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An airline scheduler plans flight schedules with efficient resource utilization. How-

ever, unpredictable events, such as the temporary closure of an airport, disrupt

planned flight schedules. Therefore, recovering disrupted flight schedules is essential

for airlines. We propose Q-learning and Double Q-learning algorithms using rein-

forcement learning approach for the aircraft recovery problem (ARP) in cases of

temporary closures of airports. We use two recovery options: delaying departures

of flights and swapping aircraft. We present an artificial environment of daily flight

schedules and the Markov decision process (MDP) for the ARP. We evaluate the

proposed approach on a set of experiments carried out on a real-world case of a Ko-

rean domestic airline. Computational experiments show that reinforcement learning

algorithms recover disrupted flight schedules effectively, and that our approaches

flexibly adapt to various objectives and realistic conditions.
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Chapter 1

Introduction

As international trade and demand for air travel have increased, the number of

commercial airlines has grown [20]. In order to survive in the competitive airline in-

dustry, airlines have tried to provide better service to passengers and use resources,

such as crew and aircraft, efficiently. Planning flight schedules with effective uti-

lization of such resources contributes to the overall success of an airline. Therefore,

airlines spend considerable time and effort planning flight schedules [11].

Although efficient flight schedules are established, perturbations of flight sched-

ules can occur due to uncertain or unpredictable events, such as adverse weather

conditions, mechanical malfunctions, airport congestion, and crew member absences.

Initial flight delays could propagate to subsequent flights due to interconnected re-

sources (i.e., late arrivals of previous flights causes late departures of subsequent

flights). In addition to this, flight delays not only affect passenger satisfaction but

also cost airlines billions of dollars. The Federal Aviation Administration (FAA) es-

timates that the cost of flight delays in the United States costs airlines about $22

billion a year [36]. In order to alleviate minor stochastic delays and small disrup-

tions, airline schedulers usually add buffer times between flight legs [26]. However,

in cases of extreme disruptions (e.g., temporary closures of airports), buffer times
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cannot prevent long flight delays. In particular, short-haul flight schedules with tight

turnaround times cause serious damage to airlines’ bottom lines. Turnaround time

indicates the time interval on the ground needed to prepare aircraft for subsequent

flights.

In order to minimize the damage from disruptions as much as possible, the Air-

line Operational Control Center (AOCC) initiates a recovery process of airline sched-

ules that involves rescheduling aircraft, crews, and passengers [7]. Several research

studies have focused on the integrated recovery of aircraft, crews, and passengers

[35, 33, 9, 54]. However, due to the complexity of the airline recovery process, the

airline usually segments the process into three stages: aircraft, crew, and passenger

recovery [26]. Because aircraft is one of the most valuable resources for an airline,

aircraft recovery is typically initiated at the first stage. In this stage, the AOCC

reschedules the flight schedule and reroutes the affected aircraft to best meet the

objectives of airlines. After aircraft recovery, crew planners reassign crews to aircraft

according to the revised flight schedule (i.e., crew recovery). Finally, airline customer

service coordinators accommodate misconnected passengers with their best alter-

native itineraries (i.e., passenger recovery). Among these three stages, this thesis

concentrates on the aircraft recovery process.

In the aircraft recovery process, the AOCC makes decisions to restore flight

schedules back to initially planned schedules through the following recovery options:

canceling flight legs, swapping aircraft, ferrying, and delaying flight departures until

connected resources become ready [7]. Especially, swapping aircraft is commonly

used in the aircraft recovery process, and it is defined as switching flights on a pair

of aircraft. In daily schedules, each aircraft is assigned to a sequence of flights (i.e.,
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aircraft routes) [5]. Therefore, swapping aircraft is equivalent to swapping the routes

of aircraft. This means that swapped aircraft have to complete each other’s remaining

flights. On the other hand, because cancellations and ferrying cause airlines great

financial loss, they are seldom used in real practice [19]. When schedule disruptions

occur, the problem of revising routes for affected aircraft using the previous options

is known as the aircraft recovery problem (ARP).

Most of the existing research for the ARP focuses on minimizing the total cost

incurred by flight delays. However, the total cost of delays is very sensitive to cost

parameters, and estimating the values of parameters is challenging. Furthermore,

there are many objectives for aircraft recovery processes, and each airline’s objective

could be different (e.g., minimizing total delays or the number of flight delays). In

particular, minimizing the number of flights delayed over a specific time frame is

very important to airlines. The number of flight delays is the key measure of the on-

time performance of airlines. Not only do flight delays affect an airline’s reputation,

but airlines also must pay monetary compensation to passengers who have been on

delayed flights. The criterion for defining a flight delay is different from country to

country, and varies depending on whether the flight is international or domestic. For

example, the FAA defines a flight delay as occurring when the departure or arrival

of flights is 15 minutes later than its scheduled time. On the other hand, according

to regulations set by the Korean government, flight delays are defined as occurring

when the scheduled time of a flight is more than 30 minutes late. Not many studies

have been carried out to deal with the objective of minimizing flight delays, except

for the study by Liu et al. [31].

Liu et al. [31] studied the ARP by considering the number of flight delays of
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more than 30 minutes. In order to get admissible Pareto optimal solutions, this study

proposed the MMGA to consider multiple objectives using the method of inequalities

(MOI). Minimizing the number of flight delays was just one of the objectives in the

array of multiple objectives. A serious weakness of this study, however, was that

this algorithm includes indispensable conditions (i.e., minimum turnaround time

and flight connection at airports) to meet multiple objectives for hard constraints.

Therefore, it was difficult to consider complex realistic conditions, such as multiple

fleets and the aircraft balance. This was the case, because as the number of objectives

increases, challenges of the computation burden and conflicts between objectives

could appear. In addition to this weakness, since this study adopted MOI for finding

Pareto solutions with smaller computing efforts, the MMGA found the suboptimal

solutions.

To overcome the limitations of previous studies, we adopt the reinforcement

learning approach, which has generated a lot of interest from the research commu-

nity. We interpret the ARP as a sequential decision-making process and improves

the behavior of the agent by trial and error. There are three main advantages to

using reinforcement learning for the ARP. First, because reinforcement learning is

a simulation-based method, it can handle complex assumptions [15]. In air trans-

port management, there are many realistic conditions and factors that affect airline

operations. By including these conditions in the simulation (i.e., environment), re-

inforcement learning could solve the ARP under realistic situations. Second, by just

modifying reward functions, reinforcement learning is more flexible in various ob-

jectives than operations research methods. For example, reinforcement learning can

easily adapt to the objective of minimizing the number of flight delays of more
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than 30 minutes, compared to the existing approach, time-line networks. Due to the

property of sequential decision making, reinforcement learning approach can simply

calculate the number of flights delayed more than 30 minutes. However, in the case

of time-line networks, plenty of delay arcs should be created, and additional con-

straints should be necessary in the mathematical model. Third, since reinforcement

learning is an agent-based model, the policy that the agent learned for a case of

disruptions can be reused for other cases of disruptions. Reusing the learned policy

could accelerate the learning process compared to learning the policy from scratch

[39].

To the best of our knowledge, there has been no experimental study of the ARP

using reinforcement learning approach. In this thesis, our purpose is to develop the

framework applying reinforcement learning approach to aircraft recovery. Specifi-

cally, we adopt Q-learning and Double Q-learning for the reinforcement learning

algorithms. The proposed framework could support airlines handling schedule per-

turbations caused by airline disruption. Among various types of disruptions, we deal

with the temporary closure of airports, which affect numerous flight operations. In

addition, we solve this problem when multiple fleets serve the flight schedule. We

utilize a real-world flight schedule and establish various objectives to meet each

airline’s goals. In summary, the contributions of this thesis are fourfold. First, we

propose reinforcement learning algorithms for solving the ARP for the temporary

closure of the airport. Existing studies of the ARP utilizes optimization or heuristic

methodologies. This thesis, however, adopts reinforcement learning approach, which

is an agent-based model. As far as we know, it is the first study to use reinforce-

ment learning algorithm for the ARP. Second, we solve the ARP to optimize various
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objectives: minimizing total delays and the number of flight delays of more than 30

minutes and more than 0 minutes. By revising the reward function, we can easily

adapt our approach to different objectives compared to optimization or heuristic

methodologies. Third, we compare the performance of the proposed reinforcement

learning algorithms and the existing algorithm. The policy that the agent learns

for aircraft recovery outperforms the existing algorithm for every objective. Fourth,

we apply the proposed method to a real-world flight schedule of a Korean domes-

tic airline with multiple fleets. In addition, we consider the constraint that ground

handling service could be affected by disruption (i.e., turnaround time extensions).
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Chapter 2

Literature Review

We investigated previous studies related to the ARP and a specific disruption

that temporary closures of airports occur. The ARP was first introduced by Teodor-

ović and Guberinić [41]. They solved a simple example of the ARP with a heuristic,

which decided aircraft routes sequentially. Jarrah et al. [21] proposed two network

flow models, one for the cancellation of flights and the other for re-timing flights.

With the successive shortest path method, they obtained the solutions of network

flow models. Cao and Kanafani [10] extended the method of Jarrah et al. [21],

and they proposed a quadratic zero-one programming model. In addition to delays

and cancellations, they used ferrying for recovery options. Yan and Yang [52] pro-

posed a framework that is based on the time-line network. Moreover, they proposed

time-shifted copies of planned flights in the event of flight delays. They solved this

model by using Lagrangian relaxation with subgradient methods. Thengvall et al.

[43] added protections arcs and through-flight arcs to the network model proposed

by Yan and Yang [52]. This method makes it possible to prevent the original flight

schedule from perturbations. Argüello et al. [3] proposed a heuristic method based

on the greedy randomized adaptive search procedure (GRASP). Løve et al. [32]

presented the steepest ascent local search (SALS) heuristic based on the network
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formulation. This algorithm swaps aircraft iteratively until a better solution cannot

be found. Rosenberger et al. [38] formulated a set partitioning model to reschedule

flight legs and reroute multiple fleet aircraft. In order to efficiently determine a sub-

set of aircraft to reroute, they developed the aircraft selection heuristic. Hu et al.

[18] focused on a multi-objective aircraft recovery problem. They designed a heuris-

tic for a large-scale recovery problem with three conflicting objectives. Liang et al.

[28] solved the ARP with airport capacity constraint and maintenance flexibility. In

order to consider these conditions, they adopted a column generation based heuris-

tic framework. Moreover, in conditions of continuous flight delays, this algorithm

optimized the problem more accurately than it did with discrete flight delays.

Several researchers have considered the temporary closure of airports in the ARP.

Yan and Lin [51] conducted one of the pioneering studies on this problem. They

adopted similar methods proposed by Yan and Yang [52]. They used a time-line

network with four types of arcs: flight, ground, overnight, and ferrying. Thengvall et

al. [45] proposed three multi-commodity network models for recovering a multiple

fleet flight schedule when the hub airport closed. They showed that the preference

network model obtained a better solution compared to other network models. This

work was extended by Thengvall et al. [44]. They used a bundle algorithm to solve

a Lagrangian relaxation of an integer programming formulation. Liu et al. [31] pro-

posed a multi-objective genetic algorithm (MMGA) for short-haul flights in Taiwan.

The objectives consisted of hard and soft constraints, and they used Pareto opti-

mization for the multi-objective solution. The problem was decomposed separately

according to each type of plane involved in the multiple fleet condition. Therefore,

it is not easy to adopt MMGA to multi-fleet airline schedules. Liu et al. [30] utilized
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a very similar method of the MMGA and studied it for a multi-objective solution,

which included a delayed time variance.

Among various reinforcement learning algorithms, we utilize value-based learn-

ing. Q-learning is one of the most popular value-based reinforcement learning al-

gorithm [49], and it has been applied in a large number of domains. In particular,

it has been applied in many studies on the transportation area. Šemrov et al. [39]

used Q-learning algorithm to reschedule single-track railway trains in Slovenia. Even

though the total delays obtained by Q-learning and the first-in-first-out (FIFO) had

no significant difference, Q-learning was effective in preventing ‘deadlock,’ the col-

lision of trains. Jiang et al. [22] conducted research to develop a passenger inflow

control strategy for relieving congestion at certain stations in peak hours by using

Q-learning. In addition to relieving congestion, the proposed strategy minimized the

safety risks of passengers.

Reinforcement learning approach was adopted in several studies for air transport

management. Gosavii et al. [15] formulated airline revenue management as a semi-

Markov decision process (SMDP). They solved SMDP with a λ-SMART algorithm

based on reinforcement learning. Balakrishna et al. [4] incorporated reinforcement

learning for predicting taxi-out time in airports. Because airline operations dynam-

ically change, the accurate prediction of taxi-out time is very challenging. Due to

this property, the authors adopted reinforcement learning, and the accuracy of their

prediction was relatively high, even without detailed data. Hondet et al. [17] used

Q-learning in disruption management of airline schedules. However, the performance

of the Q-learning algorithm was worse than it was without any controls, and they

obtained no significant results. To the best of our knowledge, there has been no
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experimental study of the ARP using reinforcement learning approach. We propose

reinforcement learning algorithms, specifically Q-learning and Double Q-learning,

for the ARP in cases of temporary closures of airports. We solve this problem when

multiple fleet serve the flight schedule. We utilize a real-world flight schedule and

establish various objectives to meet each airline’s goals.

The remainder of this thesis is organized as follows. Section 3 describes the

problem statement and mathematical formulation of the problem. Principles of re-

inforcement learning, the environment of the flight schedule, and the Markov de-

cision process (MDP) are presented in Section 4. Section 5 describes Q-learning

and Double Q-learning algorithm. Section 6 shows the results of computational ex-

periments to compare proposed reinforcement learning algorithms with the existing

algorithms. Moreover, we evaluate the performance of our approaches by applying

in the real-world case of the Korean domestic airline, and we suggest managerial

insights. Conclusions are presented in Section 7.
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Chapter 3

Problem statement

3.1 Characteristics of aircraft, flights, and flight schedule

requirements

When the AOCC implements the aircraft recovery, the characteristics of the air-

craft and flights should be considered. In actual practice, the AOCC usually swaps

aircraft of the same ‘subfleet’ (i.e., category of aircraft types). Moreover, the mini-

mum turnaround time of each aircraft type is different. The minimum turnaround

time depends on the size of the aircraft. The bigger the aircraft, the longer the

turnaround time. Considering the above characteristics, we set the following two

constraints.

(1) Each aircraft can be swapped with the aircraft that is belonging to the same

subfleet.

(2) The turnaround time of each aircraft type is different.

Flights on the schedule are implemented by designated aircraft. Each flight is

assigned an origin airport, a destination airport, a flight number, a scheduled time

of departure (STD), an actual time of departure (ATD), a scheduled time of arrival

(STA), and an actual time of arrival (ATA). The STD and STA are determined in

the initial flight schedule, and the ATD and ATA are determined after the event
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of flight is implemented. If flight delays happen, the ATD or ATA is later than

the STD or STA. Furthermore, the flying duration between an origin airport and a

destination airport is fixed. Therefore, differences between the STA and STD, and

the ATA and ATD are equivalent, unless a destination airport is closed during the

time the aircraft planned to arrive is still in the air. In addition, we consider the

following three requirements, which the flight schedule must satisfy.

(1) Minimum turnaround time: When an aircraft lands at the destination airport,

a certain amount of times is necessary for preparing the next flight (e.g., runway

taxiing, cabin cleaning, refueling, catering). This time is defined as turnaround

time. The ground times of the aircraft for consecutive flights must be longer

than a minimum turnaround time.

(2) Aircraft balance: The number of aircraft in each airport should be equivalent

at the start and end of the day. Without the aircraft balance requirement,

another disruption will occur the following day.

(3) Flight connection: In two consecutive flights of an aircraft, the destination

airport of the prior flight and the origin airport of the subsequent flight should

be the same.
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3.2 Definitions of disruptions and recovery options and

objectives of the problem

There are many types of flight disruptions, but we consider only one kind: the

disruption that occurs when the airport is closed temporarily. Figure 3.1 represents

the example of disruptions occurred by temporary closures of airports. When the

airport is closed, flights planned to depart or arrive are postponed until the closed

airport reopens. Because of this disruption, considerable delays occur in disrupted

flights, and also subsequent flights could be affected by delay propagation. Moreover,

the aircraft ground handling could take more time than usual due to airport conges-

tion after closure. Therefore, the minimum turnaround time could be increased. To

reflect this problem, we assumed that the turnaround time increased for a certain

period of time at a closed airport, and we used the term ‘turnaround time extension’

to refer to this condition.

𝒇𝟏 𝒇𝟐 

Airport 

Original flight schedule Disrupted flight schedule 

time 
Closed 

14:00 15:00 

𝒇𝟏 

Airport 

time 
Closed 

14:00 15:00 

𝒇𝟐 

Figure 3.1: Disruptions by temporary closures of an airport

As mentioned in Section 1, there are four types of recovery options that minimize

the damage of disruptions as much as possible. Except for cancellation and ferrying,

the following recovery options are employed.

(1) Delaying flight departures: The departure times of subsequent flights should

be delayed until the connected resources are ready (e.g., satisfaction for min-
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imum turnaround time). This recovery option could cause delay propagation

to subsequent flights in the route.

(2) Swapping aircraft: During the recovery process, the AOCC can change the

aircraft for disrupted flights in order to absorb flight delays. This is defined as

swapping aircraft. To illustrate the advantages of this option, we present Figure

3.2. The flight schedule consists of flights, [f1, f2, f3, f4] and aircraft [ac1, ac2].

In the original planned schedule, f1 and f3 are assigned to ac1, and f2 and f4

are assigned to ac2. Assume that the disruption of the ATA on f2 is equal to

the STA of f2, and assume that the ATA of f1 is later than the STA of f1. If f1

and f3 are assigned to ac1 in accordance with the initial planned schedule, the

departure time of f3 should be delayed for satisfying the minimum turnaround

time requirement. However, when f2 and f3 are reassigned to ac2, and when

f1 and f4 are reassigned to ac1, the ATD and STD are equal for f2, f3, and

f4. With the aircraft swapping, the AOCC can avoid departure delays of f3.

𝒇𝟏 𝒇𝟑

𝒇𝟒

𝒇𝟐

time

𝒂𝒄𝟏

𝒂𝒄𝟐

Airport Swap

𝒇𝟏 𝒇𝟑

𝒇𝟒

𝒇𝟐

Airport

time

Figure 3.2: Example of swapping aircraft

Turning now to the objectives of the ARP, we adopt three cases with different

system objectives by considering the characteristics of the air transport business.

Among the two types of flight delays, we consider departure delay for all objectives

except for one, in which we consider an arrival delay. The adopted objectives are as
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follows.

(1) To minimize the total delays of flights (Case A): This objective ensures the

minimization of total delays on the daily flight schedule. This is the most

common objective that existing studies used.

(2) To minimize the number of flight delays of more than 30 minutes (Case B):

Flight delay is a significant measure for evaluating an airline’s on-time per-

formance. If the time differences between actual and scheduled flight events

exceeds the permissible range, it is defined as a ‘flight delay.’ The criterion of

the permissible range is different in every country. Therefore, recovering flight

schedules to meet flight delay criterion could be necessary for the reputation

of the airline. We define flight delay when the actual event time is late over 30

minutes compared to the scheduled event time.

(3) To minimize the number of flight delays of more than zero minutes (Case

C): This objective ensures the punctuality of airlines, which affects customer

satisfaction, and brand image of the airline. Punctuality is one of the most

important aspects that influences customer loyalty. Because of the properties

of airline service, customers tend to be loyal to particular airline companies.

These customers keep on using a specific airline rather than changing to others,

and they influence a huge part of airlines’ revenues [23].

(4) To minimize the number of flight delays of more than zero minutes (Case D):

We set this objective to avoid considering minor flight delays. Most passengers

who take flights for traveling do not consider the flight departure on time as a

significant issue. Therefore, the minor delay (e.g., five minutes) cannot affect

traveling passengers’ satisfaction.
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3.3 Assumptions

We accommodate similar assumptions in [31]. The assumptions are as follows:

(1) The flight schedule is a daily schedule. Therefore, the scheduled (initial) flight

schedule always satisfies the aircraft balance requirement for that day.

(2) The time horizon to recover the disrupted flight schedule ranges from the start

time of an airport’s closure to the end of the day.

(3) The ATD of a flight cannot be earlier than the STD of a flight.

(4) The flying time between each airport is fixed.

(5) Every slot (e.g., landing and takeoff) is assumed to be available.

(6) The event times of flights planned to land on or depart from a closed airport

are postponed until the reopening time.

(7) When the flight is planned to arrive at a closed airport during the closure and

has not yet departed from the origin airport, the departure times of the flight

must be postponed until the destination airport is reopened.

(8) Every flight in each aircraft route must take off from the destination airport

of the immediately preceding flight.

(9) When the aircraft departed the terminating flight of the scheduled (initial)

route, it cannot be swapped with other aircraft. This aircraft lands at the

destination airport of the terminating flight of the initial route and finishes

the daily schedule.

(10) The change in the sequence of flights in routes is not allowed after swapping

aircraft.

Assumptions (1)-(8) are the same as those in [31], and Assumptions (9) and

(10) are added for the following three reasons. First, Assumption (9) prevents any
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aircraft from taking many flights due to the regulations of minimum crew rest and

aircraft maintenance. Second, because of Assumption (1) and (9), aircraft balance

requirement is satisfied. According to Assumption (1), if each aircraft takes the

terminating flight of initial routes at the end of the daily schedule, the aircraft

balance is satisfied. Because Assumption (9) ensures that the terminating flights of

initial routes are carried out last by each aircraft, the aircraft balance requirement is

satisfied. Third, Assumption (10) can reduce action space. In the early stage of this

research, we did not account for Assumption (10), and the extensive action-state

space that the agent visited caused extreme flight delays and slowed convergence

speed.

Swapping ‘arriving aircraft’ (i.e., the aircraft assigned to the arrival event) with

any aircraft could violate Assumption (10). Therefore, in this thesis, the standard

meaning of ‘swappable condition’ is used to indicate the aircraft that satisfy As-

sumption (10). We assume that the decision of swapping aircraft is available at the

arrival event of the aircraft. After swapping arriving aircraft with each aircraft in

flight schedule, it is required to classify them according to whether they satisfy As-

sumption (10) or not. Let mtac denotes the minimum turnaround time of aircraft c.

We indicate dt1 as the departure time of subsequent flight of arriving aircraft, and

dt2 as the earliest departure time among remaining flights except dt1 (dt1 < dt2). At

each arrival event, we generate the list of aircraft that are in the swappable condition

using the following algorithm:
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Algorithm 1 Generation the list of swappable aircraft

Initialize S ← empty list
c ← arriving aircraft that is assigned to the arrival event
dt1 ← earliest departure time of remaining flights of c
dt2 ← second earliest departure time of remaining flights of c
for each aircraft i do

if i is in the air then
if max{planned arrival time of i+mtai, dt1} < dt2 then

S.append(i)
end

else
if max{the time i has arrived + mtai, dt1} < dt2 then

S.append(i)
end

end

end
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3.4 Mathematical formulations

The time-line network mathematical model, which is one of the most compre-

hensive and practical approaches for the ARP, is formulated based on network flow.

A simple example of a time-line network is illustrated in Figure 3.3. There are three

types of nodes: supply (S), termination (T ), and intermediate (I) nodes. The larger

nodes shown in Figure 3.3 are the supply and termination nodes. The supply nodes

supply aircraft at the beginning of the time horizon of recovery, and aircraft finish

flight schedule when the flow of aircraft is reached to the termination nodes. The

smaller nodes represent intermediate nodes and indicate the departure or arrival

event of flight at a specific airport and time. There are two types of arcs in the time-

line network: ground (G) and flight arcs (N). The ground arcs represent the number

of aircraft on the ground preparing for the next flights at the specific airport. The

flight arcs consist of scheduled and delay arcs. The scheduled arcs represent original

planned flight legs. For considering delays on a particular flight, several delay arcs

are built to represent the series of options that move the departure time of flight for

later times. In Figure 3.3, three delay options, 10, 20, and 40 minutes, are available

for each of the three flights. Therefore, in this example, the set of arcs for each flight

(N(f)) covers four flight arcs: one scheduled arc and three delay arcs.

Based on the problem defined in Sections 3.1 and 3.2, a mathematical formulation

of time-line network model is developed. The notations used in the mathematical

formulation are as follows:
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Sets

F set of flights

N set of flight arcs (including scheduled and delay arcs)

G set of ground arcs

S set of supply nodes

T set of termination nodes

I set of intermediate nodes

P set of subfleets

R set of aircraft routes

O+(i, p) set of arcs originating at node i for subfleet p

O−(i, p) set of arcs terminating at node i for subfleet p

N(f) set of flight arcs covering flight f ; N(f) ⊂ N

N(r) set of flight arcs belonging to the aircraft route r; N(r) ⊂ N

Parameters

cnp delays incurred for flight arc n for subfleet p

bsp initial supply of aircraft at supply node s for subfleet p

btp number of aircraft required at termination node t for subfleet p

ugp capacity for ground arc g for subfleet p

qnp unique number of flight which contains flight arc n for subfleet p

tqp initial scheduled departure time of unique flight number q

t̃np actual departure time of flight altered by flight arc n for p
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Decision variables

xnp flow on flight arc n for subfleet p

zgp flow on ground arc g for subfleet p

time

S

S

S T

T

T

Airport 1

Airport 2

Airport 3

Ground arcDelay arcScheduled arc

Figure 3.3: Simple example of time-line network structure

A single time-line network is utilized for a subfleet, as illustrated in Figure 3.3. In

order to take into account a multi-fleet condition, we utilize |P | number of time-line

networks. The following is the mathematical formulation of the ARP. The model is

developed based on the mathematical formulation proposed by Thengvall et al. [45].
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min
∑
p∈P

∑
n∈N

cnpxnp (3.1)

s.t.
∑

g∈G∩O+(s,p)

zgp +
∑

n∈N∩O+(s,p)

xnp = bsp, ∀s ∈ S,∀p ∈ P (3.2)

∑
g∈G∩O+(i,p)

zgp −
∑

g∈G∩O−(i,p)

zgp+

∑
n∈N∩O+(i,p)

xnp −
∑

n∈N∩O−(i,p)

xnp = 0,
∀i ∈ I, ∀p ∈ P (3.3)

∑
g∈G∩O−(t,p)

zgp +
∑

n∈N∩O−(t,p)

xnp = −btp, ∀t ∈ T, ∀p ∈ P (3.4)

∑
p∈P

∑
n∈N(f)

xnp = 1, ∀f ∈ F (3.5)

xap ≤ xbp,
∀a, b ∈ N(r), ∀r ∈ R,∀p ∈ P,

tqap ≤ tqbp , t̃bp < t̃ap

(3.6)

xnp ∈ {0, 1}, ∀n ∈ N, ∀p ∈ P (3.7)

0 ≤ zgp ≤ ugp, ∀g ∈ G, ∀p ∈ P (3.8)

zgp ∈ Z, ∀g ∈ G, ∀p ∈ P (3.9)

The objective function (3.1) is minimizing the total flight delays incurred by

disruption. The cnp is modified according to the defined objective. Constraints (3.2)

and (3.4) represent the aircraft balance constraints. Constraint (3.3) is the balance

equation for intermediate nodes. Constraint (3.5) is the flight cover constraint, which

ensures that every flight is implemented at scheduled time or delayed. Constraint
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(3.6) is the route sequence constraint, which ensures Assumption (10). Constraint

(3.7) is a binary constraint. Constraint (3.8) is the capacity constraint for ground

arcs. Constraint (3.9) ensures that the flow of ground arcs is integer.

There are three weak points in this model. First, without Constraints (3.5) and

(3.6), this problem is equivalent to the single commodity flow problem, which is

a well-solved problem. However, the single commodity flow problem becomes NP-

hard problem by adding the side constraint, Constraint (3.5) [13]. By implementing

computational experiments utilizing the optimization solver, we observed that the

optimization solver could not get the best feasible solution within 10 minutes with

Constraint (3.6), but could get the best feasible solution within 10 minutes without

Constraint (3.6). Therefore, due to the fact that the time-line network model without

Constraint (3.6) is not more difficult than the model with Constraint (3.6), we

could infer that the time-line network model with Constraint (3.6) is also NP-hard

problem. Second, because it is necessary to create delay arcs to account for delaying

flight departure, a trade-off between quality of recovery schedule and computation

time exists. The more delay arcs could guarantee better outcomes while the problem

size increases [51]. Third, because the decision variables of this model represent the

flow of flight and ground arcs of aircraft, an additional algorithm is required to

transform the arc-based solutions to the route-based solutions.

Unlike the methods mentioned above, we interpret the ARP as a sequential

decision-making and develop an MDP model for this problem. In addition, we uti-

lize the reinforcement learning algorithms to find optimal policy in the MDP. In this

manner, we can adopt delay options for every discrete-time (minutes). Also, con-

structing flows of aircraft and aircraft routing can be implemented simultaneously.
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Chapter 4

Reinforcement learning for aircraft recovery

In order to apply reinforcement learning to aircraft recovery, a well-defined envi-

ronment, agent, and MDP adequate to the given problem are significant. Section 4.1

describes the interaction between the agent and the environment, the action-value

function, and the exploration-exploitation dilemma. Section 4.2 explains the struc-

ture of the environment of flight schedule operation. Section 4.3 presents the details

of states, actions, and reward functions of MDP.

4.1 Principles of reinforcement learning

Reinforcement learning is an agent-based approach to find an optimal policy

that would maximize cumulative rewards by trial and error in a given environment.

Through interaction with the environment, the agent discovers the optimal or near-

optimal action at at a specific state st. The reward rt and the next state st+1 are

observed when the agent takes action at. By observing the reward signal, the agent

can assess the quality of action. Figure 4.1 depicts how the agent interacts with

the environment. In this thesis, the agent corresponds to the AOCC, which makes

decisions for aircraft recovery; and the flight schedule system, which includes every

aircraft, flight, airport, and timetable, is the environment.
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Agent

Environment

𝒂𝒕𝒔𝒕+𝟏𝒓𝒕

Figure 4.1: Framework of reinforcement learning

Because reinforcement learning is a framework for sequential decision making,

we consider not only immediate reward rt but also long-term rewards. In such a

setup, the agent seeks to maximize the return, which is defined as the sum of future

discounted rewards: Gt =
∑∞

k=n+1 γ
k−t−1rk. The policy is the agent’s way of estab-

lishing behavior in a given situation. It can be defined as a mapping from states

to probabilities of each action: π(a|s). The action-value function qπ(s, a) estimates

the quality of taking an action a at the state s following policy π [40]. The action-

value function qπ(s, a) expects the return Gt starting with the state s, taking action

a under policy π: qπ(s, a) = Eπ[Gt|st = s, at = a]. The purpose of reinforcement

learning is to find optimal policies (π∗) which share optimal action-value function:

qπ∗(s, a) = maxπ qπ(s, a).

Among valid actions, the agent takes action at at the state st depending on

qπ(st, at). If the agent always takes action with the maximal value of the action-

value function, it is a suitable strategy to maximize return on the immediate step

(exploitation). In order to produce better total rewards in the long term, however,

it is necessary to choose other valid actions (exploration). This challenge is referred

to as the exploration-exploitation dilemma. Various methods have been proposed to

balance exploration and exploitation, and the ε-greedy is one of the most commonly
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used strategies. The ε-greedy takes action a in accordance with the following policy:

π(a|s)←


1− ε+

ε

|A(s)|
if a = argmaxaQ(s, a) (4.1)

ε

|A(s)|
otherwise (4.2)

where A(s) denotes the action space at state s. In addition to the ε-greedy,

we adopt an optimistic initialization. The ε-greedy with optimistic initialization is

effective on stationary problems [40]. This method biases the initial action-value

estimates and ensures extensive exploration. In this thesis, we initialize action-value

estimates to zero and employ negative rewards. Then, the reward is less than any

starting estimates of action-value, causing extensive exploration in the early stage.

We set parameter ε to 0.97n where n means the number of the current episode.

Therefore, ε, the probability of choosing an action for exploration, decays over time.

The first learning episode could start with a big ε. However, ε converges to a small

value with the learning process. Therefore, as the iterations of the episode increases,

the agent chooses action for exploitation.
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4.2 Environment

We built an artificial environment of flight schedule operation based on the as-

sumptions in Section 3.3. Figure 4.2 represents the structure of the environment.

There are three principal elements in the proposed environment. The first element

is aircraft routes. There are two types of routes: the scheduled and actual route.

Initially, every aircraft is assigned to the scheduled route. After a disruption, the

AOCC reroutes aircraft by swapping each aircraft’s scheduled routes, and the actual

routes for aircraft are established at the terminal state. The second element is the

aircraft. There are several states of aircraft that contain the status of each aircraft at

a given time (e.g., flying status, assigned route, and location). Based on the states of

aircraft, the valid actions are determined. The third element compromises events of

flights. The database of the flight events is utilized, and it contains the information

of the actual time of flight events, and whether a given flight is implemented or not.

In the initialization stage, the state of the simulation is updated based on the

input instance: flight schedule and disruption information. The time step is defined

as events of flights, and there are two events in a flight: departure and arrival. Among

the departure or arrival events of flights not implemented yet, the earliest one to

occur is first designated to the time step, and a single aircraft is assigned to the

corresponding event. When the time horizon of recovery begins at the start of the

day, one episode is finished after 2|F | time steps are executed, where |F | be the set

of flights. On the other hand, if the time horizon of recovery begins at the middle

of a day, the number of time steps that have to be executed is less than 2|F |. The

terminal state of each episode is the time step when the latest arrival of a flight is

executed. At the arrival event, the AOCC can decide which aircraft will swap with
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arriving aircraft. If the AOCC decides not to swap aircraft, only the states of arrived

aircraft are updated. Otherwise, if two aircraft are determined to swap their assigned

routes, the states of those two aircraft are updated. At the departure event, if the

ground time of ‘departing aircraft’ (i.e., the aircraft assigned to the departure event)

does not satisfy the minimum turnaround time requirement, the AOCC delays the

actual departure time until the minimum turnaround time is met.

Initialize flight 

schedule and state 

of simulation

Update state 

of simulation

Check 

an aircraft 

that is 

assigned to 

the event 

Should the 

AOCC swap 

aircraft?

What type 

of event?

Update state 

of arriving 

aircraft and 

reward

Update state 

of simulation

Check 

an aircraft 

that is 

assigned to 

the event 

Generate 

the total reward 

and stop

Update state 

of arriving 

and swapped 

aircraft and 

reward

No remaining event

Get  the next 

event

Departure Arrival

Yes

No

Delay 

the departure 

time of 

the flight

Is the 

minimum 

turnaround 

time 

requirement  

satisfied?

No

Yes

Update state 

of departing 
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Figure 4.2: Structure of the environment
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4.3 Markov decision process

The problem of reinforcement learning can be formalized as MDPs, which is a

mathematical formulation for sequential decision making. An MDP is defined as a

tuple (S,A,R, P, γ) that is composed of five components— a set of states, S; a set

of actions, A; the reward function, R; the transition probability function, P ; and the

discount factor, γ.

In every time step, the agent receives states from the environment and takes

action based on those current states. Among lots of information in the environment,

the information that is essential for the learning agent is defined as the MDP’s state.

We combine the states of aircraft and the event information to define the state of

MDP (s, i). The states of aircraft are as follows: future route, previous route, and

binary parameter for indicating whether aircraft is flying or on the ground. Let

uc ∈ U , pc ∈ P , and bc ∈ B denote future routes, previous routes, and the binary

parameter of aircraft c ∈ C where U , P , B, and C represent the set of future

route, previous route, binary parameter, and aircraft in flight schedule, respectively.

Because all aircraft in the flight schedule has this state, the state of aircraft, s, is

defined as the following tuple: s = (u1, · · · , u|C|, p1, · · · , p|C|, b1, · · · , b|C|)

Because the number of routes is equal to the number of aircraft in the flight

schedule, the set of previous and future route of each aircraft is as follows: Uc =

{1, 2, 3, · · · , |C|}, Pc = {1, 2, 3, · · · , |C|}, ∀c ∈ C. The future route means the route

that an aircraft is going to take for departing immediately after. This route is de-

termined by the time point when an aircraft is planned to be assigned for the next

departure. Because each aircraft is assigned one-on-one with the route, the size of

future route space for all the aircraft is equal to |C|!. The previous route is defined
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as the route that an aircraft took for departing immediately before. This route is de-

termined by the time point when an aircraft was most recently assigned for the past

departure. The size of the previous route space for all the aircraft is equal to |C||C|

because the assigned previous route of aircraft can be overlapped. When the aircraft

c is on the ground, the binary parameter (bc) is zero, otherwise one. Therefore, the

size of this state space for all aircraft is equal to 2|C|.

The event information represents the type of event on every flight. Because there

are two types of events in each flight, the size of state space of the event information

is equal to 2|F |, where F is the set of flights in the flight schedule. The set of states

of the event information, I, is as follows: I = {1, 2, 3, · · · , 2|F |}. The state of the

MDP at given time step, t, is denoted as a tuple: (st, it), ∀st ∈ S, ∀it ∈ I. Therefore,

the total size of the environment state space is equal to (2|C|)|C|+1|F ||C−1|! . Even

though the size of state space is extensive, the actual visited state is relatively small

due to the fact that the state is not dramatically rearranged at each time step. The

maximum number of state elements that can be changed at each time step is five:

i) the previous, and ii) the future route, and iii) the binary parameter of aircraft

assigned to the event, and iv) the future route of swapped aircraft, and v) the event

information. In addition, the overlapping of previous routes seldom occurs in the

environment due to the time interval between flights.

In this thesis, the action set, A, is defined as all aircraft operating on the flight

schedule. The action selected at each time step, t, is at ∈ A, which represents an

aircraft swapped with the departing or arriving aircraft. The action space is defined

as follows: A = {1, 2, · · · , |C|}. If the action corresponds to the aircraft assigned

to the given time step, it is equivalent to the condition of not swapping aircraft.
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Recall from Section 4.2 that the AOCC can swap aircraft at the arrival event. In

other words, only one action is valid at the departure event. Moreover, at the arrival

event, the action space can be reduced due to the swappable condition. Figure 4.3

depicts how states are changed by swapping actions. At the first time step, Aircraft

1 is assigned to the arrival of Flight 1 (arriving aircraft). The AOCC decides to

swap Aircraft 1 and Aircraft 2, which are scheduled to arrive at the same airport.

Assuming that Aircraft 3 does not satisfy the swappable condition, Aircraft 1 can

not swap with Aircraft 3. At the second time step, the future route states of Aircraft

1 and Aircraft 2 are changed, and the binary parameter state of Aircraft 1 is changed

to zero due to the previous time step. At the third time step, because the departure

of Flight 2 is assigned to Aircraft 1 at the second time step, the previous route and

binary parameter state of Aircraft 1 is changed. The arrival of Flight 7 is assigned to

Aircraft 2, and the AOCC decides not to swap. Therefore, only the binary parameter

state of Aircraft 2 is changed to zero at the fourth time step.
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Figure 4.3: Example of states changed by the actions of the agent

The reward function defines the purpose of the agent and indicates what is

a good or bad action at a specific state within the environment. Formulating a
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reward function appropriate to the objectives of reinforcement learning problem is

important for guiding the agent to achieve its goal. We define three reward functions

in accordance with each objective. We indicate tdf as the STD, and t̃df as the ATD of

flight f ∈ F . In Case A, reward rt is the departure delay of flight n (min{tdn− t̃dn, 0}).

In Case B, if the departure delay of flight n is more than 30 minutes (t̃dn− tdn > 30),

reward rt is −1, otherwise 0. In Case C, if the departure delay of flight n is more

than zero minutes (t̃dn − tdn > 0), reward rt is −1, otherwise 0.In Case D, if the

departure delay of flight n is more than five minutes (t̃dn − tdn > 5), reward rt is −1,

otherwise 0.

The discount factor, γ, determines how much emphasis is given to immediate

rewards. If γ is close to 0, it means that the agent puts more importance on im-

mediate rewards. On the other hand, there is more emphasis on the future rewards

when γ is close to 1. The parameter setting of the discount factor will be explained

in Section 6.
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Chapter 5

Reinforcement learning algorithms

In this section, we present reinforcement learning algorithms for solving the ARP.

Among the various reinforcement learning algorithms, we adopt Q-learning and Dou-

ble Q-learning. Section 5.1 presents the concept and procedure of the Q-learning

algorithm. Section 5.2 examines the overestimation bias problem of the Q-learning

algorithm and presents the Double Q-learning algorithm, which alleviates the over-

estimation bias.

5.1 Q-learning algorithm

As was stated in Section4.1, the purpose of solving the MDP is that finding

the optimal action-value function at the state and action pairs (s, a). Based on the

classical dynamic programming, we can find the optimal action-value function by

utilizing the Bellman optimality equation [6]. However, in problems involving com-

plicated systems with numerous states, it is difficult to compute the values of the

transition probability. This difficulty is called the ‘curse of modeling’ [14]. In contrast

with the dynamic programming, model-free algorithms of reinforcement learning

does not need to calculate the transition probability. Q-learning is the reinforcement

learning algorithm utilizing the model-free concept and employs Bellman equation
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and temporal difference learning [49]. Especially, temporal difference learning gener-

alizes beyond the Robbins-Monro algorithm, which is a representative method in a

stochastic approximation [37]. By approximating the optimal action-value, it is not

necessary to compute the transition probability, and Q-learning can avoid the curse

of modeling.

Due to the property of the off-policy approach, Q-learning utilizes two indepen-

dent policies: a behavior policy and a target policy. The agent takes action at based

on the value of the learned action-value function, Q function, and follows a behavior

policy (i.e., ε-greedy policy) for st while learning with a target policy (i.e., greedy

policy) for st+1. We initialize the Q function to zero for all states and actions at

the first stage, and we update the Q function until the end of the learning. The

current state of the Q function, Q(st, at), is updated by the next states of the Q

function, Q(st+1, a
′), with the greedy action. The learned Q function approximates

the optimal action-value by updating with the following equation iteratively:

Q(st, at) ← Q(st, at) + α[rt + γmax
a′

Q(st+1, a
′)−Q(st, at)] (5.1)

In this equation, α is the step size parameter of the learning rate of temporal dif-

ferences δt. Utilizing the concept of temporal differences, the agent can avoid having

to wait until the end of each episode, and can update the Q function immediately

after it visits a pair of state and action. The Q function is updated with δt, depend-

ing on the size of the learning rate, α, which determines the step size in δt direction.

Moreover, since our problem is a stationary problem, we compare the total reward

of episode (ρ), which is a summation of observed rewards rt in an episode, with
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the maximum total reward of episode (ρmax) and update the maximum value. The

procedure of Q-learning algorithm is presented as follows:

Algorithm 2 Q-learning

Initialize Q[(s, i), a], for all s ∈ S, i ∈ I, a ∈ A
ρmax ← 0
for each episode do

Initialize s and i
ρ← 0
t← 0
while it is not the terminal state do

Choose at using ε-greedy policy based on Q[(st, it), a]
Take action at and observe rt, (st+1, it+1)
ρ← ρ+ rt
δt ← rt + γmaxa′ Q[(st+1, it+1), a

′] − Q[(st, it), at]
Q[(st, it), at] ← Q[(st, it), at] + αδt
t ← t+ 1

end
ρmax ← max{ρmax, ρ}

end
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5.2 Overestimation bias and Double Q-learning algorithm

Even though Q-learning has been successfully applied to many different applica-

tions, Q-learning can sometimes overestimate action-value functions (the overestima-

tion bias). The performance of Q-learning algorithm suffers from the overestimation

bias, which can impede the agent from learning an optimal policy and have a nega-

tive impact on the convergence rate [46]. This problem is caused by the noise in the

environment and the property that utilizing a single estimator and the max operator

to determine the value of next state [16].

In order to reduce the overestimation bias, Hasselt [16] proposed Double Q-

learning, which employs the double estimator, QA and QB. In contrast with Q-

learning, one of the Q functions in Double Q-learning is chosen randomly determined

between QA and QB for separating sets of experiences. The updating process of

Double Q-learning uses the following equations:

QA(st, at) ← QA(st, at) + α[rt + γQB(st+1, argmax
a′

QA(st+1, a
′))−QA(st, at)] (5.2)

QB(st, at) ← QB(st, at) + α[rt + γQA(st+1, argmax
a′

QB(st+1, a
′))−QB(st, at)] (5.3)

In the process of updating the Q function, each Q is updated by the next state

of the other Q function. In Q-learning example, in cases in which QA is cho-

sen, QA(st+1, a
A) is used for the next state value to update QA, where aA =

argmaxaQ
A(st+1, a). However, in Double Q-learning, QB(st+1, a

A) is used for the

next state value, in which each Q can learn from different sets of experience.

Both Q functions are unbiased estimators of true action-value because they are

updated on the same problem, and the experience of each Q is different. Therefore,

the overestimation bias can be alleviated in Double Q-leaning, though using double
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estimators sometimes underestimates the action-value functions. For detailed proof

of the principles of Double Q-learning, refer to Hasselt [16]. The procedure of the

Double Q-learning algorithm is presented as follows:

Algorithm 3 Double Q-learning

Initialize QA[(s, i), a], and QB[(s, i), a], for all s ∈ S, i ∈ I, a ∈ A
ρmax ← 0
for each episode do

Initialize s and i
ρ← 0
t← 0
while it is not the terminal state do

Choose at using ε-greedy policy based on QA[(st, it), a] +QB[(st, it), a]
Take action at and observe rt, (st+1, it+1)
ρ← ρ+ rt
x← generateRandom(0, 1)
if x < 0.5 then

aA ← argmaxa′ Q
A[(st+1, it+1), a

′]
δAt ← rt + γQB[(st+1, it+1), a

A]−QA[(st, it), at]
QA[(st, it), at]← QA[(st, it), at] + αδAt

else
aB ← argmaxa′ Q

B[(st+1, it+1), a
′]

δBt ← rt + γQA[(st+1, it+1), a
B]−QB[(st, it), at]

QB[(st, it), at]← QB[(st, it), at] + αδBt
end
t ← t+ 1

end
ρmax ← max{ρmax, ρ}

end
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Chapter 6

Computational experiments

We conduct four computational experiments for following different purposes. In

Section 6.1, in order to measure the performance of our algorithms, we compare

Q-learning and Double Q-learning with the MMGA, taking into account the same

problem definition of Liu et al. [31]. In Section 6.2, we conduct experiments to ana-

lyze the quality of solutions depending on the number of delay arcs in the time-line

network model. In Section 6.3, for validating the proposed approach to real-world

application, we conduct experiments with the flight schedule of a Korean domestic

airline, taking into account realistic constraints (e.g., turnaround time extension and

multiple fleet conditions). In Section 6.4, to verify proposed reinforcement learning

algorithms are customizable for various objectives, we implement experiments with

different reward functions. All experiments were conducted based on the compu-

tational environment, AMD Ryzen 7 2700X Eight-Core Processor with 32 GB of

RAM in Windows 10. Every algorithm and artificial environment was coded us-

ing Python 3 language, and the all experiments about the time-line network model

were conducted by FICO XPRESS-IVE version 8.6. In addition, we suggest several

managerial insights that are helpful for airline operation decision-making in Section

6.5.

38



6.1 Comparison between reinforcement learning and ex-

isting algorithms

In this section, we employ the flight schedule presented in Liu et al. [31], which

consists of five airports, 70 flights, and seven aircraft of a single fleet. For every

aircraft, the minimum turnaround time is 30 minutes. Because of the property of a

short-haul flight schedule, most of the time intervals between flight legs are equal to

the minimum turnaround time. The experiments were conducted within the disrup-

tion scenario in which the Taipei Sungshan (TSA) airport was temporarily closed.

In order to compare the performance of the MMGA and our proposed algo-

rithms, we excluded multiple fleet and turnaround time extension conditions. We

set the value of the discount factor, γ, to 0.9 and the learning rate, α, to 0.95 for

all experiments. To properly evaluate the performances of Q-learning and Double

Q-learning, we implemented 50 learning runs with different random seeds. In real

practice, it is recommended that the process should be less than three minutes for

real-time decisions [32]. Although we could find the better quality of the solution

with a long length of training episodes, we set the length of training episodes to 3,000,

which meant that each learning run would be terminated at the three-thousandth

training episode. In some experiments, we observed that after a particular episode,

the total reward of each episode (ρ) did not change and converged to a specific value

in some experiments. Therefore, we included a ‘convergence episode’ to ensure that

the agent does not implement avoidable training episodes. In this thesis, the ‘con-

vergence episode’ stands for the number of episodes in which the value of ρ is the

same across 500 episodes. In other words, when the convergence episode is small,

the speed of convergence is faster. One learning run is terminated, and computation
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times are calculated at the convergence episode or the episode 3,000.

We utilized the ‘Without Swapping’ (WSAP) and the MMGA for comparing

the performance of Q-learning and Double Q-learning. The WSAP is a recovery

method in which the swapping aircraft is not considered for the recovery option. In

real practice, flight schedulers build extra buffer time between consecutive flights for

absorbing unpredictable flight delays. Therefore, without implementing additional

recovery options, just delaying flights’ departure time could be an effective strategy.

For implementing the above strategy, we utilized the environment proposed in Sec-

tion 4.2. In contrast with reinforcement learning approach, there was only one valid

action (e.g., initial aircraft route) in every time step when carrying out the WSAP.

Thus, implementing only one episode is required for the WSAP. The pseudocode of

WSAP is as follows:

Algorithm 4 WSAP

Initialize atc ← 0, for all c ∈ C
E ← the set of every flight’s events
while E is not empty do

e ← the earliest event in E
f ← the flight which includes e
c ← an aircraft assigned to f
mtac ← minimum turnaround time of aircraft c
if departure event of f then

delay ← max{mtac − (tdf − atc), 0}
t̃df ← tdf + delay

t̃af ← t̃df + (taf − tdf )

else
atc ← t̃af

end
E ← E \ e

end

The MMGA, which was proposed by Liu et al. [31], is a multi-objective genetic
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algorithm with the MOI. The multiple objectives consist of two hard constraints

and three soft constraints. The hard constraints are minimum turnaround time and

flight connection requirements, which decide whether the solution is feasible or not.

The soft constraints are equivalent to the objectives of this thesis (i.e., Cases A, B,

and C). In the time-line network model, we built 120 delay arcs and each delay arc

represented delaying one minute for every flight leg, which means that departure de-

lays were allowed up to two hours. The experiment results of the time-line network

model was represented as the TLN. The GapL was used to assess the optimality

of the best feasible solution of each algorithm (BFS) comparing it with the solu-

tion of linear programming relaxation of the time-line network with 200 delay arcs

(TLNLP ).

GapL =
(BFS)− (TLNLP )

(TLNLP )
× 100%

We compared the performance of every algorithm with two disruption scenarios,

airport closures for one hour and two hours. For the first scenario, the TSA airport

was closed from 2:00 p.m. to 3:00 p.m, and all of the flights scheduled to depart or

arrive at TSA in closed period were delayed until the airport was reopened. Detailed

experiment results are illustrated in Table 6.1. As stated in Section 4.3, we employed

different reward functions for each objective of Cases A, B, and C. The objective

value stands for the maximum value of the total rewards in every episode (ρmax).

The results of the objective value, convergence episode, and computation times are

obtained from averaging results of 50 runs with different random seeds. Among all

of the algorithms, the WSAP showed the worst performance in terms of objective

values for all Cases. For Cases A and B, the objective values of Double Q-learning,

Q-learning and TLN were the same. For Cases C and D, the TLN outperformed other
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algorithms, and Double Q-learning and Q-learning showed the second best perfor-

mance. Moreover, the objective values of Q-learning and Double Q-learning were

always the same regardless of different random seeds. In Case A and B, Q-learning

converged faster than Double Q-learning, but in Case C, Q-learning converged slower

than Double Q-learning. In every experiment, the proposed reinforcement learning

approach could finish computing within one minute, except Q-learning in Case C.

Table 6.1: Comparison of performance of algorithms for one hour closure period

Case Method OBJ Conv ep* Times (sec) GapL(%)

A Double Q 430.00 2243.22 52.42 0.00
Q 430.00 2125.94 46.51 0.00
TLN 430.00 - 30.34 0.00
MMGA** 435.00 - In minutes 1.16
WSAP 525.00 1.00 0.03 22.09

B Double Q 6.00 2096.36 49.22 1.52
Q 6.00 1855.92 40.20 1.52
TLN 6.00 - 29.74 1.52
MMGA** 6.00 - In minutes 1.52
WSAP 7.00 1.00 0.03 18.44

C Double Q 13.00 2302.30 55.03 16.62
Q 13.00 3000.00 67.09 16.62
TLN 12.00 - 36.76 7.65
MMGA** 14.00 - In minutes 25.59
WSAP 17.00 1.00 0.03 52.51

D Double Q 12.00 1848.72 42.61 10.68
Q 12.00 1913.14 40.81 10.68
TLN 11.00 - 30.75 1.46
WSAP 16.00 1.00 0.03 47.57

* Conv ep means the convergence episode.
** The results of MMGA are referred from from Liu et al. [31].

Figure 6.1 depicts the learning curves of Q-learning, WSAP, and MMGA for each

objective. The learning curve represents the average value of ρ of the 50 learning

runs with the different random seeds. Due to the fact that the objective value of Q-

learning and Double Q-learning is the same, Double Q-learning is omitted in Figure
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Figure 6.1: Learning curves of algorithms for the ARP
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6.1. Every learning run of Q-learning was terminated before the end of the training

episode. The solid line depicts the learning curve of Q-learning. The flat dotted,

chain, and dashed lines depict the objective value of the WSAP, the MMGA, and

the TLN, respectively. As the number of training episodes increases, the agent of

Q-learning learns better policies that lead to an improved value of ρ. In addition,

because the exploration rate, ε, is decreasing, the value of ρ converges. Interestingly,

Q-learning showed poorer performance than the WSAP in the early stage of train-

ing episodes. This meant that implementing swapping aircraft without considering

subsequent flights might lead to larger flight delays compared to a recovery strategy

employing only one recovery option (i.e., delaying flight departures).

For the second scenario, the TSA airport was closed from 2:00 p.m. to 4:00 p.m,

the detailed experiment results are represented in Table 6.2. In Cases A and B,

the quality of solutions of TLN was better than Double Q-learning and Q-learning.

However, in Cases C and D, we observed that the objective values of Double Q-

learning and Q-learning showed better optimality than the solution of TLN. As

with the result of Table 6.1, the WSAP showed the worst performance compared to

other algorithms.
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Table 6.2: Comparison of performance of algorithms for two hour closure period

Case Method OBJ Conv ep* Times (sec) GapL(%)

A Double Q 1990.00 3000.00 88.11 7.28
Q 1990.00 3000.00 83.43 7.28
TLN 1855.00 - 32.39 0.00
WSAP 2025.00 1.00 0.03 9.16

B Double Q 22.00 2998.90 87.54 22.76
Q 22.00 3000.00 83.48 22.76
TLN 21.00 - 33.23 17.18
WSAP 26.00 1.00 0.03 45.08

C Double Q 27.00 2596.64 75.18 4.93
Q 27.00 2209.20 58.77 4.93
TLN 29.00 - 35.07 12.70
WSAP 31.00 1.00 0.03 20.48

D Double Q 27.00 2605.32 76.28 6.44
Q 27.00 2248.00 59.49 6.44
TLN 29.00 - 38.71 14.32
WSAP 30.00 1.00 0.03 18.26

* Conv ep means the convergence episode.
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6.2 Performance of the TLN varying the size of delay arcs

In this section, we conduct computational experiments for the TLN varying the

number of delay arcs for each flight leg. The detailed results for the objective value

depending on the number of delay arcs are presented in Table 6.3. The columns

labeled |D| show the number of delay arcs for each flight leg. For the instance of one

hour closed period, the TLN could not get the feasible solution when less than 50

delay arcs were built. Besides, if less than 80 delay arcs were built for the instance

of two hours closed period, the feasible solution could not obtained with the TLN.

Even though the objective value of the TLN became better as the size of delay arcs

increase, the problem size also became bigger. In particular, except for the objective

of Case A, we observed that the TLN could not get the solution within ten minutes

when more than 180 delay arcs were built.

By analyzing the above experiments, we could observe a difficulty in determining

the appropriate number of delay arcs for the TLN. The solution’s quality improved

with the increase of the number of delay arcs, but the computation time increased

dramatically since the number of decision variables and constraints increased. More-

over, there was a feasibility issue in the TLN. Because, when there were not enough

delay arcs, the mathematical always obtained the infeasible solution. On the other

hand, due to the property of simulation based approach, the proposed reinforcement

learning algorithms avoid the process of determining the size of delaying arcs. In ad-

dition, we resolved the feasibility issue of the TLN since we built the environment

obtaining a feasible solution (i.e., the recovered flight schedule) for every episode.

Therefore, the reinforcement learning approach could adapt flexibly to various flight

instances, compared to the TLN requiring to determine the cost parameters and the
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number of delay arcs from scratch.

Table 6.3: Performance of the TLN depending on the number of delay arcs

Airport Closed period |D| OBJ

Case A Case B Case C Case D

TSA 14:00∼15:00 40 inf inf inf inf
50 480 7 17 16
60 430 6 13 13
70 430 6 13 12
80 430 6 13 12
90 430 6 12 11
120 430 6 12 11

14:00∼16:00 70 inf inf inf inf
80 1855 23 30 30
90 1855 21 29 29
120 1855 21 29 29
180 1855 -* -* -*

* Cannot solve within ten minutes.
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6.3 Aircraft recovery for a complex real-world case: a Ko-

rean domestic airline

In this section, the flight schedule of an August 2020 domestic flight schedule

from one of the airlines in Korea was used as the input for further analysis. There are

20 aircraft operating 94 flights from six airports: Gimpo (GMP), Jeju (CJU), Bu-

san (PUS), Ulsan (USN), Cheongju (CJJ) and Gwangju (KWJ). Table 6.4 presents

the detailed information of the number of aircraft, the minimum turnaround times,

and the types of aircraft that could be swapped for each type of aircraft. The air-

craft consisted of four types, and the minimum turnaround time of each type of

aircraft was different. Moreover, there are three subfleets: i) A220, and ii) B737,

and iii) B777 and A330. The feasible types of aircraft that could be swapped were

different depending on each aircraft. In contrast with Section 6.1, we considered

the turnaround time extension and multiple fleet conditions in this experiment. We

compared the performance of Q-learning, Double Q-learning, and the WSAP, with-

out the MMGA, which cannot be applied to the turnaround time extensions and

multiple fleet conditions.

Table 6.4: Aircraft information of the flight schedule of a Korean domestic airline

Aircraft type Units
Turnaround
time (min)

Substitutions

A220 11 40 A220
B737 5 40 B737
B777 2 50 B777, A330
A330 2 50 B777, A330

Ten disruption scenarios of airport closures were proposed to validate the effi-

ciency of the algorithms. The detailed information of the scenarios is summarized
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in Table 6.5. All times in the category of closed periods were reported in minutes.

The disruption scenarios were chosen for covering a wide range of disruption types

with the following properties. First, the closed airport was determined in light of the

traffic volume at that airport. Among the airports in Korea, the number of passen-

gers and flights at the CJU is the greatest for domestic flight operations. Moreover,

temporary closure frequently occurs at the CJU due to the often severe weather

conditions in Jeju. Considering the characteristics of airports in Korea, the closed

airports corresponding to high, medium, and low traffic volumes were selected as

the CJU, GMP, and CJJ, respectively. Second, the simulated scenarios considered

the various lengths of the closed periods of airports. The closed periods of airports

for the scenarios were decided based on the fact that the closed periods in real-world

cases at Jeju are usually about one to two hours. Third, because airports that have

been closed for a long time are usually more congested, scenarios with longer closed

periods of airports had more extended periods and turnaround time extensions.

Table 6.5: Information of disruption scenarios

Scenario Closed period Closed airport
Turnaround

time extension

Extension
period

Extension
time

1 840∼900 (1hr) CJU - -
2 840∼900 (1hr) CJU 3hr +10 min
3 900∼990 (1.5hr) CJU 4hr +15 min
4 860∼980 (2hr) CJU 5hr +20 min
5 890∼950 (1hr) GMP 3hr +10 min
6 860∼950 (1.5hr) GMP 4hr +15 min
7 870∼990 (2hr) GMP 5hr +20 min
8 900∼960 (1hr) CJJ 3hr +10 min
9 860∼950 (1.5hr) CJJ 4hr +15 min
10 840∼960 (2hr) CJJ 5hr +20 min
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In this section, we set the numerical value of γ to 0.7 and α to 0.85. Because

the state space of this problem was larger than in the problem of Section 6.1, a

lot of episodes had to be implemented to obtain valid results when the value of γ

and α was large. Therefore, we set smaller values of γ and α compared to Section

6.1. We implemented five different random seeds for each scenario and for all Cases.

When the value of ρ did not converge until the end of the training episode, the

computation times at episode 3,000 were utilized, and the 3,000 was used for the

convergence episode for individual learning runs.

The detailed results for every scenario are presented in Table 6.6. The experimen-

tal results were obtained by averaging the results of five runs with different random

seeds. We can note that proposed reinforcement learning algorithms outperformed

the WSAP, and Double Q-learning showed the best performance in terms of ob-

jective values. Furthermore, Double Q-learning and Q-learning completed learning

within two minutes in all experiments, but three out of 40 (Double Q-learning for

Cases B, C, and D in Scenario 4). Even in these three experiments, the computa-

tion time was close to two minutes. Obviously, as the length of the closed period

increased, the total flight delay incurred in the schedule increased. If the disruption

occurred in an airport with high traffic volume (CJU), many flight operations were

affected compared to a low traffic volume airport (CJJ). Therefore, when an airport

with high traffic volumes temporarily closed, our experiments demonstrated that the

total flight delay increased as the length of the closed period increase. In the case

when the disruption occurred in the CJU, the total delays of Scenario 4 increased

dramatically compared to Scenario 2 (to 1,545 from 154.2). However, in the case of

the CJJ, the increase of the total delays between Scenarios 8 and 10 was relatively
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small (to 234 from 90). In addition, comparing the experiment results in Scenarios

1 and 2, the turnaround time extension increased the objective values of Cases A,

C, and D. However, because the extension time was 10 minutes, the objective value

of Case B was not affected.

Considering the experiment for the flight schedule of a Korean domestic airline,

the Q-learning suffered from convergence problem due to the overestimation bias.

However, Double Q-learning alleviated challenges of convergence compared to Q-

learning. We set the length of training episode to 10,000 to compare the performance

of Double Q-learning and Q-learning. Figure 6.2 shows the learning curves of Q-

learning, Double Q-learning and the WSAP for Cases A, B, C, and D in Scenario 2.

The dashed line depicts the learning curve of Double Q-learning. The learning curves

were obtained by averaging the value of ρ of five learning runs with different random

seeds. In Case B, Double Q-learning, Q-learning, and the WSAP had the same result

of objective value, one. The convergence episode of Double Q-learning was smaller

than that of Q-learning. However, in Cases A and C, the agent of Q-learning could

not learn a policy that improves the value of ρ continuously until the end of training

episodes, and the total reward diverged. On the other hand, the agent of Double

Q-learning showed steady improvement and learned a policy that led to the smallest

objective value among the comparison algorithms. In contrast with Q-learning, the

value of ρ converged at the convergence episode in Double Q-learning.
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6.4 Validation for different objectives

Turning now to evaluating whether the reward functions defined in Section 4.3

have good performance for each objective, we compare four Double Q-learning with

different reward functions. Throughout this thesis, we use the terms ‘Double Q-

learning for Cases A, B, C, and D’ to indicate the Double Q-learning algorithm that

applies appropriate reward functions for each objective. ‘Double Q-learning for Case

A’ applies min{tdn− t̃dn, 0} for reward function and the others apply different reward

functions defined for each objective (see Section4.3).

Table 6.7 shows the performance of Double Q-learning for Cases A, B, C, and D

in every objective. The objective values were obtained by averaging the results of five

learning runs at the convergence episode. The results of Cases A, B, C, and D are

obtained with the rescheduled flights, the solution of ρmax. Double Q-learning with

appropriate reward functions outperformed other reward functions for customized

objectives in all but seven experiments out of 30. Double Q-learning for Case A had

the highest objective value for all Scenarios for the objective of Case A. In Case B,

Double Q-learning for Case B performed best in all Scenarios except for Scenario

10. Double Q-learning for Case C showed the best performance in all Scenarios

except Scenario 2 in terms of Case C. However, in the objective of Case D, Double

Q-learning for Case D showed poor performance compared to other objectives.
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For further comparison, we examined the number of the best performing Dou-

ble Q-learning for Cases A, B, C, and D for every objective. Figure 6.3 presents a

comparative analysis of Double Q-learning with different reward functions for ev-

ery objective. With the setup of the same random seed and scenario, we compared

Double Q-learning for Cases A, B, C, and D, and the method obtained the best

objective value was counted as the number of best performing for each objective.

In the case in which several Double Q-learning algorithms obtained the same best

objective value, all those algorithms were considered for the category of best per-

forming. If an algorithm showed the best performance for every learning runs in ten

scenarios, the best performing number was set at 50 (i.e., 5 × 10). As anticipated,

our experiment showed that Double Q-learning with the appropriate reward func-

tion for each objective performed best for each objective. This meant that Double

Q-learning with the appropriate reward function performed best on each objective

when trained specifically to optimize for the corresponding objective. Especially,

Double Q-learning for Case A showed the robustness in terms of performances for

any type of objective.
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Figure 6.3: Performance for different objectives

6.5 Managerial insights

This thesis offers managerial insights, which could be instructive to airline op-

erations controllers. By analyzing the results of the computational experiments, we

derived the following managerial insights.

(1) Based on the computational experiments, the proposed reinforcement learning

approach showed effective performance on a real-world flight schedule. In ac-

tual practice, most commercial airlines manage disruptions of flight schedules

with optimization-based decision tools and long-standing practices established

by the airline industry and the practical knowledge of AOCC staff. However,

in addition to optimization-based decision tools and AOCC staff expertise,
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a decision tool modeled with the reinforcement learning approach could help

airlines for making better decisions.

(2) Q-learning is well applied to aircraft recovery of simple flight schedules, which

do not consider various realistic conditions. However, if airline operations con-

trollers take into account complex conditions, which create noise in the envi-

ronment of reinforcement learning, Q-learning could show poor performance

due to the overestimation bias. In such cases, therefore, we showed that utiliz-

ing Double Q-learning would be an effective strategy.

(3) In this thesis, we suggested three objectives and defined reward functions for

each objective. Double Q-learning is configurable to different objectives. Dou-

ble Q-learning with an appropriate reward function for each objective out-

performs other reward functions. Therefore, if airline operations controllers

wanted to meet a specific objective, we suggested that they could utilize pro-

posed appropriate reward functions. On the other hand, if airline controllers

had no specific goals and wanted to implement aircraft recovery to perform well

for overall objectives, we also determined that adopting the reward function

for minimizing total delays would be an effective strategy.

(4) Swapping aircraft is not always a valid strategy for aircraft recovery after

airport closures. Depending on the conditions of available resources and sub-

sequent flights, swapping aircraft could increase flight delays in the overall

flight schedule compared to just delaying the departure time of subsequent

flights until the aircraft is ready. Thus, we suggested in this thesis that it is

necessary to consider outcomes for subsequent flights when swapping aircraft.
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Chapter 7

Conclusions

Implementing aircraft recovery to minimize the damage from disruptions is sig-

nificant for airline’s bottom lines, in terms of both customer satisfaction and op-

erations costs. In aircraft recovery, it is necessary to take into account various ob-

jectives of airlines and realistic conditions that affect their operations. Considering

the advantages of flexibility in establishing various objectives and adapting them to

complex assumptions, we adopted the method of reinforcement learning, specifically

Q-learning and Double Q-learning, for the ARP. To the best of our knowledge, this

thesis is a first step to applying reinforcement learning approach to the ARP, since

most existing studies adopted operations research methods instead. Among numer-

ous types of flight disruptions, we concentrated in this thesis on airport closures. We

built an environment of reinforcement learning and defined states, actions, and re-

ward functions. Especially, the three different reward functions were defined for each

objective. We evaluated the performances of Q-learning and Double Q-learning and

compared the results with the MMGA benchmark. Furthermore, in the real-world

flight schedule of one of the domestic airlines in Korea, we validated the advantages of

utilizing Double Q-learning, which alleviates the overestimation bias of Q-learning.

In addition, our computational experiments in this thesis showed that Double Q-
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learning with appropriate reward functions outperformed other reward functions in

customized objectives. We expect our approach to serve as a bridge for utilizing the

reinforcement learning in airline disruption management.

Finally, a number of potential limitations need to be considered. First, the per-

formance of the proposed reinforcement learning approach is rather disappointing in

a large scale flight schedule. The state and action space depends on the number of

aircraft, and the time step size in an episode increases depending on the number of

flights. Therefore, the run time for the agent learning an optimal policy increases as

the number of aircraft and flights increases. Second, the values of three control pa-

rameters, ε, α, and γ, were selected by performing an informal search. These values

significantly affected the performance of reinforcement learning. We experimented

with limited parameter settings widely used in the existing literature.

For further research, we intend to extend our study in order to derive general

policy, which could be applied to many disruption instances. Because this thesis

defined the states and actions based on aircraft routes, it was difficult to obtain a

general policy. However, by redefining states and actions and by utilizing suitable

technology (e.g., a neural network) to approximate action-value functions, the agent

might learn a general policy. Moreover, an airline’s engaging in non-profitable duty

swaps for flights could cause trouble for changing crews, and could consume other

resources. Unnecessary swaps, therefore, might be regarded as measures of deviation

from original flight schedules. Thus, revising reward functions that take into account

the additional cost of swapping aircraft is reserved for future work.

60



Bibliography

[1] T. Andersson, Solving the flight perturbation problem with meta heuristics,

Journal of Heuristics, 12 (2006), pp. 37–53.

[2] M. F. Arguello, Framework for exact solutions and heuristics for approxi-

mate solutions to airlines’ irregular operations control aircraft routing problem.,

(1998).
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국문초록

항공사는 보유하고 있는 자원을 최대한 효율적으로 사용하여 항공 일정계획을 수립하

기 위해 비용과 시간을 많이 소모하게 된다. 하지만 공항 임시폐쇄와 같은 긴급 상황이

발생하면항공편의비정상운항이발생하게된다.따라서이러한상황이발생하였을때,

피해를 최대한 줄이기 위해 항공 일정계획을 복원하게 된다. 본 연구는 강화학습을 이

용하여공항임시폐쇄상황에서항공일정계획복원문제를푼다.본연구에서는항공기

복원 방법으로 항공편 지연과 항공기 교체의 두 가지 방법을 채택하였으며, 항공 일정

계획 복원 문제에 강화학습을 적용하기 위해서 마르코프 결정 과정과 강화학습 환경을

구축하였다. 본 실험을 위해 대한민국 항공사의 실제 국내선 항공 일정계획을 사용하

였다. 강화학습 알고리즘을 사용하여 기존의 연구에 비해 항공 일정계획을 효율적으로

복원하였으며, 여러 현실적인 조건과 다양한 목적함수에 유연하게 적용하였다.

주요어: 항공 일정계획 복원 문제, 공항 임시폐쇄, 항공기 교체, 강화학습, 큐러닝 알고

리즘, 이중 큐러닝 알고리즘

학번: 2019-20784
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