433 research outputs found

    Liner Service Network Design

    Get PDF

    Multi-fidelity modelling approach for airline disruption management using simulation

    Get PDF
    Disruption to airline schedules is a key issue for the industry. There are various causes for disruption, ranging from weather events through to technical problems grounding aircraft. Delays can quickly propagate through a schedule, leading to high financial and reputational costs. Mitigating the impact of a disruption by adjusting the schedule is a high priority for the airlines. The problem involves rearranging aircraft, crew and passengers, often with large fleets and many uncertain elements. The multiple objectives, cost, delay and minimising schedule alterations, create a trade-off. In addition, the new schedule should be achievable without over-promising. This thesis considers the rescheduling of aircraft, the Aircraft Recovery Problem. The Aircraft Recovery Problem is well studied, though the literature mostly focusses on deterministic approaches, capable of modelling the complexity of the industry but with limited ability to capture the inherent uncertainty. Simulation offers a natural modelling framework, handling both the complexity and variability. However, the combinatorial aircraft allocation constraints are difficult for many simulation optimisation approaches, suggesting that a more tailored approach is required. This thesis proposes a two-stage multi-fidelity modelling approach, combining a low-fidelity Integer Program and a simulation. The deterministic Integer Program allocates aircraft to flights and gives an initial estimate of the delay of each flight. By solving in a multi-objective manner, it can quickly produce a set of promising solutions representing different trade-offs between disruption costs, total delay and the number of schedule alterations. The simulation is used to evaluate the candidate solutions and look for further local improvement. The aircraft allocation is fixed whilst a local search is performed over the flight delays, a continuous valued problem, aiming reduce costs. This is done by developing an adapted version of STRONG, a stochastic trust-region approach. The extension incorporates experimental design principles and projected gradient steps into STRONG to enable it to handle bound constraints. This method is demonstrated and evaluated with computational experiments on a set of disruptions with different fleet sizes and different numbers of disrupted aircraft. The results suggest that this multi-fidelity combination can produce good solutions to the Aircraft Recovery Problem. A more theoretical treatment of the extended trust-region simulation optimisation is also presented. The conditions under which a guarantee of the algorithm's asymptotic performance may be possible and a framework for proving these guarantees is presented. Some of the work towards this is discussed and we highlight where further work is required. This multi-fidelity approach could be used to implement a simulation-based decision support system for real-time disruption handling. The use of simulation for operational decisions raises the issue of how to evaluate a simulation-based tool and its predictions. It is argued that this is not a straightforward question of the real-world result being good or bad, as natural system variability can mask the results. This problem is formalised and a method is proposed for detecting systematic errors that could lead to poor decision making. The method is based on the Probability Integral Transformation using the simulation Empirical Cumulative Distribution Function and goodness of fit hypothesis tests for uniformity. This method is tested by applying it to the airline disruption problem previously discussed. Another simulation acts as a proxy real world, which deviates from the simulation in the runway service times. The results suggest that the method has high power when the deviations have a high impact on the performance measure of interest (more than 20%), but low power when the impact is less than 5%

    New approaches to airline recovery problems

    Get PDF
    Air traffic disruptions result in fight delays, cancellations, passenger misconnections, creating high costs to aviation stakeholders. This dissertation studies two directions in the area of airline disruption management – an area of significant focus in reducing airlines’ operating costs. These directions are: (i) a joint proactive and reactive approach to airline disruption management, and (ii) a dynamic aircraft and passenger recovery approach to evaluate the long-term effects of climate change on airline network recoverability. Our first direction proposes a joint proactive and reactive approach to airline disruption management, which optimizes recovery decisions in response to realized disruptions and in anticipation of future disruptions. Specifically, it forecasts future disruptions partially and probabilistically by estimating systemic delays at hub airports (and the uncertainty thereof) and ignoring other contingent disruption sources. It formulates a dynamic stochastic integer programming framework to minimize network-wide expected disruption recovery costs. Specifically, our Stochastic Reactive and Proactive Disruption Management (SRPDM) model combines a stochastic queuing model of airport congestion, a fight planning tool from Boeing/Jeppesen and an integer programming model of airline disruption recovery. We develop an online solution procedure based on look-ahead approximation and sample average approximation, which enables the model's implementation in short computational times. Experimental results show that leveraging partial and probabilistic estimates of future disruptions can reduce expected recovery costs by 1-2%, as compared to a baseline myopic approach that uses realized disruptions alone. These benefits are mainly driven by the deliberate introduction of departure holds to reduce expected fuel costs, fight cancellations and aircraft swaps. Our next direction studies the impact of climate change-imposed constraints on the recoverability of airline networks. We first use models that capture the modified payload-range curves for different aircraft types under multiple climate change scenarios, and the associated (reduced) aircraft capacities. We next construct a modeling and algorithmic framework that allows for simultaneous and integrated aircraft and passenger recovery that explicitly capture the above-mentioned capacity changes in aircraft at different times of day. Our computational results using the climate model on a worst-case, medium-case, and mild-case climate change scenarios project that daily total airline recovery costs increase on average, by 25% to 55.9% on average ; and by 10.6% to 156% over individual disrupted days. Aircraft-related costs are driven by a huge increase in aircraft swaps and cancelations; and passenger-related costs are driven by increases in disrupted passengers who need to be rebooked on the same or a different airline. Our work motivates the critical need for airlines to systematically incorporate climate change as a factor in the design of aircraft as well as in the design and operations of airline networks

    Methods for Improving Robustness and Recovery in Aviation Planning.

    Full text link
    In this dissertation, we develop new methods for improving robustness and recovery in aviation planning. In addition to these methods, the contributions of this dissertation include an in-depth analysis of several mathematical modeling approaches and proof of their structural equivalence. Furthermore, we analyze several decomposition approaches, the difference in their complexity and the required computation time to provide insight into selecting the most appropriate formulation for a particular problem structure. To begin, we provide an overview of the airline planning process, including the major components such as schedule planning, fleet assignment and crew planning approaches. Then, in the first part of our research, we use a recursive simulation-based approach to evaluate a flight schedule's overall robustness, i.e. its ability to withstand propagation delays. We then use this analysis as the groundwork for a new approach to improve the robustness of an airline's maintenance plan. Specifically, we improve robustness by allocating maintenance rotations to those aircraft that will most likely benefit from the assignment. To assess the effectiveness of our approach, we introduce a new metric, maintenance reachability, which measures the robustness of the rotations assigned to aircraft. Subsequently, we develop a mathematical programming approach to improve the maintenance reachability of this assignment. In the latter part of this dissertation, we transition from the planning to the recovery phase. On the day-of-operations, disruptions often take place and change aircraft rotations and their respective maintenance assignments. In recovery, we focus on creating feasible plans after such disruptions have occurred. We divide our recovery approach into two phases. In the first phase, we solve the Maintenance Recovery Problem (MRP), a computationally complex, short-term, non-recurrent recovery problem. This research lays the foundation for the second phase, in which we incorporate recurrence, i.e. the property that scheduling one maintenance event has a direct implication on the deadlines for subsequent maintenance events, into the recovery process. We recognize that scheduling the next maintenance event provides implications for all subsequent events, which further increases the problem complexity. We illustrate the effectiveness of our methods under various objective functions and mathematical programming approaches.Ph.D.Industrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91539/1/mlapp_1.pd

    Intermodal Transfer Coordination in Logistic Networks

    Get PDF
    Increasing awareness that globalization and information technology affect the patterns of transport and logistic activities has increased interest in the integration of intermodal transport resources. There are many significant advantages provided by integration of multiple transport schedules, such as: (1) Eliminating direct routes connecting all origin-destinations pairs and concentrating cargos on major routes; (2) improving the utilization of existing transportation infrastructure; (3) reducing the requirements for warehouses and storage areas due to poor connections, and (4) reducing other impacts including traffic congestion, fuel consumption and emissions. This dissertation examines a series of optimization problems for transfer coordination in intermodal and intra-modal logistic networks. The first optimization model is developed for coordinating vehicle schedules and cargo transfers at freight terminals, in order to improve system operational efficiency. A mixed integer nonlinear programming problem (MINLP) within the studied multi-mode, multi-hub, and multi-commodity network is formulated and solved by using sequential quadratic programming (SQP), genetic algorithms (GA) and a hybrid GA-SQP heuristic algorithm. This is done primarily by optimizing service frequencies and slack times for system coordination, while also considering loading and unloading, storage and cargo processing operations at the transfer terminals. Through a series of case studies, the model has shown its ability to optimize service frequencies (or headways) and slack times based on given input information. The second model is developed for countering schedule disruptions within intermodal freight systems operating in time-dependent, stochastic and dynamic environments. When routine disruptions occur (e.g. traffic congestion, vehicle failures or demand fluctuations) in pre-planned intermodal timed-transfer systems, the proposed dispatching control method determines through an optimization process whether each ready outbound vehicle should be dispatched immediately or held waiting for some late incoming vehicles with connecting freight. An additional sub-model is developed to deal with the freight left over due to missed transfers. During the phases of disruption responses, alleviations and management, the proposed real-time control model may also consider the propagation of delays at further downstream terminals. For attenuating delay propagations, an integrated dispatching control model and an analysis of sensitivity to slack times are presented

    Reliable reserve-crew scheduling for airlines

    Get PDF
    We study the practical setting in which regular- and reserve-crew schedules are dynamically maintained up to the day of executing the schedule. At each day preceding the execution of the schedule, disruptions occur due to sudden unavailability of personnel, making the planned regular and reserve-crew schedules infeasible for its execution day. This paper studies the fundamental question how to repair the schedules’ infeasibility in the days preceding the execution, taking into account labor regulations. We propose a robust repair strategy that maintains flexibility in order to cope with additional future disruptions. The flexibility in reserve-crew usage is explicitly considered through evaluating the expected shortfall of the reserve-crew schedule based on a Markov chain formulation. The core of our approach relies on iteratively solving a set-covering formulation, which we call the Robust Crew Recovery Problem, which encapsulates this flexibility notion for reserve crew usage. A tailored branch-and-price algorithm is developed for solving the Robust Crew Recovery Problem to optimality. The corresponding pricing problem is efficiently solved by a newly developed pulse algorithm. Based on actual data from a medium-sized hub-and-spoke airline, we show that embracing our approach leads to fewer flight cancellations and fewer last-minute alterations, compared to repairing disrupted schedules without considering our robust measure.</p

    Aircraft route recovery based on distributed integer programming method

    Get PDF
    In order to further promote the application and development of unmanned aviation in the manned field, and reduce the difficulty that airlines cannot avoid due to unexpected factors such as bad weather, aircraft failure, and so on, the problem of restoring aircraft routes has been studied. To reduce the economic losses caused by flight interruption, this paper divides the repair problem of aircraft operation plans into two sub problems, namely, the generation of flight routes and the reallocation of aircraft. Firstly, the existing fixed-point iteration method proposed by Dang is used to solve the feasible route generation model based on integer programming. To calculate quickly and efficiently, a segmentation method that divides the solution space into mutually independent segments is proposed as the premise of distributed computing. The feasible route is then allocated to the available aircraft to repair the flight plan. The experimental results of two examples of aircraft fault grounding and airport closure show that the method proposed in this paper is effective for aircraft route restoration

    강화학습을 이용한 공항 임시폐쇄 상황에서의 항공 일정계획 복원

    Get PDF
    학위논문 (석사) -- 서울대학교 대학원 : 공과대학 산업공학과, 2021. 2. 문일경.An airline scheduler plans flight schedules with efficient resource utilization. However, unpredictable events, such as the temporary closure of an airport, disrupt planned flight schedules. Therefore, recovering disrupted flight schedules is essential for airlines. We propose Q-learning and Double Q-learning algorithms using reinforcement learning approach for the aircraft recovery problem (ARP) in cases of temporary closures of airports. We use two recovery options: delaying departures of flights and swapping aircraft. We present an artificial environment of daily flight schedules and the Markov decision process (MDP) for the ARP. We evaluate the proposed approach on a set of experiments carried out on a real-world case of a Korean domestic airline. Computational experiments show that reinforcement learning algorithms recover disrupted flight schedules effectively, and that our approaches flexibly adapt to various objectives and realistic conditions.항공사는 보유하고 있는 자원을 최대한 효율적으로 사용하여 항공 일정계획을 수립하기 위해 비용과 시간을 많이 소모하게 된다. 하지만 공항 임시폐쇄와 같은 긴급 상황이 발생하면 항공편의 비정상 운항이 발생하게 된다. 따라서 이러한 상황이 발생하였을 때, 피해를 최대한 줄이기 위해 항공 일정계획을 복원하게 된다. 본 연구는 강화학습을 이용하여 공항 임시폐쇄 상황에서 항공 일정계획 복원 문제를 푼다. 본 연구에서는 항공기 복원 방법으로 항공편 지연과 항공기 교체의 두 가지 방법을 채택하였으며, 항공 일정계획 복원 문제에 강화학습을 적용하기 위해서 마르코프 결정 과정과 강화학습 환경을 구축하였다. 본 실험을 위해 대한민국 항공사의 실제 국내선 항공 일정계획을 사용하였다. 강화학습 알고리즘을 사용하여 기존의 연구에 비해 항공 일정계획을 효율적으로 복원하였으며, 여러 현실적인 조건과 다양한 목적함수에 유연하게 적용하였다.Abstract i Contents iv List of Tables v List of Figures vi Chapter 1 Introduction 1 Chapter 2 Literature Review 7 Chapter 3 Problem statement 11 3.1 Characteristics of aircraft, flights, and flight schedule requirements 11 3.2 Definitions of disruptions and recovery options and objectives of the problem 13 3.3 Assumptions 16 3.4 Mathematical formulations 19 Chapter 4 Reinforcement learning for aircraft recovery 24 4.1 Principles of reinforcement learning 24 4.2 Environment 27 4.3 Markov decision process 29 Chapter 5 Reinforcement learning algorithms 33 5.1 Q-learning algorithm 33 5.2 Overestimation bias and Double Q-learning algorithm 36 Chapter 6 Computational experiments 38 6.1 Comparison between reinforcement learning and existing algorithms 39 6.2 Performance of the TLN varying the size of delay arcs 46 6.3 Aircraft recovery for a complex real-world case: a Korean domestic airline 48 6.4 Validation for different objectives 54 6.5 Managerial insights 57 Chapter 7 Conclusions 59 Bibliography 61 국문초록 69Maste
    corecore