interface methods available to 

access the LP information at the current subproblem. 

SCIP also contains other plugins such as “Event Handlers”, “Conflict Handlers”, “Dialog 

Handlers”, and “Message Handlers”. For example “Conflict Handlers” can be applied to 

learn from infeasible sub-problems. SCIP uses additional relaxations (e.g., semidefinite 

relaxations or Lagrangian relaxations) working in parallel or interleaved. Another 

important feature of SCIP is the dynamic memory management which reduces the 

number of operation system calls with automatic memory leakage detection in debug 

mode. 
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4.2 Parameters setting  

As mentioned earlier, solving P2 is sufficient to get a global or local optimum for the 

original problem P0. Before using SCIP in GAMS to solve P2, parameters settings are 

needed to test different scenarios in our problem. Some of these parameter settings are 

shown in Table 1. 

Parameters Values 

j
f  

Uniformly distributed random numbers between [80,120]. (see Table 4) 

jid  0.0854 

jil  2(1.14)Great circle distance between i & j 

h  12 

αZ  1.64, 1.96 

M  5 

jiz  50,75,100 

Table 2- Parameters setting values 

The annual average and variance of surpluses and deliveries for all candidate nodes (60 

nodes) for any product-type are taken from company data. Also some missing data and 

coefficient of variations of all nodes are randomly generated because of lack of data. 

There is no average and variance for existing DCs (i.e. no demand/donations in the 

current DCs) and no demand in existing ADCs. These values are derived from the annual 

number of trips from Oct 2011 to Sep 2012.  Also as advised by the company sources, 

deliveries and surplus percentage for any product type are different in various months. 

During Sep-May, deliveries and surpluses are about 80% and 20% respectively, but 
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during June-Aug, these percentages change to 40% and 60% respectively. Also the 

product-types ratios are different from one month to the other. During Sep-May, HL and 

SL ratios are 66% and 34% respectively and in June, July, and August, these ratios 

change to 35% and 65% respectively. These ratios and assumptions are used to calculate 

the annual average of deliveries and surpluses in terms of the number of Gaylord for any 

product type (herein HL and SL) in all nodes. For the stores without information about 

the number of trips, the annual number of trips is a uniformly distributed random number 

generated with mean 125 and standard deviation of 46. As mentioned in assumptions 

section, 25 Gaylord of any product type is shipped in each trip, equal to the capacity of a 

truck. 

The coefficients of variation (CV) are used to calculate the annual standard deviation of 

deliveries and surpluses in terms of the number of Gaylord for any product type in all 

nodes. CV is generated as a uniformly distributed random number between 0.1-0.4. This 

range is reasonable based on the literature review. According to equation (1) in the 

problem definition section, the total variance of difference between surpluses and 

deliveries for all product types is calculated. For illustrative purposes, Table 2 shows a 

summary of only 10 nodes in the system including annual average # of trips, annual 

average # of deliveries and surplus, and mean CV of deliveries and surplus. 

Fixed location costs (jf  ), of 10 nodes are also presented in Table 3 for illustration 

purposes only. Similarly to the fixed costs in Table 3, values for all 60 nodes are 

randomly generated as uniformly distribution in the [80,120] interval.  These interval 

limits are representative of the range of warehouse fixed costs. As was mentioned in 
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parameter description section, jil is the total distance travelled, which is double the 

estimated distance between any two nodes.



 

 

 

 

STORE 

CODE 

  

  

  

# of TRIPS According to Retail and 

ADC Ratios 

      

      Coefficient of Variation (CV)   

  ANNUALIZED     Assumption: CV ~ U(0.1 - 0.4)   

  SEP'12 - SEP'11   MU - Delivery MU - Surplus   CV - Delivery 

CV - 

Surplus   

GW03   119   83 36   0.24 0.25   

GW05   79   55 24   0.18 0.26   

GW07   136   0 136   0.25 0.24   

GW09   99   69 30   0.32 0.27   

GW11   99   69 30   0.21 0.24   

GW13   99   69 30   0.36 0.30   

GW15   263   184 79   0.25 0.39   

GW17   117   82 35   0.28 0.19   

GW19   108   76 32   0.37 0.22   

GW21   102   71 30   0.32 0.35   
Table 3- Annual average # of trips, Deliveries, Surplus 

 

 

 

 

 

 

4
4

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Store Code 
j

f  

GW01 115 

GW02 88 

GW03 86 

GW04 111 

GW05 94 

GW06 106 

GW07 115 

GW08 101 

GW09 90 

GW10 89 

Table 3- Fixed location costs for 10 nodes 
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CHAPTER 5: NUMERICAL EXAMPLES, RESULTS, 
CONCLUSION, AND FUTURE RESEARCH 

 

5.1 Numerical Examples 

Three set of nodes are tested for numerical examples; 30, 45, and 60 nodes. The 30-node 

set includes the odd-numbered nodes (GW01, GW03, GW05, etc) only.  The 45-node set 

includes the first 30 nodes, in addition to 15 other nodes in multiples of four (i.e. GW04, 

GW08, etc). The 60-node set includes all nodes in the supply chain system. For any 

problem set, different settings ofβ ,θ , coverage radius, and αz  are used as experimental 

scenarios to test the problem. These scenarios (numerical examples) were run using the 

relaxation model P2, written in GAMS. β  andθ take the values 0.1, 0.01, and 0.001, so 

the total number of combinations (β ,θ ) is nine. Coverage radius is chosen from {50, 

75,100} in miles and αz is chosen from {1.64, 1.96}. So the total number of experiments 

for any set of nodes is 9*3*2 (i.e. 54).  

Model outputs include: solution gap, solution time, annual facility location cost, total 

annual transportation cost, annual average inventory cost, total annual safety stock cost, 

total system cost (objective function value), opened DCs, retailer assignments.  We note 

that in SCIP solver the solution gap is the difference between upper bound (feasible 

solution) and lower bound (the infeasible heuristic solution).  Tables 4 a-d, 5 a-d, and 6a-

d present all numerical examples in the model for 30, 45, and 60- node sets respectively. 

 

 



    

 

 

 

 

 

 

Table 4a- Gap/Time/Costs in 30 nodes  
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Table 4b- Gap/Time/Costs in 30 nodes  
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Table 4c-DC locations and assignments in 30 nodes  
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Table 4d- DC locations and assignments in 30 nodes  
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Table 5a- Gap/Time/Costs in 45 nodes  
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Table 5b- Gap/Time/Costs in 45 nodes  
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Table 5c- DC locations and assignments in 45 nodes  
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Table 5d- DC locations and assignments in 45 nodes  
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Table 6a- Gap/Time/Costs in 60 nodes  
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Table 6b- Gap/Time/Costs in 60 nodes  
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Table 6c- DC locations and assignments in 60 nodes  
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Table 6d- DC locations and assignments in 60 nodes  
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5.2 Results 

5.2.1 Analysis of 30-Node Set Results 

Based on the outputs of model, the model parameters can be studied in more details. 

Considering the 30 nodes, in all experiments, the gap is zero which means that the 

optimal solution is found for all experiment performed using model P2. The maximum 

time to solve the problem is about 1836 seconds, which is quite efficient using the SCIP 

solver. The objective function consists of four terms namely; total annual facility location 

cost (DC_cost), total system annual transportation cost (Trans_cost), average annual 

inventory cost (Mean inv.cost), and total system annual safety stock cost (Service_cost).  

The first six experiments closely represent the problem in reality because the four cost 

terms have a similar scaling, hence can be used for actual company costs assessments. 

For example, in experiment 1, the total objective function is $1010, proportioned as 244, 

265, 361, and 139 for DC_cost, Trans_cost, Mean inv.cost, and Service_cost 

respectively. In this case, β  and θ are 0.001 and 0.001 respectively and their ratio is 1. 

Considering model parameter scaling, the total system annual cost for the company with 

coverage radius 50 and service level 1.96, is about $1010.  In actual sense, this value is 

$1,010,000 and the recommended number of DCs to be opened in three. 

A decrease in the
θ
β

ratio indicates that inventory costs are assigned more weight than 

transportation costs. As shown from Table 4 a-d, this decrease results in the centralization 

of DCs, due to risk pooling effect. On the other hand, having coverage radius as a 
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constraint forces the model to increase the number of DCs. Such a paradox presents a 

natural trade-off between the inventory, location and transportation costs.  

Also, as presented in Table 4 a-d, mean inv. cost changes with changingθ. However this 

change is not affected by centralizing or decentralizing DCs. Despite having a similar 

ratio of
θ
β

, system configurations change depending on the scale of β and θ. For instance 

when the β and θ are 0.001, centralization takes place more than when the β and θ are 0.1 

while the ratio for both of them is one. This occurrence stems from the interconnection 

among facility location, transportation, and inventory costs. For example, in experiments 

1-6, this ratio is the same with experiments 25-30, but the number of DCs and assignment 

are not completely the same. In experiments 25-30, due to the scaling differences among 

the costs, compared to the first six experiments, number of DCs increases.  We note that 

in experiments 25-30, the scale of facility location costs is about on tenth each of other 

cost terms.  

Overall, service level does not affect system configuration much. However, looking at 

experiments 25-30 and 51-54, service level does change the system configuration. In both 

cases, ratio 
θ
β

is 1 and only the transportation and safety stock costs seem to affect the 

system because. In this case, slight changes in any of these terms would lead to different 

configuration, for instance service level changes from 1.96 to 1.64.  Although this change 

seems insignificant, its effect on system configuration is highly felt due to the 

comparatively low value of facility location cost.  
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5.2.2 Analysis of 45-Node Set Results 

In the 45-node set, as shown in table 5 a-d, there appears to be local optimums or near 

optimum solutions in some experiments. This is unlike the 30-node set which exhibited 

only global optima. This happens because of an increase in the number of nodes hence 

making the problem large and complicated. Once again, coverage radius and 
θ
β

ratio are 

the most important factors to determine system configuration and the objective function 

solution.  

The most experiments that consume more time are difficult to converge (wider gap), are 

the ones with a ratio of 1 especially when β  and θ are both either 0.1 or 0.01. 

Experiments 31-36 also exhibit difficulty in finding a solution because the ratio is 0.1 

with β and θbeing 0.01 and 0.1 respectively. In both cases, total system facility location 

cost is much less than transportation and inventory costs, so the only trade off is between 

the two later terms. The model takes a longer time to solve because of not incorporating 

facility location cost which has the opposite algorithmic direction of the transportation 

cost. This is also exhibited in experiments 49 and 50 which indicate that with time, the 

model solution shows no significant improvement (considering the solution gap and run 

time).  

 

5.2.3 Analysis of 60-Node Set Results 

In the 60-nodeset experiments as presented in 6 a-d, most of the examples cannot reach a 

global optimum with the SCIP solver. The most important reason for this is the increase 
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in the number of nodes which exponentially increases the model run time. Overall the 

equivalent parameter changes seem to result in reasonably similar solution trends to those 

from the 30 and 45-node sets. Similar to 30 and 45 nodes, experiments 1-6 results in a 

0% solution gap due to equivalence in the cost scaling.  Once more, these experiments 

could be useful as actual industrial cost estimation and system configuration. 

We note here that in experiments 35 and 36, the only open DC in the system is the RDC. 

This is a true exhibition of the current system configuration of the industry, where only 

one DC exists—the RDC. Also in most experiments, both HL and SL deliveries and 

surpluses for any retailer are assigned to the same DC. In some cases, it happens that for 

any retailer, HL and SL are assigned to different DCs. Although holding cost and 

transportation cost are equal for both product-types, the average and variance of 

deliveries and surpluses are different.  

 

5.2.4 Overall System results Analyses (30, 45 & 60-Node Sets)  

Figure 8 shows the relationship between the experiments and objective function values in 

all three set of nodes simultaneously. The highest objective function is about $120,000 

from the 60-node set problem when β, θ, coverage radius and service level are 0.1, 0.1,75 

miles and 1.96 respectively. Experiments 49-54, 31-36, and 13-18 have the higher 

objective function solution. In all these experiments,θ is 0.1.Figure 8 also shows that 

coverage radius and service level do not change objective function value significantly for 

any of the node set as seen in the experiments.  
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Figure 9 presents the interrelationship between the experiments and solution time in all 

three set of nodes. Experiment 14 in the 60-node set has the longest solution time. 

However, the solution times especially for the 60-node set presented in this table are not a 

complete representation of actual solution time, due to lack of algorithmic convergence.   

As a result, in some experiments, in spite of a significant increase in solution time, the 

solution gap does not decrease significantly.  

Figure 10 and 11 show the number of DCs and solution gap for all experiments in all the 

three set of nodes. The maximum number of open DCs for 30, 45, and 60-node sets are 5, 

8 and11respectively. According to figure 11, all experiments in 30 nodes set are global 

optima, so the solution gap is zero. The maximum gap is about 40% in one of the 60-

node set experiments, whenβ ,θ, coverage radius, and service level are 0.01, 0.1, 50, and 

1.96 respectively.  Once again, this is due to the low coverage radius and the insignificant 

effect of the facility location cost as already addressed earlier in the 60-node set result 

analysis.  

 

 

 



 

 

Figure 8- Experiment No v/s Objective Function V
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Figure 9- Experiment No v/s Solution Time for 60, 45, and 30 nodes 
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 Figure 10- Experiment No v/s Network Density for 60, 45, and 30 nodes 
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Figure 11- Experiment No v/s Solution Gap for 60, 45, and 30 nodes 
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5.2.5 ANOVA Test 

Analysis of Variance (ANOVA) for the objective function as a response value is 

performed in MINITAB to analyze the effects of the different parameters and their 

interactions. In the proposed model, ratio (
θ
β

), coverage radius, and service level are the 

parameter considered in the ANOVA analysis. The results are presented as follows: 

 

Figure 12-ANOVA test for objective function in 60 nodes 

Based on the results from ANOVA test and P-values, it can be seen that coverage radius 

and service level do not significantly affect the objective function, but ratio significantly 

affects the objective function. Also based on results in Figure 12, the interaction between 

ratio and both coverage radius and service level significantly affect the objective 

function. As expected the interaction between coverage radius and service level does not 

affect the objective function significantly.  As a result, the ratio is the most important 

factor among all factors as depicted in the interaction plot (Figure 13). The main effects 
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plot and residual plots for objective function are also presented in Figures14 and 15 

respectively. There is a high likelihood that the ratio has a quadratic relationship with the 

objective function values in this study. This is evidenced by the concavity of the ratio 

effects plot and the unusual residual plots. 
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Figure 13-Interaction Plot for objective function in 60 nodes 
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Figure 14- Main effects plot for objective function in 60 nodes  
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Figure 15-Residual plots for objective function in 60 nodes
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5.3 Conclusion  

In this study, a joint location-inventory model for a donation-demand driven industry is 

proposed. This bi-echelon model involves warehouses (DC) and retailers (R) also 

referred to as Donation/Demand Centers. The model also considers coverage radius, 

service level, and multiple products. Each retailer has two flows, to and from its related 

DC i.e. surpluses (S) and deliveries (D). Surpluses result when product-type donations 

are higher than the demand therefore the excess volume of the product is shipped back to 

the warehouse (DC) due to limited inventory space in retailer point. Conversely, 

deliveries result when the product demand is higher than the donations, hence more 

products are shipped from the warehouse to the retailer. Among all retailers, there are 

some nodes that just serve as a donation centers; they are called ADCs. 

The proposed cost minimization model output include: the recommended number of open 

DCs, DC locations, assignments of retailer to open DCs and the objective function 

solution (total annual system cost).  The total system cost has three components, namely; 

fixed facility location cost, transportation cost, and inventory cost. As was discussed in 

the research contribution section, we suggest a “Generalized location-inventory model” 

for a donation-demand driven industrial supply chain network. We integrate the 

minimum number of retailers that are assigned to an opened DC and the coverage radius 

as constraints in a multi-commodity supply chain system. Specific to the company 

modeled in this study, each retailer point referred to as a donation/demand center is a 

potential location for opening a DC (distribution center).  
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Because of complexity of original model here referred to as P0, we use an efficient 

algorithm proposed by You et al. (2008) to relax the original problem into two revised 

models referred to as P1 and P2. As a result, the relaxations lead to model P2which has: 

(1) fewer binary (0, 1) assignment variables; (2) linear objective functional; and (3) 

quadratic constraints. So model P2 is much simpler to solve compared to the original P0 

model. 

GAMS-SCIP solver, which uses branch, cut, and price algorithms, is used to solve the 

proposed model. We present three case-study scenarios, 30, 45, and 60-node sets 

problems with different parameter settings. The model parameters used in our problem 

include: (1) transportation and inventory costs weighting factors β and θ respectively, the 

coverage radius, and service level.  The results show the efficiency of proposed solver to 

our model especially for 30 and 45-node sets. In these two cased, the solver spews good 

solutions (small solution gaps) in reasonable times (time within which there is significant 

convergence).  

 

5.4 Future Research 

First, as discussed earlier in the ANOVA results, the ratio-effects results using MINITAB 

indicated that the ratio potentially has a quadratic effect on the total system cost.  This is 

evidenced by the concavity of the ratio-effects plot, the variable interaction plot and the 

unusual residual plots. In future, further research will be done to find a credible rational 

to include this ratio quadratic term into the objective function. 
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Second, a natural extension to our model would be to consider “truck routing” instead of 

direct shipments. However, in practice, the shipments from a DC to the assigned retailers 

often involve a “traveling-salesman-like” tour. Thus, a better approximation of the 

shipment costs (e.g., the approximations developed by Daganzo (1991)) could be 

incorporated in our model. 

Third, another extension to the proposed model would be to formulate the model as a 

dynamic programming problem. This extension is important because it will render the 

model robust enough to consider seasonality in the network. For instance, the average 

donations and demands for each product-type may easily vary from one season to 

another. In addition, considering tactical and operational decision variables may be 

allowed to change with time. These variables include: retailer assignments, average 

inventory level in DCs, safety stock level in DCs, transportation modes and fuel cost, 

vehicle routing.  This list is by no means exhaustive. 

Fourth, we note that in the proposed research shipment is only between DCs and retailers. 

In future we propose that transshipments among DCs should also be added. This will lead 

to less safety stock due to pooling the assigned retailers of both DCs simultaneously. This 

extension is very useful especially when the weighted inventory cost is much larger than 

weighted transportation cost.  

Fifth, multi-sourcing which allows retailers to source and ship multiple product-types to 

any of their assigned DCs should be included in the model.   

Once the proposed changed are effected, a detailed comparative analysis should be 

carried out to compare performance of the proposed relaxations to others such as 

Lagrangian relaxation. In addition, further comparative analyses should be done to 
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compare the performance the proposed algorithm to other meta-heuristics algorithms 

such as Tabu Search and Simulated Annealing.  
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