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ABSTRACT

Air traffic disruptions result in fight delays, cancellations, passenger misconnections,

creating high costs to aviation stakeholders. This dissertation studies two directions in the

area of airline disruption management – an area of significant focus in reducing airlines’

operating costs. These directions are: (i) a joint proactive and reactive approach to airline

disruption management, and (ii) a dynamic aircraft and passenger recovery approach to

evaluate the long-term effects of climate change on airline network recoverability.

Our first direction proposes a joint proactive and reactive approach to airline disrup-

tion management, which optimizes recovery decisions in response to realized disruptions and

in anticipation of future disruptions. Specifically, it forecasts future disruptions partially

and probabilistically by estimating systemic delays at hub airports (and the uncertainty

thereof) and ignoring other contingent disruption sources. It formulates a dynamic stochas-

tic integer programming framework to minimize network-wide expected disruption recovery

costs. Specifically, our Stochastic Reactive and Proactive Disruption Management (SRPDM)

model combines a stochastic queuing model of airport congestion, a fight planning tool from

Boeing/Jeppesen and an integer programming model of airline disruption recovery. We de-

velop an online solution procedure based on look-ahead approximation and sample average

approximation, which enables the model’s implementation in short computational times.

Experimental results show that leveraging partial and probabilistic estimates of future dis-

ruptions can reduce expected recovery costs by 1-2%, as compared to a baseline myopic

approach that uses realized disruptions alone. These benefits are mainly driven by the delib-

erate introduction of departure holds to reduce expected fuel costs, fight cancellations and

aircraft swaps.

Our next direction studies the impact of climate change-imposed constraints on the

recoverability of airline networks. We first use models that capture the modified payload-

ii



range curves for different aircraft types under multiple climate change scenarios, and the

associated (reduced) aircraft capacities. We next construct a modeling and algorithmic

framework that allows for simultaneous and integrated aircraft and passenger recovery that

explicitly capture the above-mentioned capacity changes in aircraft at different times of

day. Our computational results using the climate model on a worst-case, medium-case, and

mild-case climate change scenarios project that daily total airline recovery costs increase

on average, by 25% to 55.9% on average ; and by 10.6% to 156% over individual disrupted

days. Aircraft-related costs are driven by a huge increase in aircraft swaps and cancelations;

and passenger-related costs are driven by increases in disrupted passengers who need to be

rebooked on the same or a different airline. Our work motivates the critical need for airlines

to systematically incorporate climate change as a factor in the design of aircraft as well as

in the design and operations of airline networks.
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Chapter 1

INTRODUCTION

1.1 Motivation

The formation and propagation of operating disruptions across spatial-temporal net-

works create missed revenue opportunities, resource wastage, employee overtime shifts and

reduced customer satisfaction, leading to financial and welfare losses in industries such as

supply chains, transportation, telecommunications, and medical services. As a prime exam-

ple, flight delays and cancellations create significant costs across air traffic networks.

The growth of air traffic operations worldwide has resulted in the routine occurrence

of significant disruptions across airline flight networks. These disruptions materialize in

the form of flight delays and cancellations, as well as passenger misconnections. Moreover,

given the interconnected nature of air traffic operations, they often propagate throughout

the airline’s network of flights by creating additional disruptions at other airports, thus

amplifying their negative impact on airline, passenger and airport operations. The resulting

costs of these disruptions can be very significant for all aviation stakeholders. For instance,

the overall impact of flight delays was estimated at over $30 billion in the United States in

2007 (Ball et al. 2010). The management of flight disruptions from strategic and operational

viewpoints, is therefore one of the foremost objectives of air traffic management and airline
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Figure 1.1: Bureau of Transportation Statistics delays by category

operations systems.

The Bureau of Transportation Statistics classifies the causes of disruptions into mul-

tiple categories: (i) air carrier delay (delays that are solely the airline’s responsibility, such

as ground operations,swaps or holds) , (ii) aircraft arriving late delay (due to propagation

from previous aircraft), (iii) security delays, (iv) National Aviation System delay (such as

airspace congestion and airport congestion), (v) extreme weather delays,(vi) flights canceled

and (vii) flights diverted. In the six years spanning March 2014-March 2020, while 79.69%

of flights were on time, the remaining flights that were delayed according to these above

categories were 5.23%, 0.57%, 5.74%, 0.03%, 6.71%, 1.78% and 0.24% as shown in Figure

1.1.

Delays and disruptions are addressed by addressing their root causes, before disrup-

tions occur, such as improved robust schedule construction through improved schedules, air-

craft routes and crew pairings, management of the airspace, strategic capacity management

at airports and tactical capacity changes using modified runway configurations, improved

landing and takeoff policies and improved taxiing and gating policies, and proactively man-

aging weather-induced capacity drops through Ground Delay Programs (GDPs) and Airspace

Flow Programs (AFPs). Additionally, many of these methods are complemented by airlines

using reactive methods of disruption management, also called recovery, after the occurrence
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of disruptions.

The focus in this dissertation is on reactive methods of managing airline’s networks,

which are primarily under the control of the airline, and managed by the airline’s Operating

Controls Center (OCC). Measures such as aircraft flight holds, swaps, cancelations and flight

holds (Marla et al. 2017b) are used to manage these disruptions. We study and propose novel

ways of understanding and modifying disruption management practice to achieve greater

benefits and evaluate impacts.

This thesis examines airline recovery from two perspectives: (i) a stochastic and dy-

namic approach to airline disruption management, and (ii) a dynamic aircraft and passenger

recovery approach to evaluate the long-term effects of climate change on airline network

recoverability.

The first of these modifications involves enhancing reactive disruption management

measures using proactive strategic and tactical measures discussed above, which address the

root causes of disruptions. Specifically, among the possible measures, we consider tactical

airport congestion mitigation measures that manage airport capacities. We utilize meth-

ods developed by Jacquillat and Odoni (2015b) that model the patterns and variability of

the airport delays due to flight schedule congestion. We incorporate these airport conges-

tion models as future predictions of disruptions, into existing reactive disruption recovery

approaches. We propose this problem as a stochastic dynamic programming problem and

develop an efficient approximate algorithm to solve this problem in a reasonable time.

Next, we also examine the sensitivity of disruption management to factors such as

climate change. As the planet continues to experience increased fluctuations in tempera-

tures, referred to as global warming, as result of human activity (IPCC Report 2014, Santer

B. D. et.al. 1996), communities and businesses around the world are expected to be increas-

ingly challenged. The aviation industry will also need to address challenges that climate

change is already beginning to inflict. An International Civil Aviation Organization ICAO

Report (2016) highlights the impacts that global warming can have on airline operating
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costs. The report indicates that shifting wind patterns can have an impact on the optimal

flight routes along with increasing fuel consumption. Also, rising sea levels and storms can

have an impact on the airports closer to these water bodies. In many instances of high

temperature increase-related disruptions, airlines need to operate some aircraft at restricted

take-off weights to achieve sufficient lift. This results in lower load and fuel weight allowed

to be carried by the aircraft causing significant disruptions in flight schedules for the airlines.

These climate change disruptions can cause re-routing and cancellations which can be very

costly for airlines.

Our goal is to first estimate the impact of such disruptions on the operating costs of

airlines by modeling the climate change disruptions in combination with normally occurring

disruptions using real-world data. These results motivate the need to develop airline practices

derived from understanding the impact of climate change, which can buffer airlines from

climate damage and help make their operations more resilient and sustainable for the long

term.

In the following sections, we present the context, contributions and structure for

these perspectives. We discuss our stochastic and dynamic approach to recovery in Chapter

2 and passenger recovery under climate change in Chapter 3.

1.2 Thesis Contributions and Structure

1.2.1 Overview of Chapter 2: Stochastic and Dynamic Disruption
Management

Airline disruption management interventions can be broadly classified into two cat-

egories: reactive and proactive interventions. Proactive interventions stem from the airline

robust planning literature: they provide a priori operating plans (e.g., flight schedules, air-

craft routing and crew pairings) that can respond effectively to future disruptions. However,

they do not adjust operating plans dynamically as operating disruptions are realized. Reac-
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tive interventions stem from the airline recovery literature: they provide a posteriori recovery

plans in response to observed disruptions (e.g., whether, when and with which aircraft to

operate each flight) to minimize the costs of bringing operations back to normal. However,

they do not anticipate future disruptions that are likely to occur across the airline’s net-

work of flights—thus potentially resulting in sub-optimal decisions when future operations

themselves depart from planned operations.

Deterministic models of airline disruption management that are commonly used in

practice do not capture information about potential future state at airports, and therefore,

render the recovery decisions myopic and reactive in responding to delay and disruptions.

We propose an original approach to disruption management which proactively responds by

also anticipating future disruptions in additional to revealed disruptions, and therefore, make

decisions which reduce the expected recovery costs.

We develop a dynamic and stochastic optimization model that optimizes recovery

decisions, given observed disruptions and the probability distribution of future disruptions.

The proposed framework involves network-wide air traffic optimization under airport queue-

ing stochasticity at multiple airports simultaneously, and therefore, results in a large-scale

optimization problem. The size of problem increases with the scale of the network, the time

horizon of recovery, and the number of potential future disruption scenarios captured.

For solving the large-scale stochastic and dynamic optimization problem, we propose

an efficient algorithm that arrives at the optimal solution within reasonable computational

time. We demonstrate the performance of the proposed algorithm by using real-world data

for our experiments. On average a 1-2% reduction in recovery costs are observed across mul-

tiple disruption instances considered. The results demonstrate that our proactive approach

provides more cost savings by using the partial information on future disruptions.
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1.2.2 Overview of Chapter 3: Passenger Re-accommodation and
Aircraft Recovery under Climate Change Considerations

The airline recovery problem we discussed in Chapter 2 has a focus on aircraft

recovery in current operating conditions.

In this chapter, our focus is to understand the impact of disruptions due to climate

change on airline recovery. To accurately estimate the impact of such disruptions, we first aim

to understand how climate change causes aircraft of different sizes to operated at reduced

capacities due to reduced lift. We also jointly solve for aircraft and passenger recovery,

in a simultaneous rather than sequential manner, allowing us to compute the additional

costs associated with passenger re-accommodations resulting from climate change-related

disruptions.

First, we develop a large-scale, integrated, aircraft and passenger recovery modeling

and algorithmic framework that also captures the dynamic nature of aircraft and passenger

recovery at airlines. We show how our approach captures the unique constraints that climate

change-related temperature increases impose on each aircraft’s ability to operate in the

network at specific points in time. Second, we present an algorithm for integrated aircraft

and passenger recovery, that runs on a rolling horizon basis, which allows for tactical decision-

making when climate change constraints become operational. Our algorithm is designed

to mimic real-world airline operations, and captures airline recovery (including inter-fleet

swaps), simultaneously integrated with optimally assigning re-accommodations for disrupted

passengers.

Our results indicate that, climate change can impact significantly airlines’ ability

to recover from disruptions. Specifically, through computations on a major US airline, we

demonstrate that if a similar network structure and similar load factors as today were oper-

ated in 2035 and 2050, airlines’ recovery costs can be compounded significantly. Specifically,

our estimates for daily airline-recovery related costs in years 2035 and 2050 (during high

traffic and high climate change timeframes) range on average from $1.8 million - $2.6 million
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and passenger related costs on average range from $2.0 million - $3.1 million depending on

the severity of climate change in conjunction with the size of disruptions.

It is evident that global temperatures continue to rise while the aviation industry

continues to grow. The combination of the aviation demand increase and climate change will

play a significant impact on the global warming itself. To address the problem of climate

change and its negative impact on the global economy, airline must have a long-term plan

even though its impact today is very limited. Our work motivates the critical need for airlines

to systematically incorporate climate change as a factor proactively, in the design of small

aircraft as well as in the design and operations of airline networks.
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Chapter 2

STOCHASTIC REACTIVE AND
PROACTIVE DISRUPTION

MANAGEMENT

2.1 Introduction

As described in Chapter 1, in this chapter, we propose an original approach to dis-

ruption management that is jointly reactive and proactive—by simultaneously responding

to past disruptions and anticipating future disruptions. A major challenge is that future

disruptions can only be characterized probabilistically and partially. First, air traffic opera-

tions are subject to significant uncertainty, so disruptions cannot be anticipated in advance

exactly and with certainty. Second, operating disruptions stem from systemic and contin-

gent sources. Systemic disruptions arise from congestion resulting from more flights being

scheduled than available capacity at busy airports. These disruptions can be estimated by

means of stochastic queuing models, as shown by Pyrgiotis et al. (2013) and Jacquillat and

Odoni (2015b). Contingent disruptions include other delay sources, such as aircraft main-

tenance, late crews, late passenger boarding, etc. In comparison, contingent disruptions are

very difficult to anticipate. This chapter integrates probabilistic forecasts of systemic disrup-

tions across networks of operations into a dynamic and stochastic optimization framework

for airline disruption recovery.

Specifically, this chapter makes the following contributions:
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It develops an original approach to network-wide disruption management that proac-

tively leverages partial and probabilistic disruption forecasts into reactive disruption recovery.

The approach relies on a dynamic and stochastic optimization model that optimizes recovery

decisions, given observed disruptions and the probability distribution of future systemic dis-

ruptions. This work thus integrates, for the first time to our knowledge, principles from the

robust airline planning literature into the disruption recovery literatures. As compared to

existing disruption recovery approaches, the proposed framework results in larger and more

complex optimization problems, but can reduce expected disruption costs through more

flexible and robust disruption management.

It formulates a Stochastic Reactive and Proactive Disruption Management (SRPDM)

model to optimize network-wide airline disruption recovery under airport queuing stochastic-

ity. SRPDM is formulated as a stochastic integer program using a probabilistic time-space

network representation. It combines: (i) the stochastic and dynamic queuing model from

Jacquillat and Odoni (2015a), which yields the probability distribution of delays over time at

each hub airport; (ii) a flight planning tool from Boeing/Jeppesen, which provides routing,

speed and altitude options for each flight, along with corresponding flying times and fuel

costs; and (iii) the deterministic model of recovery optimization from Marla et al. (2017a).

This provides the first model of network-wide air traffic optimization that applies a stochastic

queuing model at multiple airports simultaneously.

It develops an efficient approximate algorithm that can solve the SRPDM within

reasonable computational times, consistent with the airline disruption recovery literature and

with practical implementation requirements. The size of SRPDM increases with the scale of

the network, the time horizon of recovery, and the number of systemic disruption scenarios.

In realistic instances, the model’s sheer size makes direct implementation highly intractable.

To solve it efficiently, this work develops an approximate solution algorithm based on look-

ahead approximation (by optimizing recovery decisions for a restricted time window) and

sample average approximation (by leveraging a sampled set of disruption scenarios). The
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algorithm solves SRPDM iteratively over a rolling horizon (we use a one-hour rolling horizon

in this chapter, but the proposed algorithm can be applied more or less frequently in practice).

Using real-world scheduling data from Delta Air Lines, we show that, at any point in time,

the proposed algorithm can solve SRPDM in 3-5 minutes—which is consistent with earlier

airline recovery models and with practical requirements. Ultimately, these computational

results demonstrate the model’s implementability in practice.

It shows that our jointly reactive and proactive approach to disruption management

can significantly enhance recovery decisions, as compared to purely reactive approaches. Since

our approximate algorithm does not yield solution quality guarantees, we compare the recov-

ery solutions obtained with our modeling and computational framework to those obtained

with a myopic baseline approach that does not leverage forecasts of future disruptions. For

this comparison, we use disruption realizations derived from real-world data. Results suggest

that our approach reduces expected recovery costs by 1–2%. Moreover, we find no disrup-

tion instance in which our approach increases recovery costs (it performs either as well as

or better than the baseline). Stated differently, our stochastic optimization approach re-

duces expected operating costs without introducing additional risk in airline recovery. These

benefits are mainly driven by deliberately introducing departure holds at key points in the

network to reduce expected fuel costs, flight cancellations and aircraft swaps. This approach

is particularly beneficial for airlines with concentrated operations at hub airports and with

congested hubs. Ultimately, these case study results demonstrate the benefits of proactively

leveraging even partial and probabilistic information on future disruptions and applying even

an approximate stochastic optimization algorithm to enhance airline recovery decisions.

We review the literatures on robust airline planning and disruption recovery in Sec-

tion 3.2. We describe our dynamic decision-making approach in Section 2.3. Section 2.4

formulates SRPDM and describes our solution algorithm. Our experimental setting is de-

tailed in Section 2.5. Section 3.5 reports computational results, showing the benefits of the

proposed modeling and computational approach. Section 2.8 summarizes our findings and
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outlines opportunities for future research.

2.2 Literature Review

The management of flight disruptions is one of the foremost objectives of air traffic

management and airline operating systems. Major air traffic management interventions

include the optimization of airport operations (Balakrishnan and Chandran 2010, Jacquillat

and Odoni 2017, Simaiakis et al. 2014), air traffic flow management (Bertsimas et al. 2011,

Vossen et al. 2012), and airport demand management (Jacquillat and Odoni 2015a, Ribeiro

et al. 2017, Zografos et al. 2012). From an airline’s perspective, minimizing disruptions

comprises two main steps: (i) robust airline planning—to reduce its vulnerability to future

disruptions (a proactive method) and (ii) disruption recovery—to re-allocate resources and

minimize the impact of observed disruptions (a reactive approach). We review these two

bodies of work in this section.

Robust airline planning involves optimizing planning decisions (such as flight

schedules, fleet assignments, aircraft routings and crew schedules) to minimize the cost of

operating disruptions, if and when they occur. This literature includes two main approaches:

(i) those that minimize the impact of delays, and (ii) those that minimize the occurrence of

(propagated) delays.

The first category designs strategic plans to respond effectively to future disruptions.

Rosenberger et al. (2004) create fleet assignments with ‘short cycles’ to minimize the ripple

effects of cancellations. Smith and Johnson (2006) restrict the number of aircraft types

at airports to create swapping opportunities. Sohoni et al. (2011) formulate probabilistic

service level constraints, under block-time uncertainty. Arıkan et al. (2013) propose robust

scheduling and network planning strategies, under delay propagation uncertainty. Pita et al.

(2012) integrate airport congestion estimates into flight scheduling and fleet assignment.

Froyland et al. (2013) optimize aircraft routing, given the uncertainty of future disruptions

and resulting recovery. Other studies incorporate robustness into crew pairing (Schaefer
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et al. 2005, Shebalov and Klabjan 2006, Yen and Birge 2006).

The second category designs strategic plans to minimize delay propagation across

flight networks. Lan et al. (2006b) distinguish primary vs. propagated delays, and propose

optimization models to prevent delay propagation through aircraft routing (by allocating

schedule slack where it is most critical) and schedule retimings (by adjusting flights’ depar-

ture and arrival times to reduce passenger misconnections). Ahmadbeygi et al. (2010) and

Borndörfer et al. (2010) optimize aircraft routings and schedule re-timings to minimize prop-

agated delays. Cadarso and Maŕın (2011) optimize flight scheduling and fleet assignment

to avoid passenger misconnections, by allocating schedule slack accordingly. Dunbar et al.

(2012) and Dunbar et al. (2014) optimize aircraft routings and crew pairings to minimize

propagated delay—assuming deterministic and stochastic primary delays, respectively. Yan

and Kung (2016) use robust optimization to capture the uncertainty on primary delays into

the optimization of aircraft routings. Marla et al. (2018) compare chance programming,

stochastic programming and robust optimization for aircraft routing.

This chapter departs from this literature in two ways. First, robust airline planning

focuses on strategic decisions, made prior to the day of operations in anticipation of future

disruptions. In contrast, this chapter optimizes airline recovery decisions, made during the

day of operations in response to observed disruptions. Second, the vast majority of the

robust airline planning literature focuses on propagated delays (due to insufficient buffers).

In this work, we further break down non-propagated (primary) delays into “systemic” and

“contingent” delays, and use a queuing model of airport congestion to capture systemic

disruptions—in addition to propagated delays.

Airline disruption recovery involves optimizing operating decisions in response

to observed disruptions during the day of operations, in order to minimize the costs of

bringing operations back to normal. The main recovery levers include, from the least to

most disruptive, aircraft and crew swaps (i.e., changes in aircraft-flight assignments and crew

pairings), departure holds (i.e., voluntary introduction of flight departure delays), passenger
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re-accommodations, and flight cancellations (see Barnhart and Vaze 2015). Typical trade-offs

involve operating flights close to their schedule to minimize delays vs. introducing departure

holds to ensure connectivity.

Starting with initial aircraft recovery heuristics from Teodorović (1984), researchers

have designed large-scale optimization algorithms to deal with realistic problem instances

(see, e.g., Cao and Kanafani 1997, Clarke and Naryadi 1995, Jarrah et al. 1993, Yan and

Yang 1996). Thengvall et al. (2000) extend basic aircraft recovery models to minimize

changes in aircraft routings and to capture airlines’ preferences. Rosenberger et al. (2003)

jointly optimize departure holds (i.e., flight rescheduling) and aircraft reroutings. Eggenberg

et al. (2010) add operational constraints to ensure that the airline can comply with aircraft

maintenance, crew recovery, and passenger accommodation requirements. Other studies

focused on crew recovery, following aircraft recovery decisions (Lettovský et al. 2000, Wei

et al. 1997, Yu et al. 2003).

Subsequent studies integrate the problems of aircraft, crew and passenger recov-

ery. Zhang et al. (2015) address aircraft and crew recovery in sequence. Jozefowiez et al.

(2013) and Zhang et al. (2016) present three-step heuristics that sequentially solve schedule

recovery, aircraft recovery and passenger recovery. Bratu and Barnhart (2006b) combine

aircraft and passenger recovery. Petersen et al. (2012a) propose a fully integrated model of

schedule, aircraft, passenger and crew recovery, solved with Benders decomposition, column

generation and row generation. Follow-up studies have developed algorithms for large-scale

integrated recovery problems, using large-scale neighborhood search (Sinclair et al. 2014a), a

reduced time-band representation (Hu et al. 2015), greedy randomized adaptive search (Hu

et al. 2016), and row-and-column generation (Maher 2016). Marla et al. (2017a) integrate

flight planning (i.e., aircraft routing, flying altitude and speed) into aircraft and passenger

recovery—showing that flight planning provides an additional recovery lever.

In contrast with this body of work, our work leverages forecasts of future systemic

disruptions—and the uncertainty thereof—into recovery optimization. To our knowledge,
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the literature on recovery optimization under uncertainty is limited. Abdelghany et al.

(2004) propose a heuristic simulation to project flight delays and Abdelghany et al. (2008)

integrate delay uncertainty into a myopic optimization model of disruption recovery. Jafari

and Zegordi (2010) dynamically optimize aircraft recovery and passenger re-accommodation,

on a relatively small-scale network and with two disruption scenarios. McCarty and Cohn

(2018) propose a two-stage stochastic program to pre-emptively change passenger itineraries,

before misconnections occur, under uncertainty on delay propagation. Our work shares

similarities with this approach but also exhibits two differences: (i) we focus on aircraft

recovery, as opposed to passenger recovery, and (ii) we incorporate forecasts of propagated

delays as well as systemic delays resulting from airport congestion.

Summary. This chapter augments the prior literature in two major ways:

1. We propose the first jointly reactive and proactive approach to airline disruption man-

agement that optimizes aircraft recovery in response to observed disruptions, while

anticipating future disruptions (partially and probabilistically). This approach dif-

fers from the airline disruption recovery literature by proactively leveraging forecasts

of future disruptions. As such, it shares similarities with the robust airline planning

literature, but it deals with a tactical disruption recovery problem—as opposed to a

strategic planning problem.

2. We integrate probabilistic forecasts of systemic delays arising from demand-capacity

imbalances at busy airports—in addition to propagated delays—into disruption man-

agement. This is achieved by embedding future disruption scenarios obtained from a

stochastic queuing model of airport congestion into a prescriptive optimization frame-

work of disruption recovery.
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2.3 Modeling Framework

We now formulate our dynamic decision-making framework for aircraft recovery.

The model optimizes recovery and flight planning decisions. Recovery decisions include

departure times (i.e., when to operate each flight), aircraft-flight assignments (i.e., whether

to “swap” aircraft or not), and flight cancellations. Flight planning decisions include aircraft

routing, flying altitude and flying speed. Together, these two sets of decisions determine

recovery costs (i.e., delay costs, swap costs and cancellation costs) and flight operating costs.

Unlike existing approaches, our framework optimizes these decisions in response to observed

disruptions as well as given forecasts of future disruptions—thus providing a jointly reactive

and proactive approach to disruption management.

Specifically, disruptions observed at any point in time can be classified into three

categories:

• Propagated disruptions : past disruptions spreading across spatial-temporal networks,

due to insufficient buffers in the schedule to absorb upstream delays.

• Systemic disruptions : congestion at hub airports induced by demand-capacity imbal-

ances.

• Contingent disruptions : other inefficiencies within airline and passenger operations

(e.g., aircraft maintenance, late crews, late passenger boarding).

At any decision time, the decision-maker observes all operating disruptions. How-

ever, future disruptions are only known partially and probabilistically. First, our approach

(like existing ones) captures propagated disruptions resulting from recovery decisions. Sec-

ond, our approach (unlike existing ones) considers probabilistic forecasts of systemic disruptions—

obtained from a stochastic and dynamic queuing model at hub airports. Third, our approach

ignores future contingent disruptions in the optimization, but these still realize randomly at

each decision point.
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Figure 2.1: Modeling architecture.

Our modeling architecture is shown in Figure 2.1. It starts by applying the stochas-

tic queuing model to generate probabilistic forecasts of systemic disruptions, using data on

flight schedules and airport capacities (Section 2.3.1). It then optimizes recovery decisions

dynamically. We divide the day into T periods, indexed by t = 1, · · · , T . In each period, the
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state of the system is determined from past operations and observed (propagated, systemic

and contingent) disruptions. Flight planning options are generated with an engineering tool

provided by Boeing/Jeppesen called JetPlan (Section 2.3.2). We represent recovery and

flight planning options in a probabilistic time-space network of operations (Section 2.3.3).

We then optimize airline recovery decisions to minimize expected recovery costs. This is cast

as a dynamic program (Section 2.3.4). However, the size of the problem makes it intractable,

so we propose in Section 2.4 a solution procedure based on look-ahead approximation and

sample average approximation. This procedure relies on the Stochastic Reactive and Proac-

tive Disruption Management (SRPDM), which optimizes recovery decisions across a sampled

set of disruption scenarios for a given look-ahead window. The recovery plan is used to de-

fine the state of the system in the next period. The process is repeated until the end of the

horizon.

A few observations on our problem are noteworthy. First, the approach developed

in this chapter can be applied to any airline network but is likely to be most beneficial for

hub-and-spoke airlines. Second, this chapter focuses on schedule and aircraft recovery. We

leave the integration of other recovery decisions, such as passenger and crew recovery, into

our stochastic optimization framework for future research. In practice, passenger and crew

recovery can be optimized subsequently, given the aircraft recovery plan. Last, we solve

the aircraft recovery problem for each fleet type independently. This is consistent with the

existing literature and current practice—as aircraft swaps typically occur within each fleet

to minimize interference with passenger and crew itineraries.

2.3.1 Queuing Model of Systemic Disruptions at Hub Airports

The stochastic and dynamic queuing model is applied at each hub airport to forecast

future systemic disruptions. This approach characterizes the airport as a queuing system,

in which service is provided by the runway system and aircraft join the system when they

are ready to take off or to land. The model takes as inputs the schedule of flights and the
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runway capacity at each airport. It returns the probability distribution of flight delays at

each time of the day, which is then used to sample disruption scenarios and to construct our

time-space networks (see Figure 2.1).

Specifically, we model arrival and departure delays at each airport by means of dy-

namic and stochastic M(t)/E3(t)/1 queuing models. In other words, the arrival and depar-

ture demand processes are both modeled as Poisson processes, and the arrival and departure

service processes are modeled as Erlang processes of order 3. The model is non-stationary,

i.e., demand and service rates are time-varying to reflect changes in flight schedules and air-

port capacities over the day. We divide the day of operations into periods of length S = 15

minutes. The demand rates (λs in period s) are determined by the number of flights sched-

uled. The service rates (µs in period s) are constrained by the airport’s capacity. To reflect

air traffic operating procedures, we integrate a dynamic programming model that optimizes

arrival and departure service rates, under capacity constraints, by selecting runway config-

urations (i.e., the set of active runways) and balancing arrivals and departures (Jacquillat

et al. 2016). This approach approximates the dynamics and magnitude of delays at busy

airports with good accuracy (Jacquillat and Odoni 2015b).

The state-transition diagram of the M(t)/E3(t)/1 queuing system is shown in Fig-

ure 2.2. It relies on the characterization of an Erlang process of order 3 and rate µ as the

succession of 3 Markovian “stages of work”, each completed at rate 3µ. The state i defines

the number of remaining stages of work. Let u be a time index that varies continuously, and

Pi(u) be the probability of being in state i at time u. Equations (2.1)–(2.5) show the system

of Chapman-Kolmogorov first-order differential equations describing the evolution of Pi(u)

in period s, with u varying between (s−1)S and sS. The practical queue capacity is denoted

by N . The system is empty at the beginning of the day. We solve Equations (2.1)–(2.5)

using the built-in differential equation solver ode45 in MATLAB 8.1.
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Figure 2.2: State-transition diagram of the M(t)/E3(t)/1 queuing system.

dP0(u)

du
= −λtP0(u) + kµtP1(u) (2.1)

dPi(u)

du
= −(λt + kµt)Pi(u) + kµtPi+1(u) ∀i ∈ {1, · · · , k} (2.2)

dPi(u)

du
= λtPi−k(u)− (λt + kµt)Pi(u) + kµtPi+1(u) ∀i ∈ {k + 1, . . . , (N − 1)k} (2.3)

dPi(u)

du
= λtPi−k(u)− kµtPi(u) + kµtPi+1(u) ∀i ∈ {(N − 1)k + 1, . . . , kN − 1}

(2.4)

dPkN(u)

du
= λtPk(N−1)(u)− kµtPkN(u) (2.5)

We denote the sample space of systemic disruption profiles by Q̃, indexed by q̃ =

1, · · · , Q̃, each occurring with a probability ξq̃. The set Q̃ includes all queue length combina-

tions in all time periods and at all airports. Across T periods and in a network of K airports,

the cardinality of Q̃ is thus (N + 1)2TK (since the arrival and departure queue lengths can

each take any of the values 0, · · · , N in each period and at each airport). Even for a short

horizon and a small network, integrating the full range of airport congestion outcomes into

recovery optimization is highly intractable. Therefore, we will proceed by Monte Carlo sam-

pling to generate representative scenarios from this probability distribution. We denote by

Q the set of such sampled scenarios, indexed by q = 1, · · · , Q.

Two comments on this queuing model are noteworthy. First, the model is applied

independently at each airport. This is motivated by the fact that airport operating stochas-

ticity primarily stems from local factors (e.g., variations in flight operations, weather, aircraft
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mix, etc.). Second, look-ahead stochastic disruption scenarios are generated once for all pe-

riods t = 1, · · · , T . In practice, delays occurring from period t onward obviously depend on

realized congestion at period t. However, our approach aims to capture delay forecasts that

are available to an airline. In the current environment, the level of collaboration between

traffic managers and airlines is such that information on the exact number of queuing aircraft

at each airport is not publicly shared in real time. Therefore, we adopt a conservative ap-

proach that only leverages the information that is available before the day of operations (e.g.,

the schedule of flights) or can be estimated from historical records of operations (e.g., airport

capacity estimates). In future work, this assumption can be relaxed by integrating a dynamic

queuing update mechanism into the framework shown in Figure 2.1—thus identifying the

benefits resulting from real-time information sharing between operating entities.

2.3.2 Flight Planning

We leverage in this dissertation the JetPlan tool from Boeing/Jeppesen—a flight

planning software used by many airlines to plan their flight trajectories prior to departure.

JetPlan takes as inputs the flight’s scheduled departure and arrival times, anticipated weather

patterns, aircraft and engine configurations, and the aircraft’s payload (including cargo,

passengers, luggage, and fuel). It generates flight planning options (including aircraft routing

across waypoints from origin to destination, flight speeds, and flying altitudes) and estimates

the resulting fuel costs and travel times. In our framework, JetPlan is used to generate flight

copies in the time-space networks (see Figure 2.1).

Specifically, the flight trajectories generated by JetPlan are expressed as a function of

an engineering-based metric called the cost-index (CI). CI is defined as the ratio of the flight’s

time-related costs (determined by the flight’s duration and aircraft, passenger and crew

connectivities) divided by the fuel cost. CI can be interpreted as the amount of additional

fuel worth burning (relative to the minimum fuel burn to operate the flight) to save one unit

of time. The most fuel-efficient flight plan is referred to as CI0. The larger the CI value,
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the higher the fuel costs and the lower the flying times. Oftentimes, operating all flights

at CI0 result in delays and lost connectivity, especially under disruptions; therefore, flights

are planned at a slightly higher CI, typically around CI30. In our experiments, we use as

discrete inputs corresponding to CI0 (a conservative flight plan), CI30 (the baseline option),

CI70, CI100, and CI700 (increasingly aggressive flight plans).

2.3.3 Time-space Network Representation

In each period, we construct a time-space network for each aircraft, comprising all

flights that the aircraft can operate by the end of the horizon (period T ). This representation

starts with the aircraft’s current location, observed disruptions, probabilistic forecasts of

future systemic disruptions (Section 2.3.1), and possible flight plans (Section 2.3.2). For

each flight, the network defines several copies, each associated with departure and arrival

times and with a flight plan. It is then used to formulate a multi-commodity network

flow model, with each aircraft treated as a commodity—enabling to optimize flight-aircraft

pairings among a huge number of options (see Figure 2.1).

Figure 2.3 shows an example of such time-space network representation in periods t

(Figure 2.3(a)) and t+ 1 (Figure 2.3(b)). Let us denote by N̂W
t

a the time-space network in

period t = 1, · · · , T for aircraft a ∈ A. Each node in N̂W
t

a represents a combination of time

and location. Each arc represents a possible flight arc (straight line in Figure 2.3) or a ground

arc, that is, the aircraft’s turnaround from one arrival node to a subsequent departure node

at the same airport (curved line). We add a supply node ns denoting the location and time

where the aircraft is currently available, and a demand node nd representing the end of the

aircraft’s operation.

Flight copies are widely used in airline recovery, but we highlight here two particular

features of our approach. First, flight copies differ not only by departure time (thus capturing

recovery decisions, such as departure times, aircraft-flight assignments, and cancellations)

but also by flight duration (thus capturing flight planning decisions, such as route, altitude,
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((a)) N̂W
t

aq: f1’s operation is realized at time t

((b)) N̂W
t+1

aq : f2’s operation is realized at time t+ 1

Figure 2.3: Example of probabilistic time-space network representation.
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speed). This is consistent with the model from Marla et al. (2017a). For instance, in

Figure 2.3, flight f1 has four copies (f1s1c0, f1s1c1, f1s1c2 and f1s1c3), where f1s1c2 and

f1s1c3 involve larger departure delays than f1s1c0 and f1s1c1, and f1s1c1 and f1s1c3 have a

longer en-route time than f1s1c0 and f1s1c2. Second, our time-space networks are subject to

uncertainty regarding future disruptions. Thus, N̂W
t

a represents a probabilistic time-space

network at this point. In Section 2.4, we shall develop scenario-based time-space network

representations. This probabilistic time-space network representation lies at the core of the

stochastic approach to airline recovery and flight planning developed in this chapter.

The time-space network representation captures the evolution of the system over time

by tracking each aircraft’s movement over time and space and creating flight copies based

on the latest (propagated, systemic and contingent) disruptions observations. To illustrate

the dynamics of the system, the figure shows two scenarios, assumed to be equally probable.

Flight f1 is scheduled to operate in period t, before uncertainty is resolved. Decisions related

to flight f1 thus need to be identical across all scenarios; in our example, copy c1 is selected.

Then, the model anticipates to operate copy c1 of flight f2 in scenario 1 (a slower option

since departure delay is small) and copy c0 in scenario 2 (a faster option since departure

delay is larger). Figure 2.3(b) shows the state of the system at time t + 1; the supply node

ns updates the aircraft’s availability, depending on prior decisions and realized disruptions.

The model is solved again to optimize recovery decisions in period t+ 1—at that point, the

operating decision for flight f2 (namely, operating copy c3) is identical in scenario 1 and in

scenario 2. The process is repeated until the end of the horizon.

2.3.4 Stochastic Optimization Approach

Finally, our stochastic optimization model determines, in each period t = 1, · · · , T ,

the airline’s recovery and flight planning decisions. It takes as inputs the probabilistic time-

space networks (Section 2.3.3) of all aircraft (see Figure 2.1). For each flight, it selects at

most one copy across all time-space networks—thus ensuring that each flight is either covered

23



by one aircraft or cancelled.

We cast this problem as a finite-horizon dynamic program. We describe it in this

section, and motivate our look-ahead and sample average approximations (detailed in Sec-

tion 2.4).

Let Ft denote the set of flights scheduled to depart in period t = 1, · · · , T . Let K̂tfa

be the set of copies in the time-space network N̂W
t

a associated with flight f ∈ Ft. Let ρk

be the fuel cost associated with copy k ∈ K̂tfa (obtained from the flight plan). Let δk be its

delay cost (obtained from its departure time). Let σk be its swap cost, incurred if aircraft a

is different from the one that was originally planned to operate flight f . Let γf be the cost

of cancelling flight f ∈ Ft. Note that these cost parameters can capture non-linearities (e.g.,

non-linear costs of delays).

State variable: The state variable tracks the physical state of the airline’s fleet and ob-

served disruptions. The physical state can be represented by two vectors θt and lt, each

defined over a ∈ A. For each aircraft a ∈ A, θta and lta denote, respectively, its latest arrival

time and its arrival airport. Note that θta can either correspond to a past time stamp (if

aircraft a is on the ground at time t) or a future one (if aircraft a is in the air at time t).

Observed disruptions are represented by a vector Dt defined over f ∈ Ft, where Dt
f denotes

the departure delay of flight f ∈ Ft observed at time t. The state variable, denoted by Rt,

is thus given by:

Rt =
(
θt, lt,Dt

)
. (2.6)

The vector Rt is used to construct the time-space networks N̂W
t

a for all a ∈ A.

Decision variables: All recovery and flight planning decisions are captured by the set of

copies selected across all time-space networks N̂W
t

a for a ∈ A. We capture them with two

decision vectors x̂t and ẑt, where x̂t is defined over a ∈ A and k ∈ ∪f∈FtK̂tfa and ẑt is

defined over f ∈ Ft. Specifically, x̂tka is equal to 1 if copy k is selected and flown by aircraft
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a, and 0 otherwise; and ẑtf is equal to 1 if flight f is cancelled, and 0 otherwise. Our decision

variable, denoted by U t given by:

U t =
(
x̂t, ẑt

)
. (2.7)

Recovery and flight planning decisions are subject to a set of constraints (detailed

in Section 2.4). We denote here the decision space by U t.

Objective function. Our cost function, denoted by Ct(R
t,U t), is defined as the total

cost of recovery across all flights f ∈ Ft, including fuel, delay, swap and cancellation costs.

It is given by:

Ct(R
t,U t) =

∑
a∈A

∑
f∈Ft

∑
k∈K̂tfa

(ρk + δk + σk) x̂
t
ka +

∑
f∈Ft

γf ẑ
t
f . (2.8)

Transition function: The transition function describes the recovery process and the dy-

namic realization of disruptions between t and t+ 1. It can be represented by a function ft

as follows:

Rt+1 = ft
(
Rt,U t

)
. (2.9)

The recovery process updates the arrival airport and arrival time of each aircraft

a. For example, if a flight is operated by aircraft a from airport K to airport L, then lta is

updated to airport L and θta is updated to its planned arrival time at airport L. Conversely,

if an aircraft is not assigned to any departing flight at time t, then its availability remains

unchanged. Specifically, we have:

(θt+1
a , lt+1

a ) =


(θta, l

t
a), if x̂tka = 0, for all k ∈ ∪f∈FtK̂tfa,

(θk, lk), if x̂tka = 1, for some k ∈ ∪f∈FtK̂tfa,

where θ
k

f and l
k

f denote the time and location of arrival of flight copy k, respectively.
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Realized disruptions are written as the sum of propagated, systemic and contingent

disruptions, denoted respectively by PD
t+1

, SD
t+1

and CD
t+1

. Specifically, we have:

Dt+1 = PD
t+1

+ SD
t+1

+CD
t+1

, with:



PD
t+1

realized from disruption decisions,

SD
t+1

realized from ξ (Section 2.3.1),

CD
t+1

realized from an unknown distribution.

(2.10)

Bellman Equation: Let Jt(R
t) be the optimal cost-to-go in period t. The terminal

cost in period T + 1 is 0. Therefore, the Bellman equation is given as follows, where the

expectation of the future cost-to-go is taken over the probability distribution ξ of future

systemic disruptions (Section 2.3.1):

Jt(R
t) = min

Ut∈Ut


∑
a∈A

∑
f∈Ft

∑
k∈K̂tfa

(ρk + δk + σk) x̂
t
ka +

∑
f∈Ft

γf ẑ
t
f + Eξ

[
Jt+1

(
ft
(
Rt,U t

)
|Rt
)] ,

(2.11)

JT+1(R
T+1) = 0. (2.12)

Unfortunately, this Bellman equation is too complex to be solved exactly by back-

ward induction. Indeed, the state space grows exponentially as a function of the number

of aircraft and the sample space of systemic disruptions (itself exponentially large), and the

decision space grows exponentially as a function of the number of flights, the number of recov-

ery options and the number of flight plans. The dynamic program can thus quickly become

computationally intractable for real-sized instances—a well-known “curse of dimensionality”

(Powell 2007).
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2.4 Solution Approach and SRPDM Formulation

We propose a solution procedure based on look-ahead approximation and sample

average approximation to solve the decision-making problem from Section 2.3. Look-ahead

approximation involves estimating the cost-to-go function using a restricted time window,

rather than the full horizon (Bertsekas 2005, 2012, Powell 2007). Sample average approxi-

mation involves estimating the cost-to-go function using a sampled set of scenarios of future

systemic disruptions, rather than their full probability distribution (Kleywegt et al. 2002).

At each decision point, we apply our Stochastic Reactive and Proactive Disruption Manage-

ment (SRPDM) model, formulated as a stochastic integer program in Section 2.4.1. SRPDM

optimizes recovery decisions for the look-ahead horizon based on the sampled disruption sce-

narios. Similar solution approaches have been applied to such problems as vehicle routing

(Secomandi 2001) and job shop scheduling (Meloni et al. 2004).

time

Probabilistic forecast of 
systemic disruptions

Actual 
decision

Anticipated decisions

Decision-making window (TR) 

Rolling period
(1 hour): 

Observed 
disruptions 

Look-ahead period
(TLA): 

Buffer period:

No disruptions 
considered Recovery horizon (T)

Figure 2.4: Look-ahead framework for dynamic disruption management.

Our look-ahead procedure is shown in Figure 2.4, with decision points indexed by

t = 1, · · · , T . The interval between periods t and t + 1 is referred to as the rolling period.

At each decision point, we observe realized disruptions for the rolling period and derive

scenarios of systemic disruptions for a given look-ahead period. SRPDM is applied to derive

disruption recovery and flight planning decisions for the rolling and look-ahead periods. We

add a buffer period to handle cases in which the disruptions are too large to accommodate all
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flights within the look-ahead period. The buffer period also ensures consistency of near-term

operating decisions with flight schedules beyond the look-ahead window. We denote by TR

the length of the decision-making window and by TLA(< TR) the length of the look-ahead

period. The objective at time t is given by:

min
Ut∈Ut

···
Ut+TR∈Ut+TR

t+TR∑
τ=t

Eξ

∑
a∈A

∑
f∈Fτ

∑
k∈K̂τfa

(ρk + δk + σk) x̂
τ
ka +

∑
f∈Fτ

γf ẑ
τ
f

 (2.13)

We now use our sample average approximation to approximate Equation (2.13).

As mentioned in Section 2.3.1, we proceed by Monte Carlo sampling to approximate the

expectation operator, using the set Q of disruption scenarios. As detailed in the next section,

we define a time-space network for each aircraft a ∈ A in each scenario q, and denote by Ktfaq

be the set of copies in the corresponding time-space network associated with flight f ∈ Ft.

We also introduce variables xtkaq and ztfq as the counterparts of x̂tka and ẑtf in scenario q.

These decision variables are scenario-dependent, thus capturing the flexibility of adapting

future recovery and flight planning decisions as a function of the scenario realization. We also

define non-anticipativity constraints in Section 2.4.1 to ensure the consistency of near-term

decisions across all scenarios. The objective function becomes:

min
Ut∈Ut

···
Ut+TR∈Ut+TR

t+TR∑
τ=t

1

Q

∑
q∈Q

∑
a∈A

∑
f∈Fτ

∑
k∈Kτfaq

(ρk + δk + σk)x
t
kaq +

∑
f∈Fτ

γfz
t
fq

 (2.14)

We now use Equation (2.14) to develop the mathematical formulation of our SR-

PDM. We calibrate our look-ahead and sample average approximations in Section 2.6.1.

Like any approximation scheme, our algorithm induces a trade-off between speed and so-

lution quality. In our implementation, we strive to obtain solutions within a few minutes

of computation—consistently with practical requirements and with earlier studies in airline

recovery (see, e.g., Maher 2016, Marla et al. 2017a, Petersen et al. 2012a). Note, moreover,
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that our solution algorithm does not provide solution quality guarantees. We shall thus

compare in Section 3.5 its solution to that of a myopic baseline (defined in Section 2.4.3)—

underscoring the benefits of our modeling approach and approximate algorithm as compared

to existing recovery approaches that do not leverage forecasts of future disruptions.

2.4.1 Stochastic Reactive and Proactive Disruption Management
(SRPDM)

SRPDM builds upon the model from Marla et al. (2017a), but extends it to cap-

ture partial and probabilistic forecasts of future disruptions. SRPDM optimizes disruption

recovery decisions (i.e., departure holds, aircraft swaps, flight cancellations) and flight plan-

ning decisions (i.e., flying altitude, speed and route) to minimize expected recovery costs

across all disruption scenarios (Equation (2.14)). It is formulated as a stochastic inte-

ger program, based on non-anticipativity constraints for first-stage decision variables and

scenario-dependent constraints for subsequent periods.

Sets

Fτ : Set of flights scheduled to depart in period τ = t, · · · , t+ TR

A : Set of available aircraft

Q : Set of sampled disruption scenarios

NW t
aq : Time-space network corresponding to aircraft a in scenario q at time t

Ktfaq : Set of copies of flight f ∈ FRt in network NW t
aq from aircraft a in scenario q at

time t

Gtaq : Set of ground arcs connecting pairs of nodes in NW t
aq

N t
aq : Set of nodes in NW t

aq

Itnaq : Set of incoming arcs to node n ∈ N t
aq in NW t

aq

Otnaq : Set of outgoing arcs to node n ∈ N t
aq in NW t

aq

We define here a time-space network NW t
aq in each scenario q ∈ Q for each aircraft

a ∈ A. The earlier probabilistic network representation N̂W
t

a is equivalent to the collec-
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tion
(
NW t

aq

)
q∈Q. The same observation applies to Ktfaq. By construction, the time-space

networks coincide for all flights in the rolling period across scenarios, i.e., Ktf,a,q1 = Ktf,a,q2
for all f ∈ Ft, a ∈ A and q1, q2 ∈ Q. However, the networks may differ for the flights

scheduled in the look-ahead and buffer periods to reflect the various operating conditions

across disruption scenarios.

Parameters

δk : Delay cost associated with copy k ∈ Ktfaq, over all f ∈ ∪τ=1,··· ,TRFτ , a ∈ A, q ∈ Q

ρk : Fuel cost associated with copy k ∈ Ktfaq, over all f ∈ ∪τ=1,··· ,TRFτ , a ∈ A, q ∈ Q

σk : Aircraft swap cost associated with copy k ∈ Ktfaq, over all f ∈ ∪τ=1,··· ,TRFτ , a ∈ A, q ∈

Q

γf : Cost of cancellation of flight f ∈ ∪τ=1,··· ,TRFτ

stnaq =


1 if aircraft a ∈ A starts in NW t

aq at node n

−1 if aircraft a ∈ A ends in NW t
aq at node n

0 otherwise

The swap cost σk depends only on which aircraft is used to operate copy k. Specif-

ically, we have σk1 = σk2 for k1, k2 ∈ NW t
aq for all a and q; and σk = 0 if k ∈ NW t

a0q
for

all q ∈ Q, if the flight was originally planned to be operated by a0. Moreover, stnaq = 1

(or -1) indicates that node n is the supply (or demand) node for aircraft a in NW t
aq, and

stnaq = 0 means node n is an intermediate airport location. These parameters will be used

to formulate the flow balance constraints.

Decision Variables

xtkaq =

 1 if copy k ∈ ∪τ=1,··· ,TR ∪f∈Fτ Ktfaq is selected with aircraft a in scenario q at time t

0 otherwise

ytgaq =

 1 if ground arc g in NW t
aq of aircraft a is selected in scenario q at time t

0 otherwise
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ztfq =

 1 if f ∈ ∪τ=1,··· ,TRFτ is cancelled in scenario q at time t

0 otherwise

The decision variables include first-stage variables, which are determined at time t

before any scenario is realized, and scenario-dependent variables throughout the look-ahead

and buffer periods. This structure enables different decisions to be made across scenarios

in periods t + 1, · · · , t + TR. But decisions made for the rolling period (period t) will be

subject to non-anticipativity constraints. Only those decisions in the rolling period are to

be executed at time t.

Formulation

min
x,y,z

t+TR∑
τ=t

1

|Q|
∑
q∈Q

∑
a∈A

∑
f∈Fτ

∑
k∈Ktfaq

(ρk + δk + σk)x
t
kaq +

∑
f∈Fτ

γfz
t
fq

 (2.15)

s.t. xtk,a,q1 = xtk,a,q2 ∀k ∈ Ktf,a,q1 , ∀f ∈ Ft,∀q1, q2 ∈ Q,∀a ∈ A (2.16)

ztf,q1 = ztf,q2 ∀f ∈ Ft, ∀q1, q2 ∈ Q (2.17)∑
a∈A

∑
k∈Kτfaq

xtkaq + ztfq = 1 ∀f ∈ Ft ∪ · · · ∪ Ft+TR ,∀q ∈ Q (2.18)

∑
g∈Itnaq∩Gtaq

ytgaq +
∑

k∈Itnaq\Gtaq

xtkaq + sτnaq =
∑

g∈Otnaq∩Gtaq

ytgaq +
∑

k∈Otnaq\Gtaq

xtkaq

∀n ∈ N t
aq, ∀a ∈ A,∀q ∈ Q (2.19)

xtkaq ∈ {0, 1} ∀k ∈ Ktfaq,∀f ∈ Fτ ,∀a ∈ A,∀q ∈ Q,∀τ = t, · · · , t+ TR (2.20)

ytgaq ∈ {0, 1} ∀g ∈ Gtaq,∀a ∈ A, ∀q ∈ Q (2.21)

ztfq ∈ {0, 1} ∀f ∈ Fτ ,∀q ∈ Q,∀τ = t, · · · , t+ TR (2.22)

The objective function (3.1) minimizes expected recovery costs, averaged across all

|Q| sampled scenarios. Constraints (2.16) and (2.17) are non-anticipativity constraints that

ensure that first-stage decisions in the rolling period are identical across all scenarios. Con-

straints (3.2) ensure that a copy of each flight is selected or the flight is cancelled. Con-
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straints (3.3) maintain flow conservation: if an aircraft is incoming to a node, it must also

be outgoing from that node—except at the source and destination, which have an outgo-

ing and an incoming aircraft, respectively. This formulation also ensures that each aircraft

reaches its final destination by the end of the day—in high-disruption instances where this

would lead to infeasibility, this formulation could be easily modified by imposing aggregate

constraints ensuring, for instance, that a minimal number of aircraft would end their routes

at each given airport. Constraints (3.7)–(3.8) define the domains of all variables.

2.4.2 Rolling Algorithm

We synthesize our dynamic solution procedure in Algorithm 1. The algorithm it-

erates over the recovery horizon {1, · · · , T}. At each time period t, it generates the time-

space networks NW t
aq, and solves SRPDM. From one period to the next, our state variable

Rt = (θt, lt,Dt) is updated based on prior recovery decisions and revealed disruptions. We

discuss below the creation of the time-space networks and other steps ensuring the feasibility

and practicality of the solution.

Figure 2.5: Process used to create time-space networks NW t
aq.

Time-space network generation. The process underlying the creation of the time-space

networks NW t
aq is shown in Figure 3.4. It starts by reading the flight schedule, the flight
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Algorithm 1 Solution algorithm.

1: get R1;
2: for each t ∈ {1, 2, . . . T} do
3: get Ft, · · · ,Ft+TR

4: maxWindow = initialHoldingWindow;
5: holdingInterval = 10 minutes;
6: set feasibleSolution = false;
7: while feasibleSolution = false and maxWindow≤ maxWindowLimit do
8: for each a ∈ A, each q ∈ Q do
9: Generate NWt

aq; . See Figure 3.4
10: end for
11: Solve SRPDM, (see Equations (3.1) to (3.8)) . See Section 2.4.1
12: if SRPDM feasible and less than Γ cancellations then
13: feasibleSolution = true;
14: for each a ∈ A, each f ∈ Ft, each q ∈ Q, each k ∈ K̂t

faq do

15: if xtkaq∀q ∈ Q ≡ xtka = 1 then

16: Update Rt with new location and time of all aircraft a ∈ A;
17: end if
18: end for
19: else
20: maxWindow=maxWindow+δ
21: end if
22: end while
23: if feasibleSolution = false then
24: Ã = set of aircraft that cause infeasibility
25: maxWindow = initialHoldingWindow;
26: for each a ∈ A \ Ã, each q ∈ Q do
27: Generate NWt

aq; . See Figure 3.4
28: end for
29: Solve SRPDM . See Section 2.4.1
30: for each a ∈ A, each f ∈ Ft, each q ∈ Q, each k ∈ K̂t

faq do

31: if xtka = 1 then
32: Update Rt with new location and time of aircraft a;
33: end if
34: end for
35: end if
36: end for
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planning options, the latest availability of each aircraft (which depend on its past flight

assignments, past disruptions, and turnaround times), and the disruption scenario consid-

ered. This information is used to generate a set of flight copies that can be operated by

the aircraft in the decision-making window. For each flight, the first copy departs at the

flight’s scheduled departure time shifted by its delay observed at time t, or at the time when

the aircraft becomes available—whichever comes later. The additional copies correspond to

added departure delays and/or alternative flight plans.

Generating flight copies requires assumptions on the granularity and scope of the

time-space network. Granularity refers to the interval between consecutive copies, named

holding interval. The smaller the holding interval, the larger the decision space but the better

the solution. We use a holding interval of 10 minutes. Scope refers to the largest allowed

departure hold, named maximum holding window. For instance, a maximum holding window

of 1 hour implies that at most 7 copies of each flight can be created for a given flight plan

(associated with holds of 0, 10, · · · , 60 minutes). This information is used to generate the

flight arcs and ground arcs across the network.

Ensuring global feasibility. Under large disruptions, the flow balance constraints in SR-

PDM may lead to infeasibility or result in inadequately large numbers of flight cancellations,

due to the maximum holding window. This happens when no aircraft is available until the

end of the allowed holding window for a given flight, thereby violating the flow balance

constraint at the supply node. In practice, airlines need to balance objectives of minimizing

the largest flight delays (captured by the maximum holding window) and of minimizing the

number of cancellations. For this reason, we impose an upper bound Γ to the number of

cancellations, and increase the maximum holding window iteratively until a solution with

fewer than Γ cancellations is obtained. In our computations, we use a value Γ equal to 5%

of the total number of flights in SRPDM at each time t.

We initialize the maximum holding window value and, if a feasible solution that
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cancels fewer than Γ flights is found, we update the state variable and proceed to the next

period. If the problem is infeasible or results in more than Γ cancellations, we increase the

maximum holding window by increments of δ. As soon as a feasible solution that cancels

fewer than Γ flights is found, we update the state variable and proceed to the next period. If

no such solution is found after the maximum holding window reaches a pre-specified upper

bound, we remove the restriction on the number of cancellations and re-solve the model. We

report these parameters in Section 2.6.1.

2.4.3 Myopic Baseline

Before proceeding to the computational implementation of the modeling and com-

putational framework developed in this chapter, we outline the baseline approach used as

a benchmark. Specifically, we consider a baseline that optimizes recovery decisions myopi-

cally, without considering future disruptions, which follows the approach from Marla et al.

(2017a). This approach is then extended to be solved dynamically on a rolling basis, under

which the decision-maker observes disruptions at time t, and optimizes recovery decisions

over the full planning horizon. It does capture propagated disruptions, but ignores the cre-

ation of future primary (systemic or contingent) disruptions. Since the baseline approach is

less computationally complex than our stochastic optimization approach, it can be solved as

a single integer program from period t up to the terminal period T at each decision point. We

still implement it on a rolling basis to capture the realizations of (systemic and contingent)

disruptions—observed at each period.

This myopic baseline relies on a single time-space network for each aircraft, captured

by sets K̃tfa—analogous to Ktfaq. Similarly, the decision variables are written as x̃tka and z̃tf ,

defined for all flights f ∈ Ft ∪ · · · ∪ FT (or their copies). The variables x̃ and z̃ are subject
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to similar constraints as Equations (2.16)–(3.8). The objective function becomes:

min
x,z

T∑
τ=t

∑
a∈A

∑
f∈Fτ

∑
k∈K̃τfa

(ρk + δk + σk)x̃
t
ka +

∑
f∈Fτ

γf z̃
t
f

 . (2.23)

2.5 Experimental Setup

We now implement our approach computationally to quantify the benefits of SR-

PDM, as compared to the myopic baseline. All models are implemented in the Java pro-

gramming language interfaced with IBM ILOG CPLEX 12.6.1 on a workstation running at

1.8 GHz with 80 GB RAM.

2.5.1 Network Description

We consider the network of flights of Delta Air Lines, a major US hub-and-spoke

airline. This choice is arbitrary, and does not reflect Delta’s operating practices. While our

model is expected to bring stronger benefits for hub-and-spoke carriers, it can be applied

to any airline network. Delta Air Lines leverages six airports as hubs of operations (New

York’s LaGuardia (LGA) and John F. Kennedy (JFK), Atlanta (ALT), Detroit (DTW),

Minneapolis-Saint Paul (MSP), and Salt Lake City (SLC)). We obtain flight schedules and

fleet assignments from the Aviation System Performance Metrics (ASPM) database main-

tained by the Federal Aviation Administration (FAA). We consider 3 fleet types: Airbus 319

(A319), Airbus 320 (A320), and Boeing 757-200 (B752).

We consider the schedule of flights on four weekdays in July 2014. Table 2.1 reports

characteristics of each fleet’s network, and the corresponding percentile of the distribution of

the number of daily flights from Delta Air Lines in 2014. Note, first, that our experimental

setup captures the variability in Delta Air Lines’ schedules: the four days under consideration

range from the 33th percentile to the 100th percentile for the A319 fleet, from the 30th
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Table 2.1: Summary statistics for each network.

July 15 July 16 July 17 July 18

Metric A319 A320 B752 A319 A320 B752 A319 A320 B752 A319 A320 B752

# flights 256 260 306 266 247 312 279 254 311 276 262 314
percentile (2014) 33 80 40 80 30 60 100 50 60 95 80 65

# arr. – JFK 2 3 20 4 3 21 4 4 4 4 3 24
# arr. – LGA 19 9 1 20 9 2 23 10 4 23 8 2
# arr. – ATL 24 25 122 25 21 121 26 23 91 24 21 128
# arr. – MSP 26 38 27 27 37 27 28 38 24 28 34 29
# arr. – SLC 19 41 21 20 39 22 22 39 21 22 38 22
# arr. – DTW 36 25 16 38 22 18 37 22 16 37 22 16
Total 126 141 207 134 131 211 140 136 160 138 126 221

# dep. – JFK 2 3 20 4 3 24 4 4 7 4 3 24
# dep. – LGA 20 9 1 20 9 2 23 10 4 22 10 2
# dep. – ATL 24 25 117 26 21 123 26 22 89 24 22 124
# dep. – MSP 26 38 25 27 37 31 28 38 24 28 38 27
# dep. – SLC 19 40 22 21 39 21 22 38 20 22 38 22
# dep. – DTW 37 24 16 37 24 18 33 21 16 38 21 17
Total 128 139 204 135 133 219 136 137 160 137 132 216

less than 1 hour 9 2 0 10 0 0 9 0 0 9 0 0
1–2 hours 157 100 105 160 93 104 165 89 103 169 97 98
2–3 hours 54 72 75 57 64 74 63 65 71 57 71 78
3–4 hours 34 56 38 35 58 45 40 63 41 39 57 43
4–5 hours 2 25 42 4 27 42 2 28 48 2 29 49
5–6 hours 0 5 32 0 4 33 0 7 32 0 6 30
6+ hours 0 0 14 0 0 14 0 0 16 0 0 16
avg. flight time (min) 119 153 184 120 155 186 120 161 189 119 157 189

percentile to the 80th percentile for the A320 fleet, and from the 40th percentile to the 65th

percentile for the B752 fleet. In terms of spatial concentration, the airline’s network is

tightly connected to the six hub airports—with around 50% of the arrivals and departures

operated a hub. Finally, the A319, A320 and B752 fleets cover increasingly long flights on

average—thus offering different recovery opportunities.

2.5.2 Stochastic Model Inputs

We generate disruption scenarios at each of the six hubs (see Section 2.3.1). We use

capacity data from Simaiakis (2012) and the Federal Aviation Administration (2004). We
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capture weather variations by means of a two-state Markov chain with “Visual Meteorological

Conditions” and “Instrumental Meteorological Conditions” states (used as proxies of “good”

and “poor” weather, respectively). We estimate the transition probabilities from historical

data.

Figure 2.6 plots the number of flights scheduled at each of the six hub airports un-

der consideration on July 17, 2014 per 15-minute period of the day. Note that, at some

airports, the schedule of flights is relatively evenly distributed over the day, whereas other

airports operate a strongly “peaked” schedule. JFK and LGA are the most congested air-

ports and SLC is the least congested one, with ATL, DTW and MSP lying in-between. At

one extreme, New York’s LaGuardia (LGA) airport faces strong local demand and schedule

limits (or “flight caps”), resulting in high scheduling levels and limited schedule variabil-

ity throughout the day. At the other extreme, Detroit (DTW) operates arrival “banks”

immediately followed by departure “banks” to enable passenger connections, resulting in a

sequence of peaks and valleys. Similar scheduling patterns are observed at Salt Lake City

(SLC) and, to a lesser extent, at Minneapolis Saint Paul (MSP). The remaining two airports

(New York’s John F. Kennedy (JFK) airport and Atlanta’s (ATL) airport) fall in-between:

the schedule exhibits peaks and valleys but milder variations than at DTW, SLC and MSP.

These scheduling patterns are the primary determinants of the expected delay patterns at

each of the six hub airports, for each 15-minute period of the day, shown in Figure 2.7. As

expected, congestion levels exhibit significant variability from one airport to another, due to

differences in underlying scheduling and capacity patterns. Airports with strongly “peaked”

schedules, with alternating arrival and departure banks—resulting in a sequence of periods

with high delays and periods with low delays. At other airports (e.g., LGA), the schedule of

flights is relatively evenly distributed over the day, resulting in more steady congestion levels

throughout the day. These different patterns underscore the potential value of capturing

the dynamics of formation and propagation of delays by means of our queuing model for

disruption recovery.
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((a)) ATL ((b)) DTW

((c)) JFK ((d)) LGA

((e)) MSP ((f)) SLC

Figure 2.6: Schedule of flights at each airport on July 17, 2014.

2.5.3 Generation of Disruption Instances

In each period t = 1, · · · , T , we generate disruption instances (i.e., the departure de-

lay of each flight i ∈ Ft). We aim here to replicate the dynamics of the system (captured by

the variable Dt) and assess the performance of our modeling and computational framework

against the myopic baseline. For unbiased comparisons, we do not sample disruptions among

the set of systemic disruption scenarios considered in our stochastic optimization framework,

but instead we generate disruption realizations from real-world data. This procedure cap-
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Figure 2.7: Expected departure delay at the six hubs.

tures all disruptions: we optimize recovery decisions based on delay propagation dynamics

and probabilistic forecasts of systemic disruptions, but assess the resulting decisions against

all (propagated, systemic and contingent) disruptions.

We use the departure delays from the Bureau of Transportation Statistics (BTS)

database. But these delays result from combined propagated, systemic and contingent dis-

ruptions, so using them directly would result in double-counting propagated disruptions

(which would carry over from previous time periods as well as appear in the newly generated

disruptions). We thus need to infer the “new” (systemic and contingent) disruptions by

subtracting propagated disruptions.

To this end, we use the inference method from Lan et al. (2006b). We first sort the se-

quence of flight legs operated by each aircraft. We assume a minimum turnaround time of 30,

35 and 40 minutes for A319, A320 and B752 aircraft, respectively. For every pair of consecu-

tive flights i and j operated by the same aircraft, we define the slack between i and j as the

difference between the planned and minimum turnaround times between the two flights. The

propagated delay of flight j is then computed as max(Arrival Delay of Flight i − Slack, 0).

By subtracting this propagated delay from total delays, we obtain the newly created delays

(from systemic and contingent disruptions).
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Finally, for interpretability, we classify all disruption instances into “small”, “medium”

and “large” disruptions. The procedure is detailed in Section 2.6.

2.6 Disruption Classification

We classify each disruption instance (see Section 3.4.2) into “small”, “medium” and

“large” disruption categories. We use a multinomial logistic regression with two independent

variables: total delay and maximum delay occurring in the network. Our model is trained

with selected scenarios that are a priori classified into the three categories, as a training step.

We then perform a validation step, to predict the groups for all remaining scenarios. The

proportional log-odds of a disruption scenario belonging to the small and medium category,

versus the large category, is defined as the logarithm of the ratio of the two probabilities.

The logistic regression model is provided in Equations (2.24) and (2.25), where Ps, Pm and

Pl denote the probabilities of belonging to the large, medium and small delay categories,

respectively.

log

(
Ps
Pl

)
= β0 + βs1 total delay + βs2 max delay (2.24)

log

(
Pm
Pl

)
= β0 + βm1 total delay + βm2 max delay (2.25)

The model’s coefficients for each fleet type are reported in Table 2.2. First, all

coefficients are negative: the larger the total delays and/or the maximum delays, the less

likely the scenario under consideration is to be classified in the small or medium category,

as compared to the large category. Second, all coefficients are smaller for the small delay

category than for the medium delay category: all else being equal, the larger the total

delays and/or the maximum delays, the less likely the scenario is to be classified in the

small category, as opposed to the medium category. Third, all but one p-values are lower

than 0.05, thus suggesting that the classification model is statistically significant. Last, we
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perform a cross-validation on a test set, and confirm zero misclassification. The number of

scenarios into each category is reported in Table 2.3.

Table 2.2: Parameter estimates for multinomial logistic regression.

small (vs. large) medium (vs. large)

Fleet Predictor Coef. Std. err. p-value Coef. Std. err. p-value

A319 constant 16.729 2.488 0.000 8.485 2.068 0.000
total delay -0.007 0.001 0.000 -0.002 0.001 0.001
max delay -0.016 0.005 0.000 -0.013 0.004 0.001

A320 constant 22.054 3.138 0.000 10.361 2.406 0.000
total delay -0.008 0.001 0.000 -0.002 0.001 0.002
max delay -0.036 0.008 0.000 -0.016 0.005 0.001

A320 constant 21.968 2.902 0.000 11.464 2.293 0.000
total delay -0.002 0.001 0.006 0.000 0.000 0.130
max delay -0.078 0.013 0.000 -0.026 0.006 0.000

Table 2.3: Number of disruption instances in each category.

Fleet A319 A320 B752

Small disruptions 3 16 12
Medium disruptions 12 11 17
Large disruptions 10 7 8

2.6.1 Additional Settings and Parameters

In Algorithm 1, we use a rolling period of 1 hour and a decision-making window

TR of 7 hours. At each time period t, disruptions are observed for the one-hour rolling

period. Systemic disruptions are forecasted for a look-ahead period TLA, ranging from 0 to

4 hours. The remainder of the decision-making window is the buffer period, for which no

new disruptions are considered.

Note that the hourly time discretization only plays a minor role computationally.

As we shall see, the main driver of the problem’s complexity is the look-ahead period TLA,

which impacts the set of flights Ft and the resulting number of scenario-dependent decision
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variables. The one-hour rolling period (which impacts the number of scenario-agnostic deci-

sion variables) restricts the number of iterations required to simulate the recovery dynamics

over the full day of operations. In practice, however, an airline could implement the proposed

model on a more frequent basis.

As described in Section 2.4.2, the departure holding window is set to an initial

value and extended, in case of infeasibility, up to a maximum possible holding window.

Table 2.4 reports the initial and maximum departure holding windows for each fleet type,

used to balance computational runtimes and solution quality. This results in longer holding

windows for B752, intermediate ones for A320, and shorter ones for A319—similar to the

process applied at airlines’ Operations Control Centers.

Table 2.4: Initial and maximum holding window by fleet type.

Fleet Initial Holding Window Maximum Holding Window

A319 30–40 minutes 90–360 minutes

A320 30–60 minutes 120–480 minutes

B752 50–110 minutes 400–550 minutes

Aircraft swap costs (σk) are set to $500. Cancellation costs (γf ) are estimated as the

cost of re-accommodating passengers on the next available flight—assuming 129, 155 and

291 seats for A319, A320 and B752 aircraft respectively, a load factor of 85%, and a cost

of $37.5 per hour of passenger delays (Cook and Tanner 2008b). Fuel costs (ρk) are set to

$0.53–$0.73 per lb (International Air Transport Association 2010). We use a baseline value

for the flight delay cost (δk) of $10 per minute. This captures the direct costs of delays to the

airline. We conduct sensitivity analyses by varying the parameter δk from its baseline value

of $10 per minute to a maximum value of $77 per minute—obtained by fully internalizing

the cost of passenger inconvenience, calculated as the product of the number of passengers

on the flight and a value of time of $37.5 per hour. This setup considers linear delay costs,

consistent with the airline recovery literature (Maher 2016, Marla et al. 2017a). However,

delay costs may have increasing penalties (Ball et al. 2010, Cook and Tanner 2008a). We
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thus also consider a non-linear delay cost function in Section 2.7.4 to capture this.

2.7 Computational Results

We now evaluate the performance of SRPDM, as compared to the myopic baseline

from Section 2.4.3. Unless otherwise specified, we implement the model with data from July

17, 2014, using 30 scenarios capturing delays at all six hubs for a look-ahead window of

TLA = 4 hours. First, we show that the proposed approach significantly reduces expected

recovery costs (Section 2.7.1). We then demonstrate that, to be beneficial, the proposed

approach needs to capture disruption forecasts over the full-scale network of operations and

over an extended time horizon (Section 2.7.2). In Section 2.7.3, we discuss the computational

performance of our approximate solution approach, showing that SRPDM is solved in reason-

able computational times that are consistent with practical requirements. Section 2.7.4 then

shows the robustness of the model’s benefits to the schedule of flights and to the specification

of the objective function. We synthesize the main insights in Section 2.7.5.

Before proceeding further, Table 2.5 shows outputs in three disruption instances to

highlight the three main recovery mechanisms employed by SRPDM—and the various trade-

offs. Instance 1 illustrates the speed change mechanism: if subsequent flights are likely to

be delayed, SRPDM may deliberately slow down earlier flights to reduce fuel burn without

impacting connectivity—albeit at a higher delay cost. Conversely, SRPDM can speed up

some aircraft to maintain connectivity or facilitate swaps. Instance 2 illustrates the departure

hold mechanism: SRPDM can deliberately delay departing flights (in conjunction with speed

ups) to preserve connectivity. Instance 3 illustrates the aircraft swap avoidance mechanism.

While aircraft swaps may be myopically less costly than departure holds, they can also lead

to cancellations at later times; the SRDPM can avoid this situation by anticipating future

disruptions earlier, resulting in lower cancellation and swap costs.
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Table 2.5: Experimental results of SRPDM vs. baseline in three disruption instances.

Experiments Model
Total # Total Fuel Total # of Total Dep. Total Arr. Cost Savings

Cancellations Burn (lb.) Swaps Delay (min) Delay (min) Per Day (%)

Instance 1 Baseline 2 1,511,000 0 556 1,418 –

SRPDM 2 1,508,025 0 586 1,476 0.16%

Instance 2 Baseline 14 1,457,276 6 714 1,313 –

SRPDM 10 1,457,276 6 950 1,433 6.16%

Instance 3 Baseline 13 1,424,447 4 1,312 1,320 –

SRPDM 11 1,446,258 2 1,318 1,335 3.60%

2.7.1 SRPDM Benefits

Table 2.6 reports the results of SRPDM and the myopic baseline across all disruption

instances and fleet types. Note that SRPDM yields significant improvements over the myopic

baseline: SRPDM reduces expected recovery costs by 1.5%, 1.8% and 1.9% for the A319,

A320 and B752 fleets, respectively. These expected savings can result in large financial gains

for major airlines, underscoring the benefits of anticipating future disruptions into disruption

recovery—even with partial and probabilistic forecasts of future disruptions and even with

an approximate solution algorithm.

Under small disruptions, the strongest benefits are derived for the B752 fleet and, to

a smaller extent, for the A320 fleet. In contrast, SRPDM does not lower costs of recovery for

the A319 network. This mainly stems from the fact that the A319 network primarily consists

of short-haul flights, which limits flexibility in terms of flight speed changes. Moreover, the

A319 network is significantly smaller than the A320 and B752 ones, and thus less sensitive

to disruptions.

When it comes to medium and large disruptions, SRPDM reduces expected recovery

costs for all fleet types—from 1% to 2.5%. Note, again, the variability across disruption

instances: SRPDM yields the same costs as the myopic baseline in some instances but large

cost reductions in other instances. Such variability underscores the importance of capturing
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Table 2.6: Comparison of SRPDM over myopic baseline, for each fleet type and each disrup-
tion category.

Disruption Total Cost Dep. Delay Arr. Delay Fuel Burn Num. Speed Num. Num.
Category Fleet Model ($) (min) Delay (min) ($) Change Cancel. Swaps Savings

Small A319 Baseline (avg.) 310,587 951 543 257,608 15 11 0.25 –
Baseline (min.) 255,425 604 410 257,261 15 6 0 –
Baseline (max.) 352,312 1,245 688 258,647 15 15 1 –
SRPDM (avg.) 310,587 951 543 257,608 15 11 0.25 0%
SRPDM (min.) 255,425 604 410 257,261 15 6 0 0%
SRPDM (max.) 352,312 1,245 688 258,647 15 15 1 0%

A320 Baseline (avg.) 1,169,750 1,015 1,540 1,502,723 72 3 0.6 –
Baseline (min.) 1,117,555 574 1,314 1,457,276 70 0 0 –
Baseline (max.) 1,279,491 1,783 1,925 1,523,659 74 10 6 –
SRPDM (avg.) 1,149,427 1,073 1,578 1,503,788 72 2 0.6 2%
SRPDM (min.) 1,117,555 574 1,314 1,457,276 70 0 0 0%
SRPDM (max.) 1,279,491 1,783 1,925 1,523,659 74 10 6 6.2%

B752 Baseline (avg.) 982,914 1,517 1,334 1,658,401 50 2.4 0.25 –
Baseline (min.) 928,083 579 1,009 1,657,556 49 1 0 –
Baseline (max.) 1,114,213 2,616 1,910 1,662,632 50 6 2 –
SRPDM (avg.) 943,657 1,575 1,367 1,658,401 50 1.3 0.08 3.9%
SRPDM (min.) 928,083 579 1,043 1,657,556 49 1 0 0%
SRPDM (max.) 1,008,525 2,750 1,972 1,662,632 50 3 1 19.7%

Medium A319 Baseline (avg.) 500,281 1,929 1,284 458,580 23.8 7.2 1.4 -
Baseline (min.) 314,116 727 585 281,761 16 0 0 -
Baseline (max.) 1,174,571 3,900 3,134 1,502,174 73 14 4 -
SRPDM (avg.) 490,556 1,978 1,331 457,260 23.7 6.7 1.3 2.4%
SRPDM (min.) 314,116 727 602 296,284 17 0 0 0%
SRPDM (max.) 1,174,571 3,900 3,134 1,502,174 73 14 4 27.1%

A320 Baseline (avg.) 1,211,508 1,880 1,909 1,492,283 72 5 0.8 -
Baseline (min.) 1,124,625 850 1,404 1,256,011 60 0 0 -
Baseline (max.) 1,499,232 3,998 2,944 1,523,437 74 28 5 -
SRPDM (avg.) 1,185,928 1,942 1,939 1,495,583 72 3.7 0.47 2.2%
SRPDM (min.) 1,124,625 850 1,404 1,256,011 60 0 0 0%
SRPDM (max.) 1,499,232 3,998 2,944 1,523,437 74 28 5 16.3%

B752 Baseline (avg.) 1,033,625 2,452 1,694 1,658,712 50 3.53 1 -
Baseline (min.) 930,693 1,219 1,061 1,657,556 48 1 0 -
Baseline (max.) 1,605,263 4,042 3,080 1,665,240 50 19 9 -
SRPDM (avg.) 1,020,740 2,464 1,702 1,658,613 50 3.2 1 1.1%
SRPDM (min.) 930,693 1,239 1,122 1,657,556 48 1 0 0%
SRPDM (max.) 1,495,119 4,042 3,080 1,665,240 50 16 8 7.4%

Large A319 Baseline (avg.) 536,473 2,718 1,165 366,123 19.8 11.9 2.2 -
Baseline (min.) 338,946 1,796 691 306,153 17 2 0 -
Baseline (max.) 859,662 4,526 2,155 377,477 21 30 7 -
SRPDM (avg.) 527,945 2,771 1,179 366,123 19.8 11.4 2.1 2.0%
SRPDM (min.) 338,946 1,796 691 306,153 17 2 0 0%
SRPDM (max.) 859,662 4,526 2,155 306,153 21 30 7 9.5%

A320 Baseline (avg.) 1,241,417 2,679 2,273 1,483,771 72 6.4 1.7 -
Baseline (min.) 1,143,749 1,208 1,320 1,424,447 69 2 0 -
Baseline (max.) 1,339,418 4,710 3,236 1,524,743 74 14 4 -
SRPDM (avg.) 1,223,880 2,744 2,307 1,486,887 72 5.4 1.4 1.4%
SRPDM (min.) 1,143,749 1,182 1,335 1,446,258 70 2 0 0%
SRPDM (max.) 1,293,446 4,710 3,236 1,524,743 74 11 4 6.4%

B752 Baseline (avg.) 1,203,155 5,026 2,590 1,597,024 48 8.3 4 -
Baseline (min.) 946,623 1,610 942 1,491,546 45 1 0 -
Baseline (max.) 1,688,686 1,610 4,966 1,657,556 50 20 13 -
SRPDM (avg.) 1,191,148 5,278 2,708 1,590,140 47 8 4.4 1.0%
SRPDM (min.) 946,623 1,556 931 1,491,546 45 1 0 0%
SRPDM (max.) 1,659,628 13,419 5,818 1,657,556 50 19 15 5.6%
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stochastic airport delays in airline recovery in instances where future disruptions at hub

airports can be significant.

These results also highlight that the performance improvements from SRPDM mainly

stem from an increased number and magnitude of departure holds—reflected by larger de-

parture delays than with the myopic baseline. These departure holds result in fewer cancel-

lations and swaps (especially for the medium- and long-haul flights in the A320 and B752

networks, which offer stronger flight planning flexibility). Moreover, as long as disruptions

remain relatively small, the airline can maintain network connectivity through departure

holds. Ultimately, these results emphasize that SRPDM can reduce expected recovery costs

through more flexible and robust recovery.

Table 2.7 details the distribution of the SRPDM benefits across disruptions instances,

for each fleet and disruption category. Except for the three small-disruption instances with

the A319 fleet, the SRPDM reduces recovery costs in 8% to 43% of disruption instances but

never increases them. This can be explained as follows. First, the SRPDM adds robustness

into airline recovery through departure holds and slower flight plans—which are only applied

if they markedly reduce the future likelihood of flight cancellations or aircraft swaps. In

other words, the SRPDM plans for scenarios in the lower tail of the delay distribution.

Second, in any time period, realized disruptions (which account for propagated, systemic and

contingent disruptions) are unlikely to be much smaller than forecasted ones (which ignore

contingent disruptions). Third, realized disruptions are even less likely to be much smaller

than forecasted ones throughout the recovery horizon. So even if in a certain time period the

SRPDM costs are higher than baseline costs, the added robustness resulting from SRPDM

can be exploited at later decision points. From a practical standpoint, this result shows that

our approach not only reduces expected recovery costs without increasing worst-case recovery

costs—thus enhancing the average recovery efficiency without introducing additional risk.
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Table 2.7: SRPDM results statistics.

Small disruptions Medium disruptions Large disruptions

Num. Num. Total Num. Num. Total Num. Num. Total

Fleet Worse Better instances Worse Better instances Worse Better instances

A319 0 0 3 0 1 12 0 2 10

(0%) (0%) – (0%) (8.3%) – (0%) (20%) –

A320 0 7 16 0 3 11 0 2 7

(0%) (44%) – (0%) (27%) – (0%) (29%) –

B752 0 3 12 0 5 17 0 2 8

(0%) (25%) – (0%) (28%) – (0%) (25%) –

2.7.2 Impact of Spatial and Temporal Scale

We now show the importance of capturing systemic disruptions at scale in space

(i.e., across the full networks of the airline’s operations) and time (i.e., for sufficiently long

look-ahead windows). Table 2.8 reports SRPDM results from the A320 fleet when future

disruptions are captured (i) at a subset of three hubs (at JFK, ATL and MSP, but not at

LGA, DTW and SLC); (ii) for a 2-hour look-ahead window (rather than a 4-hour look-ahead

window); and (iii) for the full set of six hubs and a 4-hour look-ahead window (referred to

as “full size”).

First, the benefits of SRPDM increase significantly as stochastic disruptions forecasts

are developed at 6 hub airports, as compared to a subset of 3 hubs. Around 25% of flights

in the A320 network depart from or arrive at the subset of three hubs (JFK, ATL and

MSP), while about 50% of flights depart from or arrive at the full set of six hubs. The

results show that SRPDM provides minimal improvements over the myopic baseline when

disruptions are only forecasted at the subset of three hubs—with average cost reductions of

0.05%. In contrast, SRPDM reduces expected costs by 1.8% on average when delays are
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Table 2.8: Performance of SRPDM, for different spatial and temporal scopes of disruptions
predictions.

Total Cost Dep. Delay Arr. Delay Fuel Burn # Speed # #
Model ($) (min) (min) (lb.) Change Cancel. Swaps Savings

Baseline (avg.) 1,212,395 1,975 1,960 1,491,618 72 5 1 –
Baseline (min.) 1,117,555 574 1,314 1,256,011 60 0 0 –
Baseline (max.) 1,499,232 4,710 3,236 1,524,743 74 28 6 –
SRPDM, 3 hubs (avg.) 1,191,783 2,679 2,402 1,508,036 73 11 4 0.05%
SRPDM, 3 hubs (min.) 1,117,555 1,015 1,284 458,580 24 2 0 0.00%
SRPDM, 3 hubs (max.) 1,499,232 4,710 3,236 1,524,743 74 13 4 1.54%
SRPDM, TLA = 2 hrs (avg.) 1,191,783 2,342 2,230 1,498,243 72 7 2 0.46%
SRPDM, TLA = 2 hrs (min.) 1,117,555 574 1,281 458,580 24 0 0 0.00%
SRPDM, TLA = 2 hrs (max.) 1,319,100 4,710 3,236 1,524,743 74 13 6 6.17%
SRPDM, full size (avg.) 1,191,764 2,037 1,994 1,494,200 72 4 1 1.8%
SRPDM, full size (min.) 1,117,555 574 1,314 1,256,011 60 0 0 0.0%
SRPDM, full size (max.) 1,499,232 4,710 3,236 1,524,743 74 28 6 16.3%

predicted at the full set of six hubs, with reductions of up to 16% in some instances. These

results demonstrate the value of capturing network-wide disruptions, and their stochasticity,

by applying the queuing model at several hub airports simultaneously.

Recall, also, that each look-ahead disruption scenario relied on independent disrup-

tion forecasts across airports—ignoring potential network-wide correlations. But this re-

striction is conservative, as any benefits obtained with independent scenarios (as compared

to the myopic baseline) can also be achieved with correlated scenarios. This is because we

test the model on real-world disruption instances, which contain any correlations observed in

practice. Ultimately, our results provide a lower bound of the benefits that could be obtained

with correlated disruptions.

Finally, developing scenarios over extended time periods can further reduce recovery

costs. Indeed, the benefits of SRPDM are larger with a longer look-ahead window of 4

hours than with a smaller look-ahead window of 2 hours (1.8% vs. 1.54% on average).

This difference mainly stems from the much lower recovery costs in the largest disruption

instances—with a maximum cost reduction of 16.3% over the baseline with a 4-hour look-

ahead, as opposed to 6.17% with a 2-hour look-ahead. By anticipating broader ranges of

future disruptions, longer look-ahead windows TLA mitigate expected recovery costs through

added flexibility and robustness in decision-making.
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2.7.3 Computational Performance

The main determinants of the model’s size—and hence, of its computational performance—

are the scope of the flight plans (determined by the maximum holding window and the hold-

ing interval, as described in Section 2.4.2) and the number of scenarios. Note that the size

of SRPDM remains unchanged as disruptions are forecasted at more airports and/or over

longer look-ahead windows.

Figure 2.8 shows the sensitivity of the solution quality and the runtimes as a function

of the number of scenarios, over five randomly-generated disruption instances. The runtimes

are given here for each iteration of the algorithm—thus reflecting its relevant computational

requirements for the airline at any decision point. Figure 2.8(a) indicates that solution

quality improves with 30 vs. 10 scenarios, but remains unchanged with 30 vs. 70 scenarios.

At the same time, computational requirements increase non-linearly at each iteration with

the number of scenarios (Figure 2.8(b))—from 3–5 minutes with 30 scenarios to over 15

minutes with more scenarios. This indicates a “sweet spot” in the model’s implementation

with 30 scenarios, which yields a sample space that is large enough to ensure high solution

qualities and small enough to derive solutions in reasonable runtimes.

((a)) SRPDM performance ((b)) Average computation times per time period

Figure 2.8: SRPDM performance vs. computation times over increasing numbers of scenar-
ios.

Ultimately, SRPDM can be implemented in short computational times—consistent

with earlier models of disruption recovery and with airline requirements. This strong compu-

tational performance would enable the implementation of SRPDM in practice. Moreover, in
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full-scale software implementations within airline systems, a number of acceleration strate-

gies could also be applied—including parallelization, advanced software engineering, and the

use of high-speed computing machines. Our model could also provide close-to-optimal solu-

tion in shorter runtimes, should the airline need to (e.g., by considering a smaller scenario

set, or by imposing a maximum runtime).

2.7.4 Robustness

At this point, we have shown that the proposed modeling and computational frame-

work can mitigate expected recovery costs by 1–2%, as compared to the myopic baseline.

We now establish the robustness of these findings. We first vary the schedule of flights by

considering inputs from different days in July 2014. We then vary the delay cost parameter,

thus changing the weights attributed to the different components of the objective function.

Impact of Flight Schedule.

First, we consider flight schedules for four weekdays of July 2014 (July 15–18)—which

are representative of the distribution of flight schedules over the entire year of operations

(see Table 2.1). For each day, we generate the disruption instances from historical delays

(Section 3.4.2) and future scenarios at each of the six hubs (Section 2.5.2).

Table 2.9 reports the outputs of SRPDM and the myopic baseline for July 15, 16

and 18 (the corresponding results for July 17 are shown in Table 2.6). The results confirm

that SRPDM reduces expected recovery costs by 1–2%, as compared to the myopic baseline.

As earlier, SRPDM increases departure delay to reduce the number of aircraft swaps, the

number of cancellations and, in some cases, fuel burn. The largest recovery cost reduction,

over all disruption instances, is lower than the corresponding one for July 17. This stems

from the difference in realized disruptions: the benefits of SRPDM tend to be higher when

realized disruptions occur in peak periods, resulting in higher delays at hub airports and

higher downstream impacts throughout the network. In such instances, the myopic baseline
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Table 2.9: Results for the A320 fleet and a 4-hour look-ahead for multiple weekdays in July.

Day in Total Cost Dep. Delay Arr. Delay Fuel Burn # # # Speed
July Model ($) (min) (min) ($) Swaps Cancel. Changes Savings

15th Baseline (avg.) 908,701 467 719 815,755 1 3 42 –
Baseline (min) 864,396 185 582 800,320 0 2 38 –
Baseline (max) 971,778 865 944 832,796 3 4 54 –
SRPDM (avg.) 896,457 511 745 821,671 1 2 42 1.4%
SRPDM (min) 858,852 223 582 799,903 0 0 38 0.0%
SRPDM (max) 971,778 865 962 832,796 3 4 54 4.6%

16th Baseline (avg.) 901,364 774 725 735,552 3 5 35 –
Baseline (min) 814,419 140 514 695,086 0 2 32 –
Baseline (max) 994,649 1,747 1,095 760,847 5 8 36 –
SRPDM (avg.) 890,434 811 719 735,306 3 5 35 1.3%
SRPDM (min) 787,796 278 539 695,086 0 0 32 0.0%
SRPDM (max) 994,649 1,747 1,120 760,461 5 8 37 3.4%

18th Baseline (avg.) 1,378,449 1,531 1,335 1,069,890 3 10 56 –
Baseline (min) 1,333,659 830 1,109 1,038,907 1 7 52 –
Baseline (max) 1,429,588 2,421 1,523 1,094,065 4 14 68 –
SRPDM (avg.) 1,358,686 1,566 1,351 1,069,263 3 9 57 1.5%
SRPDM (min) 1,314,221 918 1,133 1,038,907 1 7 53 0.0%
SRPDM (max) 1,410,578 2,431 1,523 1,093,679 4 13 68 3.0%

tends to increase aircraft speeds to ensure connectivity, while SRPDM leverages information

on future disruptions to strategically introduce departure holds. As it turns out, July 17

had a higher incidence of such large peak-hour disruptions than other days. Nonetheless,

the average recovery cost savings are consistent across all days—thus highlighting that our

approach does not solely provide benefits during the busiest or least busy days of the year.

Impact of Delay Costs.

Next, we establish the robustness of the benefits of SRPDM with respect to the objec-

tive function. Recall that SRPDM and the myopic baseline are formulated as multi-objective

optimization problems that trade off fuel, delay, aircraft swap, and flight cancellation costs

(Equation (3.1) and (2.23)). We keep all cost parameters unchanged, but vary the unit delay

cost from $10 to $77 per minute (as described in Section 2.6.1). Table 2.10 reports the results

of these experiments, for a random subset of “small” disruption instances.

We also consider non-linear (convex) delay costs: following Cook and Tanner (2008a),

we set, for each copy k ∈ Ktfaq, δk = C × Dk × ln(Dk), where C is a constant and Dk is

the delay (in minutes) of copy k. We choose C such that the average delay cost is equal to
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$10/minute when applied to the solution obtained with a linear delay cost of $10/minute—so

that we change the distribution of delay costs but not their overall magnitude. These results

are also presented in Table 2.10.

These results show that the relative reduction in recovery costs achieved by SRPDM,

as compared to the baseline, is remarkably consistent across all (linear or non-linear) delay

cost functions—ranging from 2.3% to 3.1% on average. As delay costs increase, both models

reduce the incidence of departure holds—reducing average delays but increasing the number

of flight cancellations and aircraft swaps. But regardless of the delay cost function, SRPDM

results in higher departure and arrival delays than the myopic baseline but in fewer cancel-

lations and (with one exception) fewer aircraft swaps. Ultimately, these results confirm that

SRPDM reduces recovery costs by introducing strategic departure holds, over the full range

of delay cost functions under consideration.

2.7.5 Summary

Our results suggest that the SRPDM can enhance airline disruption recovery decisions—

by reducing recovery costs by 1–2% on average, as compared to a myopic baseline that does

not anticipate future disruptions. These results are driven by reductions in flight cancella-

tions and aircraft swaps, partially offset by increases in flight delays. In other words, SRPDM

leverages information on a range of disruption scenarios by strategically introducing depar-

ture holds and adjusting flight plans, to avoid resorting to flight cancellations and aircraft

swaps in subsequent time periods.

Moreover, the benefits of SRPDM increase with the scope of the disruptions un-

der consideration: capturing systemic disruptions—and their stochasticity—from more hub

airports and over longer look-ahead windows increases the value of SRPDM. This under-

scores the benefits of the framework developed in this chapter, which proposes a multi-stage

decision-making under uncertainty approach combining, for the first time, a predictive queu-

ing model—applied at several airports of the network simultaneously—into a prescriptive
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combinatorial optimization model of airline disruption recovery.

2.8 Conclusion

This chapter proposes a jointly reactive and proactive approach to airline disrup-

tion management. This approach optimizes disruption recovery decisions while leveraging

a partial and probabilistic forecast of future disruptions—by characterizing probabilistically

future systemic disruptions (i.e., congestion at hub airports) but ignoring other contingent

disruption forecasts (e.g., aircraft maintenance, late crews, late passenger boarding). We

formulate a Stochastic Reactive and Proactive Disruption Management (SRPDM) that com-

bines a stochastic queuing model of congestion (applied at several airports within a network),

a flight planning tool from Boeing/Jeppesen, and an optimization model of airline disruption

recovery. We design an efficient solution procedure based on look-ahead approximation and

sample average approximation, which enables the model’s implementation at any decision

point in reasonable computational times—consistent with earlier recovery models and with

practical airline requirements. Results suggest that leveraging even partial and probabilistic

information on future disruptions and an approximate algorithm can enhance recovery deci-

sions: SRPDM consistently performs as well as or better than a myopic baseline, ultimately

reducing expected disruption costs without creating additional risk in airline recovery.

The implications of these results are threefold. First, airline recovery can be im-

proved through more flexible and robust decision-making—by deliberately introducing de-

parture holds and speed changes to mitigate the incidence of flight cancellations and aircraft

swaps at later points in time. Second, airline operations can benefit from the elicitation of

systemic disruption scenarios, especially in instances where flight networks are concentrated

at hub airports and where hub airports are highly congested. Such scenarios can be con-

structed from information available offline, including flight schedules, historical records of

airport operations, and weather forecasts. Last, further cost savings could potentially be
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achieved through online sharing of operating information between airline operators, airport

operators, and air traffic managers. Most notably, continuous alignment on operating con-

ditions, real-time congestion and delay forecasts could reduce system-wide uncertainty on

future operations, thus permitting more effective recovery.

These results motivate future work on airline recovery optimization under uncer-

tainty. First, this chapter has relied on a simple prediction of future disruptions by ap-

plying the queuing model independently at each hub airport; future research could gener-

ate disruption scenarios that capture cross-airport correlations. Moreover, further research

could investigate how to incorporate dynamic updates of delay predictions into recovery

optimization—in line with the real-time information sharing paradigm mentioned above.

Second, this chapter has focused on aircraft recovery. An important extension would involve

developing a jointly reactive and proactive approach to the integrated problem of aircraft,

passenger and crew recovery. Third, the approximate solution algorithm considered in this

chapter could be augmented with exact algorithms for multi-stage recovery optimization un-

der uncertainty. The framework, model and algorithm proposed in this chapter provide the

foundations to explore these questions—toward more efficient, reliable and robust recovery.
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Table 2.10: Experimental results for different delay cost parameters.

Delay Cost Total Cost Dep. Delay Arr. Delay Fuel Burn # # # Speed
($/min) Model ($) (min) (min) (lb.) Swaps Cancel. Changes Savings

$10 Baseline (min) 1,133,878 556 1,313 1,449,264 0 2 69 -
Baseline (max) 1,358,403 1,202 1,599 1,523,785 6 14 73 -
Baseline (avg.) 1,205,434 895 1,463 1,495,607 1.1 5.1 72 -
SRPDM (min) 1,121,481 586 1,433 1,457,276 0 0 70 0.03%
SRPDM (max) 1,279,491 1,222 1,750 1,522,769 6 10 74 6.2%
SRPDM (avg.) 1,167,328 1,002 1,535 1,497,605 1 3 72 2.8%

$20 Baseline (min) 1,146,048 536 1,277 1,443,010 0 2 68 -
Baseline (max) 1,366,260 1,192 1,566 1,524,265 6 14 72 -
Baseline (avg.) 1,214,304 864 1,412 1,489,390 1.1 5.4 70 -
SRPDM (min) 1,131,292 566 1,315 1,443,010 0 0 68 0.02%
SRPDM (max) 1,289,708 1,212 1,717 1,523,511 6 10 73 5.9%
SRPDM (avg.) 1,177,269 971 1,484 1,491,388 1.1 3.4 71 3.1%

$30 Baseline (min) 1,158,625 496 1,180 1,443,770 0 2 64 -
Baseline (max) 1,373,611 1,162 1,451 1,526,435 6 14 68 -
Baseline (avg.) 1,223,163 820 1,318 1,484,522 1.1 5.6 67 -
SRPDM (min) 1,140,885 526 1,287 1,443,770 0 0 64 0.0%
SRPDM (max) 1,299,419 1,162 1,520 1,525,214 6 10 68 5.7%
SRPDM (avg.) 1,187,198 923 1,376 1,486,723 1.1 3.6 67 3.0%

$40 Baseline (min) 1,164,992 436 1,028 1,399,814 0 2 58 -
Baseline (max) 1,363,486 1,102 1,261 1,529,358 5 14 63 -
Baseline (avg.) 1,229,222 758 1,168 1,478,142 1 5.9 61 -
SRPDM (min) 1,149,774 456 1,173 1,421,097 0 0 59 0.0%
SRPDM (max) 1,272,351 1,112 1,402 1,528,129 7 9 64 7.2%
SRPDM (avg.) 1,191,866 867 1,246 1,479,936 1.3 3.8 62 3.1%

$50 Baseline (min) 1,170,381 386 889 1,404,649 0 2 51 -
Baseline (max) 1,370,553 1,052 1,120 1,534,742 5 14 57 -
Baseline (avg.) 1,238,187 710 1,005 1,483,210 1.1 5.9 54 -
SRPDM (min) 1,160,776 406 1,026 1,405,701 0 0 52 0.0%
SRPDM (max) 1,301,195 1,062 1,206 1,534,214 5 11 58 5.3%
SRPDM (avg.) 1,207,499 815 1,073 1,482,628 1.3 4.1 55 2.5%

$60 Baseline (min) 1,174,241 386 879 1,384,418 0 2 51 -
Baseline (max) 1,395,891 1,032 1,099 1,535,943 6 16 57 -
Baseline (avg.) 1,253,596 698 988 1,481,443 1.5 6.4 55 -
SRPDM (min) 1,169,464 406 1,024 1,405,701 0 0 52 0.0%
SRPDM (max) 1,328,993 1,042 1,185 1,535,415 6 11 58 5.8%
SRPDM (avg.) 1,218,281 806 1,062 1,483,390 1.4 4.3 56 2.8%

$77 Baseline (min) 1,180,803 386 879 1,384,418 0 2 51 -
Baseline (max) 1,404,425 1,032 1,099 1,536,319 6 16 57 -
Baseline (avg.) 1,265,439 697 987 1,481,550 1.5 6.4 55 -
SRPDM (min) 1,180,485 406 1,024 1,405,701 0 0 52 0.0%
SRPDM (max) 1,341,709 1,042 1,185 1,535,791 6 11 58 5.5%
SRPDM (avg.) 1,231,967 805 1,060 1,483,496 1.4 4.3 56 2.6%

non-linear Baseline (min) 1,142,595 556 1,418 1,447,980 0 2 71 -
cost Baseline (max) 1,193,108 1,372 1,772 1,523,785 7 4 73 -

(equivalent Baseline (avg.) 1,157,004 959 1,529 1,503,547 1 2.9 72 -
to $10) SRPDM (min) 1,111,532 586 1,471 1,447,980 0 0 71 0.0%

SRPDM (max) 1,152,517 1,372 1,772 1,522,892 7 4 74 3.8%
SRPDM (avg.) 1,131,204 1,034 1,582 1,502,920 1 1.6 72 2.3%
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Chapter 3

PASSENGER
RE-ACCOMMODATION AND

AIRCRAFT RECOVERY UNDER
CLIMATE CHANGE

3.1 Introduction

In this chapter, we further expand the discussion in Chapter 2, which focused on

aircraft recovery in current operating conditions, to consider disruptions occurring from a

different source – namely, climate change, and their impact on both aircraft and passenger

recovery. Globally increasing temperatures due to climate change, especially in summers,

have resulted in some aircraft being impacted negatively, by grounding aircraft or having

them operate at lowered capacities. As temperatures increase in the coming decades due to

climate change, these impacts are expected to only increase.

Recent disruptions in high temperature areas like Arizona in the United States, have

highlighted the impact of high temperatures on grounding several flights (Wired 2017). The

combination of temperature, engine thrust and runway length (or runway configuration)

results in small or mid-sized aircraft not being able to gather enough thrust to take off,

or to be able to operate only at reduced capacities. As a consequence, these aircraft can

be grounded or taking off only with part of its load (including passengers), necessitating
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recovery actions to be implemented for nearly all of the day of operations or beyond.

It is noteworthy that high temperatures typically occur during and after the after-

noon peak of operations at many hub airports. It is also well known that propagation of

disruptions from the morning towards the evening on a day of operations results in higher

cascading effects during the latter half of the day. These two effects, in combination, can sig-

nificant compounding the cascading effects of disruptions for both the airline’s resources (air-

craft and crew) and passengers. In fact, passenger itineraries can be significantly impacted,

more so than individual flights because each passenger itinerary can consist of multiple

flight legs (possibly of multiple fleet types) and passenger delays can be non-linearly corre-

lated with flight delays (Bratu and Barnhart 2006a). In this increasingly relevant context,

we are interested in an integrated view of the impacts of climate change-related disruptions,

inclusive of not only aircraft delays and disruptions, but also passenger itinerary delays and

disruptions. Particularly, we focus on integrated and simultaneous aircraft and passenger

disruption management at airlines – specifically, passenger re-accommodation – under these

severe disruptions.

3.1.1 Our Approach

The objective of this work is to evaluate the impact of climate-change-induced con-

straints on disruption management and airline operations. To this end, we construct a

large-scale, climate-change-tailored, integrated aircraft and passenger recovery modeling and

algorithmic framework. First, this framework allows us to capture the unique constraints

that climate change-related temperature increases impose on each aircraft’s ability to operate

in the network at specific points in time. Specifically, it captures the change in capacity of

each aircraft type as a function of high temperatures and airport runway lengths, during each

hour of the day. Second, this framework incorporates these capacity constraints into rolling

horizon recovery models that solve for cost-minimizing aircraft re-routing/re-scheduling and

passenger re-accommodations. Thus, this frameworks allows for dynamic network design
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and management of both the demand (aircraft and passengers), and associated supply (the

capacity available on each re-scheduled aircraft at that point in time). We implement this

framework on real data from a major airline to estimate the increase in recovery costs induced

by climate change, and discuss the operational and practice implications for airlines.

3.1.2 Contributions and Outline

The contributions of our work are as follows.

We present an original modeling framework for incorporating climate change con-

straints caused by temperature increases, into airline recovery. To the extent of our knowl-

edge, this is the first work that explicitly models the climate change-induced capacity reduc-

tions of aircraft, at the granularity of each airport and using multiple climate change models,

into simultaneous aircraft and passenger recovery.

We present a rolling horizon (dynamic) algorithm for integrated aircraft and pas-

senger recovery under climate change-imposed constraints become operational. Our dynamic

rolling horizon algorithm is designed to mimic real-world airline operations by which disrup-

tions are handled as they are revealed, and captures airline recovery (including inter-fleet

swaps) simultaneously integrated with optimally assigning re-accommodations for disrupted

passengers. This framework solves for recovery actions under ‘normal’ airline disruptions

upon which climate change-related capacity constraints have been imposed.

Our results indicate that climate change can significantly impact airlines’ ability to

recover from disruptions occurring during normal operations. Specifically, we construct a

testbed comprising of regularly occurring disruptions of different magnitudes on a major

airline’s network, and compare recovery costs under different cases of climate change in

2035 and 2050. Our computational results demonstrate that if a similar network structure

with similar load factors as today were operated in 2035 or 2050, we would find that airlines’

recovery costs can increase between 25% to 55.9% on average, with the actual costs depending

on the climate change case of interest.
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Our work provides important policy and practical operational implications. We find

that airline recovery under climate change conditions will necessarily need to account for

many aircraft being located at unplanned locations at the completion of each day of oper-

ations. This implies that improving inter-operability of aircraft fleet and locating reserve

aircraft at overnighting airports may aid recoverability, especially from a passenger-centric

perspective. We also find that engine design over the next decade should focus on enabling

smaller aircraft to be operated even at reduced capacities without being grounded, even

under high temperatures.

Outline. In Section 3.2, we discuss relevant background from two streams - (i) cli-

mate change impacts on operations over the coming decades, and (ii) methods for integrated

aircraft and passenger recovery in the literature. Section 3.3 discusses our modeling and

algorithmic framework that explicitly incorporates constraints imposed by climate change

into simultaneous aircraft and passenger recovery. Section 3.4 presents the testbed for our

real-world computational experiments. We discuss our experimental results in Section 3.5

and conclude in Section 3.6.

3.2 Background

3.2.1 Climate Change and its Impacts on Aircraft Operations

While there is a large literature about the effects of aviation on climate change,

there has been less in-depth analysis on the effect of climate change on aviation. The

U.S. National Climate Assessment, citing work by Coffel and colleagues (Coffel et al. 2017)

says, ”Air transport is sensitive to extreme heat because hotter air makes it more difficult

for airplanes to generate lift (the force required for an airplane to take flight), especially

at higher elevations, requiring weight reductions and/or longer takeoff distances that may

require runway extensions” (Reidmiller et al. 2018). As this assessment suggests, the effect

depends on runway lengths, on the aircraft’s engine capabilities (smaller aircraft are more
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adversely affected), and on the observed increase in temperature.

The literature on the impacts of climate change typically refers to four standard

scenarios (called RCP2.6, RCP4.5, RCP6.0, and RCP8.5, where RCP stands for Represen-

tative Concentration Pathway) that result in different levels of radiative forcing; that is, the

imbalance between the rate at which solar energy is incident on earth and the rate at which

the earth radiates energy back into space (Moss et al. 2010). These different levels of forcing

obtain mainly from different assumptions about the trajectory of anthropogenic emissions of

greenhouse gasses, which in turn produce four different trajectories of radiative forcing for

each year. These trajectories are then used as inputs to a series of climate models, each of

which may make different assumptions about initial state of the atmosphere at the moment

at which the model is initiated, and about the physics of the earth’s climate. The Coupled

Model Intercomparision Project, currently in its fifth iteration (CMIP5) (Meehl et al. 2000),

uses these emissions trajectories as in input to a large ensemble of climate models, each of

which produces predictions of temperature, precipitation, and a large number of other cli-

mate variable for each scenario. The predictions are typically made at a spatial resolution of

about 1 degree x 1 degree, and temporal resolutions of at least several hours. A combination

of higher resolution models or statistical techniques are then used to make predictions at finer

spatial and temporal resolutions. In this analysis, we consider the effect on aircraft dispatch

and airline operations of the temperatures that result from the RCP8.5 scenario (Riahi et al.

2011). The temperature changes emerge from 20 climate models within the RCP8.5 scenario,

downscaled to a resolution of 1/8 degree x 1/8 degree and one hour1. The predictions of

each model can be treated as a separate, plausible scenario. Potential flight restrictions or

disruptions are calculated for the temperatures that emerge from each model; the process is

then repeated for the predictions of the other models. In Section 3.4, we describe how we

determine the restrictions on flight take-off weights and payloads, given the temperature and

1These data were produced by Yifan Chang and Prof. Bart Nijssen of the Department of Civil and
Environmental Engineering at the University of Washington. They were made available to the authors by
Francisco Ralston Fonseca and Prof. Paulina Jaramillo, of the Department of Engineering and Public Policy
at Carnegie Mellon University.
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airport characteristics. Among the 20 climate models, we select three models or cases that

represent mild, medium and severe climate change temperature changes, and compute the

projected temperatures for the years 2035 and 2050. We conduct experiments that compare

the disruption costs for 2035 and 2050 against the costs in 2014 to understand the projected

increase in costs over the next three decades.

3.2.2 Integrated Aircraft and Passenger Re-accommodation

The objective of this chapter is to study the impact of climate change on recover-

ability, with a perspective of integrated aircraft and passenger recoverability. We now review

literature on integrated aircraft and passenger recovery, which typically falls under two cat-

egories. The first category is sequential recovery, in which aircraft recovery is followed by

passenger recovery; and the second is simultaneous recovery, with both aircraft and simul-

taneous recovery being solved together. It is clear that the sequential approach can result in

higher costs, often resulting in passenger misconnections and delays that can be avoided by

the simultaneous recovery problem. On the other hand, solving the simultaneous recovery

problem is significantly more complex algorithmically and computationally.

Lettovsky (1997) estimates the cost of losing passenger goodwill by incorporating

the costs associated with re-booking passengers, meals and hotel costs into the cost of flight

cancellation. Barnhart et al. (2002) design the Itinerary-Based Fleet Assignment Model that

approximates spill and recapture cost of passengers, formulating it as a multi-commodity

network flow problem. Lan et al. (2006a) present passenger-centric approaches to minimize

delay propagation and passenger delays, by redesigning aircraft routings and retiming flights,

though passenger re-accommodation is not explicitly modeled.The above works do not either

explicitly consider passengers, solve for passenger misconnections instead of explicitly re-

accommodating misconnected passengers on alternate itineraries.

Later works model passenger delay and re-accommodation explicitly. Bratu and

Barnhart (2006a) explicitly consider disrupted passengers and crews, and develop a flight-
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leg based aircraft recovery model to minimize recovery costs, including re-accommodation

costs of passengers and crews, re-routing cost of aircraft, and cancellation costs, but with

some relaxations on the constraints and variables. Zhang and Hansen (2008) consider re-

covery decisions on flight holding, cancellations, and substitution by other transportation

modes specifically when weather causes many flight delays, minimizing the airline’s disrup-

tion cost, including passenger delay-related costs. Jafari and Zegordi (2011) develop a model

to solve for aircraft and passenger recovery simultaneously using rotation-based modeling

instead of flight-based modeling, where the length of recovery period is determined after

comparing the all possible aircraft rotations. However, due to its high computational com-

plexity, the model can only handle small-scale disruptions with 13 aircraft, 2 fleet types,

and 8 itineraries. Petersen et al. (2012b) solve the integrated recovery problem for schedule

recovery, aircraft rotations, crew schedule, and passenger itineraries using Benders decom-

position combined with column generation approach. The relaxed master problem is the

schedule generation problem; with aircraft recovery, crew recovery and passenger recovery

modeled as subproblems. Maher (2015) considers the integrated airline recovery problem

with passenger reallocation for the schedule, aircraft, and crew recovery problem while also

explicitly considering costs of re-accommodating passengers on the same airline’s flights,

other airlines’ flights or not re-accommodating passengers; and models this problem as a

stochastic programming problem. Bisaillon et al. (2011) introduce a large-scale neighbor-

hood search heuristic to combine aircraft re-routing and passenger reassignment (recovery),

with the objective of minimizing the costs of operation and impact on passengers. The

construction, repair and improvement phases of their heuristic first prioritize aircraft rout-

ing decisions, and then re-allocate passenger itineraries. Extra phases of improvement were

added by Sinclair et al. (2014b) to improve the local search solution by delaying each flight

one at a time by certain interval in order to accommodate new passengers.

These existing works do not capture two aspects: (i) the capacity constraints imposed

by climate change, resulting in reduced capacity for some flights given the payload and range
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of the flight, and (ii) the dynamic nature of airline (aircraft and passenger) recovery. While

works such as Marla et al. (2017b) and Lee et al. (2020) capture the dynamic nature of

recovery through rolling horizon algorithms, they do not explicitly perform passenger re-

accommodation, and do not also capture climate change-related constraints.

3.3 Mathematical Models

We now present our rolling horizon modeling framework for integrated and simul-

taneous aircraft and passenger recovery, which also incorporates capacity constraints intro-

duced by climate change.

3.3.1 Aircraft Flow Network with Inter-fleet Swaps

Our modeling framework is based on a multi-commodity flow model constructed on

a time-space network, where each aircraft is treated as a commodity. We create a time-space

network, NWa, for each aircraft a, consisting of flights that can be operated by aircraft a

and ground arcs representing connections. Figure 3.1 shows an example of such a time-space

network representation. Each arc in NWa represents a possible flight movement and each

node represents a possible time and airport location for an arrival or a departure. We add

a supply node ns to denote the initial location of the aircraft at the beginning of the time

horizon, and a demand node nd at the end of the time horizon to signify that the aircraft

has completed its last flight in the network. The location of nd in NWa is at the airport

that the aircraft was originally planned to have been located at the end of the time horizon.

We denote the set of nodes in NWa (including ns and nd) as Na. We construct ground

arcs in NWa that represent a feasible (satisfying minimum turn time requirements) aircraft

turnaround time at an airport, that connect one arrival node to an immediately subsequent

node at the same airport. We refer to the set of ground arcs in NWa as Ga.

In most recent work, such as Lee et al. (2020), aircraft swaps are allowed only within
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Figure 3.1: Aircraft flow network NWa for aircraft a

a fleet type and thus NWa contains only the flights in the schedule to which an aircraft of

the same fleet type as a is assigned. However, under climate change conditions, certain fleet

types cannot be operated (or operate at lower capacity) for several hours and it might be

beneficial to use other aircraft types to operate the flight so as to allow passenger itineraries

to be preserved. For example, an aircraft belonging to a smaller-sized fleet type can be

swapped with a larger-sized aircraft if the smaller one is unable to take off because of high

temperature. Hence, we now allow for aircraft swaps between multiple fleet types, and the

aircraft flow network NWa contains all flights in the schedule (as long as the range of the

aircraft allows it to operate that flight), as the aircraft a can operate any of the flights in

the schedule.

3.3.2 Generating Passenger Itineraries using Depth First Search

We replicate the network NWa to create the passenger flow network PN p to find

feasible alternative itineraries for passengers. As shown in Figure 3.2, for each originally

scheduled copy of flight f in an itinerary, there are also flight copies similar to NWa. For

simplicity of discussion, we assume each originally booked passenger itinerary in this work
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Figure 3.2: Passenger flow network PNP capturing all passenger itineraries p ∈ P

consists of one or two flight legs. It is straightforward to extend the model to the case with

multiple flight legs. We first add a supply node at the origin airport at the start time of

each booked passenger itinerary. We also add a demand node at the itinerary destination

airport with its time set to the latest allowed ending for that itinerary. Ground arcs are

added between each supply node and corresponding origin node of the first flight leg of the

passenger’s originally booked itinerary. We also add ground arcs between the destination

nodes of the last leg of the booked itinerary and the corresponding demand nodes.

We describe each passenger itinerary not only by the flights included in the itinerary

but also the specific flight copies used in the itinerary. A flight leg f followed by flight

leg g corresponds to several potential itineraries, each with different combinations of copies

of flight legs f and g. For example, (f1, k1), (f2, k2) represents an itinerary where copy k1

of flight f1 is feasibly (with sufficient connection time) succeeded by copy k2 of flight f2.

Therefore, (f1, k1), (f2, k3) would be called a different itinerary in our model. We use P to

denote the original set of booked itineraries, that is, they consist of the first set of copies of

flights in the itinerary, with the originally scheduled flying times.

We now generate a list of candidate recovery itineraries R(p), including the planned

itinerary, recovery itineraries, and a virtual itinerary that models passengers re-accommodated

66



by other airlines.We create a possible itinerary for each pair of supply and demand nodes for

p ∈ P using the recursive depth-first search function as shown in Algorithm 2. The supply

node for each itinerary is created at the departure location of the original departure of the

first flight in p, with its time equal to the disruption of the first flight. The demand node for

p is created at the destination airport of p, with a time equalling the latest possible arrival

time allowed considering disruption. There is a feasible alternative itinerary for any given

original (booked) itinerary if there exists a direct flight leg or two flight leg copies with a

feasible connection (with positive slack between them). If such connections exist, we use Al-

gorithm 2 to generate alternative itineraries. R(p) is thus obtained by running Algorithm 2

on this modified network NWp.

3.3.3 Model Formulation

Our model simultaneously optimizes for aircraft recovery decisions (fuel cost, depar-

ture holding cost, swap costs, cancellation costs) and passenger recovery costs (re-accommodation

costs, delay costs and re-accommodation on another airline), all incurred by the airline. Our

model extends the passenger recovery components of Bratu and Barnhart (2006a) and Marla

et al. (2017b), and combines them with the aircraft recovery components of Lee et al. (2020)

over a rolling horizon.

Further, we extend all these models to explicitly account for the payload-range capa-

bilities of different aircraft and the resulting seat capacity, in the passenger re-accommodation

constraints. The following is our formulation for combined aircraft recovery and passenger

re-accommodation including flight planning opportunities.

Sets :

Ft : Set of flights scheduled to depart in time period [t, TR]

A : Set of available aircraft

NW t
a : Time-space network corresponding to aircraft a at time t
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Algorithm 2 Recursive depth-first function for generating all recovery itineraries

1: graph ← A hash-map used to represent PNP as an adjacency list, with nodes as keys
and list of connected nodes as values

2: origin ← The supply node
3: destination ← The demand node
4: itinerary := A list of nodes representing the itinerary
5: itineraryList := A list of itineraries
6: maxFlightlegs :=maximum length of itinerary
7: function DFS(graph, origin, destination, itinerary =empty, itineraryList =empty)
8: if itinerary is empty then
9: itinerary ← [origin]

10: end if
11: if origin.location equals destination.location then
12: Add copy of itinerary to the list itineraryList
13: return
14: end if
15: if number of flight legs in itinerary == maxFligtlegs then
16: return
17: end if
18: for each next ∈ graph(origin) do
19: itinerary ← itinerary + next
20: DFS(graph, next, destination, itinerary, itineraryList)
21: itinerary ← itinerary − next
22: end for
23: end function
24: for each itinerary ∈ itineraryList do
25: Remove nodes associated with ground arcs in itinerary
26: end for
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PN t
P : Passenger flow network that captures all passenger itineraries in time period t.

Pt : Set of passenger itineraries considered in time period [t, TR]

Rt(p) : Set including original itinerary as well as list of candidate itineraries on the

passenger flow network from the origin of p to its destination, with each starting

after p’s original departure, by at least the amount of disruption of p. As

described in Section 3.3.2, each r ∈ Rt(p) is described by a flight as well as the

a copy of that flight; and includes only feasible itineraries.

Ktf : Set of flight copies of flight f ∈ Ft, where these copies are generated from either

flight holding, or using alternate flight plans or both. Note that these copies

can be operated by any aircraft.

Gta : Set of ground arcs connecting every two consecutive nodes in time at the same

airport in NW t
a

N t
a : Set of nodes in NW t

a

N−nat : Set of incoming arcs to node n ∈ N t
a

N+
nat : Set of outgoing arcs to node n ∈ N t

a

Parameters :

δkf : Delay cost of copy k of flight f , for f ∈ Ft

ρkf : Fuel cost associated with copy k of flight f , for f ∈ Ft

σkf : Aircraft swap cost of operating flight f ’s copy k ∈ Ktf , for f ∈ Ft by aircraft other

than the one originally schedule to operate this flight.

γf : Cost of cancellation of flight f , for f ∈ Ft
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χpr : Passenger-related costs for using itinerary r to accommodate passenger p. If the

passengers who cannot be accommodated on any alternative itinerary are booked

on another airline’s flight (using virtual itinerary r), the cost is higher, to reflect

the penalty given for losing out to the competition.

np : Number of passengers on itinerary p ∈ P

Capfka : min (number of seats available determined by payload-range capabilities of aircraft

a for flight f ’s copy k ∈ Ktf , aircraft capacity) For each aircraft type, the payload-

range equation depicts the relationship between distance of flight (Range in x-axis)

and payload capacity (Payload in y-axis) with a piecewise linear curve as shown in

Figure 3.3 and is modeled as a set of following constraints:

αj ∗mf + βj ∗ ta ≤ µj, for mfa ∈ [dj−1, dj], ∀j ∈ [1, 2, ..., N ]

,where mf is the miles of flight distance for a flight f , ta is the tonnes of aircraft a’s

payload, dj is the jth cut-off point in Range, and αj, βj, and µj are the coefficients

of linear function in [dj−1, dj].

Capfka is calculated as a function of mf based on the flight leg’s miles.

(e.g. Capfka ≤
(µj−αj∗mf )

βj∗average passenger weight
)

Figure 3.3: Payload capacity curve over flight distances for a given aircraft type

βna : Penalty cost for aircraft a ending at a station other than the originally scheduled

arrival airport in time period t
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θrfk =

 1 if flight f ’s copy k ∈ Ktf is on itinerary r

0 otherwise

sna =


1 if aircraft a ∈ A starts at node n in NW t

a

−1 if aircraft a ∈ A can potentially end its journey at node n, n ∈ NW t
a

0 if node n is neither a start nor potential destination node

Note that multiple nodes n at the end of the timeline of NW t
a could be candidates

for aircraft a’s destination in NW t
a at the end time of NW t

a.

ukaf :

 0 if copy k ∈ Ktf cannot be operated by aircraft a due to higher temperature

1 otherwise

V ariables :

xkaf =

 1 if copy k ∈ Ktf is selected and operated by aircraft a

0 otherwise

yga =

 1 if ground arc g in NW t
a of aircraft a is selected

0 otherwise

zf =

 1 if f ∈ Ft is cancelled

0 otherwise

vpr = Number of passengers originally on itinerary p who are re-accommodated on itinerary

r (vpp equals the number of non-disrupted passengers traveling on their originally

scheduled itinerary)

ena =

 1 if aircraft a ∈ A starts at node n or can potentially end at node n in NW t
a

0 otherwise

Note that ean is known deterministically and equals 1 for the node at the beginning of

NW t
a where the aircraft starts its operations. ean is known because of the solution to

(3.1)-(3.11) at time t− 1.

71



Formulation :

min
x,z

∑
a∈A

∑
f∈Ft

∑
k∈Ktf

(ρkf + δkf + σkf ) · xkaf +
∑
f∈Ft

γf · zf +
∑
p∈Pt

∑
r∈Rt(p)

χpr · vpr +
∑
a∈A

∑
n∈N ta

βna · ena


(3.1)∑

a∈A

∑
k∈Ktf

xkaf + zf = 1 ∀f ∈ Ft (3.2)

∑
g∈(N−

nat∩Gta)

yga +
∑

(f,k)∈(N−
nat\Gta)

xkaf + sna · ena =
∑

g∈(N+
nat∩Gta)

yga +
∑

(f,k)∈(N+
nat\Gta)

xkaf

∀n ∈ N t
a, ∀a ∈ A (3.3)∑

p∈Pt

∑
r∈Rt(p)

θrfkvpr ≤
∑
a∈A

Capfka · xkaf ∀k ∈ Ktf ,∀f ∈ Ft (3.4)

∑
r∈Rt(p)

vpr = np ∀p ∈ Pt (3.5)

xkaf ≤ ukaf ∀k ∈ Ktf ,∀f ∈ Ft,∀a ∈ A (3.6)

xkaf ∈ {0, 1} ∀k ∈ Ktf ,∀f ∈ Ft,∀a ∈ A (3.7)

zf ∈ {0, 1} ∀f ∈ Ft (3.8)

yga ∈ {0, 1} ∀g ∈ Gta∀a ∈ A (3.9)

ena ∈ {0, 1} ∀n ∈ NW t
a,∀a ∈ A (3.10)

vpr ∈ Z+ ∀p ∈ Pt (3.11)

The objective function (3.1) minimizes the costs of recovery, expressed as the sum of fuel,

departure holding delay and swap costs (coefficients of xkaf ), cancellation (coefficient of zf ),

passenger re-accommodation costs (coefficient of vpr) and aircraft location costs (coefficient

of ena). The last term of the objective function penalizes any aircraft that ends the day

at a different location that that planned, resulting in potentially unbalanced aircraft for

operations and maintenance in the future. Constraints (3.2) ensure that every flight is either

operated by one of the copies created over time-space networks, or canceled. Constraints (3.3)
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are flow conservation constraints. They ensure the balance of incoming and outgoing flows at

each node; i.e., if an aircraft is incoming to a node in a network, it must be outgoing from that

node (except at the source node in each network, which only has an outgoing aircraft, and at

the destination node in each network, which only has an incoming aircraft). Constraints (3.4)

ensure that all passengers are assigned to a flight leg, and restrict the number of passengers

assigned to a flight leg f to the number of seats available, as determined by the range of

the flight f and the corresponding payload-range capabilities of each aircraft a that can

operate f . Constraints (3.5) ensure that all passengers reach their destinations either on

their original itinerary or an alternate one (including a virtual itinerary, representing re-

accommodation on another airline’s network). Constraints (3.6) enforce that the aircraft

cannot operate the flights in the duration when they are disrupted due to high temperatures.

Constraints (3.7), (3.8), (3.9), (3.10), and (3.11) restrict variable values to appropriate

binary or integer values.

3.3.4 Dynamic Rolling Model of Passenger Recovery

We solve the above formulation as a finite-horizon dynamic program, approximated

as a rolling horizon integer program. We now define the state, decisions, transition, objective

and Bellman equation.

State variable: The state variable tracks the physical state of the airline’s fleet as well

as the state of the each passenger’s itinerary based on past decisions and operations, and

observed disruptions. The physical state of the airline’s fleet is represented by two vectors

θt and lt, each defined over a ∈ A. For each aircraft a ∈ A, θat and lat denote, respectively,

its latest arrival time and its arrival airport. Note that θat can either correspond to a past

time stamp (if aircraft a is on the ground at time t) or a future one (if aircraft a is in the

air at time t). The state of each passenger’s itinerary is represented by two vectors plt and

κt, each defined over p ∈ P . For each itinerary p ∈ P , plpt and κpt denote, respectively, the
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location of a passenger p at time t and the remaining flights in each passenger itinerary p at

time t.

Observed disruptions are represented by a vector Dt defined over f ∈ F t, where Dft

denotes the departure delay of flight f ∈ F t observed at time t. The state variable, denoted

by Rt, is thus given by:

Rt =
(
θt, lt,plt,κt,Dt

)
. (3.12)

The vector Rt is used to construct the time-space networks NW t
a for all a ∈ A and the

passenger flow networks PN t
p for all p ∈ P .

Decision variables: All recovery decisions are captured by the set of copies selected across

all time-space networks NW t
a for a ∈ A. The passenger re-accommodation decisions are

captured by the list of itineraries across he passenger flow networks PN t
p for p ∈ P . We

capture them with two decision vectors x̂t, ẑt and v̂t, where x̂t is defined over a ∈ A and

k ∈ ∪f∈FtK̂tfa, ẑt is defined over f ∈ Ft and v̂t is defined over p ∈ P and r ∈ R(p).

Specifically, x̂tka is equal to 1 if copy k is selected and flown by aircraft a, and 0 otherwise;

and ẑtf is equal to 1 if flight f is cancelled, and 0 otherwise. v̂tpr is the number of passengers on

original itinerary p who are re-accommodated on itinerary r. Our decision variable, denoted

by U t given by:

U t =
(
x̂t, ẑt, v̂t

)
. (3.13)

Recovery decisions and re-accommodation decisions are subject to a set of constraints (de-

tailed in Section 3.3.3). We denote here the decision space by U t.

Objective function. Our cost function, denoted by Ct(R
t,U t), is defined as the total

cost of recovery across all flights f ∈ Ft, including fuel, delay, swap and cancellation costs.
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It is given by:

Ct(R
t,U t) =

∑
a∈A

∑
f∈Ft

∑
k∈K̂tfa

(ρk + δk + σk) x̂
t
ka +

∑
f∈Ft

γf ẑ
t
f +

∑
p∈P

∑
r∈R(p)

πrpv̂
t
pr. (3.14)

Transition function: The transition function describes the recovery process and the dy-

namic realization of disruptions between t and t+ 1. It can be represented by a function ft

as follows:

Rt+1 = ft
(
Rt,U t

)
. (3.15)

The recovery process updates the arrival airport and time of each aircraft a. For

example, if a flight is operated by aircraft a from airport K to airport L, then lat is updated

to airport L and θat is updated to its scheduled arrival time at airport L. Conversely, if

an aircraft is not assigned to any departing flight at time t, then its availability remains

unchanged. Specifically, we have:

(θt+1
a , lt+1

a ) =


(θta, l

t
a), if x̂tka = 0, for all k ∈ ∪f∈FtK̂tfa,

(θk, lk), if x̂tka = 1, for some k ∈ ∪f∈FtK̂tfa,

where θk and lk denote the time and location of arrival of flight copy k, respectively. The

passenger re-accommodation process updates the current airport and remaining flights of

each passenger p. For example, let’s say a passenger has an original itinerary p that consists

of the first flight, f1, from airport K to airport L and the second flight, f2, from airport L

to airport M . If an airline has a set of alternative itineraries and if r is one such itinerary

that consists of the first flight, f ′1, from airport K to airport N , the second flight, f ′2, from

airport N to airport O, and the third flight f ′3, from airport O to airport M . Two possible

scenarios can happen for a passenger; either a passenger is served by an original itinerary p

or one of the alternative itineraries, r. In the first case, plpt is updated to airport L and kpt

is updated to {f2}. In the second case, plpt is updated to airport N and kpt is updated to
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{f ′2, f ′3}.

(plt+1
p , κt+1

p ) =


(pltpi , κ

t
p \ (f1 ∪ f2 ∪ ...fi)), if v̂tpp > 0

(pltrj , κ
t
r \ (f ′1 ∪ f ′2 ∪ ...f ′j)), if v̂tpr > 0

where pltpi and pltrj denote the location of arrival of flight fi and f ′j respectively and (f1 ∪

f2 ∪ ...fi) and (f ′1 ∪ f ′2 ∪ ...f ′j) denote the set of flights that are realized in [t, t+ 1].

3.3.5 Dynamic Rolling Algorithms for Passenger Itineraries and
Aircraft recovery

We now present our dynamic approach for passenger recovery in Algorithm 3. The

algorithm loops over the full recovery horizon {1, ..., T}, and involves, at each time period

t. From one period to the next, our state variable Rt is updated based upon the recovery

decisions on passenger itineraries and the realized state transitions. In the remainder of

this section, we first describe the procedure developed to dynamically update the passenger

itineraries at at each period in Algorithm 3. Then we discuss the rolling algorithm for the

aircraft recovery in Algorithm 4, which is based on the procedure developed to dynamically

create the time-space network at the beginning of each period.

We use the following notation for Algorithm 3. Let IT (p) be the set of flight legs

in itinerary p and IT (p, l) the lth flight leg in itinerary p (l ∈ 1, 2). IT (p, 2) is null if it is a

one leg itinerary. Let pd, p
l
d, pa, p

l
a denote the departure time, departure location, arrival

time and arrival location for the itinerary p. Let IT (p, l)d, IT (p, l)a denote the departure

and arrival times of IT (p, l) respectively. Also let IT (p, l)ld, IT (p, l)la denote the departure

and arrival locations of IT (p, l) respectively. Define Pc as the set of completed itineraries.

At each period t, the process checks if a flight(IT (p, 1)) of IT (p) is present in the recovery

window, [t, t + Tr], for each p. The process further check if a chosen flight is realized in

[t, t+ 1] and then it replaces the updated itineraries for the second flight if it is not null (We
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say that a flight is realized if after solving the model, the departure time of the chosen flight

is within [t, t+1]). Otherwise, the itinerary is complete at [t, t+1] and removed from the list

of itineraries to be considered for the next time period (line 3-22 in Algorithm 3). Similarly,

the process also checks another condition that both of the flights(IT (p, 1), IT (p, 2)) of IT (p)

are present in the recovery window, [t, t+Tr]. In this case, if the chosen decision for the first

flight is realized in [t, t + 1], the nested condition in the process checks again if the second

flight is also realized or not. If so, the itinerary is complete at [t, t + 1] and removed from

the list of itineraries to be considered for the next time period. Otherwise, it updates the

realized location and time of the itineraries for the second flight if it is not null (line 23-37

in Algorithm 3).

We now present our rolling algorithm used for the Aircraft Recovery Problem(ARP)

in Algorithm 4. At each period t, one time-space network is generated for each aircraft

a ∈ A. The process used to generate the time-space networks N̂W
t

a is shown in Figure 3.4.

As a starting point, the process reads the flight plans, the flight schedule, the latest avail-

ability of each aircraft, and the disruption scenario considered (see line 1-3 of Algorithm 4).

This information is then used to generate a set of flight legs that can be operated by the

aircraft under consideration in the decision-making window. The time at which each flight

can be operated is then set to the flight’s scheduled departure time or the time when the

aircraft becomes available (which, itself, depends on its past flight assignments, past realized

disruptions, and the aircraft’s turnaround time), whichever comes last.

Next, we create a set of flight copies for each individual flight, including an “original

arc”, which correspond to its planned schedule, as well as additional copies that correspond

to added departure holds and/or alternative flight plans. The creation of available flight

plans for the aircraft considered leverages the flight planning tool from Jeppesen Commercial

and Military Aviation. Note that the creation of flight copies requires assumptions on the

granularity and scope of the time-space network. The granularity of the network refers to

the time interval between two successive copies, referred to as holding interval. The smaller
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Algorithm 3 Solution algorithm for Passenger Recovery Problem (PRP).

1: for each t ∈ {1, 2, . . . T} do
2: for each p ∈ Pt do
3: if IT (p, 1)d ∈[t,t+TR] AND (IT (p, 2) is null OR IT (p, 2)d ∈[t+TR, T ]) then
4: ϕ← IT (p, 1)
5: Let ϕselected be the selected itinerary after solving the model for ϕ.
6: if IT (ϕselected, 1)d ∈ [t, t+ 1] then
7: κ← IT (ϕselected, 1)
8: end if
9: if IT (ϕselected, 2) is not null and IT (ϕselected, 2)d ∈ [t, t+ 1] then

10: κ = IT (ϕselected, 2).
11: end if
12: if κ is not null then
13: if IT (p, 2) is not null then
14: pd ← κa, pld ← κla
15: pa ← IT (p, 2)a, pla ← IT (p, 2)la
16: Pt+1 ← Pt+1 ∪ p
17: else
18: Pc ← Pt+1 ∪ p
19: end if
20: else
21: Pt+1 ← Pt+1 ∪ p
22: end if
23: else if IT (p, 1) and IT (p, 2) are in [t, t+ TR] then
24: Let pselected be the selected itinerary.
25: if IT (pselected, 1) ∈ [t, t+1] AND (IT (pselected, 2) is null OR IT (pselected, 2)d ∈ [t, t+1]) then
26: Pc ← Pc ∪ p
27: end if
28: if IT (pselected, 1)d ∈ [t, t+ 1] AND IT (pselected, 2)d /∈ [t+ 1, T ] then
29: pd ← IT (pselected, 1)a, pld ← IT (pselected, 1)la
30: pa ← IT (p, 2)a, pla ← IT (p, 2)la
31: Pt+1 ← Pt+1 ∪ p
32: else
33: Pt+1 ← Pt+1 ∪ p
34: end if
35: end if
36: end for
37: end for
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the holding interval, the larger the decision space, so the larger the model’s computational

complexity, but the better the solution might be. In our computational experiments, we

use a holding interval of 10 minutes. The scope of the network refers to the maximum

holding window for each flight, i.e., the largest allowed departure hold. For instance, a

maximum holding window of 1 hour implies that at most 7 copies of each flight can be

created (associated with a departure hold from 0 to 60 minutes by intervals of 10 minutes).

This information is then used to generate the ground arcs and flight arcs in the time-space

network for the aircraft, time period, and disruption scenario under consideration.

The set of all time-space networks N̂W
t

a for all aircraft a defines the input sets and

parameters of the Aircraft Recovery Problem(ARP). The model is then solved using Mixed

Integer Programming (line 11). From the model’s solution, the state of the system Rt is then

updated (lines 13 - 18). However, in instances where large disruptions happen, the problem

may result in infeasible solutions due to the flow balance constraints, and if we cancel flights

that cause infeasibility without increasing the maximum holding window it can result in an

excessively large number of flight cancellations. This happens when the availability of any

aircraft is further in the future (because of large delays) than allowed holding window for

the flight it is scheduled to operate. Because of this, the supply node corresponding to the

aircraft has no outgoing arc and thus the flow balance contrainst is unsatisfied at that node.

Indeed, in practice, the airlines need to balance the objectives of minimizing the

deviations from the flight schedule (captured by the maximum holding window) and the

objective of minimizing the number of cancellations. For this reason, when we get an infea-

sible solution, we first increase the maximum holding window using the procedure outlined

above iteratively, to try mimize the number of cancellations which as a result imposes an

upper bound to the number of flight cancellations, denoted by Γ. In our experiments, we

set the maximum holding window expansion limit such that Γ is 5% of the number of flights

considered in the ARP at each time period t.

Specifically, we start with a maximum holding window set to an initial value (line
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4 in Algorithm 4). If the solution is feasible and results in less than Γ flight cancellations,

then we update the state variable accordingly, and proceed to the next period (lines 12-18).

In contrast, if the solution is infeasible or if it results in more than Γ cancellations (lines

19-21), then we increase the maximum holding window by increments of δ. As soon as a

feasible solution that cancels less than Γ flights is found, we update our state variable and

proceed to the next period. However, if no such solution is found once the maximum holding

window reaches a pre-specified upper bound, we remove the restriction on the number of

cancellations and re-solve the model (lines 23-35). We repeat this process throughout the

decision-making window, until all flights of the day have been operated.

Figure 3.4: Process used to create time-space networks NW t
a.

3.3.6 Solution Approach Improvements: Special Ordered Sets and
Warm Start

In this section, we describe two solution strategies we took to improve the runtime

of the model. We used special branching strategies and warm start solution based on known

initial solution to speed up the performance.
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Algorithm 4 Solution algorithm for the Aircraft Recovery Problem (ARP).

1: get R1 for a ∈ A;
2: for each t ∈ {1, 2, . . . T} do
3: get Ft, · · · ,Ft+TR

4: maxWindow = initialHoldingWindow;
5: holdingInterval = 10 minutes;
6: set feasibleSolution = false;
7: while feasibleSolution = false and maxWindow≤ maxWindowLimit do
8: for each a ∈ A do
9: Generate NWt

a; . See Figure 3.4
10: end for
11: Solve aircraft recovery problem (ARP);
12: if ARP feasible and less than Γ cancellations then
13: feasibleSolution = true;
14: for each a ∈ A, each f ∈ Ft, each k ∈ K̂t

fa do

15: if xtka ≡ xtka = 1 then
16: Update Rt with new location and time of all aircraft a ∈ A;
17: end if
18: end for
19: else
20: maxWindow=maxWindow+δ
21: end if
22: end while
23: if feasibleSolution = false then
24: Ã = set of aircraft that cause infeasibility ;
25: maxWindow = initialHoldingWindow;
26: for each a ∈ A \ Ã do
27: Generate NWt

a;
28: end for
29: Solve aircraft recovery problem (ARP);

30: for each a ∈ A, each f ∈ Ft, each k ∈ K̂t
fa do

31: if xtka = 1 then
32: Update Rt with new location and time of aircraft a;
33: end if
34: end for
35: end if
36: end for
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Special Ordered Sets.

Special ordered sets (SOS), which were first introduced by Beale and Tomlin (1970),

are widely used in branch-and bound algorithms to alleviate the computational burden of

branch-and-bound methods that do not take into account the structure of the constraints

by branching on sets of variables, rather than individual variables. If we know a variable is

part of a set which is ordered, it can help the branching strategies in branch-and bound.

Specifically, a Special Ordered Set of type 1 (SOS1) is defined to be a set of variables

for which at most one of the variable from the set may be non-zero in a feasible solution. The

special structure of our decision variables restricted by the flight coverage constraints (Equa-

tion 3.2), modeled as set-partitioning constraints in our formulation allows us to implement

the SOS1.

Conventional branching on xlk is basically dividing it by xlk = 0 and
∑

j 6=k xlj = 0,

as the latter equality is implied by xlk = 1. The xlk = 1 branch will have relatively less

solutions as compared to the xlk = 0 branch. This will result in almost no progress from the

parent node as the xlk = 0 branch will end up containing almost the same feasible region

as that of its parent. More efficient progress can be achieved by dividing the feasible region

of the parent node in a more balanced way over the children nodes. The branching rule on

SOS achieves this by branching on sets of variables rather than on the individual variables:⌊nl
2

⌋
∑
j=1

xlj = 0 or

nl∑
j=

⌊nl
2

⌋
+1

xlj = 0.

The performance guarantees on this approach have been mathematically shown in

Martin (1999) as follows. Let us first define ki = number of free integer variables in SOS

branching i, i = 1, 2, 3, ..., p at node h. Now let Sh be the number of solutions yet to

be enumerated at node h. Then Sh =

p∏
i=1

ki. If the special ordered set

nl∑
j=1

xlj = 1 is

selected for branching and that none of the xlj are to be fixed at 0 or 1, then because

min{
(nl −

⌊nl
2

⌋
)Sh

nl
,

⌊nl
2

⌋
Sh

nl
} > min{(nl − 1)Sh

nl
,
Sh
nl
} =

Sh
nl

for nl ≥ 4, SOS branching
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enumerates more solutions with each fathom than the conventional branching and thus can

enable faster progress towards an optimal solution.

Using Advanced Start.

In solving mixed integer programming problems (MIPs), warm start information

provides additional input data that can allow the solver to quickly get “close” to optimality.

We can add warm starts by either taking advantage of specific knowledge of the problem or

by solving an easier instance of the problem (IBM 2015).

A warm start solution can provide a better initial point than what the algorithm

can derive on its own, and heuristics in solvers may perform better in the presence of an

initial solution. Because warm start options are processed first, the best of these solutions

is treated as the incumbent solution. This allows the branch and bound to cut off larger

portions of the search space.

3.4 Experimental Setup

3.4.1 Airline Network Description

We consider the flight network of Delta Air Lines, a major hub-and-spoke airline

in the United States. The choice of airline is arbitrary, and is not specific to any air-

line’s operating practices. Delta Air Lines leverages six airports as hubs of operations (New

York’s LaGuardia (LGA) and John F. Kennedy (JFK), Atlanta (ALT), Detroit (DTW),

Minneapolis-Saint Paul (MSP), and Salt Lake City (SLC)). We obtain flight schedules and

fleet assignments from the Aviation System Performance Metrics (ASPM) database main-

tained by the Federal Aviation Administration (FAA).

We use baseline flight schedules from four weekdays (July 15-18) in July 2014, shown

in Table 3.1, which repeat on weekdays as per a daily schedule. In our experiments, the

schedules from all fleet types are considered to model the entirety of the airline network,
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and the passengers connecting across the different fleet types from origins to destinations.

We also obtain passenger itinerary data for the same days as inputs to the schedule. We

first extracted the itineraries that contain the flight legs that were present in the airlines

schedule for or July 17, 2014. Passenger itineraries were then sorted in the descending order

of the number of passengers and the top 10,000 ones are picked. This captures 16% of

total passengers on July 17, 2014 to observe the major impact on passenger delays under

climate change-related disruptions. We report passenger itinerary statistics in Table 3.2,

corresponding to the flight network described in Table 3.1.

In terms of spatial concentration, the airline’s network is tightly connected to the six

hub airports—with around 50% of the arrivals and departures at a hub. We are interested

in the airports (hubs) at which capacity is significantly affected due to warming, specifically,

ATL, SLC, and LGA. While ATL and SLC experience capacity drops primarily due to rising

temperatures, LGA is affected due to the combination of temperature increases and a short

runway. We focus on the impact of climate change for operations at all the hubs and at

PHX airport (specifically because its combination of temperature and altitude has shown

significant vulnerability to rising temperatures).

Table 3.1: Summary statistics for the flight network.

Metric July 15 July 16 July 17 July 18

# flights 2,324 2,330 2,348 2,379

# arr. – LGA 65 64 68 67
# arr. – ATL 640 632 625 647
# arr. – SLC 102 103 105 105
Total 807 799 798 819

# dep. – LGA 65 65 67 67
# dep. – ATL 636 634 627 642
# dep. – SLC 102 104 105 103
Total 803 803 799 812
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Table 3.2: Summary statistics for the passenger itinerary network.

# Total passenger itineraries 10,000

# spoke-to-spoke 9,112
# connecting via a hub 9,071
# connecting via LGA, ATL, SLC or PHX 7,107

# spoke-to-hub 427
# destined to a hub 427
# destined to LGA, ATL, SLC or PHX 231

# hub-to-spoke 451
# originating at a hub 451
# originating at LGA, ATL, SLC or PHX 251

3.4.2 Inference and Classification of Disruption Instances

We first infer disruption realizations from historical real-world data, to compare their

impacts in current times, and in the future under climate change. We use the departure delays

from the Bureau of Transportation Statistics (BTS) database. Because these delays result

from combined propagated (due to late arriving previous aircraft), as well as ‘independent’

disruptions at the systemic and contingent disruptions, using them directly would result in

double-counting propagated disruptions (which would carry over from previous time periods

as well as appear in the newly generated disruptions). We thus need to infer the “new”

(systemic and contingent) disruptions by subtracting propagated disruptions.

To this end, we use the inference method from Lan et al. (2006a). We first sort the se-

quence of flight legs operated by each aircraft. We assume a minimum turnaround time of 30,

35 and 40 minutes for A319, A320 and B752 aircraft, respectively. For every pair of consecu-

tive flights i and j operated by the same aircraft, we define the slack between i and j as the

difference between the planned and minimum turnaround times between the two flights. The

propagated delay of flight j is then computed as max(Arrival Delay of Flight i − Slack, 0).

By subtracting this propagated delay from total delays, we obtain the newly created delays

(from systemic and contingent disruptions). Additionally, for interpretability of our results,

we classify all disruption instances into “small”, “medium” and “large” disruptions, using a
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classification procedure along similar lines as Lee et al. (2020).

Our testbed consists of 20 disruption scenarios, inferred from Delta Air Lines’ histor-

ical operations in July 2014. These scenarios are categorized into small, medium and large

disruptions based on the magnitude and extent of the disruption, as shown in Table 3.3.

Table 3.3: Disruption instance categories

Size Small Medium Large
Num 7 7 6

3.4.3 Climate Change Parameter Settings

We perform our analysis for Boeing 737, Airbus A320 and Boeing 757 aircraft, using

the Boeing 737-800 (B738), the A320-200 with CFM56 engines (A320), and the B757-200

(B752) as the archetypes of these aircraft. Each aircraft’s manual of airplane characteris-

tics for airport planning describes the relationship between the aircraft’s maximum take-off

weight, runway length, and ambient air temperature. These relationships appear as a series

of graphs in each manual. We digitize the graphs and fit a linear model, which expresses

the maximum take-off weight as a function of runway length and ambient temperature. The

results of this analysis are summarized in Table 3.4 and equations (3.16), (3.17), and (3.18).

Table 3.4: Fitted Parameters for Allowable Payload for Different Aircraft Fleet Types (stan-
dard deviation in italics).

Variable B738 B757 A320
(Intercept) 35 242 -116

2.9 50 3.5
log(runway length in thousands of feet) 61 75 25

0.79 4.0 0.69
Surface temperatures in degrees C 0.89 -18 -0.45

0.16 5.5 0.068
(Surface temperatures in degrees C)2 -0.023 0.60 0.037

0.002 0.19 0.006
(Surface temperatures in degrees C)3 -0.0067 -0.00082

0.0021 0.00013
R2 0.95 0.87 0.72
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For the B738 aircraft, this relationship is best described by the following equation:

max takeoff weight = 60.8 ∗ log(runway length)+

0.9 ∗ (ambient temperature)−

0.02 ∗ (ambient temperature)2 + 35,

(3.16)

where: (i) max takeoff weight is the aircraft’s maximum take-off weight in thousands

of pounds, (ii) runway length is the runway length in thousands of feet. For airports with

multiple runways, we run a separate analysis for each runway length. For example, Atlanta’s

Hartfield-Jackson airport has two runways that are each 9000 feet long, a third that is 10,000

feet long, and a fourth that is 12,400 feet long; (iii) ambient temperature is the ambient

air temperature, expressed in degrees centigrade, in the city in which the airport is located.

As described in Section 3.2.1, we obtain 20 forecasts, which emerge from 20 climate models,

of the ambient temperature at sea level for every hour of our years of interest (2035 and

2050). The aircraft performance curves from which the relationship above is derived are

based on sea level temperature. In the case where the airport under consideration is not at

sea level, we calculate an equivalent temperature by using earth’s atmospheric lapse rate of

2 degrees C per 1000 feet(Hartmann 2015). That is, we assume that the air at an airport

that is 1000ft above sea level and at a temperature of 20 degrees C has the same density as

an airport that is at sea level and where the surface temperature is 22 degrees C.

For A320 aircraft, the relationship is described by

max takeoff weight = 24.7 ∗ log(runway length)−

0.45 ∗ (ambient temperature)+

0.037 ∗ (ambient temperature)2−

0.00082 ∗ (ambient temperature)3 − 116

(3.17)
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For B757 aircraft, the relationship is described by

max takeoff weight = 74.5 ∗ log(runway length)−

18 ∗ (ambient temperature)+

0.6 ∗ (ambient temperature)2−

0.0067 ∗ (ambient temperature)3 + 242

(3.18)

Using these equations, we calculate the maximum takeoff weight for each hour of

each year of interest, for each of the aircraft we are interested in, for each airport-runway

combination. We calculate the mass of fuel needed for the aircraft to perform its journey

using EUROCONTROL’s Small Emitters Tool (EUROCONTROL 2018). In practice, we

use the tool to calculate the fuel burn for each aircraft type for flight lengths from 100

miles to the maximum range of the aircraft in increments of 100 miles. For each flight, we

estimate the fuel burn by rounding up the actual flight length and rounding up the nearest

hundred. To account for the fact that the aircraft must carry some reserve fuel, we add

the mass of fuel necessary for the aircraft to fly 200 miles to the mass of fuel that must

be burned for it to complete the flight. This gives us an estimate of the total mass of

fuel that the aircraft must carry. We subtract this fuel mass and the mass of the empty

aircraft to estimate the maximum payload that the aircraft can carry. We assume that

passengers (and their luggage and amenities) constitute the entire payload. As such, we

divide the maximum available payload by 220lb (a scaled projection from 100kg used in

2019) to calculate the maximum number of passengers that the aircraft can carry, given its

capabilities, the ambient temperature, and runway length. Where this number is less than

the passenger capacity of the aircraft (assumed to be 175 for B738, 186 for A320 and 156

for A319) we calculate the maximum load factor of the aircraft as the ratio of the maximum

number of passengers the aircraft can carry to the number of passengers on a full aircraft.

Where this ratio is less than 0.86, we assume that the flight is disrupted. This is because

the average load factor on U.S. domestic flights is 0.85 (BTS) and we assume that airlines
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are likely reluctant to operate flights that are much emptier than that. Our threshold for

interruption is in fact somewhat higher than this number because it is likely that the method

described above somewhat overestimates the maximum capacity factor of the aircraft. For

example, we ignore any cargo that the aircraft might be carrying in its belly, although it

is known that about 40% of all airborne freight travels in the bellies of passenger flights

(Bryant et al. 2016). We also ignore the practice of tankering, where—due to considerations

of price or schedule optimization—an airplane may take off with enough fuel to complete

the next several flights.

3.4.4 Classification of Climate Change Cases

We evaluate our model under multiple climate change models or cases corresponding

to the RCP8.5 scenario for 2035 and 2050, based on different input parameters as discussed

in Section 3.4.3. For this, we classify each climate change case into “mild”, “medium”

and “severe” categories. We use a multinomial logistic regression with two independent

variables: average capacity drop and maximum capacity drop during the test day in July

2014. Our model is trained with selected cases that are a priori classified into the three

categories, as a training step. We then perform a validation step, to predict the groups for

all remaining cases. The proportional log-odds of a climate change case belonging to the

mild and medium category, versus the severe category, is defined as the logarithm of the ratio

of the two probabilities. The fitted logistic regression model is described in Equations (3.19)

and (3.20), where Pmild, Pmed and Psevere denote the probabilities of belonging to the mild,

medium and severe categories, respectively.

log

(
Pmild
Psevere

)
= β0 + βmild1 avg. capacity drop + βmild2 max capacity drop (3.19)

log

(
Pmed
Psevere

)
= β0 + βmed1 avg. capacity drop + βmed2 max capacity drop (3.20)

The coefficients corresponding to the classification based on logistic regression are
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reported in Tables 3.5 and 3.6 for 2035 and 2050 respectively. The resulting classification of

climate change cases into severe, medium and mild is presented in Table 3.7. Among the six

hub airports of the airline’s network, we are specifically interested in four airports at which

capacity is significantly affected due to warming - ATL, SLC, PHX, and LGA. The chosen

climate change models at these four hubs we consider for the experiments for 2035 and 2050,

to be discussed in the next section, are summarized in Table 3.8.

Table 3.5: Parameter estimates for multinomial logistic regression for 2035.

mild (vs. worst) medium (vs. worst)

Predictor Coef. p-value Coef. p-value

constant 1762.85 0.00014 850.01 0.0062
avg. cap drop -2032.01 0.00015 -980.63 0.0063
max cap drop -63.39 0.07321 -13.84 0.3366

Table 3.6: Parameter estimates for multinomial logistic regression for 2050.

mild (vs. worst) medium (vs. worst)

Predictor Coef. p-value Coef. p-value

constant 1342.38 0.0027 597.71 0.0407
avg. cap drop -1494.76 0.0028 -672.40 0.0409
max cap drop -44.10 0.164 -10.48 0.275

3.4.5 Recovery Parameter Settings

Cost Parameters: We use the following cost parameters in our objective function. Air-

craft swap costs (σk) are set to $500 per intra-fleet swap and $1000 per inter-fleet swap

as described in Marla et al. (2017b). Cancellation costs (γf ) are estimated as the cost to

the airlines of re-accommodating passengers on the next available flight serving the same

destination—to the airlines of re-accommodating passengers on the next available flight

serving the same destination—assuming average 200 seats, a constant load factor of 85%,

and a cost of $37.5 per hour of passenger delays (including re-booking costs, goodwill cost)

and average 4 hours of flight. Fuel costs (ρk) are set to $0.73 per lb, according to the fuel
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Table 3.7: Classification of climate change cases for 2035 and 2050

Climate change case Classified category (2035) Classified category (2050)

bcc-csm1-1 rcp85 Medium Severe
bcc-csm1-1-m Medium Mild
BNU-ESM rcp85 Mild Severe
CanESM2 rcp85 Medium Severe
CCSM4 rcp85 Severe Mild
CNRM-CM5 rcp85 Mild Medium
CSIRO-Mk3-6-0 Medium Medium
GFDL-ESM2G Mild Mild
GFDL-ESM2M Mild Medium
HadGEM2-CC365 rcp85 Medium Severe
HadGEM2-ES365 rcp85 Medium Mild
inmcm4 rcp85 Severe Mild
IPSL-CM5A-LR Severe Mild
IPSL-CM5A-MR Mild Mild
IPSL-CM5B-LR Severe Mild
MIROC-ESM rcp85 Severe Mild
MIROC-ESM-CHEM rcp85 Severe Medium
MIROC5 rcp85 Medium Medium
MRI-CGCM3 rcp85 Mild Medium
NorESM1-M rcp85 Severe Mild

Table 3.8: Representative climate change cases used in experiments

Category Case for 2035 Case for 2050

Severe IPSL-CM5B-LR bcc-csm1-1 rcp85
Medium CanESM2 rcp85 CNRM-CM5 rcp85
Mild CNRM-CM5 rcp85 IPSL-CM5B-LR

price development charts. Finally, we use a baseline value for the flight delay cost (δk) of

$10 per minute of delay. Passenger re-accommodation cost is set to the fixed cost portion

of $400 per passenger (Jenkins and Marks 2011) plus the variable cost of passenger delay

of $1.09 per minute (Marla et al. 2017b). Disrupted passengers that are not able to be re-

accommodated are assumed to be rebooked on another airline using a hypothetical itinerary

in our model, with a penalty that is greater than the re-accommodation cost in our net-

work. The penalty cost for aircraft ending the day of operations at a different location than

originally planned (βna ), defined in Section 3.3.3 is set to be 1.5 times the cancellation cost,
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because this potentially results in future operational and maintenance costs.

3.5 Computational Results

We now discuss our computational results for the 20 disruption instances extracted

from a high traffic and high temperature timeframe in July as described in Section 3.4.2 and

Table 3.3, over the representative climate change cases from 2035 and 2050 (Table 3.8). Our

results compare aircraft and passenger recovery costs incurred by the airline under climate

conditions in 2014 against 2035 and 2050. As described in Section 3.4, we assume similar

network structures, engine properties and load factors for 2035 and 2050, as were seen in 2014.

The metrics we present in our results are as follows. For the aircraft recovery component, we

present the (i) total aircraft recovery costs ($), the total departure delay in minutes, over the

entire network, (iii) the total arrival delay in minutes, over the entire network, (iv) the total

fuel burnt to execute the chosen flight plans over the network, (v) the number of flight swaps

executed to manage the disruption, (vi) the number of flights canceled on the network, (vii)

the number of flights who speeds are changed to help manage the disruption, and (viii) the

number of aircraft that are unbalanced, that is, they end operations at airports different from

where they were intended, and cause disruptions for the future. For the passenger recovery

component, we report (i) the delay minutes experienced by passengers whose itineraries are

not broken or disrupted (undisrupted pax delay min), (ii) the delay minutes experienced

by passengers who itineraries are disrupted and therefore they have to be reaccommodated

onto alternative itineraries (disrupted pax delay min), (iii) the cost of the disrupted passenger

delays, (iv) the number of passengers that need to be reaccommodated on itineraries not

belonging to this airline (virtual itineraries), (v) reaccommodation costs for passengers that

need to use another airline, (vi) the total passenger delay minutes, (vii) total passenger delay

costs, (viii) sum of aircraft-related and passenger-related costs.
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3.5.1 Impact of 20 years of climate change: 2014 vs. 2035

We compare aircraft recovery costs under mild, medium and severe climate cases in

2035 versus 2014 in Tables 3.9, 3.10 and 3.11. Corresponding passenger recovery costs are

presented in 3.12, 3.13 and 3.14. Comparing first the aircraft recovery costs, our results show

that the capacity drops induced by increased temperatures result in significant increase in

both departure and arrival delays, number of swaps, and cancellations. Due to increased

cancellations, we don’t observe significant change in the fuel burn from 2014 to 2035. The

combined effect of these aircraft recovery mechanisms results in increased total costs of 18.7%

to 39.3% on average compared to 2014’s costs under the severe climate change cases, 19.8%

to 26.1% on average under the medium climate change cases, and 18 % to 38.7 % on average

for mild medium climate change, compared to 2014’s costs. We find that the costs of aircraft

recovery over individual disruption instances increase by 6.6% to 68.9% for severe climate

change cases, by 5.4% to 56.2 % for medium climate change cases, and by 8.5 % to 124.2 %

for mild climate change.

The corresponding total passenger delay costs under 2035 climate change cases (Col-

umn 9 of Tables 3.12, 3.13 and 3.14) experienced by the airline increase by as much as 29%

to 36.4% on average for mild climate change cases, 31.2% to 38.4% on average for medium

climate change cases, and 29.3% to 33.6% on average for severe climate change cases over all

sizes of disruptions. We observe that, over individual disruption instances, passenger-related

recovery costs increase by as much as 19.1% to 55.6% for mild climate change cases, 18.9%

to 47.4% for medium climate change cases, and 14.4% to 46.5% for severe climate change

cases.

Combining the effect of aircraft and passenger-related delay costs to the airline, we

find an increase of 26% to 36% on average for severe climate change cases, 28% to 50% on

average for medium climate change cases, and 26% to 56% for mild climate change cases.

Over individual disruption instances, we find that the total costs of aircraft and passenger-
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related delay increase by as much as 18% to 178% for mild climate change cases, 13% to 165%

for medium climate change cases, and 11.2% to 45% for severe climate change cases. We

guess that the average percentage increase in combined aircraft and passenger-related delay

costs as a percentage of existing costs do not significantly differ for the severe climate change

cases from for the medium climate change cases, because the variation in capacity reductions

due to climate-change imposed disruptions over the severe and medium climate change cases

in 2035 is significantly lower than the difference in the size of original disruptions induced

by airline or airport delays themselves.

As expected overall our experimental results show that the average total recovery

costs, combined aircraft and passenger-related delay costs, increase over the size of the

disruptions under the same climate change case as shown in Column 10 of Tables 3.12, 3.13

and 3.14. The most significant difference in terms of the average percentage increase as

compared to 2014 is achieved when the disruption size is the smallest and the least average

percentage increase is when the disruption size is the largest. This trend is consistent over

different climate change cases. This indicates that for the year 2035, the relative impact of

disruptions due to climate change is most noticeable in scenarios with small disruptions, as

the capacity drops dominate the disruption itself.

Figure 3.5 shows that the recovery cost increases over all climate change cases pro-

jected for the year 2035 vs.the base year 2014. The largest cost increase is observed under

the largest disruption scenarios, but the cost increase does not change significantly over the

severity of the climate change case. Hence we observe that the difference in cost increase is

mainly driven by the magnitude of disruptions. We also observe that, under all disruption

sizes in 2035, the severe climate change cases have a neutral impact on the cost increase

on average and we conclude that the size of the airline disruption has a significantly more

dominant effect on the increase in recovery cost.
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Table 3.9: Comparison of daily aircraft-related costs for recovery, 2014 versus 2035, under
“Mild” climate change case, by disruption category.

Disruption Total Dep. Delay Arr. Delay Fuel Burn Num. Num. Num. Speed Num. Cost
Category Year Cost($) (min) Delay (min) (lb) Swaps Cancel. Changes Unbalanced Increase

Small 2014 (min.) 1,423,586 2,855 3,364 1,690,290 23 1 38 0 –
2014 (avg.) 1,575,194 4,289 4,815 1,792,383 66 8 45 0 –
2014 (max.) 1,687,179 6,702 7,258 1,855,248 130 13 48 1 –
2035 (min.) 1,667,498 4,444 4,961 1,420,119 187 7 27 0 11.8%
2035 (avg.) 2,200,004 8,800 9,261 1,714,922 297 30 42 0 38.7%
2035 (max.) 3,712,420 19,538 19,734 1,802,613 527 100 49 1 124.2%

Medium 2014 (min.) 1,632,927 5,736 6,330 1,668,951 57 7 40 0 –
2014 (avg.) 1,770,040 8,185 8,689 1,770,186 86 16 44 0 –
2014 (max.) 1,902,869 10,643 11,056 1,862,433 119 22 49 1 –
2035 (min.) 1,984,489 7,467 7,982 1,627,763 229 18 40 0 8.5%
2035 (avg.) 2,083,522 10,482 10,979 1,741,028 273 23 43 0 18.0%
2035 (max.) 2,147,428 13,448 13,902 1,818,789 302 30 47 0 27.0%

Large 2014 (min.) 1,926,819 7,109 7,588 1,643,874 98 19 41 0 –
2014 (avg.) 2,137,080 14,402 14,866 1,731,739 162 29 46 0 –
2014 (max.) 2,448,624 22,023 22,367 1,795,621 256 40 53 1 –
2035 (min.) 2,349,092 8,244 8,592 1,420,119 303 31 26 0 11.1%
2035 (avg.) 2,944,520 15,476 15,867 1,589,257 432 62 36 0 33.6%
2035 (max.) 3,712,420 20,314 20,510 1,739,695 530 100 46 2 63.2%

Table 3.10: Comparison of daily aircraft-related costs for recovery, 2014 versus 2035, under
“Medium” climate change case, by disruption category.

Disruption Total Dep. Delay Arr. Delay Fuel Burn Num. Num. Num. Speed Num. Cost
Category Year Cost($) (min) Delay (min) (lb) Swaps Cancel. Changes Unbalanced Increase

Small 2014 (min.) 1,423,586 2,855 3,364 1,690,290 23 1 38 0 –
2014 (avg.) 1,575,194 4,289 4,815 1,792,383 66 8 45 0 –
2014 (max.) 1,687,179 6,702 7,258 1,855,248 130 13 48 1 –
2035 (min.) 1,778,884 4,574 5,163 1,664,032 202 10 35 0 5.4%
2035 (avg.) 1,933,110 6,461 6,986 1,761,068 263 18 45 1 22.9%
2035 (max.) 2,127,163 9,030 9,570 1,824,964 333 26 48 2 33.5%

Medium 2014 (min.) 1,632,927 5,736 6,330 1,668,951 57 7 40 0 –
2014 (avg.) 1,770,040 8,185 8,689 1,770,186 86 16 44 0 –
2014 (max.) 1,902,869 10,643 11,056 1,862,433 119 22 49 1 –
2035 (min.) 1,969,998 7,561 8,119 1,711,654 235 18 39 0 6.9%
2035 (avg.) 2,116,156 10,425 10,913 1,740,683 291 24 43 0 19.8%
2035 (max.) 2,410,395 13,277 13,717 1,789,694 363 36 48 0 30.5%

Large 2014 (min.) 1,926,819 7,109 7,588 1,643,874 98 19 41 0 –
2014 (avg.) 2,137,080 14,402 14,866 1,731,739 162 29 46 0 –
2014 (max.) 2,448,624 22,023 22,367 1,795,621 256 40 53 1 –
2035 (min.) 2,152,723 9,104 9,463 1,445,993 279 25 29 0 8.4%
2035 (avg.) 2,692,414 16,027 16,416 1,596,231 396 51 39 0 26.1%
2035 (max.) 3,306,135 23,128 23,436 1,774,854 510 79 49 0 56.2%

3.5.2 Impact of 35 years of climate change: 2014 vs. 2050

Tables 3.15, 3.16 and 3.17 compare the aircraft-related costs experienced by the

airline during disruption management for the instances described in Table 3.3. The corre-

95



Table 3.11: Comparison of daily aircraft-related costs for recovery, 2014 versus 2035, under
“Severe” climate change case, by disruption category.

Disruption Total Dep. Delay Arr. Delay Fuel Burn Num. Num. Num. Speed Num. Cost
Category Year Cost($) (min) Delay (min) (lb) Swaps Cancel. Changes Unbalanced Increase

Small 2014 (min.) 1,423,586 2,855 3,364 1,690,290 23 1 38 0 –
2014 (avg.) 1,575,194 4,289 4,815 1,792,383 66 8 45 0 –
2014 (max.) 1,687,179 6,702 7,258 1,855,248 130 13 48 1 –
2035 (min.) 1,672,638 4,023 4,497 1,691,358 204 7 39 0 6.6%
2035 (avg.) 1,870,056 5,860 6,384 1,758,565 247 15 44 0 18.9%
2035 (max.) 2,097,834 9,074 9,610 1,797,019 297 27 48 1 28.9%

Medium 2014 (min.) 1,632,927 5,736 6,330 1,668,951 57 7 40 0 –
2014 (avg.) 1,770,040 8,185 8,689 1,770,186 86 16 44 0 –
2014 (max.) 1,902,869 10,643 11,056 1,862,433 119 22 49 1 –
2035 (min.) 2,105,144 6,601 6,940 1,600,730 257 22 32 0 12.8%
2035 (avg.) 2,463,817 9,568 9,990 1,683,124 338 42 39 0 39.3%
2035 (max.) 3,112,379 12,405 12,772 1,778,797 439 73 46 1 68.9%

Large 2014 (min.) 1,926,819 7,109 7,588 1,643,874 98 19 41 0 –
2014 (avg.) 2,137,080 14,402 14,866 1,731,739 162 29 46 0 –
2014 (max.) 2,448,624 22,023 22,367 1,795,621 256 40 53 1 –
2035 (min.) 2,233,995 8,767 9,124 1,602,123 281 28 35 0 7.0%
2035 (avg.) 2,567,439 16,185 16,563 1,640,796 392 43 40 1 18.7%
2035 (max.) 2,867,304 24,185 24,498 1,710,085 494 53 44 2 41.2%

Table 3.12: Comparison of daily passenger-related costs for recovery, 2014 versus 2035, under
“Mild” climate change case, by disruption category.

Disruption Undisrupted Disrupted Disrupted Virtual Reacc. cost Total pax Total pax Aircraft plus Cost
Category Year pax delay pax delay pax delay Itineraries on other delay delay cost Pax. cost Increase

min min cost ($) (Num. pax.) airline($) min ($) ($)

Small 2014 (min.) 1,166,678 2,975 3,243 13 19,500 1,169,653 1,445,555 2,869,141 –
2014 (avg.) 1,207,059 17,567 19,148 125 187,286 1,224,626 1,584,471 3,159,665 –
2014 (max.) 1,251,650 37,208 40,557 186 279,000 1,288,858 1,707,860 3,395,039 –
2035 (min.) 1,244,564 18,562 20,233 251 376,500 1,298,895 2,033,948 3,839,919 23.6%
2035 (avg.) 1,294,415 44,316 48,304 324 486,643 1,351,821 2,152,928 4,352,932 36.4%
2035 (max.) 1,347,623 75,432 82,221 470 705,000 1,405,440 2,374,939 6,087,359 55.6%

Medium 2014 (min.) 1,198,841 19,591 21,354 123 184,500 1,218,432 1,763,589 3,396,516 –
2014 (avg.) 1,270,637 33,675 36,706 225 336,857 1,304,312 1,856,557 3,626,597 –
2014 (max.) 1,290,223 57,932 63,146 347 520,500 1,348,155 2,008,551 3,911,420 –
2035 (min.) 1,326,992 28,089 30,617 344 516,000 1,343,491 2,430,767 4,415,256 19.1%
2035 (avg.) 1,370,062 58,007 63,227 441 661,929 1,424,087 2,463,841 4,547,363 33.0%
2035 (max.) 1,372,606 74,139 80,812 645 967,500 1,464,924 2,790,247 4,864,584 49.3%

Large 2014 (min.) 1,304,719 27,125 29,566 200 300,000 1,331,844 1,908,904 3,835,723 –
2014 (avg.) 1,374,969 42,817 46,670 315 472,750 1,417,786 2,154,203 4,291,283 –
2014 (max.) 1,490,596 83,497 91,012 454 681,000 1,574,093 2,212,310 4,660,934 –
2035 (min.) 1,360,760 43,874 47,823 415 622,500 1,397,621 2,495,920 5,055,690 22.3%
2035 (avg.) 1,471,726 81,065 88,361 548 822,500 1,534,924 2,775,634 5,720,153 29.0%
2035 (max.) 1,566,558 116,628 127,125 785 1,177,500 1,668,174 2,920,507 6,160,487 35.0%

sponding passenger-related costs to the airline are described in Tables 3.18, 3.19 and 3.20

respectively. As with 2035, the decrease in capacities due to increasing temperatures result

in increased flight cancellations, significantly increased flight departure delays and arrival

delays, and a huge increase in the number of swaps. The huge increase in the number of

swaps, while deviating from plan, results in increased ability to recover the schedule, and

allows the airline to decrease propagation of delay despite the decreased resources. However,
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Table 3.13: Comparison of daily passenger-related costs for recovery, 2014 versus 2035, under
“Medium” climate change case, by disruption category.

Disruption Undisrupted Disrupted Disrupted Virtual Reacc. cost Total pax Total pax Aircraft plus Cost
Category Year pax delay pax delay pax delay Itineraries on other delay delay cost Pax. cost Increase

min min cost ($) (Num. pax.) airline($) min ($) ($)

Small 2014 (min.) 1,166,678 2,975 3,243 13 19,500 1,169,653 1,445,555 2,869,141 –
2014 (avg.) 1,207,059 17,567 19,148 125 187,286 1,224,626 1,584,471 3,159,665 –
2014 (max.) 1,251,650 37,208 40,557 186 279,000 1,288,858 1,707,860 3,395,039 –
2035 (min.) 1,264,456 20,195 22,013 247 370,500 1,284,651 2,019,722 3,804,304 25.6%
2035 (avg.) 1,315,948 44,489 48,493 339 508,286 1,360,437 2,189,733 4,122,844 38.4%
2035 (max.) 1,335,671 76,092 82,940 454 681,000 1,411,763 2,331,248 4,422,315 46.5%

Medium 2014 (min.) 1,198,841 19,591 21,354 123 184,500 1,218,432 1,763,589 3,396,516 –
2014 (avg.) 1,270,637 33,675 36,706 225 336,857 1,304,312 1,856,557 3,626,597 –
2014 (max.) 1,290,223 57,932 63,146 347 520,500 1,348,155 2,008,551 3,911,420 –
2035 (min.) 1,291,540 48,617 52,993 342 513,000 1,340,157 2,403,527 4,613,452 18.9%
2035 (avg.) 1,367,433 61,003 66,493 473 709,714 1,428,436 2,497,910 4,614,066 35.0%
2035 (max.) 1,378,159 104,646 114,064 647 970,500 1,482,805 2,755,326 4,826,782 47.4%

Large 2014 (min.) 1,304,719 27,125 29,566 200 300,000 1,331,844 1,908,904 3,835,723 –
2014 (avg.) 1,374,969 42,817 46,670 315 472,750 1,417,786 2,154,203 4,291,283 –
2014 (max.) 1,490,596 83,497 91,012 454 681,000 1,574,093 2,212,310 4,660,934 –
2035 (min.) 1,363,014 47,497 51,772 355 532,500 1,410,511 2,482,278 4,978,415 21.6%
2035 (avg.) 1,464,464 84,667 92,287 562 843,250 1,549,131 2,820,003 5,512,416 31.2%
2035 (max.) 1,563,910 119,232 129,963 695 1,042,500 1,683,142 2,786,357 5,870,440 43.9%

Table 3.14: Comparison of daily passenger-related costs for recovery, 2014 versus 2035, under
“Severe” climate change case, by disruption category.

Disruption Undisrupted Disrupted Disrupted Virtual Reacc. cost Total pax Total pax Aircraft plus Cost
Category Year pax delay pax delay pax delay Itineraries on other delay delay cost Pax. cost Increase

min min cost ($) (Num. pax.) airline($) min ($) ($)

Small 2014 (min.) 1,166,678 2,975 3,243 13 19,500 1,169,653 1,445,555 2,869,141 –
2014 (avg.) 1,207,059 17,567 19,148 125 187,286 1,224,626 1,584,471 3,159,665 –
2014 (max.) 1,251,650 37,208 40,557 186 279,000 1,288,858 1,707,860 3,395,039 –
2035 (min.) 1,244,564 19,331 21,071 258 387,000 1,263,895 1,891,846 3,564,483 20.2%
2035 (avg.) 1,294,415 39,863 43,451 319 478,071 1,334,278 2,112,206 3,982,262 33.6%
2035 (max.) 1,347,623 67,397 73,463 427 640,500 1,415,020 2,309,050 4,406,885 42.0%

Medium 2014 (min.) 1,198,841 19,591 21,354 123 184,500 1,218,432 1,763,589 3,396,516 –
2014 (avg.) 1,270,637 33,675 36,706 225 336,857 1,304,312 1,856,557 3,626,597 –
2014 (max.) 1,290,223 57,932 63,146 347 520,500 1,348,155 2,008,551 3,911,420 –
2035 (min.) 1,326,992 44,540 48,549 263 394,500 1,371,532 2,272,377 4,377,520 14.4%
2035 (avg.) 1,370,062 61,408 66,935 439 658,071 1,431,470 2,461,860 4,925,676 32.9%
2035 (max.) 1,372,606 84,264 91,848 624 936,000 1,456,870 2,739,191 5,851,569 46.5%

Large 2014 (min.) 1,304,719 27,125 29,566 200 300,000 1,331,844 1,908,904 3,835,723 –
2014 (avg.) 1,374,969 42,817 46,670 315 472,750 1,417,786 2,154,203 4,291,283 –
2014 (max.) 1,490,596 83,497 91,012 454 681,000 1,574,093 2,212,310 4,660,934 –
2035 (min.) 1,360,760 53,267 58,061 355 532,500 1,414,027 2,365,570 4,599,565 15.9%
2035 (avg.) 1,471,726 75,755 82,573 562 842,250 1,547,481 2,782,471 5,349,910 29.3%
2035 (max.) 1,566,558 104,042 113,406 701 1,051,500 1,670,600 3,132,485 5,999,789 41.4%

because small-to-medium sized aircraft are more affected than large aircraft, we find a high

increase in the number of swaps executed by the airline to simply maintain operations. Due

to increased cancellations the fuel burn costs do not vary significantly or even decrease for

some scenarios from 2014 to 2050, quite similar to the phenomenon observed for 2035. The

combination of these effects results in increased aircraft recovery costs of 15.7% to 24% on

average compared to 2014’s costs under the severe climate change cases, 12.6% to 24.5% on

average under the medium climate change cases, and 18 % to 20.7 % on average for mild

medium climate change, compared to 2014’s costs. We find that the costs of aircraft recovery
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Figure 3.5: Total recovery cost comparison: 2014 base year vs. 2035, for 3 climate change
cases with 3 disruption scenarios

over the individual instances increase by 3.9% to 36.2% for severe climate change cases, by

4.1% to 33 % for medium climate change cases, and by 9.3% to 39 % for mild climate change.

Moreover, due to increased swaps, many aircraft are placed in stations other than

their planned stations at the end of the day, resulting in potentially even higher future costs

arising from both operations and maintenance.

The passenger-related delay costs (Column 9 of Tables 3.18, 3.19,3.20) to the airline

increase by as much as 33.1% to 49.4% on average for severe climate change cases, 30.5%

to 40% on average for medium climate change cases, 29.6% to 37.9% on average for mild

climate change cases, over all sizes of disruptions. Over individual disruption instances, we

find that the costs of passenger recovery increase by as much as 18.1% to 74.3% for severe

climate change cases, 18% to 56.6% for medium climate change cases, 17.4% to 52.7% for

mild climate change. Considering combined aircraft and passenger-related delay costs to

the airline, we find an increase of 25% to 36.9% on average for severe climate change cases,

30% to 49.3% on average for medium climate change cases, 25% to 47% on average for mild
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climate change cases. Over individual disruption instances, we find that the costs of total

recovery increase by as much as 10.6% to 54.8% for severe climate change cases, 16% to

144% for medium climate change cases, 17.4% to 52.7% for mild climate change.

We find that for small disruptions the average percentage increase in delay costs

are higher as a percentage of existing costs, because the capacity reductions due to climate-

change imposed disruptions are significantly higher than the size of the ‘small’ disruption

itself. This is not observed in the case of medium or large disruptions, because they are more

comparable in size to the costs of the climate-change-related disruptions. The implication of

this observation is that even when disruptions caused independently due to airline or airport

systemic delays are small, climate change alone imposes a significant cost burden on the

airline network.

Table 3.15: Comparison of daily aircraft-related costs for recovery, 2014 versus 2050, under
“Mild” climate change case, by disruption category.

Disruption Total Dep. Delay Arr. Delay Fuel Burn Num. Num. Num. Speed Num. Cost
Category Year Cost($) (min) Delay (min) (lb) Swaps Cancel. Changes Unbalanced Increase

Small 2014 (min.) 1,423,586 2,855 3,364 1,690,290 23 1 38 0 –
2014 (avg.) 1,575,194 4,289 4,815 1,792,383 66 8 45 0 –
2014 (max.) 1,687,179 6,702 7,258 1,855,248 130 13 48 1 –
2050 (min.) 1,750,662 4,303 4,777 1,734,655 194 10 44 0 12.3%
2050 (avg.) 1,868,725 6,067 6,598 1,774,846 240 15 46 0 18.8%
2050 (max.) 2,087,796 8,820 9,360 1,799,405 304 23 47 0 27.2%

Medium 2014 (min.) 1,632,927 5,736 6,330 1,668,951 57 7 40 0 –
2014 (avg.) 1,770,040 8,185 8,689 1,770,186 86 16 44 0 –
2014 (max.) 1,902,869 10,643 11,056 1,862,433 119 22 49 1 –
2050 (min.) 2,013,283 8,205 8,769 1,627,763 229 18 40 0 9.3%
2050 (avg.) 2,084,374 10,384 10,887 1,728,481 290 23 43 0 18.0%
2050 (max.) 2,135,641 13,394 13,848 1,795,169 330 25 46 0 28.9%

Large 2014 (min.) 1,926,819 7,109 7,588 1,643,874 98 19 41 0 –
2014 (avg.) 2,137,080 14,402 14,866 1,731,739 162 29 46 0 –
2014 (max.) 2,448,624 22,023 22,367 1,795,621 256 40 53 1 –
2050 (min.) 2,272,589 10,941 11,433 1,582,761 299 30 34 0 4.3%
2050 (avg.) 2,631,319 16,461 16,868 1,646,097 385 46 40 1 20.7%
2050 (max.) 2,929,625 23,605 23,882 1,729,444 463 60 45 3 39.0%

From a passenger perspective (see Table 3.20), we find that the passenger delay

minutes experienced by passengers whose itineraries are not disrupted due to cancelations or

misconnections but only delayed (column 3), are comparable from 2014 to 2050. However,

significant increases are observed in the delay seen by disrupted passengers (column 4) after
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Table 3.16: Comparison of daily aircraft-related costs for recovery, 2014 versus 2050, under
“Medium” climate change case, by disruption category.

Disruption Total Dep. Delay Arr. Delay Fuel Burn Num. Num. Num. Speed Num. Cost
Category Year Cost($) (min) Delay (min) (lb) Swaps Cancel. Changes Unbalanced Increase

Small 2014 (min.) 1,423,586 2,855 3,364 1,690,290 23 1 38 0 –
2014 (avg.) 1,575,194 4,289 4,815 1,792,383 66 8 45 0 –
2014 (max.) 1,687,179 6,702 7,258 1,855,248 130 13 48 1 –
2050 (min.) 1,720,605 4,712 5,301 1,726,796 205 8 43 0 14.0%
2050 (avg.) 1,960,454 6,555 7,090 1,790,587 259 18 47 0 24.5%
2050 (max.) 2,182,963 9,042 9,595 1,824,964 336 24 49 0 33.0%

Medium 2014 (min.) 1,632,927 5,736 6,330 1,668,951 57 7 40 0 –
2014 (avg.) 1,770,040 8,185 8,689 1,770,186 86 16 44 0 –
2014 (max.) 1,902,869 10,643 11,056 1,862,433 119 22 49 1 –
2050 (min.) 2,005,007 8,195 8,725 1,653,243 251 20 37 0 9.9%
2050 (avg.) 2,138,660 10,633 11,111 1,702,203 293 27 42 0 21.0%
2050 (max.) 2,347,165 13,169 13,591 1,785,025 344 35 46 1 27.4%

Large 2014 (min.) 1,926,819 7,109 7,588 1,643,874 98 19 41 0 –
2014 (avg.) 2,137,080 14,402 14,866 1,731,739 162 29 46 0 –
2014 (max.) 2,448,624 22,023 22,367 1,795,621 256 40 53 1 –
2050 (min.) 2,167,959 10,246 10,702 1,657,575 268 21 43 0 4.1%
2050 (avg.) 2,402,996 16,799 17,262 1,704,495 348 34 46 1 12.6%
2050 (max.) 2,819,032 23,659 24,078 1,779,004 422 49 49 1 16.9%

Table 3.17: Comparison of daily aircraft-related costs for recovery, 2014 versus 2050, under
“Severe” climate change case, by disruption category.

Disruption Total Dep. Delay Arr. Delay Fuel Burn Num. Num. Num. Speed Num. Cost
Category Year Cost($) (min) Delay (min) (lb) Swaps Cancel. Changes Unbalanced Increase

Small 2014 (min.) 1,423,586 2,855 3,364 1,690,290 23 1 38 0 –
2014 (avg.) 1,575,194 4,289 4,815 1,792,383 66 8 45 0 –
2014 (max.) 1,687,179 6,702 7,258 1,855,248 130 13 48 1 –
2050 (min.) 1,794,336 5,733 6,217 1,674,532 226 12 44 0 6.4%
2050 (avg.) 1,953,681 7,679 8,259 1,749,957 264 18 48 0 24.0%
2050 (max.) 2,155,315 9,974 10,937 1,800,854 359 25 65 0 35.6%

Medium 2014 (min.) 1,632,927 5,736 6,330 1,668,951 57 7 40 0 –
2014 (avg.) 1,770,040 8,185 8,689 1,770,186 86 16 44 0 –
2014 (max.) 1,902,869 10,643 11,056 1,862,433 119 22 49 1 –
2050 (min.) 2,000,122 8,685 9,220 1,656,151 248 16 40 0 13.6%
2050 (avg.) 2,169,961 11,893 12,374 1,729,701 304 26 44 0 22.8%
2050 (max.) 2,354,249 15,368 15,801 1,790,085 360 36 49 1 34.3%

Large 2014 (min.) 1,926,819 7,109 7,588 1,643,874 98 19 41 0 –
2014 (avg.) 2,137,080 14,402 14,866 1,731,739 162 29 46 0 –
2014 (max.) 2,448,624 22,023 22,367 1,795,621 256 40 53 1 –
2050 (min.) 2,267,736 10,843 11,336 1,634,296 295 29 41 0 3.9%
2050 (avg.) 2,501,097 17,598 18,014 1,725,892 356 38 46 0 15.7%
2050 (max.) 2,708,065 25,354 25,639 1,779,686 421 42 51 1 36.2%

re-accommodation on the airline’s network. Passenger delay minutes are seen, on average, to

increase by 2-3 times over all disruption sizes. Moreover, the number of passengers that need

to be accommodated on other airlines, modeled as a virtual itinerary, increases significantly

both on average as well as for the maximum observed over all disruption sizes. Because
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Table 3.18: Comparison of daily passenger-related costs for recovery, 2014 versus 2050, under
”Mild” climate change case, by disruption category.

Disruption Undisrupted Disrupted Disrupted Virtual Reacc. cost Total pax Total pax Aircraft plus Cost
Category Year pax delay pax delay pax delay Itineraries on other delay delay cost Pax. cost Increase

min min cost ($) (Num. pax.) airline($) min ($) ($)

Small 2014 (min.) 1,166,678 2,975 3,243 13 19,500 1,169,653 1,445,555 2,869,141 –
2014 (avg.) 1,207,059 17,567 19,148 125 187,286 1,224,626 1,584,471 3,159,665 –
2014 (max.) 1,251,650 37,208 40,557 186 279,000 1,288,858 1,707,860 3,395,039 –
2050 (min.) 1,264,327 19,820 21,604 247 370,500 1,284,147 2,014,550 3,796,204 22.7%
2050 (avg.) 1,302,584 42,794 46,645 352 528,214 1,345,377 2,184,104 4,052,829 37.9%
2050 (max.) 1,329,663 86,672 94,472 561 841,500 1,416,335 2,490,019 4,378,534 52.7%

Medium 2014 (min.) 1,198,841 19,591 21,354 123 184,500 1,218,432 1,763,589 3,396,516 –
2014 (avg.) 1,270,637 33,675 36,706 225 336,857 1,304,312 1,856,557 3,626,597 –
2014 (max.) 1,290,223 57,932 63,146 347 520,500 1,348,155 2,008,551 3,911,420 –
2050 (min.) 1,336,139 24,865 27,103 328 492,000 1,361,004 2,430,174 4,443,457 23.0%
2050 (avg.) 1,364,603 57,447 62,617 443 663,857 1,422,050 2,446,691 4,531,066 32.1%
2050 (max.) 1,388,620 77,996 85,016 530 795,000 1,466,616 2,553,977 4,689,618 41.4%

Large 2014 (min.) 1,304,719 27,125 29,566 200 300,000 1,331,844 1,908,904 3,835,723 –
2014 (avg.) 1,374,969 42,817 46,670 315 472,750 1,417,786 2,154,203 4,291,283 –
2014 (max.) 1,490,596 83,497 91,012 454 681,000 1,574,093 2,212,310 4,660,934 –
2050 (min.) 1,414,392 59,670 65,040 342 513,000 1,474,062 2,396,146 4,798,780 17.4%
2050 (avg.) 1,467,183 81,010 88,301 555 832,250 1,548,193 2,787,380 5,418,699 29.6%
2050 (max.) 1,578,363 105,151 114,615 658 987,000 1,683,514 3,047,780 5,977,405 41.2%

Table 3.19: Comparison of daily passenger-related costs for recovery, 2014 versus 2050, under
“Medium” climate change case, by disruption category.

Disruption Undisrupted Disrupted Disrupted Virtual Reacc. cost Total pax Total pax Aircraft plus Cost
Category Year pax delay pax delay pax delay Itineraries on other delay delay cost Pax. cost Increase

min min cost ($) (Num. pax.) airline($) min ($) ($)

Small 2014 (min.) 1,166,678 2,975 3,243 13 19,500 1,169,653 1,445,555 2,869,141 –
2014 (avg.) 1,207,059 17,567 19,148 125 187,286 1,224,626 1,584,471 3,159,665 –
2014 (max.) 1,251,650 37,208 40,557 186 279,000 1,288,858 1,707,860 3,395,039 –
2050 (min.) 1,272,697 23,456 25,567 243 364,500 1,296,153 1,938,199 3,861,888 18.0%
2050 (avg.) 1,320,304 41,354 45,076 367 551,143 1,361,658 2,218,665 4,179,119 40.0%
2050 (max.) 1,320,304 70,705 77,068 586 879,000 1,425,674 2,641,776 4,824,739 54.7%

Medium 2014 (min.) 1,198,841 19,591 21,354 123 184,500 1,218,432 1,763,589 3,396,516 –
2014 (avg.) 1,270,637 33,675 36,706 225 336,857 1,304,312 1,856,557 3,626,597 –
2014 (max.) 1,290,223 57,932 63,146 347 520,500 1,348,155 2,008,551 3,911,420 –
2050 (min.) 1,343,724 24,865 27,103 431 646,500 1,368,589 2,408,309 4,452,524 19.9%
2050 (avg.) 1,371,804 66,878 72,897 498 746,571 1,438,682 2,557,021 4,695,681 38.3%
2050 (max.) 1,388,388 107,613 117,298 623 934,500 1,496,001 2,767,235 4,772,242 56.6%

Large 2014 (min.) 1,304,719 27,125 29,566 200 300,000 1,331,844 1,908,904 3,835,723 –
2014 (avg.) 1,304,719 42,817 46,670 315 472,750 1,417,786 2,154,203 4,291,283 –
2014 (max.) 1,490,596 83,497 91,012 454 681,000 1,574,093 2,212,310 4,660,934 –
2050 (min.) 1,369,249 52,730 57,476 419 628,500 1,421,979 2,585,936 4,753,895 22.1%
2050 (avg.) 1,465,541 75,762 82,580 581 871,500 1,541,303 2,810,120 5,213,116 30.5%
2050 (max.) 1,465,541 110,374 120,308 799 1,198,500 1,699,154 2,959,257 5,395,767 35.5%

many more passengers need to be re-booked on new itineraries or with other airlines, the

costs imposed on the airline increase non-linearly (compared to the non-disrupted but delayed

itineraries). This indicates significant deterioration in recoverability, and consequently the

101



Table 3.20: Comparison of daily passenger-related costs for recovery, 2014 versus 2050, under
“Severe” climate change case, by disruption category.

Disruption Undisrupted Disrupted Disrupted Virtual Reacc. cost Total pax Total pax Aircraft plus Cost
Category Year pax delay pax delay pax delay Itineraries on other delay delay cost Pax. cost Increase

min min cost ($) (Num. pax.) airline($) min ($) ($)

Small 2014 (min.) 1,166,678 2,975 3,243 13 19,500 1,169,653 1,445,555 2,869,141 –
2014 (avg.) 1,207,059 17,567 19,148 125 187,286 1,224,626 1,584,471 3,159,665 –
2014 (max.) 1,251,650 37,208 40,557 186 279,000 1,288,858 1,707,860 3,395,039 –
2050 (min.) 1,295,002 33,407 36,414 292 438,000 1,328,409 2,064,766 3,859,102 38.0%
2050 (avg.) 1,333,123 47,676 51,967 427 641,143 1,380,798 2,360,785 4,314,466 49.4%
2050 (max.) 1,374,557 64,558 70,368 535 802,500 1,439,115 2,493,383 4,648,698 74.3%

Medium 2014 (min.) 1,198,841 19,591 21,354 123 184,500 1,218,432 1,763,589 3,396,516 –
2014 (avg.) 1,270,637 33,675 36,706 225 336,857 1,304,312 1,856,557 3,626,597 –
2014 (max.) 1,290,223 57,932 63,146 347 520,500 1,348,155 2,008,551 3,911,420 –
2050 (min.) 1,328,160 49,902 54,393 398 597,000 1,378,062 2,476,275 4,476,397 32.8%
2050 (avg.) 1,407,367 63,676 69,407 558 837,000 1,471,043 2,699,694 4,869,655 45.7%
2050 (max.) 1,450,971 78,479 85,542 692 1,038,000 1,529,450 2,838,542 5,192,792 56.8%

Large 2014 (min.) 1,304,719 27,125 29,566 200 300,000 1,331,844 1,908,904 3,835,723 –
2014 (avg.) 1,374,969 42,817 46,670 315 472,750 1,417,786 2,154,203 4,291,283 –
2014 (max.) 1,490,596 83,497 91,012 454 681,000 1,574,093 2,212,310 4,660,934 –
2050 (min.) 1,366,770 40,273 43,898 397 595,500 1,407,043 2,410,458 4,678,194 18.1%
2050 (avg.) 1,466,321 72,993 79,563 591 886,250 1,539,314 2,872,102 5,373,199 33.1%
2050 (max.) 1,581,445 110,192 120,109 867 1,300,500 1,691,637 3,571,389 6,279,454 52.7%

loss of resilience in the airline’s network.

We also observe that recovery costs for passengers incurred by the airline increases

significantly more, up to 74.3%; as compared to the recovery costs for aircraft, up to 39%.

We observe only few number of unbalanced aircraft ending up at a station other than the

original one. This is due to the high penalty cost of such endings that can potentially result

in future operational and maintenance costs. Hence, the cost-minimizing decisions involve

canceling flights than incurring the costs of unbalanced aircraft.

Figures 3.6 shows that the recovery cost increases over all climate change cases

projected for the year 2050 vs.the base year 2014. The largest cost increase is observed

when the severe climate change case is superimposed on the largest disruption scenarios.

Specifically, we observe that the difference in cost increase is mainly driven by the magnitude

of disruptions. We also observe that, under all disruption sizes, the severe climate change

cases have a significantly negative impact on the cost increase on average.
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Figure 3.6: Total recovery cost comparison: 2014 base year vs. 2050, for 3 climate change
cases with 3 disruption scenarios

3.5.3 The evolution of recovery costs from 2035 to 2050

We find that the significant increase in recovery costs from 2035 to 2050 is best

observed when the effect of the climate-change-induced capacity reductions dominates the

size of the original disruption (induced by the airline or airport). In other words, the costs

of aircraft recovery increase most significantly for small disruptions under the severe climate

change cases, over all disruptions sizes under the mild, medium or severe climate change

case. Moreover, the cost increase is mostly driven by the passenger recovery from the de-

layed itineraries disrupted due to cancellations or misconnections, number of passengers that

need to be accommodated other airlines. For example, comparing the results for the small

disruptions under the severe climate change case in 2035 (Table 3.14) vs 2050 (Table 3.20),

we observe that passenger-related recovery costs to the airline increases significantly more,

by 15.8% from 33.6% to 49.4%, as compared to the aircraft-recovery related costs, by 5.1%,

from 18.9% to 24% . This increase in aircraft recovery costs is driven by the decrease in

capacities due to increasing temperatures, which result in increased flight cancellations and
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swaps and increased flight departure delays and arrival delays.

We find that for medium or large sized disruptions under severe climate change

cases the average percentage increase in combined aircraft and passenger-related delay costs,

as a percentage of existing costs, increase although the average aircraft-recovery related

costs alone decrease from 2035 to 2050. That indicates that the significant increase in

passenger-related recovery costs from 2035 to 2050 solely contributes to the overall increase

in combined aircraft and passenger-related delay costs. Specifically, in some medium or

large sized disruption case, the number of swaps and cancellations decrease from 2035 to

2050 while the fuel burn costs increase from 2035 to 2050. The combined effect from each

of these mechanisms results in comparable overall costs in aircraft-recovery from 2035 to

2050. On the other hand, from a passenger perspective, the primary driver in passenger-

related cost increases is the missed connections, leading re-accommodation on the same or

other airlines, which occurs in all sizes of the disruption cases in any climate change case.

This indicates that the cost increase in passenger-related metric is mainly from an increased

number of passengers re-accommodated to other airlines, comprising up to 90% of the total

cost, due to the capacity drops due to increased temperature and/or serious airline-related

disruptions.

3.6 Discussion and Conclusions

In this chapter, we studied the impact of climate change on the ability of airlines

to recover from everyday disruptions. Increasing temperatures caused by climate change,

impose constraints on aircrafts’ ability to generate enough lift to take off as planned. This

is a function of the specific airport, temperatures and pressure, the runway length being

used and the type of aircraft. Smaller aircraft are disproportionately affected compared to

larger aircraft. Because sufficient lift cannot be generated at high temperatures, aircraft

payloads and capacities will decrease significantly. Depending on airline policies, aircraft
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whose capacity drops below a threshold load factor can also be grounded and operated only

when temperatures have dropped later in the day.

In this work, we compare the performance of a large hub-and-spoke airline’s op-

erations and recoverability in the years 2014 and 2035 as well as 2050 assuming similar

disruption types and load factors and aircraft mix. We construct a modeling and algorith-

mic framework that allows for simultaneous aircraft and passenger recovery while explicitly

modeling payload-range-related capacity changes at various (increased) temperatures. We

study the 2035 and 2050 settings, which are the current trend temperatures have been fol-

lowing, for climate change cases that are representative of mild, medium and severe cases.

We study these settings on traffic and disruptions for the summer month of July for both

2035 and 2050. Our experimental results indicate that daily total costs on airline networks

increase on average from 2014 to 2035, by 25% to 55.9% and from 2014 to 2050, 25% to

49.3%. Over individual disruption instances, we find that the costs of recovery increase by

11.2% to 178.4% in 2035 and by 10.6% to 156 % in 2050.

We observe that the increase in the passenger recovery costs comprises a signifi-

cantly higher proportion of the total cost increase, as compared to the aircraft recovery

component. In our experiments, passenger-related cost increases for the airline are seen to

increase by 33.1% to 49.4% on average for the severe climate change case in 2050, driven

primarily by passengers whose connections are missed or flights are canceled, necessitating

re-accommodation on the same or other airlines, and secondarily by passengers whose origi-

nally booked itineraries are delayed at the destination. Specifically, one of the main reasons

for the increase in operating costs can be attributed to re-accommodating costs for passen-

gers. These re-accommodations are mostly because of capacity drops and cancellations due

to disruptions caused by global warming.

Our experimental results show two points. First, the higher the disruptions, the

higher the increase in cost. Second, we also observed that a mild climate change case can have

a larger cost increase than a medium climate change case. This can be explained as follows:
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First, the dominant factor in cost increase in terms of the aircraft component is the increase

in cancellations. This cancellations lead to the passengers to be re-accommodated to other

airline, which comprises the dominant cost factor in the passenger recovery cost. Second,

the significance of airline-related disruptions directly triggers these two component; that is,

the more disruptions, the more number of cancellations and the more it incurs the number of

passengers re-accommodated to other airlines. On the other hand, the climate change case

(if it’s not in conjunction with airline disruptions) is related to the capacity drops, rather

than directly related to the cost increase. Under small disruptions, these climate change

effects would be solely responsible for the capacity drops (even to zero), as there will be

fewer cancellations (that usually incur the significant cost increase in re-accommodating to

other airlines in addition to the cancellation cost itself).

Overall, these results indicate that an airline’s network properties such as recover-

ability and resilience, which impact its ability to perform as a service network for passengers,

are deteriorated to a great extent through the impacts of climate change-caused warming in

conjunction with the airline-related disruptions. While these are mostly observed during the

months with higher temperatures, note that those months also correspond to higher traffic.

Our observations indicate that airlines need to systematically and consistently begin

to account for the impacts of climate change, both through re-design and consolidation of

network operations in terms of schedules, aircraft routes and operations; as well as design

aircraft that are more resistant to the impacts of climate change, or use larger aircraft

that accommodate consolidated demands with lower frequencies. The timeline between our

baseline (2014) and the projected years (2050) also indicate that the next 30 years are crucial

in focusing not only on the impacts on aviation on climate change, but also the impacts of

climate change on aviation operations and the worldwide economy.
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Chapter 4

CONCLUSION

As discussed in Chapter 1, operating delays and network wide disruptions prop-

agated across airline system result in billions of dollars of lost revenue for airlines. These

disruptions can be caused by various reasons such as unfavorable weather, airport congestion

due to demand-capacity imbalance, and contingent disruptions such as aircraft maintenance,

crew sickness, and passenger boarding delay. In this thesis, we first focused on airline’s short-

term disruption management using a joint reactive and proactive optimization approach that

leverages future anticipated disruptions. We design an efficient solution procedure that can

help airlines enhance recovery decisions in response to disruptions and reduce expected dis-

ruption costs. We present extensive experimental results with real world data to demonstrate

the effectiveness of the proposed approaches. Next, we are interested in understanding an

airline’s long-term disruption management costs, in light of the impact of climate change

on airline operations. We model the disruptions due to climate change on airline operations

by putting restrictions on flight take-off weights and payloads, based on the temperature

and airport. We demonstrate the effects of climate change on aviation through extensive

experiments using data from a major hub-and-spoke airline. We aim for these insights to

motivate airlines in designing better fleeting and scheduling practices.

In Chapter 2, we discuss a jointly reactive and proactive approach to airline dis-
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ruption management. This approach leverages partial and probabilistic forecasts of future

disruptions in optimizing disruption recovery decisions. Specifically, these forecasts arise

from predictions of airport congestion-caused delays at the hub airports (based on Jacquillat

and Odoni (2015a)), and hence the forecasts are partial and probabilistic. We formulate

a Stochastic Reactive and Proactive Disruption Management (SRPDM) model to optimize

network-wide airline disruption recovery under this model of airport queuing stochasticity.

SRPDM is formulated as a stochastic integer program using a probabilistic time-space net-

work representation. Because capturing future stochasticity into the model increases the

computational burden significantly, we design an efficient solution algorithm based on a

look-ahead approximation procedure. This enables the model’s implementation at any de-

cision point in reasonable computational times, consistent with earlier recovery models and

with practical airline requirements. Experimental results show that our jointly reactive and

proactive approach to disruption management can significantly enhance recovery decisions,

as compared to purely reactive approaches. When compared to myopic baseline approach

(that uses realized disruptions alone), it shows that leveraging even partial and probabilistic

estimates of future disruptions can reduce expected recovery costs by 1-2%. These bene-

fits are mainly driven by the deliberate introduction of departure holds to reduce expected

fuel costs, fight cancellations and aircraft swaps. Highly concentrated flight networks, for

example at hub airports, can benefit further from our scenario-based look-ahead approach

especially where hub airports are highly congested. Further cost savings could potentially be

achieved by real-time sharing of operating conditions, congestion, and delay forecasts, which

could reduce system-wide uncertainty on future operations, thus permitting more effective

recovery.

While Chapter 2 focused on aircraft recovery problem under current operating condi-

tions, Chapter 3 studied the impact of climate change on the ability of airlines to recover from

everyday disruptions, explicitly considering both aircraft and passenger recoveries. Airline

operations are sensitive to weather and thus directly affected by climate change. Increasing

108



temperatures caused by climate change impose constraints on aircraft’s ability to generate

enough lift to take off as planned. These result in reduced aircraft payload capacity and

causes flight cancellations and passenger itinerary re-accommodations. In this work, we

evaluated the impact of climate change by comparing the recovery cost associated with air-

line’s operations and recoverability in the years 2014, 2035 and 2050. We compared the costs

across these three years under worst, medium, and mild climate change cases. Comparing

our results for 2035 and 2050 against the 2014 baseline, we find that the higher the disrup-

tions due to climate change, the higher the increase in cost. Experimental results indicate

that daily total costs of airline networks increase on average from 2014 to 2035, by 25% to

55.9%; and from 2014 to 2050, by 25% to 49.3%. Over individual disruption instances, we

find that the costs of recovery increase by 11.2% to 178.4% in 2035 and by 10.6% to 156% in

2050. Passenger-related cost increases for the airline are seen in our experiments to increase

by 29 % to 38.4% on average from 2014 to 2035, and 33.1% to 49.4% on average for the

worst climate change case from 2014 to 2050. Although the impacts of climate change can-

not be avoided, airlines can try to mitigate the impact. Airlines can save these unnecessary

extra costs associated with passenger re-accommodations and cancellations by provisioning

for itinerary re-routing and reductions in aircraft capacity as a result of global warming.
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support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio.help/pdf/usrcplex.pdf,

2015.

ICAO Report. 2016 Environmental Report (Aviation and Climate Change). https://www.icao.

int/environmental-protection/Documents/ICAO_EnvironmentalReport2016.pdf, 2016.

International Air Transport Association. Jet Fuel Price Development. Technical report, 2010.

IPCC Report. Climate Change 2014 Synthesis Report Summary for Policymakers. https://www.

ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf, 2014.

A. Jacquillat and A. Odoni. An Integrated Scheduling and Operations Approach to Airport Con-

gestion Mitigation. Operations Research, 63(6):1390–1410, 2015a.

A. Jacquillat and A. Odoni. Endogenous Control of Arrival and Departure Service Rates in Dynamic

and Stochastic Queuing Models with Application at JFK and EWR. Transportation Research

Part E: Logistics and Transportation Review, 73(1):133–151, 2015b.

Alexandre Jacquillat and Amedeo Odoni. A New Airport Demand Management Approach Based

on Targeted Scheduling Interventions. Journal of Transport Economics and Policy, 51(2):

115–138, 2017.

Alexandre Jacquillat, Amedeo R Odoni, and Mort D Webster. Dynamic control of runway con-

figurations and of arrival and departure service rates at JFK airport under stochastic queue

conditions. Transportation Science, 51(1):155–176, 2016.

N. Jafari and S. Zegordi. Simultaneous Recovery Model for Aircraft and Passengers. Journal of

the Franklin Institute, 348(7):1638–1655, 2011.

Niloofar Jafari and Seyed Hessameddin Zegordi. The airline perturbation problem: considering

disrupted passengers. Transportation Planning and Technology, 33(2):203–220, 2010.

Ahmad Jarrah, Gang Yu, Nirup Krishnamurthy, and Ananda Rakshit. A Decision Support Frame-

work for Airline Flight Cancellations and Delays. Transportation Science, 27(3):266–280, 1993.

113

https://doi.org/10.1016/j.tre.2016.01.002
https://doi.org/10.1016/j.tre.2016.01.002
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.icao.int/environmental-protection/Documents/ICAO_EnvironmentalReport2016.pdf
https://www.icao.int/environmental-protection/Documents/ICAO_EnvironmentalReport2016.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf


Darryl Jenkins and Joshua Marks. Consumer Regulation and Taxation of the U.S. Airline Industry:

Estimating the Burden for Airlines and the Local Impact. Technical report, 2011.

N. Jozefowiez, C. Mancel, and F. Mora-Camino. A heuristic approach based on shortest path

problems for integrated flight, aircraft, and passenger rescheduling under disruptions. Journal

of the Operational Research Society, 64:384–395, 2013.

Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample average approxi-

mation method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):

479–502, 2002.

S. Lan, J. Clarke, and C. Barnhart. Planning for Robust Airline Operations: Optimizing Aircraft

Routings and Flight Departure Times to Minimize Passenger Disruptions. Transportation

Science, 40(1):15–28, 2006a.

Shan Lan, John-Paul Clarke, and Cynthia Barnhart. Planning for Robust Airline Operations:

Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions.

Transportation Science, 40(1):15–28, 2006b.

Jane Lee, Lavanya Marla, and Alexandre Jacquillat. Dynamic disruption management in airline

networks under airport operating uncertainty. Transportation Science, 2020.

L. Lettovsky. Airline operations recovery: an optimization approach. PhD thesis, Georgia Institute

of Technology, 1997.
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