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Preface

This PhD study is part of the ENERPLAN project funded by The Danish Council for Strategic
Research. ENERPLAN is an abbreviation of Energy Efficient Transport Planning and aims at
developing green, logistic decision support tools to assist in reducing energy consumption, thereby
decreasing the impact of container shipping on the environment. ENERPLAN is a collaboration
between Maersk Line, DTU Management Engineering and the IT University of Copenhagen (ITU).
The PhD study was performed at DTU Management Engineering, Technical University of Den-

mark, from October 2009 to October 2012. I have been privileged to work with Maersk Line and
their optimization group, who have readily assisted me with data and domain knowledge of the
liner shipping business. Professor David Pisinger supervised the study, Ph.D. and Optimization
Manager at Maersk Line Mikkel M. Sigurd acted as a second supervisor located at Maersk Line.
Associate Professor Rune Møller Jensen acted as supervisor at the IT University of Copenhagen.
The thesis consist of two overviews ( Chapter 1 and 7), five research papers (Chapter 2, 3, 4,

5 and 6) and a conclusion (Chapter 8). The research papers are all co-authored. Each research
paper is relatively self-contained and has an individual bibliography.
The PhD thesis is divided into four parts. The first part contains background for the project

and an introduction to the liner shipping network design problem. The second part of the thesis
concerns tangible operational problems related to network design. The third part is concerned
with mathematical modelling of the liner shipping network design problem and the final part
contains a conclusion and directions for future work.
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Joël has been available for discussions on the implementation itself, for which I am very grateful.
Thanks to Line blander Reinhardt, Jørgen Haahr and Bo V̊aben for proofreading and commenting
on parts of this thesis.
I would like to thank my beloved husband, who is always lovingly supportive and has assisted

me with everything from daily practicalities, to producing scripts and keeping machines up and
running at all times, and to my daughters, Silke and Rose, for simply existing and loving me
even at my very worst. I am so grateful for my dear Mother, who took care of my girls and the
household during my research stay in Montreal and many other times, when the work load has
been high.
Thanks to Mirjam Godskesen for excellent PhD coaching, to Ann Karina Henriksen and Espen

Højsg̊ard for sharing thoughts on the process of being a PhD student. To Elsebeth and Rene
Dangaard Brouer for their support and love. Thank you!



Contents

I Introduction 6

1 Introduction and thesis motivation 8
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Contributing to basic research on the LSNDP . . . . . . . . . . . . . . . . . 10
1.2.2 Decision support for network design in the liner shipping industry . . . . . 11
1.2.3 PhD Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 A base integer programming model and benchmark suite for liner shipping
network design 18
2.1 A benchmark suite for research on liner shipping network design problems . . . . . 19
2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Domain of the liner shipping network design problem . . . . . . . . . . . . . . . . . 24

2.4.1 The liner shipping business . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Assets and Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.4 Demand and Customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 The benchmark suite for LSNDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Data objects and data generation . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Port List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.3 Fleet List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.4 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.5 Cargo Demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.6 Instance range of the benchmark suite . . . . . . . . . . . . . . . . . . . . . 38

2.6 Reference Model for the LSNDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.1 MIP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.2 Metaheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.3 Route Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.8 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A Figures of remaining instances 62

II Topics for optimization in liner shipping 66

3 Liner Shipping Cargo Allocation with Repositioning of Empty Containers 68
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6



7 Contents

3.3 Network Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 Arc Flow Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 Path Flow Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Path flow reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.1 Arc flow and path flow compared . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6.2 Increasing |A| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6.3 Solution of large instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6.4 Quality of integer solutions and speed of rounding heuristic . . . . . . . . . 83

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 The Vessel Schedule Recovery Problem (VSRP) - a MIP model for handling
disruptions in liner shipping 90
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 The Liner Shipping Business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 From airline disruption to liner shipping disruption . . . . . . . . . . . . . . 94
4.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 The Vessel Schedule Recovery Problem - (VSRP) . . . . . . . . . . . . . . . . . . . 97

4.4.1 Graph topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.2 Transportation scenarios - the impact of a recovery on the affected cargo . 100
4.4.3 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.4 Model extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.1 Real-life Cases from Maersk Line . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.2 Case results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.3 Case 1 (A Delayed Vessel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.4 Case 2 (A Port Closure) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.5 Case 3 (A Berth Prioritization) . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.6 Case 4 (Expected Congestion) . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.7 Auto generated test instances . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 A matheuristic for the Liner Shipping Network Design Problem 112
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Literature on the LSNDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3 A matheuristic for the liner shipping network design problem . . . . . . . . . . . . 116

5.3.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 Algorithmic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.3 Generating an initial solution using a greedy construction heuristic . . . . . 117
5.3.4 Improvement heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.5 MIP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.6 Reinsertion neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.7 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6 Performance of delta column generator and MIP neighborhood . . . . . . . . . . . 127
5.7 Comparing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.8 Algorithmic performance and results for LINER-LIB 2012 . . . . . . . . . . . . . . 130

5.8.1 Alternative method for generating new services . . . . . . . . . . . . . . . . 130
5.9 The matheuristic as a decision support tool . . . . . . . . . . . . . . . . . . . . . . 132
5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



Contents 8

III Modelling the Liner shipping Network Design Problem 136

6 A Path Based Model for a Green Liner Shipping Network Design Problem 138
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.1 Modelling the Liner Shipping Network Design Problem (LSNDP) . . . . . . 140
6.1.2 Demand Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Service Based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2.1 Pricing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.2 Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2.4 Relaxation of pricing problem . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 Preliminary computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Models of liner shipping network design 154
7.1 Scope of LSNDP models in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2 Relation to capacitated network design problems . . . . . . . . . . . . . . . . . . . 155
7.3 Strengthening formulations of LSNDP . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.1 Cutting planes for capacitated network design related to LSNDP . . . . . . 157
7.3.2 Variable aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.3.3 Level of service requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.3.4 Empty container repositioning through load balancing . . . . . . . . . . . . 158

7.4 Path-based decomposition of the LSNDP . . . . . . . . . . . . . . . . . . . . . . . 158
7.4.1 Path based model decomposing by vessel class . . . . . . . . . . . . . . . . 159
7.4.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.4.3 Dantzig-Wolfe decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.4.4 Pricing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4.5 Solving the pricing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.5 Conclusions on modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

IV Conclusion 170

8 Conclusion 172

V Appendix 176

B A greedy construction heuristic for the Liner Service Network Design Problem178



9 Contents



1 Contents



Abstract

This thesis concerns design of liner shipping networks using operations research to optimize liner
shipping networks at the strategic, tactical and operational level. Liner shipping networks are
often compared to public transit networks as they consist of a set of scheduled sailings connecting
at main ports to consolidate freight on large vessels. The liner shipping network is constrained by
the composition and size of the vessel fleet and the objective is to maximise the profit of freighting
containers between origins and destinations by a high utilization of the capacity of the fleet.
The research field of liner shipping network design is relatively young and many open research

questions exists. Among others, a unified and rich mathematical model formulating the main
characteristics of the business domain has not been clearly described and exact methods for such
mathematical models are still not able to solve significant instances of this complex optimization
problem.
In this thesis two research directions are explored within the field: The first research direc-

tion contributes to basic research on the liner shipping network design problem by describing the
domain seen from the perspective of a global liner shipping carrier, present public realistic data
instances of the problem to perform computational experiments, and discuss alternative mathe-
matical models of the problem. A domain description, literature survey and a base integer model
of the problem is presented. It is accompanied by the description of a public benchmark suite
of data instances and a heuristic column generation algorithm to present the first results for this
benchmark suite.
The thesis contains a discussion of the complexity of the liner shipping network design problem in

relation to mathematical models. The severe complexity of mathematical models of liner shipping
network design is discussed in relation to research on the related classical multicommodity capac-
itated network design (MCND) and Pick-up-and-Delivery-Vehicle-Routing-Problem (PDVRP). It
contains a discussion of applying state-of-the-art exact algorithms using Dantzig-Wolfe decompo-
sition and presents ideas on the design of Branch-and-Cut/Branch-and-Price algorithms.
The second research direction is to identify and analyse tractable problems at the tactical and

operational level of liner shipping network design. A mathematical model for revenue manage-
ment of cargo flows considering the significant repositioning of empty containers (Cargo Allocation
Problem with Empty Repositioning ) is presented. The model is a multicommodity flow problem
with inter-balancing constraints to account for empty repositioning. An arc-flow formulation is
decomposed using the Dantzig-Wolfe principle. A linear relaxation of the path flow model is solved
using delayed column generation applying a shortest path algorithm to solve the pricing problem.
A feasible integer solution is calculated by rounding the fractional solution and adjusting flow
balance constraints with leased containers. Computational results are reported for seven instances
based on real-life shipping networks. Solving the relaxed linear path flow model with a column
generation algorithm outperforms solving the relaxed linear arc flow model with the CPLEX bar-
rier solver even for very small instances. The proposed algorithm is able to solve instances with
234 ports, 16278 demands over 9 time periods in 34 minutes. The integer solutions found by
rounding down are computed in less than 5 seconds and the gap is within 0.01% from the upper
bound of the linear relaxation.
At the operational level disruption management is of great concern to liner shippers as 70-80%

of vessel round trips experience delays in at least one port. A novel mathematical model for
handling a disruption using a series of recovery techniques is presented as the The Vessel Schedule

2
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Recovery Problem. The model has been applied to four real life cases from Maersk Line, where the
solutions found using the MIP model are comparable or superior to the realised recovery actions
performed at Maersk Line. The cases are solved using a commercial solver CPLEX, and solutions
are obtained within 10 seconds.
Lastly, we present a matheuristic, which may serve both research directions. The matheuristic

aims at solving the liner shipping network design problem in its entirety using a construction
heuristic. The heuristic aims at designing a neighbourhood and a local search method, which
scales well to realistic sized networks. The heuristic is based upon improving the constructed
solution by applying an IP model as a large scale neighbourhood to each service in the network.
The IP is based on estimating the benefit of inserting and removing port calls within a predefined
neighborhood of candidate ports. Furthermore, the heuristic applies delayed column generation to
evaluate the resulting network using a warm start method denoted delta column generation. The
IP neighborhood as well as the delta column generation scales well to larger instances and may
hence be an inspiration to future method development, but the quality of the solutions may be
improved upon by combining it with more advanced local search methods to remove and introduce
services in the network. The matheuristic may also be applied at a tactical level, as an existing
network may be used as input and improved upon by the heuristic. It is also possible to optimize
upon a predefined subset of services, while maintaining a full view of the cargo flows in the network.
This could prove a valuable decisions support tool for planners when the network is incrementally
adjusted to new market situations and to evaluate the consequence of strategic decisions.
The thesis contributes to the understanding of the domain for the Liner Shipping Network Design

Problem. Three different mathematical models for the problem are presented. Two heuristics to
solve the first model has been implemented and computational results have been presented for
small, medium and large scale instances. The thesis explores two planning problems related
to liner shipping network design. The Cargo Allocation Problem with Empty Repositioning is
the first model to simultaneously consider cargo allocation considering both ordinary cargo and
empty repositioning of containers. Computational results confirm tractability of solving networks
of realistic size in reasonable time with this model. We also present a novel model to handle
disruptions in liner shipping, The Vessel Schedule Recovery Problem. Computational results
for four common disruption scenarios from Maersk Line show comparable or improved results
compared to the realised recovery actions.



Resumé

Denne afhandling omhandler design og optimering af liner shipping netværk for container skibe
ved anvendelse af operations analyse. Et liner shipping netværk er et rutenetværk, der sejles
efter en fastlagt sejlplan. Liner shipping netværk sammenlignes ofte med offentlige transport
netværk s̊asom busser, metro og tog. Netværket er begrænset af det tilgængelige antal skibe og
det forsøges at optimere p̊a netværkets ruter som helhed for at optimere kapacitets udnyttelsen
p̊a skibene samtidig med indtjeningen fra fragt af containere. Der er relativt f̊a studier af liner
shipping netværk indenfor operations analyse og problemet er særdeles kompleks set i forhold til
andre transport optimerings problemer.
Forskningsfeltet inden for liner shipping netværk design er relativt ubeskrevet og der er til

stadighed mange åbne spørgsmål. Blandt andet beskrivelsen af en samlet rig matematisk model,
der formulerer de vigtigste karakteristika for domænet. P̊a nuværende tidspunkt er optimale
løsnings metoder ikke i stand til at løse større instanser af dette komplekse optimerings problem.
I denne afhandling udforskes to forskningsretninger: Den første forsknings retning bidrager

til grundforskning indenfor liner shipping netværk design problemet ved at beskrive domænet
set fra et globalt rederis perspektiv, præsentere offentlige realistiske data instanser til at udføre
beregningsmæssige eksperimenter og diskutere alternative matematiske modeller af problemet.
En domæne beskrivelse, litteraturoversigt og en heltals model af problemet præsenteres. Det er
ledsaget af en beskrivelse af en offentlig benchmark suite af data instanser og en heuristisk kolonne
genererings algoritme, der præsenterer de første resultater for benchmark suiten.
Afhandlingen indeholder en diskussion af kompleksiteten af liner shipping netværk design prob-

lemet set i relation til matematisk modeller. De matematiske modeller for liner shipping netværk
design relateres til forskningen indenfor klassiske Multicommodity Capacitated Network Design
(MCND) og Pick-up-and-Delivery-Vehicle-Routing-Problem (PDVRP). Den indeholder en diskus-
sion af anvendelsen af eksakte algoritmer ved hjælp af Dantzig-Wolfe dekomposition og design af
Branch-and-Cut/Branch-and-Price algoritmer.
Den anden forsknings retning er at identificere og analysere h̊andterbare optimerings problemer

p̊a det taktiske og operationelle niveau af liner shipping netværk design. I afhandlingen præsen-
teres en matematisk model for revenue management af de transportede containere i netværket
tager højde for den betydelige repositionering af tomme containere (Cargo Allocation Problem
with Empty Repositionering). Modellen er en multicommodity flow formulering med balancerings
begrænsninger, der tager højde for repositionering af tomme containere. En arc-flow formuler-
ing dekomponeres ved hjælp af Dantzig-Wolfe princippet til en path-flow formulering. En lineær
relaksering af path-flow modellen løses med kolonne generering og en korteste vej algoritme til
at løse pricing problemet. En heltals løsning beregnes ved at afrunde den fraktionelle løsning og
justere for de tomme containere. Der rapporteres eksperimenter for syv instanser baseret p̊a real-
istiske liner shipping netværk. Den relakserede path-flow formulering løst med kolonne generering
er væsentligt hurtigere end at løse den relakserede arc-flow model med CPLEX barrier Solver
selv for de mindre data instanser. Kolonne genererings algoritmen er i stand til at løse instanser
med 234 havne, 16278 varer over 9 tidsperioder p̊a 34 minutter. Heltallige løsninger baseret p̊a
afrunding beregnes p̊a mindre end 5 sekunder og forskellen er under 0, 01% fra den øvre grænse
for den lineære relaksering.
P̊a det operationelle niveau er h̊andtering af forsinkelser af stor bekymring for rederier, idet 70 -

80 % af alle services oplever forsinkelser i mindst én havn. En ny matematisk model for h̊andtering

4
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af forsinkelser præsenteres som The Vessel Schedule Recovery Problem. Modellen er anvendt p̊a fire
cases fra Maersk Line, hvor de løsninger, der findes ved hjælp af MIP-modellen er sammenlignelige
eller bedre end de realiserede løsninger implementeret af Maersk Line. Instanserne løses ved hjælp
af en kommerciel løser CPLEX, og løsningerne findes indenfor 10 sekunder.
Endelig præsenterer vi en matheuristik, som understøtter begge forsknings retninger. Matheuris-

tikken har til formål at løse liner shipping netværk design problemet i sin helhed ved hjælp af en
konstruktions heuristisk. Heuristikken har til formål at designe et nabolag og en lokal søgning,
som skalerer godt til realistiske og mellemstore netværk. Heuristikken er baseret p̊a forbedring af
en løsning ved anvendelse af et large scale nabolag med en IP model for hver service i netværket.
IP modellen er baseret p̊a en estimeret gevinst for indsættelse og fjernelse af havnekald inden for et
fastlagt nabolag af kandidat havne. Endvidere anvender heuristikken forsinket kolonne generering
til at vurdere det resulterende netværk ved hjælp af en warm start metode kaldet delta kolonne
generering. IP nabolaget s̊avel som delta kolonne genereringen skalerer godt til større instanser og
kan derfor være en inspiration for design af fremtidige heuristikker, men kvaliteten af løsningerne
kan forbedres ved at kombinere det med mere avancerede lokal søgningsmetoder til at justere
antallet af services i netværket. Matheuristikken kan ogs̊a anvendes p̊a det taktiske niveau, hvor
et eksisterende netværk anvendes som input og forbedres af heuristikken. Det er ogs̊a muligt at
optimere p̊a en foruddefineret delmængde af services, hvor der regnes p̊a det komplette netværks
transport af containere. Dette kunne vise sig som et værdifuldt beslutnings støtte for planlæg-
gere, n̊ar netværket trinvist justeres til nye markedsforhold eller til at vurdere konsekvensen af
strategiske beslutninger.
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Chapter 1

Introduction and thesis motivation

Liner shipping is the backbone of world trade and many of our everyday products have at some
point been transported on the global network of liner shipping companies. Liner shipping networks
are comparable to urban transit networks freighting general cargo as opposed to passengers. As in
urban transit networks the network is a composition of published schedules for ports of call, where
cargo is consolidated onto larger vessels at central ports. The larger vessels connect a number
of central ports not unlike urban metro systems via a designated service. At the central ports a
number of services typically deploying smaller vessels distribute the cargo onto remaining ports
similar to urban bus services. Seen from the perspective of operations research and mathematical
models it can be modelled as a variant of the Multicommodity Capacitated Network Design
(Gendron et al., 1999) with design balance requirements and cargo transshipments.

Liner shipping companies are an integrated part of the supply chains of international business
and according to the World shipping council 60% of goods by value are transported by container
ships (The World Shipping Council (2009)). This means that liner shipping network design affects
not only the liner shipping companies, but the entire value chain from producer to consumer.
Globalisation is part of the reason why liner shipping has been a growth industry for several
decades in terms of the total volume carried by container ships. At the same time liner shipping
is a driver of globalization because it provides integrated cost efficient supply chains. The increase
in transportation of goods leads to increased CO2 emissions and liner shipping contributes with
2,7 % of the worlds total CO2 emission according to The World Shipping Council (2010).

The effect of increased emissions on the environment is of both political and social concern.
The concept of green logistics as emphasized in Sbihi and Eglese (2010) state that optimizing
capacity utilization and the total distance of existing transportation networks will in itself have
a positive effect on the environment through reduced emissions. The liner shipping industry
has great potential for applying the concept of green logistics because they are a large global
transportation industry, where fuel consumption constitutes a significant portion of their total
operational cost and their scale means that even marginal improvements in network efficiency
may produce substantial reductions in fuel consumption. Using operations research to create
cost efficient liner shipping networks with increased capacity utilization and the ability to reduce
fuel consumption may help mitigate the negative effect of globalization on the environment. The
impact of liner shipping on the global supply chain and the possibility to reduce global CO2

emissions make the Liner Shipping Network Design Problem (hereafter LSNDP) an important
optimization problem. This thesis is concerned with operations research within liner shipping
aiming at designing a cost efficient global transportation network and minimizing CO2 emissions
of liner shipping through better transportation planning and increased utilization of capacity.

8
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1.1 Motivation

This thesis is part of ENERPLAN (Energy Efficient Transport Planning). ENERPLAN is funded
by The Danish Council for Strategic Research aiming at reducing the energy consumption of
liner shipping through better transportation planning. The potential for improved efficiency of
liner shipping networks is recognised by major stakeholders in the industry and the research
communities, who have committed to research within areas related to LSNDP. The classification
scheme for routing and scheduling problems within liner shipping by Kjeldsen (2011) counts 24
journal papers on the subject from the period 1969-2010, whereof 16 contributions are dated after
the millennium. Since 2010 several references support an increased interest into various planning
problems related to liner shipping network design e.g. Alvarez (2011); Brouer et al. (2011, 2012b);
Jepsen et al. (2011); Kjeldsen (2011); Meng and Wang (2011, 2012); Wang and Meng (2011);
Reinhardt and Pisinger (2011); Wang and Meng (2012a,b); Wang et al. (2013), but the research
area is still young and many open research questions remain.
As a relatively young research area there is a need to explore the domain of liner shipping

network design to a greater extend. Alternative descriptions of the exact domain of the liner
shipping business are found in the literature with little input from key players in the industry.
This makes it hard to agree upon a model and to distinguish between necessary and optional
constraints. At the same time research in the area is concentrated to a few research groups
and the field would benefit greatly from being able to attract more researchers with different
expertise. As emphasized in the editorial of the INFOR special issue on Maritime Transportation
by Christiansen and Fagerholt (2011), there is a need for public data sets for maritime shipping
in general. In the case of LSNDP tailored benchmark instances are called for as the economic
and geographic structure of liner shipping is very specific. The existence of public data sets will
enable researchers to compare work and evaluate progress in mathematical model development
and algorithmic design.
The LSNDP is a complex, large scale problem by nature challenging both models and meth-

ods within operations research, which means that modelling the LSNDP is an ongoing field of
development. Network design problems in general are considered as hard optimization problems
(Gendron et al., 1999) and the LSNDP is a special case of the capacitated network design problem
requiring a consistent routing of the vessels constituting the capacitated network and charging a
cost for transshipment between routes. At the same time the LSNDP has more degrees of freedom
compared to capacitated network design problems as there is often no requirement to transport the
demand, which is seen as a profit maximizing option. This means that among others the cut-set
inequalities (Günlük, 1999), that are very successfully applied to capacitated network design, are
not valid for most variants of the LSNDP. The LSNDP furthermore suffers from an objective func-
tion, where the majority of the cost is the fixed cost of deploying vessels/capacity on an arc (route
generation for vessels), but instead of a cost of transportation per unit on open arcs, there is a
revenue associated with the transport per unit of each commodity. This leads to highly fractional
LP relaxations of the integer formulation resulting in poor lower bounds for Branch-and-Bound
methods. The current literature on the LSNDP explore different variants of capacitated network
design models in order to define rich, compact formulations of the LSNDP which is a challenging
task. The search for a tight and descriptive formulation is ongoing.
The LSNDP is complex due to a high degree of freedom and the vast scale of real life problems.

The literature presents various algorithms for different models of the LSNDP. In a brief overview of
the field, some methods focus on a restricted solution space in terms of ports considered, an expert
selection of services to optimize upon or restricted cargo routing (Shintani et al., 2007; Meng and
Wang, 2011), while others solve to optimality small instances of different mathematical models
of the LSNDP (Alvarez, 2009; Plum, 2010; Reinhardt and Pisinger, 2011). Heuristic methods for
the liner shipping network design problem with no restrictions on the number of ports visited, the
number of services or the routing of the cargo have been presented by Agarwal and Ergun (2008)
and Alvarez (2009). A thorough review of these algorithms will be reviewed in Chapter 2.
The industry has no tradition for applying operations research in their planning process and

hence demand has not driven research forward in the field of liner shipping as has been seen in
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the field of tramp and industrial shipping. The industry has the leverage and size to benefit from
the potential of decision support systems and luckily industry stakeholders are showing increased
interest in this field of research to improve upon their network design process. The network design
process is a complicated matter, which today consist of several sequential evaluations and iterative
improvements to the network. Saving merely a fraction of operating costs or utilizing the capacity
slightly better will produce huge cost savings and minimize carbon emission significantly simply
due to the scale and size of this industry.
It is important to develop simple planning tools for decision support in the tactical and op-

erational business processes of the industry, to provide a starting point for applying operations
research and integrating decision support into their planning processes.

1.2 Contribution

The motivation and the contribution of this thesis is twofold: Firstly, to contribute to basic research
on liner shipping network related optimization problems in liner shipping. Secondly, to identify
tangible planning problems in the liner shipping industry, where operations research may provide
good decision support to achieve better panning of the liner shipping transportation network.

1.2.1 Contributing to basic research on the LSNDP

The contribution of the thesis to basic research on the LSNDP is first and foremost, an article
with a domain description of the liner shipping business. The domain description takes its offset
in the business understanding of a leading global player, Maersk Line, and relates this to the field
of operations research. The article presents an introduction to the problem, the related literature,
a reference model and a heuristic column generation algorithm to provide the first computational
results for the benchmark suite LINER-LIB 2012. LINER-LIB 2012 is a public data set with real-
istic benchmark instances accompanying the article to ensure that data is available to researchers
without an industry affiliation. The benchmark suite will hopefully enable researchers within the
field to compare progress within mathematical modeling and algorithmic design. It has already
been distributed to research groups in Germany, Holland, Norway and Singapore and we hope
they will benefit from the data sets in their research. The full benchmark suite paper including a
computational study constitutes Chapter 2.
The thesis explores two models for the LSNDP inspired by rich Vehicle Routing Problems as

an alternative to multicommodity capacitated network design. A conference paper (Jepsen et al.,
2011) with a new approach to modeling was published at the ICOR 2011 Conference. The model
is a Dantzig-Wolfe decomposition on the set of services, where the pricing problem is to construct
routes with cargo patterns. An extended version of the paper elaborating on the complexities of
the pricing problem may be found in chapter 6. In Chapter 7 this model is extended to decompose
per vessel class resulting in a different pricing problem, which may prove to be less complex than
the pricing problem of Jepsen et al. (2011). Whether these models will be a competitive alternative
to existing models on the LSNDP remains an open research question.
At present exact methods are not able to solve realistic sized instances of liner shipping network

design and to this end heuristic methods can be pursued in order to solve real-life problems of
the LSNDP in reasonable time. The benchmark article presents a metaheuristic for solving the
benchmark suite instances. The computational results are promising, but it is still a challenge
to construct a heuristic method, which scales in terms of the neighbourhoods searched and the
evaluation of a given network. In this thesis we also present a matheuristic for the LSNDP targeting
the performance of neighborhoods and network evaluation. A large scale neighborhood is defined
as an integer program considering simultaneous insertion and removal of several port calls on a
single service considering the multicommodity flow of the entire network. The integer programs
for each service is embedded in a local search framework. The approach is similar to the ones
seen in (Chen et al., 2007; Gulczynski et al., 2010, 2011). The method present the first results
requiring a strict weekly frequency for all services and all vessel classes. This means that the
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solution space is more restricted than the solution space of the algorithm in chapter 2 introducing
both weekly and biweekly frequency and the objective values are thus generally lower than the
ones presented in Chapter 2. The method finds profitable solutions for 5 aout of 7 instances and
has a good performance for most instances in terms of the execution time. Some of the ideas for
increasing the performance of neighborhoods and evaluating a candidate solution may be refined
and exploited in future metaheuristics for the LSNDP.

1.2.2 Decision support for network design in the liner shipping industry

In this thesis we propose three approaches that may prove as good business cases, where minor
modifications to current practise may improve decision making of liner shipping network design.
Firstly, there is the revenue management booking model considering empty repositioning in Chap-
ter 3. This application enables a network planner to route cargo on the existing network choosing
the most profitable cargo while simultaneously planning the redistribution of empty containers to
points of demand. Secondly, the Vessel Schedule Recovery Problem in Chapter 4 considers differ-
ent combinations of recovery techniques to mitigate the operational cost of disruptions. Lastly,
the matheuristic for the LSNDP presented in Chapter 5 is designed such that a subset of services
may be optimized upon considering the entire network. This tool may be used to reoptimize the
network based on changes to demands, related services etc.

PBLS model

Promoting 

basic research on 

LSNDP

OR as decision support  

to the liner shipping industry

Benchmark 

Suite and article

Matheuristic for LSNDP

Disruption 

Management

Revenue management 

and

Empty repositioning

Figure 1.1: Placing personal motivation with thesis contributions. At the top we see basic research
drivers such as modeling the problem, defining relevant data sets and describing the domain. At the
bottom we see the industry drivers of creating tangible operational problems, that may benefit from
decision support tools. The matheuristic is placed in the middle, because it may serve as a solver for the
LSNDP as well as being used for fine tuning an existing network.

The motivation behind this thesis and the contributions presented are illustrated in Figure 1.1.
The matheuristic for LSNDP is placed in the middle as it has potential to become a heuristic
method for creating liner shipping network designs using a construction heuristic, but may also
be used as a decision support tool, with an existing network as input, fixing optimization to a
certain area of the network, to make smaller adjustments to the network given a new market or
fleet situation.
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1.2.3 PhD Thesis overview

The thesis is organized as follows:

Part I: Introduction. This part consists of two chapters. The current chapter contains
a motivation and background for the thesis. Chapter 2 is the submitted version of an article
accompanying the benchmark suite of data instances.� A base integer programming model and benchmark suite for liner shipping net-

work design This paper is an introduction to the LSNDP and the goal of the paper is
to create an organized platform for the LSNDP by reviewing existing literature within the
field and providing a thorough domain description seen from the perspective of a global liner
shipping company, Maersk Line. A benchmark suite of data instances is presented. Data
sources and methods to transform the data into the data instances are explained in detail.
It additionally entails a reference model of the LSNDP which is an extension of the model
from Alvarez (2009). A heuristic column generation algorithm is presented and the first
computational results for the accompanying public benchmark suite are reported. The work
has been presented as follows:

– A paper co-authored with José Fernando Alvarez, Christian E.M. Plum, David Pisinger
and Mikkel M. Sigurd is accepted with minor revision in Transportation Science (Brouer
et al., 2012a).

– Presentation at the EURO XXV, Vilnius, Lithuania, 2012 (presenter: Berit Dangaard
Brouer).

– A technical report of the initial work is published at DTU Management Engineering
(Løfstedt et al., 2011).

Part II: Topics for optimization in liner shipping. The part consists of three papers, which
may prove as good business cases for decision support in the industry.� Chapter 3: Liner Shipping Cargo Allocation with Repositioning of Empty Con-

tainers present the first business case as a network revenue management tool to maximize
the profit of a given network considering the cost of repositioning empty containers due to the
global trade imbalance. The model is formulated as an extended multicommodity flow prob-
lem with interbalancing constraints. An arc flow model is decomposed to a path flow model
using Dantzig-Wolfe decomposition and a delayed column generation algorithm is presented.
A simple integer rounding heuristic is applied to obtain integer solutions. Computational
results are reported for seven instances based on real-life shipping networks. Solving the
relaxed linear path flow model with a column generation algorithm outperforms solving the
relaxed linear arc flow model with the CPLEX barrier solver even for very small instances.
The proposed algorithm is able to solve instances with 234 ports, 16278 demands over 9 time
periods in 34 minutes. The integer solutions found by rounding down are computed in less
than 5 seconds and the gap is within 0.01% from the upper bound of the linear relaxation.
The work has been presented as follows:

– A paper co-authored with David Pisinger and Simon Spoorendonk has been published
in the INFOR special issue on Maritime TransportationBrouer et al. (2011).� In Chapter 4 a disruption management tool is presented, which enables optimization of

different recovery techniques related to a given disruption scenario. A time-space graph
interpretation of the problem is described and a MIP model denoted the Vessel Schedule
Recovery Problem (VSRP) is presented. The model evaluates a given disruption scenario and
selects a set of recovery actions balancing the trade off between increased fuel consumption
and the impact on cargo in the remaining network. The VSRP is proven to be NP-hard
and computational results for four real life cases and a number of generated scenarios is
presented. In practise the method is efficient and solutions to the real life cases is found
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using CPLEX within 5 seconds with comparable or improved solutions compared to realized
recoveries of the real life cases. The work has been presented as follows:

– A paper co-authored with Jakob Dirksen, Christian E.M. Plum, David Pisinger and Bo
Vaaben has been accepted for publication in European Journal of Operations Research
(Brouer et al., 2012b).

– Presentation at the EURO XXV, Vilnius, Lithuania, 2012 (presenter: Berit Dangaard
Brouer).� In Chapter 5 we present a matheuristic, an integer programming based heuristic, for the

LSNDP. The heuristic applies a novel greedy construction heuristic based on an interpreta-
tion of the liner shipping network design problem as a multiple quadratic knapsack problem.
The construction heuristic is combined with an improvement heuristic with a neighborhood
defined by the solution space of a mixed integer program. The mixed integer program opti-
mizes the removal and insertion of several port calls on a liner shipping service. The objective
function is based on evaluation functions for revenue and transshipment of cargo along with
in/decrease of vessel- and operational-cost for the current solution. The evaluation func-
tions may be used by heuristics in general to evaluate changes to a network design without
solving a large scale multicommodity flow problem. The matheuristic targets some of the
performance issues related to designing an efficient heuristic for the liner shipping network
design problem. The work has been presented as follows:

– A conference paper co-authored with Guy Desaulniers appeared in the Proceedings of
The International Conference on Logistics and Maritime Systems 2012 (Brouer and
Desaulniers, 2012) and was presented at the conference (LOGMS 2012) (presenter:
Berit D. Brouer).

– Presentation at the European Summer Institute on Maritime Logistics (ESI2012), Bre-
men, Germany, 2012 (presenter: Berit Dangaard Brouer).

Part III: Modeling the Liner shipping Network Design Problem consists of two chapters,
where the first is an extended verison of a conference paper.� Chapter 6 is a revised version of A Path Based Model for a Green Liner Shipping

Network Design Problem elaborating on the complexity of the pricing problem. The
paper presents a new path based MIP model for the Liner shipping Network Design Problem.
The proposed model reduces the problem size using a novel aggregation of demands. A
decomposition method enabling delayed column generation is presented. The subproblems
have similar structure to resource-constrained-shortest path problems, but due to the nature
of a routing as a non-simple cycle, it becomes an open research question to solve the pricing
problem to optimality. The work has been presented as follows

– Presented at Optimization Days, GERAD & CIRRELT Montréal, (2011) (Presenter:
Berit D. Brouer)

– Published in Proceedings of The International MultiConference of Engineers and Com-
puter Scientists (2011) and presented at the conference (2011)(presenter: Mads K.
Jepsen)� Chapter 7 is a general discussion and analysis of modeling issues in relation to the LSNDP

with regards to current state-of-the-art and the related optimization problem of Multicom-
modity Capacitated Network Design and Vehicle Routing Problems. The model from Chap-
ter 6 is reformulated to a decomposition per vessel class resulting in a different pricing prob-
lem, which could be easier to solve. However, there are open research questions with regards
to the construction of models suitable for cutting planes and pricing in a Branch-and-Bound
context.
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Chapter 8 contains a summary of the thesis with concluding remarks and perspectives for future
work.
Appendix B is an extended abstract on an early version of the construction heuristic used for the
matheuristic in Chapter 5 presented at TRISTAN VII, Tromsø, Norway (2010)(Løfstedt, 2010).
The project was presented at the conference. (presenter: Berit D. Brouer)
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1

Abstract The liner shipping network design problem is to create a set of non-simple cyclic sailing routes

for a designated fleet of container vessels, which jointly transports multiple commodities. The objective

is to maximize the revenue of cargo transport, while minimizing the costs of operation. The potential for

making cost effective and energy efficient liner shipping networks using Operations Research (OR) is huge

and neglected. The implementation of logistic planning tools based upon OR has enhanced performance of

airlines, railways and general transportation companies, but within the field of liner shipping applications

of OR are scarce. We believe that access to domain knowledge and data is a barrier for researchers to

approach the important liner shipping network design problem. The purpose of the benchmark suite and

the paper at hand is to provide easy access to the domain and the data sources of liner shipping for

OR researchers in general. We describe and analyze the liner shipping domain applied to network design

and present a rich integer programming model based on services, which constitute the fixed schedule of

a liner shipping company. We prove the liner shipping network design problem to be strongly NP-hard.

A benchmark suite of data instances to reflect the business structure of a global liner shipping network

is presented. The design of the benchmark suite is discussed in relation to industry standards, business

rules and mathematical programming. The data is based on real life data from the largest global liner

1Submitted and under revision at Transportation Science (2012)
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shipping company, Maersk Line, and supplemented by data from several industry and public stakeholders.

Computational results yielding the first best known solutions for 18 of the 21 benchmark instances is

provided using a heuristic combining tabu search and heuristic column generation.

Keywords: liner shipping, mathematical programming, network design

2.1 A benchmark suite for research on liner shipping net-
work design problems

Operations research (OR) is widely used within the transportation sector to provide a cost efficient
and competitive organization. However, application of OR within containerized liner shipping is
scarce (Christiansen et al. (2004)). The potential impact of OR on this billion dollar industry is
enormous especially given the large concentration of players in the business. Maritime shipping
produces an estimated 2.7% of the world’s CO2 emissions, of which 25% is attributable to container
ships alone (The World Shipping Council (2009)). An energy efficient liner shipping network is
becoming increasingly important to all stakeholders. OR can help in designing effective and energy
efficient liner shipping networks to mitigate the carbon footprint of the liner shipping industry. We
believe that the lack of OR within liner shipping is partly due to barriers for new researchers to
engage in the liner shipping research community. Constructing mathematical models and creating
data for computational results requires profound knowledge of the domain and data sources. The
benchmark suite presented in this paper aims to make liner shipping network design problems
(hereafter LSNDP) approachable for the research community in general. We wish to create a
platform where methods can be compared on a set of known data instances. By disseminating our
knowledge of the liner shipping domain into real world network data instances for mathematical
programming, we hope to diminish this formidable hurdle. Our hope is to enable research on the
field of liner shipping network design to develop like the Vehicle Routing Problems (VRP) have
through the benchmark instances of Solomon (1987). The benchmark suite is seen as the root of
a tree where new branches will appear as our ability to solve more complex interpretations of the
liner shipping problem grows.

The initial model of the diverse field of VRP models was the Capacitated Vehicle Routing
Problem (CVRP). We present a reference model for the LSNDP, which is an extended version of
the model in Alvarez (2009). The reference model may be used for comparing various methods
applied to the problem and serve as an inspiration to future model development. Our goal is to
enable the benchmark suite to support future model and method development, and hence the data
of the benchmark suite encompasses several attributes such as transit times not applicable to the
reference model. In Section 2.2 relevant literature within the field of liner shipping economics will
underpin the importance of various costs and restrictions within network design. A review of the
literature within OR and the various models presented is provided. We review methods for solving
liner shipping network design related problems and the computational results in the literature
to illustrate the computational hardness of the problem. Section 2.4 provides an introduction
to the liner shipping network design domain. The domain discussion is complemented by the
strategic business and domain knowledge of one of the major global operators within liner shipping.
We characterize the benchmark suite and delimit the data supplied in the benchmark suite to
current mathematical models along with the open research questions we try to support with the
data provided. In Section 2.5, we discuss the data objects and data generation. The goal for
the instances generated is to capture real life cost structures, trade imbalances, market shares
and scale for a global liner shipping company. We discuss the diversity of instances needed to
qualify and challenge development of both exact and heuristic methods for solving the LSNDP.
Finally, we solve the generated instances by using a new tabu search heuristic based on the
framework by Alvarez (2009). The algorithm has been extended to handle more complex routes
(so-called butterfly routes) and to ensure a (bi)-weekly time schedule. Moreover, an improved MIP
neighborhood is used to generate new candidate routes. Computational results are presented in
Section 2.6 to qualify the benchmark suite with experimental results and establish the currently
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best known solutions for the liner shipping network design problem and hopefully spur competition
and interest into our field of research. Section 2.8 contains conclusions and directions for further
research into liner shipping network design problems. Sections 2.4 and 2.5 is a shortened version
of the technical report Løfstedt et al. (2011). The reader is referred to this report for additional
information.

2.2 Literature review

The two papers, Christiansen et al. (2004) and Christiansen et al. (2007) provide excellent surveys
of OR in maritime transportation. They point to the limited research of planning problems in liner
shipping in contrast with the size and the possible impact of optimization within the industry:
There are a number of contributions on the individual economic and structural factors in designing
liner shipping networks, but no comprehensive description of the general liner shipping domain
related to network design has been published to date. One contribution of the present paper is to
give an overview of these factors related to the LSNDP. In the first part, we give an overview of
contributions related to some of the factors affecting network design such as network configuration,
bunker price, transit time, competitive position, repositioning of empty containers, frequency, port
call sequence, schedule, and fleet deployment. In the second part we review contributions on the
LSNDP.
The network configuration of carriers is explored in Notteboom (2004) concluding that a global

network will not have a pure hub-and-spoke structure or a pure multi-port structure. The economy
of deploying super panamax vessels on either a multi-port or hub-and-spoke network structure is
investigated in a case study by Imai et al. (2009). They conclude that the multi-port structure is
superior for the Asia-North America and Asia-Europe trades, whereas the hub-and-spoke structure
is advantageous in the European trades.
The impact of bunker price on the network configuration of liner shipping companies has been

explored by Cariou (2010); Notteboom and Vernimmen (2009); Stopford (2009). Seen from the
carriers’ point of view, reducing speed and making effective use of the capacity deployed in the
network has economical incentive as the general analysis of vessel costs by Stopford (2009) reveals
bunker fuel as the dominant cost in operating a liner shipping network. According to Notteboom
and Vernimmen (2009) managing the bunker consumption in the network gives the carriers strong
incentive to reduce speed, deploy additional vessels to services, and increase buffer time in the
schedule to avoid having to increase speed to accommodate for delays and port congestion. The
incentive to reduce speed depends on the actual bunker price because the additional vessels de-
ployed to maintain the frequency come at an increased capital cost. Cariou (2010) argues that a
bunker price exceeding 350 USD per ton will ensure the sustainability of “slow steaming”, which
means sailing at a reduced average speed. Cariou (2010) calculates the CO2 reductions from slow
steaming from 2008-2010 to 11% attesting that slow steaming is a very effective way of reducing
the carbon footprint of the liner shipping industry. Recently, Wang and Meng (2012a) investigate
sailing speed optimization for each individual port-to-port voyage on a liner shipping service to
reduce bunker consumption using an outer-approximation method.
In liner shipping there is an inherent trade off between reducing bunker consumption through

speed reduction and achieving competitive transit time for cargo. Notteboom (2006) explores the
time factor in liner shipping network design related to transit time of a cargo routing and schedule
reliability. An important analysis on the relation between the number of port calls on a service
and competitive transit times is reported. The conclusion is that the time spent at ports is very
significant and hence the number of port calls is decisive for the transit time of direct connections
at the end points of a service. Wang and Meng (2011) evaluate the schedule design along with
container routing for a fixed network with predefined paths for container shipments in order to
minimize transshipment cost and transit time.

Gelareh et al. (2010) explore the possible competitive positions of a carrier in a market with
an incumbent carrier. The relation between time and cost on the market share is modeled and
investigated. Gelareh et al. (2010) underpin transit times and level of service as important factors
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in the construction of a liner shipping network design. Wang and Meng (2012b) propose a tactical
model for schedule design capturing the trade off between speed optimization and transit time
levels taking into account time uncertainty at sea and in the port times. We believe there will be
a surge in sailing speed optimization taking level of service and schedule reliability into account
where the liner shipping service network has already been fixed to a large degree. We are not
aware of published models of the LSNDP incorporating distinct cargo transit times or level of
service, but we believe that future research on the LSNDP will incorporate these factors.
Another important factor in a liner shipping network is repositioning of empty containers due

to trade imbalances. Shintani et al. (2007) design a model for a single service of a carrier. The
experimental results indicate that empty repositioning is significant for the port calling sequence
and the cargo handling costs incurred. Dong and Song (2009) investigate the proportion of empty
repositioning given current global container trade using the existing global liner shipping network.
Their results conclude that 27% of all container traffic is empty repositioning. Brouer et al.
(2011) show that joint optimization of demanded cargo and empty repositioning in a fixed network
is viable. Meng and Wang (2011) incorporate empty repositioning and port productivity into
the evaluation and selection of candidate shipping routes. Empty repositioning is so far not
incorporated into the cargo allocation in models, where the set of candidate routes are not fixed,
as in the LSNDP.
Liner shipping and the industry generally adhere to a schedule based on a weekly frequency

of port calls grouping vessels of similar characteristics onto services (Notteboom, 2004, 2006;
Stopford, 2009). In Alvarez (2012) the cost of the practice of a weekly frequency is questioned,
and level of service expressions are formulated in order to investigate the impact of maintaining a
weekly frequency as opposed to another fixed frequency. Several contributions on the optimal port
calling sequence may be found for a single route, e.g., Chu et al. (2003); Hsu and Hsieh (2007);
Lu (2002); Shintani et al. (2007)
Scheduling of liner shipping services is a related optimization problem. An example of scheduling

with fixed port call sequence may be found in Yan et al. (2009) as well as the more recent papers
of (Wang and Meng, 2011, 2012b), whereas Agarwal and Ergun (2008a) decides scheduling to a
certain weekday and routing simultaneously.
The fleet deployment problem(FDP) is closely related to LSNDP as fleet deployment is often

implicitly considered in the network cost. FDP assumes that the service in terms of actual vessel
voyages is fixed and hence that the routing is already decided upon. FDP decides on how to
assign the carrier’s own vessels to the actual vessel voyages along with the options of chartering in
(leasing) vessels or chartering out (forward leasing) own vessels to minimize the cost of maintaining
the schedule. Fleet deployment is generally described in Christiansen et al. (2007) with reference
to the main paper within fleet deployment (Powell and Perakis, 1997). Fagerholt et al. (2009) is
a recent paper and case study on liner shipping fleet deployment with Höegh autoliners as a case
study. The recent paper by Gelareh and Meng (2010) considers a liner shipping fleet deployment
problem, where the frequency of sailing is decided upon in relation to demand coverage and speed
on the individual voyage. The paper gives a thorough review of fleet deployment literature to
date. The model is solved using a Mixed Integer Programming (MIP) solver for three and four
services using three to five vessel types. Recently, the fleet deployment problem in conjunction
with transit time levels are described by Wang and Meng (2012c) expanded with weekly frequency
considerations in Meng and Wang (2012).
Literature on models and methods for liner shipping network design within OR is still limited

although recent years show increasing activity in the field. Kjeldsen (2011) provides a classification
scheme for routing and scheduling within liner shipping. The classification scheme entails 24
references in total for routing and scheduling problems within liner shipping. The classification
scheme of Kjeldsen (2011) show that there is a large variance in the models with respect to cost
structures, constraints and scope unveiling that we are dealing with a young research field with
many possibilities of scoping network design to various decisions such as scheduling, fleet sizing,
fleet deployment, route generation, speed optimization and many more.
An early contribution is that of Rana and Vickson (1991), who present a model for liner shipping

with non-simple routes by using a head- and back-haul structure. The model does not allow
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transshipments, which is at the core of liner shipping today. Fagerholt (2004) develops a model
and solution method for a regional carrier along the Norwegian coast. The model assumes the
carrier loads at a single port and finds optimal routes of vessels to service the unloading facilities.
The problem may be dealt with as a VRP problem, given that a designated depot is known and
transshipments are not allowed. The solution method is a MIP solver. Similarly, Karlaftis et al.
(2009) solve a problem for the region of the Aegean sea using a genetic algorithm related to the
coastal freight problem described in Sambracos et al. (2004). These models do not deal with
the important concept of transshipments at multiple ports and the resulting interaction between
different services.
Agarwal and Ergun (2008a) are the first to include a weekly frequency constraint by grouping

vessels into vessel classes in the simultaneous ship scheduling and cargo routing model. The model
creates routings for a set of vessel classes with a rough schedule. The weekly frequency constraint
decides the number of vessels deployed to a service according to the service duration, and they
introduce a time-space graph spanning each weekday to reflect the availability of transportation
on a certain weekday. The model allows for transshipments, but the cost of transshipments cannot
be derived and hence the overall cost structure excludes the important cost of transshipment. The
time-space graph gives a temporal aspect in terms of a rough schedule based on weekdays, but
the time-space graph is not utilized to reflect transit time restrictions. Blander Reinhardt and
Pisinger (2012) present a model, which is one of the first to include transshipment cost and present
a branch-and-cut method for solving a liner shipping network design problem with butterfly routes
to optimality. The model selects a route for each individual vessel in a fleet. This results in a
distinct network layer for each vessel and the grouping of vessels to a single service is not explicit
in the model. The configuration is suitable for smaller carriers. Global carriers tend to group
a set of vessels with similar characteristics to a single service to reduce the complexity of the
network design (Notteboom and Vernimmen, 2009; Stopford, 2009) and to have customer-friendly
schedules.
Alvarez (2009) is the most recent publication on LSNDP considering the joint routing and fleet

deployment model. It bundles a service with a vessel class, the number of vessels deployed to the
service, a target speed, and a non-simple cyclic port sequence. The cost of a service in the model
reflects the deployment cost of the vessels in the service and the estimated bunker consumption
adjusting for the difference in bunker consumption, when sailing at different speeds or idling at a
port. The total fleet cost accounts for whether vessels are deployed to services or are chartered out
at market prices. Cargo revenues and handling costs are accounted for in the model along with
a penalty for cargo that has been forfeited due to insufficient capacity or insufficient revenue in
the view of total network cost. The model assumes a planning horizon with stable demands and
does not impose restrictions on the frequency of service or the actual scheduling of the services. A
case study with discussion on data generation and port/vessel class incompatibilities is provided.
The transshipment cost of non-simple routes is, however, not calculated coherently, as the model
cannot detect such a transshipment.
Agarwal and Ergun (2008a) prove the NP-completeness of the simultaneous scheduling and

cargo routing problem. The LSNDP in general may be viewed as a VRP with split-pickups, split-
deliveries, multiple cross docking, no depots and a heterogeneous vessel fleet and hence the LSNDP
is strongly NP-hard as proven in section 2.6.4. The methods deployed to solve the problem are
mainly heuristics based on integer programming and decomposition techniques. The branch-and-
cut method of Blander Reinhardt and Pisinger (2012) and a MIP formulation of Alvarez (2009)
solve smaller instances to optimality. Remaining solution methods are heuristic methods. An
overview of the reviewed methods on liner shipping network design is given in Table 2.1.
Computational results are scarce and based on individual data sets, but it is clear from the

literature that solving large scale instances is a hard task even for heuristics. The benchmark suite
presented in this paper will aid comparison between different methods if the public benchmark
data is used for computational results. In Christiansen and Fagerholt (2011) the importance of
creating public benchmark instances for maritime transportation problems is advocated in order
to drive basic research on maritime optimization problems forward.
Alvarez (2009) identifies several problems with exact optimization methods. Firstly, the feasible
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Article Routes Fleet Routing Method Optimal Constraints vessels/ports

Rana and
Vickson
(1991)

multiple heterogen in/out bound Lagrange, Benders No Capacity, time, con-
nected

3v, 20p

Shintani et al.
(2007)

single vessel
class

in/out bound Genetic algorithm No Empty repositioning,
bunker cost and han-
dling cost

3v, 20p

Karlaftis et al.
(2009)

multiple heterogen simple cycle -
VRP

Genetic algorithm No capacity and time
windows on demands

not fixed,
26 p

Fagerholt
(2004)

multiple heterogen simple cycle -
VRP

Route generation/
MIP solver

Yes capacity, route dura-
tion

20v, 40p

Blander Rein-
hardt and
Pisinger
(2012)

multiple heterogen butterfly cycle Branch-and-Cut Yes capacity, time,
connected, transship-
ment

6v, 15p

Agarwal and
Ergun (2008a)

multiple vessel
class

simple cycle Greedy, column
generation, Benders

No weekly frequency,
transshipment

50v, 10p

Alvarez (2009) multiple vessel
class

non-simple MIP solver/tabu
search

Yes/No transshipment,
bunker

100v, 7p
(MIP
solver),
120p
(Tabu
search)

Table 2.1: Overview of the models on liner shipping network design published in international journals.
Routes: refers to whether the problem is defined for a single or multiple routes/services. A Fleet is
homogeneous if only a single type of vessel (in terms of capacity and technical specifications) and heterogen
for multiple vessel types. Routing denotes the way routes are perceived and hence constructed by the
model, see section 2.4.2. Method refers to the algorithmic solution method, optimal to whether or not
the method produces an optimal solution, Constraints are a summary of the constraints included. Lastly,
vessels/ports states the number of vessels and ports in the computational study.

solution space of a single rotation is vast. Combining this with a vector of different capacities and
cost for every feasible rotation increases the feasible solution space significantly. Due to economies
of scale, a solution to the LP-relaxation will prefer to use a fraction of large vessels, leading to
highly fractional solutions. This is due to a cost structure divided between the vessels and the cargo
flow for models incorporating transshipment, but the revenue follows the cargo flow. Therefore,
convergence of decomposition techniques such as column generation might be slow.
Recent developments in modelling the LSNDP have tried to overcome this division by coupling

service generation with the cargo load as seen in Jepsen et al. (2011) and Kjeldsen (2012). No
computational results are reported for Jepsen et al. (2011) as the pricing problem has a very
complex structure, which cannot be solved efficiently using current state of the art methods such as
resource constrained shortest path problem. Kjeldsen (2012) solve the pricing problem heuristically
and some limited computational results are reported, which confirm the hardness of this problem
even for heuristic methods.

2.3 Contribution

The present paper gives an overview of the domain of liner shipping network design related to
mathematical formulations of the LSNDP and other network related optimization problems. It
is evident that modelling the LSNDP in a compact formulation, which can exploit state-of-the
art mathematical programming techniques is still a challenge for our community and we expect
further development in this area. In this paper we present a reference model, which is an extension
of Alvarez (2009), where transshipment on butterfly routes is correctly accounted in the objective
function without introducing increased complexity and (bi)-weekly frequency is imposed in the
route generation. The model presented is a simplified, but realistic description of the LSNDP as
described in this paper. We believe that the model along with the benchmark suite can create
a platform for the development of heuristic and exact solution methods. We provide a heuristic
solution method for solving the LSNDP and the first computational results for our benchmark
suite. Any model adhering to the constraints and the objective of the reference model of this
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paper, should be able to compare itself to the computational results presented and improve the
research direction of the LSNDP. The benchmark suite can cater for extensions such as service
level requirements, port productivity and sailing speed optimization to cater for future research
directions within the field of mathematical models of the LSNDP. The benchmark suite is also
applicable to other related and promising research problems within liner shipping network design,
where the routes or the cargo flows have been fixed to some extent as seen in, e.g., (Meng and
Wang, 2011; Wang and Meng, 2011).

2.4 Domain of the liner shipping network design problem

The market and business of liner shipping is thoroughly described and analyzed in Stopford (2009)
and Alderton (2005). Complemented by the experience of network planners and optimization
managers at Maersk Line, this section introduces the business context of liner shipping network
design.

2.4.1 The liner shipping business

The business of liner shipping is often compared to public transit systems such as bus lines,
subways and metro. A service is a round trip sailed at a given frequency. The schedule can be
consulted to find the next call of the service at a port. The round trip is the set of designated
stops, which for a liner shipping company is a set of ports. The round trip in liner shipping may be
divided into a head and a back haul to distinguish between different demands according to their
regional specifications. The head haul is usually the demand intensive direction. Some services
are central to connecting many origins and destinations, whereas others serve a smaller distinct
market. In liner shipping a distinction is made between trunk services serving central main ports
with several demands and feeder services serving a distinct market typically visiting a single main
port and a set of smaller ports. Like in public transit, a transport may include the use of several
services to connect between the origin and the destination of the transport. In liner shipping we
refer to transits as transshipments. A fleet of vessels with varying capacity and speed is deployed
to the services according to the demand. The transit time of a cargo denotes the time a cargo
travels from origin to destination. Transit time is counted in days and transit times may vary
from a single day to 90 days.

2.4.2 Network

The network must be competitive and efficient. A competitive network may accommodate several
routings for one origin-destination pair varying on transit time and cost. Most global liners provide
several itineraries for an origin-destination pair by end-to-end services as well as transshipment
services with different transit times and freight rates. In order for a network to be competitive
it must offer low transit times and few transshipments. A competitive network serves the main
ports of a region frequently with good connections to feeder ports with a high schedule reliability.
An efficient network facilitates transshipments at terminals with high crane productivity and
container capacity to minimize the cargo handling time. Transshipments are also used to get
effective utilization of vessel capacity such that the trunk services are fed by several feeder services
and direct cargo along the trunk line. Finally, empty containers must be effectively repositioned
to ensure availability of containers at the origins of the cargo. This is especially critical for reefer
containers as several regions such as South America and New Zealand have a large export of
refrigerated goods, but an insignificant import of refrigerated goods. Examples of different liner
shipping networks are seen in Notteboom (2004), which are included in Figure 2.1. Notteboom
(2004) argues that global liners are multi-layered networks of different types since they are all
competitive for particular circumstances.
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(b) Hub-and-spoke network: A trunk service (D-E) and a
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(d) Main and feeder network- service bundled
trunk services and indirect feeder services

Figure 2.1: Examples of routes and network designs. Square nodes symbolize Hubs or main ports,
whereas round nodes symbolize feeder ports.

Value propositions

A specific liner shipping company is referred to as a carrier, whereas the owner of a certain cargo
is denoted a shipper. The competitive position of a carrier is a combination of port coverage, price,
transit time, transshipments, schedule reliability, and, in recent years corporate social responsi-
bility of the company, where environmentally friendly transport has received a lot of attention.
The freight rate of transporting some cargo depends not only on the actual network cost, but also
on the transit time, the container type needed (e.g., a refrigerated container), special regulations
(restricted and dangerous goods), the number of transshipments, flag of the vessel(s), and natu-
rally the relation between demand and supply for cargo transport on the connection in question.
In addition the price covers the administrative overhead incurred by the carrier comprising ap-
proximately 30% of total cost (Stopford, 2009). Notteboom (2006); Notteboom and Vernimmen
(2009) and Stopford (2009) discuss the importance of transit time in pricing cargo transportation
as the inventory holding cost is paid by the shipper until the cargo is delivered (Notteboom, 2006).
Furthermore, some goods are perishable and the time to market becomes crucial. It is becoming
increasingly important for companies to ensure transport with the lowest CO2 emission and hence
slow steaming (in particular on back haul connections) to reduce network bunker consumption
and overall CO2 emission.

Forecast and planning horizon

A demand forecast for a given planning horizon is crucial to network design as the ideal network has
a perfect fit between demand and capacity (Stopford, 2009). The demand for container transport
fluctuates over a year with seasonal variance and peaks at certain times of year. These peaks may
be regional, if they are related to a crop (e.g., bananas or lemons) or global (e.g., Christmas).
Hence, the network design is rarely stable over a yearly period. Some structure is fairly stable,
but additional structure will reflect seasonality and hence the planning horizon for a network is
important to the liner service network design and to the fleet deployment. General economic and
financial conditions have a major impact on the liner service network design and fleet deployment,
but are hard to predict compared to a seasonal pattern, which may be recognized and accounted
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for.

Service

A service from the carriers’ point of view consists of a set of port calls with designated berthing
times at a given frequency. The individual services are required to be good components of the
network with regards to efficient transshipment facilities and fast direct services for critical con-
nections. Notteboom (2004, 2006) categorize a wide range of rotation patterns as follows:
End-to-End : A direct shuttle service between 2 ports (see Figure 2.1). Line Bundled : A

rotation visiting a set of ports in a loop. Trunk Services : An end-to-end connection between hubs.
Direct feeder services. Shuttle from feeder port directly to a hub. Indirect feeder services - a
service bundled rotation to a set of feeder ports and a hub. Round-The-World (RTW): A rotation
following the equatorial belt visiting hubs in order to service the east-west and north-south trades
in a grid. This type of service has a capacity constraint as it must traverse the Panama canal
restricted to panamax ships. Pendulum: A service traveling back and forth like a pendulum, e.g.,
Europe - Far East - US west cost - Far East - Europe. Butterfly: Multiple cycles centered around
one port (Figure 2.2). Each cycle visiting an alternating sequence of ports. One cycle may be a
subset of another. Conveyor Belt : A service connecting regional hubs designed for transshipments
between continents at the crossing point of trade lanes.
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Figure 2.2: An example of a butterfly rotation

Rotation turnaround time varies from a single week up to 20 weeks, although the average rotation
is around 8-9 weeks. The rotation turnaround time is composed of voyage time at sea and the
service time at ports used for piloting in and out of the port, berthing and loading/unloading
cargo. The number of port calls in a rotation is a trade-off between economies of scale and transit
times (Notteboom, 2006). Visiting many ports leads to a good utilization of the vessel capacity
at the cost of long transit times. Another complicating factor is that port stays are very time
consuming. Notteboom (2006) reports that 21% of the transit time is the accumulated port stay
for a COSCO Europe-Far East service. The schedule includes buffer time to account for delays
due to weather, port congestion or unusually high terminal handling time. These delays may cause
speed increases on individual voyage legs, which increases energy consumption and CO2 emission.

Frequency

As described in Section 2.4.1, the liner shipping business is characterized by having a public sched-
ule. From the carrier’s point of view a schedule consists of a set of services. The services consist
of a fixed itinerary of ports typically called with a weekly frequency (Notteboom and Vernimmen,
2009; Stopford, 2009). The fixed weekly frequency introduce constraints on the network as op-
posed to varying frequencies of services. The fixed weekly frequency is widely used in container
liner shipping due to significant planning advantages for carriers, shippers and terminals:� Reliability. Fixed departures enabling complete integration of customer supply chains.
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Figure 2.3: A single service connecting ports
A,B,C and D. The vessels are depicted along with
a cargo list specifying the current cargo load. Total
round trip time is 21 days and to provide weekly
frequency three vessels are sailing a week apart.
The cargo is destined for nodes on the service as
well as nodes not belonging to the service. The
cargo has multiple origins and destinations.

Figure 2.4: Two connecting services. The ser-
vice from Figure 2.3 and a second service with a
round trip time of 1 week illustrated by a single
vessels. The cargo composition on board vessels
illustrate transshipments at the core of the liner
shipping network design.� Simplified network planning. A guiding rule for the carrier when designing the network.� Asset planning. The use of port berths and vessels can be planned for better utilization.� Planning routing scenarios. Synchronization of connecting services may provide timely

transshipments for critical connections.

The stable flow of general cargo in containers enables the carrier to maintain a weekly service. The
weekly frequency of a schedule is achieved by deploying multiple vessels sailing one week apart as
illustrated in Figure 2.3. The speed of each voyage between port pairs is thus closely related to
the number of vessels. Therefore, adjusting the number of vessels on a service is a means to adjust
speed. At the same time, the decision of speed enables the carrier to adjust to demand fluctuation
as the carrier can increase capacity by increasing speed.

Business rules for service generation

The generation of services has a high degree of freedom in terms of the number of port calls and
average rotation time. In spite of the route flexibility there are certain business restrictions arising
from complex real world constraints. The real world constraints may be expressed as “rules of
thumb” to the combination of the vessel class deployed, the rotation turnaround time and degrees
of freedom on the weekly frequency, according to Network and Product at Maersk Line at Maersk
Line. Some important business rules are stated as follows:

1. Services deploying a vessel class of capacity of at least 1200 Forty Feet Equivalent Unit(FFE)
must have weekly frequency. This is a basic structure in liner shipping, customers plan their
production after a weekly scheduling. It also facilitates easy management of shared resources
between carriers as terminals and canals. Smaller vessels calling smaller ports are exempt
from this due to low demand and / or unstable terminal service.

2. Services deploying a vessel class of capacity of at least 4200 FFE must have at least 4 week
rotation time. Large vessels have longer port operations, thus using these on short services
would give a high fraction of port time on the rotation. This again gives a high transit
time as compared with smaller vessels on same rotation, thus making large vessels on short
services uncompetitive.
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3. Services deploying a vessel class of capacity of at most 800 FFE must have at least 2 feeder
portcalls in between every hub-port call.

Business rules 1 and 2 are implemented in our algorithm and thus present in the computational
results. Business rule 3 has not been implemented as distinguishing the sequential mix of hub and
feeder port calls is outside the scope of the heuristic column generation algorithm.

2.4.3 Assets and Infrastructure

Cost structure and economies of scale

The network cost of a carrier can be divided into fleet cost and cargo handling cost, detailed below
(we omit the administrative overhead estimated to around 30% by Stopford (2009)):� Fleet Cost:

1. Bunker Cost is the cost of bunker, which is the fuel consumed by container vessels.

2. Capital cost is the cost of acquiring or financing a single vessel v.

3. Port Call Cost is a terminal fee for calling a terminal with a given vessel v. (See below
for costs related to cargo handling at ports).

4. Canal Cost is the cost of traversing a canal with a given vessel.

5. Operational Cost (OPEX) is the operating cost of a vessel including crew, maintenance
and insurance.� Cargo handling Cost:

1. (Un)load cost is the cargo handling cost at a given port.

2. Transshipment cost is the cost of transshipping a cargo in a port.

3. Equipment cost is the cost of owning / leasing containers.

According to Stopford (2009, Table 13.9), the bunker cost is 35-50% of a vessel’s cost, capital
cost is 30-45%, OPEX is 6-17% and port cost 9-14%. Generally bunker cost exceeds capital costs
(apart from the largest vessels).
Bunker consumption depends on the vessel type, the speed of operation, the draft of the vessel

(e.g., the actual load), the number of operational reefer containers powered by the vessel’s engine
and the weather. Bunker consumption for a vessel profile is a cubic function of speed (Alderton,
2005; Stopford, 2009) During a round trip the vessel may sail at different speeds between ports.
The vessel may slow steam to save bunker fuel or increase speed to meet a crucial transit time.
Speed may be constrained by hard weather conditions or navigation through difficult areas. This
is a complicating aspect seen from a modeling perspective.
Both capital cost and OPEX varies with capacity. Economies of scale means that a large vessel

is cheaper to operate per Forty Foot Equivalent (FFE), which is the most common container unit
(Stopford, 2009). The market rate of a vessel is called Time Charter Rate (TC rate) and represents
the cost of leasing (charter in) a container vessel into the fleet or for a carrier to forward lease
(charter out) an owned vessel to another carrier. The TC rate fluctuates with seasonality and
is highly dependent on the length of the chartering period. A carrier may have an owned fleet
supplemented by chartering in and out to meet capacity requirements and to gain flexibility in
asset management. TC cost will include daily running costs (OPEX) of the vessel, such as crew
costs, repair and maintenance. For vessels owned by the carrier the TC cost will cover OPEX and
capital cost and depreciation of the vessel’s value (see Stopford, 2009, page 544). It is assumed that
the TC costs represent a market rate, where the carrier will be able to charter out the vessel in case
of a surplus of vessels. The methods described herein will consider fixed TC costs, not considering
financial asset management of a fleet of container vessels under an expected development of TC
costs. For more details on such ideas see (Alvarez et al.).
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Port call cost and canal costs may be treated identically. The port call cost is a fee paid to the
terminal. The fee depends on the size of the vessel, i.e., the capacity booked in the terminal and
also on the geographical location and size of the terminal. The cost of traversing the Suez Canal
and the Panama canal depends on the size of the vessel and the actual load of the vessel.
(Un)load and transshipment cost are also known as cargo handling costs. The load and unload

costs are fixed once the cargo is selected for transport, but the transshipment cost depends on the
routing of the product and hence the total number of transshipments. A global carrier will not
provide direct connections for a significant percentage of the available transport scenarios, which
incur transshipment at least once during a voyage. The cargo handling cost can be a non-linear
function as some terminals have volume dependent costs.
Equipment cost is the cost of containers. The carrier usually owns the majority of the containers

used for cargo transport with the option of leasing in containers (Stopford, 2009). Stopford (2009)
estimates the daily cost of a FFE dry container to around 1$ per day, whereas a reefer FFE has
a daily cost of around 5.60$.
Vessels

An ocean-going container vessel is the core part of a carriers’ operations. It can be characterized
by specifications as FFE capacity, weight capacity, speed, length, beam, draft, number of reefer
plugs, ice class, age, engine power, etc. The defining attribute is FFE capacity given as a nominal
number. The actual capacity of a vessel depends on the service it is sailing and the actual cargo on
board. A vessel cannot accommodate more reefer containers than it has reefer plugs. The draft,
length and beam of the vessel dictate which ports, canals and straits the vessel can access. Some
waters have special access restrictions like the gulf of Finland, which during winter requires ice
class vessels for service. With regards to network design, the vessels are grouped in vessel classes
with similar properties such as capacity and speed interval, e.g., a Panamax vessel class denoting
the maximal width for traversal of the Panama Canal. Other common groupings are according to
a capacity band, i.e., vessels with a nominal capacity of 1500-2100 TEU.
Each vessel has a minimum speed Smin, and a maximum speed Smax, in knots, and a design

speed S∗, and design draft at which its design fuel consumption F ∗, is optimized. Still the actual
speed largely decides the fuel consumption. Large vessels may use in excess of 200 metric tonnes
(mt) of fuel per sailing day. Additional fuel is consumed by auxiliary engines for other vessel
systems (1-12 mt/day) and for electricity for reefer units (a rule of thumb is 0.025 mt/day reefer,
depending on inside/outside temperature). Calculating actual fuel consumption is very complex
as vessel draft, wind, waves, currents and date of the last hull scraping affect fuel consumption.
Some seaboards are under sulphur emission restrictions, limiting the percentage of sulphur

content in the bunker, denoted LSFO (Low Sulphur Fuel Oil, as opposed to High Sulphur Fuel
Oil (HSFO)) is supplied with a premium to the bunker price and has reduced availability.

Ports

A port may consist of several terminals competing for the cargo traffic in the corresponding port.
A carrier will typically use a single terminal at every port because of connections between services.
Ports have a maximum draft and the berths have a maximum length. This results in vessel-port
incompatibilities for some port-vessel combinations. A container vessel is piloted in and out of
port by a pilot employed at the port authorities. Pilot times may be several hours and for ports
situated up a river bed it can be 8-10 hours. At some terminals a berthing slot is reserved in
advance, whereas others serve vessels by a first-come-first-serve (FCFS) basis. A vessel may have
to wait for a given pilot time or wait for an available berthing slot at FCFS ports. To enter/leave
some ports a vessel may also have to wait for high tide. A port call cost is paid to enter the
port, which depends on vessel specifications. The port call cost covers expenses to the pilots, tug
boats, the port authorities and the terminal. Once the vessel has entered a terminal the vessel
will commence unloading and loading of cargo. Cargo handling is often referred to as moves
in general. Each move is associated with a cost to cover the expenses of the cranes, terminal
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crew and terminal administration. A transshipment move will typically cost less than a load
and an unload move together. The crane height and length of the terminal may also result in
port-vessel incompatibilities. The number of moves per unit time, that a port is able to perform
is denoted as its productivity. There is usually a distinction between main, transshipment, and
feeder ports. Feeder ports are usually small and their productivity may vary with the level of
technology deployed at the feeder port. Main ports have a large quantity of import/export and
some transshipment facilities. Most main ports will have medium to high productivity. Lastly,
transshipment ports such as Balboa, Singapore and Algeciras do not have extensive import/exports
but serve to transship between services and inter-modal transport. Transshipment ports usually
have a high productivity.

Port Stay

In real life port stay times will vary greatly due to the different productivity and strategies of
terminals either having reserved berthing slots or perhaps serve vessels on a first come first serve
basis. Furthermore, the port stay depends on the amount of cargo to load and unload in the given
port for that particular calling. The benchmark suite does not include measures of productivity,
nor do we model the port time on basis of the cargo flow, and therefore it has been chosen to
fix the port time to an identical measure for all ports and vessel classes. This is motivated by
the observation that larger vessels in practice will have higher productivity, since they call more
efficient ports served by more cranes. This means that vessels irrespective of size often have
comparable port stay times, an analysis of Maersk Line ports stay times roughly supports this.

Canals

The two large canals of Panama and Suez enable fast transport between continents. To traverse
the canals, a substantial fee is charged. The canals offer significantly faster transit times and also
reduced operational costs due to the reduction of the sailing distance. Some sailing passages may
have draft and width restrictions such as the Panama or Kieler Canal resulting in a significant
detour for larger vessels. Some, as the Bosporus straight, are the only entrance to a sea body and
the limitations of these straight thus dictate the size of entering vessels. The current restriction
on vessel size of the Panama canal is very decisive in the services of the American east coast from
the Far East and Australasia. No such restriction exists for the Suez canal with current container
vessels.

Equipment

Containers are generally available in lengths 20, 40, and 45 feet each of which exist in different
types as: Dry (DC), refrigerating (reefers), open top (OT) and rack, plus additional specialized
containers. A customer will generally require a specific type of container, though in some cases
containers are used outside their designated scope. Dry equipment covers roughly 80% of a
carriers equipment pool (Stopford, 2009) with remainder mainly being reefers. There is a similar
distribution on container sizes with around 80% being 40’ containers (Stopford, 2009).

2.4.4 Demand and Customers

The goods and customers of containerized transports are plentiful and cover any type of manufac-
tured goods, but can also be bulk-like cargo such as stone, waste-paper or refrigerated commodities
like fish or fruits. A service will usually focus on customers in a trade (sometimes multiple trades),
e.g., Asia to Europe or South America to North America. They may be grouped into east-west
trades, which have larger volumes, allowing for economy of scale deploying huge vessels and into
north-south trades, which have much refrigerated cargo requiring specialized vessels and faster
transit time. Similarly all trades have special characteristics with regards to volume, service level
requirements, etc. that govern how a service can compete in the trade.
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Demand

The production and consumption of some commodities vary over the year, some following harvest
seasons, others following holidays and festivals or summer vacations. As a result, demand varies,
some on a global level others only affecting a single port or trade. The biggest of these is Christmas,
which, combined with other effects, generates the yearly peak season in the third quarter, allowing
warehouses to fill up prior to Christmas shopping. Another peak happens prior to Chinese New
Year as Chinese factories export their goods before closing down for the festivities. A customer
or shipper will usually only pay for a container transport once it is on the vessel or delivered, i.e.,
there is no fee for booking and no fee for not submitting a cargo for a booking. This risk-free
booking policy for the shipper causes many problems for the carrier and shipper:� It makes it hard to forecast the demand of cargo for some vessel departures, (although it can

be used at ports called later), so, the carrier will overbook departures. This causes delays of
cargo when forecasts and bookings fall short.� Shippers know the overbooking as a risk, and, to counter this, they will intentionally book
for more containers than they expect to ship, often spread at different carriers to optimize
flexibility. This especially happens in peak seasons as the third quarter, where capacities are
the most pressed.

Containerized transport has been a growing industry for many years. Between 1983 and 2006
world GDP growth was 4.8% per year, whereas container cargo growth averaged to 10% per year
Stopford (2009). The trend has continued in recent years looking at the data from The World
Bank with an exception of the year 2009 where the industry was suffering from the worldwide
financial crisis. The long history of fast growth in containerized cargo has given an expectation of
continuous growth in the industry. The delivery time of ordered vessels is several years and this
makes the market slow to adapt to increased demand with resulting huge fluctuations in revenues
as seen in the aftermath of the financial crisis in 2009.

Revenue

In general the revenue of a cargo is closely related to the demand-supply balance between the
volume of cargo to be transported and the capacity offered by container carriers. But many other
aspects come into play. Specialized cargo, requiring specific equipment or different administrative
handling will give higher revenue, for instance refrigerated or military cargo. As the demand is
not symmetrical (e.g., Asia exports much more than is imported) but the supply is symmetrical
(vessels return to Asia to be reloaded), hence also the revenue is not symmetric. Transporting
a container from Asia to Europe can easily cost three times more than the reverse (Alphaliner
charter rates 2000-2010).
The demand fluctuations over a year influence the revenues, with the highest revenues in the

third quarter, but with variations over trades.

Service level

The specific service a customer is presented with, for transporting a container from port A to port
B, the product, can be classified by a number of parameters:� The price: A basic rate, subject to additional fees and surcharges.� Bunker Adjustment Factor (BAF): A variable price component dependent on the bunker

price, making it possible for the carrier to share the risk of oil price volatility with the
shipper.� Transit time: The time to transport a container from A to B.� Transshipments: The cargo is reloaded onto a new vessel in a third port. A direct product
is usually preferred due to the decreased risk of missing a connection.



Chapter 2. A base integer programming model and benchmark suite for liner shipping network
design 32� Frequency: A weekly service calling a port is preferred to a bi-weekly service due to increased

flexibility.� Reliability: Ocean carriers differ in reliability of services and the products they operate
(Notteboom (2006), Maersk Line).� Paperwork: As documentation and administration, different carriers and products require
different paperwork, adding complexity for the shipper.� Equipment: The carrier must supply the customer with a container prior to transporting.� Weekday: Vessels departing on a Friday can, e.g., be preferable to a departure on Monday,
as it can shorten the supply chain with three days (for a factory closed in the weekend).

All these factors can be relevant for a shipper, with price and transit time often being the key
factors.

Routing (Products)

As a result of trade policies there may be various cabotage rules within countries restricting
internal transport within the country to routings on vessels flagged/owned/operated in the country.
Cabotage applies to transshipments of cargo destined within the country and also for empty
containers. Other special rules may exist, e.g., embargoes: when a country A is embargoing a
country B, cargo from/to B can not be transshipped in A. Dangerous goods are subject to IMO
rules with regards to the quantity and the placement of these goods on the container vessel.

Competition & Partnerships

As mentioned the economies of scale in liner shipping can generate huge savings for larger volumes.
This also motivates carriers to cooperate on operating services or subcontract. Such partnerships
exists in various forms.

Foreign Feeder Agreements (FEF) A service operating between a hub and a few proximate
ports is called a feeder. These are usually operated by smaller vessels (less than 1250 FFE) and
the cargo is transshipping in the hub to some ocean-going service. The feeder carrier will combine
volumes from other global carriers to achieve economy of scale.

Alliances and Vessel Sharing Agreements (VSA) The significant economies of scale achieved
by deploying larger vessels is the motivation for multiple carriers to enter a VSA. Two or more
carriers share a round trip, making it possible to deploy larger vessels and providing higher fre-
quency of service. Deploying large vessels presents a significant saving in operating cost for each
carrier (see Figure 13.11 in Stopford (2009)) without reducing the service levels presented to their
customers. In practice, VSAs are complicated because the partners seldom have matching ser-
vices and demand, available vessels, etc., but VSAs are widely used and a central part of liner
shipping. For more details on the mechanics of VSAs, refer to (Agarwal and Ergun, 2008b) for
game theoretic observations on the subject.

Slot Charter Agreements (SCA) are a combination of FEF’s and VSA’s. One carrier will enter
a contract to use capacity (slots) on another carrier’s service. This can either be on the full round
trip of the service, allowing for the slot to be used differently in head and back haul, or on a
specified part of the rotation. The contract is usually for a fixed number of slots which is paid for
used/unused, sometimes with an option for extra slots as pay per use.
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2.5 The benchmark suite for LSNDP

The purpose of the benchmark suite is to provide data for prototype implementations of models
and methods for the liner shipping network design and fleet deployment problem at a strategic
level. The literature review displays three important factors for the development of the benchmark
suite:

1. The research community views the problem from different angles in terms of constraints and
costs. As a consequence the data must address the important factors seen across the entire
research field and also incorporate data on foreseeable extensions to current models.

2. A “base” model is needed in order to compare methods.

3. Currently, exact methods only solve very small instances, while heuristics such as the tabu
search by Alvarez (2009) caters for a large instance. As a consequence the benchmark suite
should contain small, realistic instances, that may be solved to optimality within foreseeable
future and large instances for heuristic development.

There are at least two pressing research questions on the LSNDP: efficient modeling of bunker
consumption as a cubic function of speed and incorporating the level of service. Global carriers
such as Maersk Line put great effort into creating a network design of low bunker consumption to
meet a demand for environmentally friendly transportation of goods and improve the economy of
the network. As noted by Notteboom and Vernimmen (2009), the price of bunker has a significant
impact on the network design and the fleet deployed. Therefore, formulas for bunker consumption
based on vessel class are included in the benchmark suite to allow for calculations of the overall
bunker consumption as a function of speed. At the same time, Notteboom and Vernimmen (2009)
state that customers are demanding a high frequency and low transit times and therefore, level
of service and competitive transit times are important factors in LSNDP. The benchmark suite
includes a set of maximal transit times on commodities as we believe level of service and transit
time incorporation to be important open research questions in the liner service network design
problem.
We have chosen to provide vessel data in terms of six fictitious, but realistic vessel classes,

where multiple vessels share similar characteristics. We believe a global carrier has several sim-
ilar vessels assigned to a service (Agarwal and Ergun, 2008a; Notteboom and Vernimmen, 2009;
Alvarez, 2009). A prototype implementation will contain the most important details, but omit
details believed to be non-decisive for the conceptual understanding of the problem. Therefore,
the benchmark suite does not contain different equipment types such as reefer and high cube con-
tainers. The weight of vessels and cargo in particular are omitted from the benchmark instances.
Assigning specific vessels to a specific service is an operational issue dependent on cabotage

rules. Hence, the benchmark instance do not indicate the country of registration of vessels in the
present data set. Likewise, IMO rules apply to specific cargoes and stowage plans, which is out of
scope of the considered LSNDP.
Weather and currents may have a large influence on travel times and energy consumption in a

LSNDP, but we have chosen to ignore these factors to avoid further complexity.
The benchmark instances are not meant for actual scheduling of services. Therefore tidal infor-

mation on ports is not provided although they may be decisive for a specific berthing window at a
port. On the same note, the specific weekday on which a demand becomes available for transport
out of a given port is not included in the data of the benchmark suite.
The following section discusses data objects and data generation. A discussion on the range of

instances needed to qualify the benchmark suite follows.
The benchmark suite originates from publicly available data and past data for Maersk Line.
External data sources are: “Distances between ports - Pub. 151”, National Imagery and

Mapping Agency, The Hamburg Index, Vereinigung Hamburger Schiffsmakler und Schiffsagen-
ten, “Charter Rates 2000-2010”, Alphaliner charter rates 2000-2010, “Container Freight Rate
Insight”, Drewry Shipping Consultants.
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The data from Maersk Line is from a given anonymous year and has been subject to reasonable
random perturbation and measures to anonymize the data in order to protect the sensitivity and
confidentiality of Maersk Line.
The purpose of the benchmark suite is to qualify algorithms for scalability, quality, and robust-

ness by providing realistic data for both the scale, structure and complexity of the liner shipping
network design problem. We have chosen not to anonymize the actual ports to be able to evaluate
the network from a business perspective, but the data still does not represent an actual business
case, nor does it contain all relevant data. We hope the benchmark suite can be used to perform
strategic analysis on various scenarios. The following section describes the data generation process
in terms of the origin of the data and the logic used to derive the benchmark suite.

2.5.1 Data objects and data generation

An instance consists of the following data: Port list with port call cost as a function of vessel
capacity (explained in more details in Section 2.5.2). Fleet list with design speed and bunker
consumption at design speed and idling (Section 2.5.3). Distances contains an all-to-all list of
travel distances (Section 2.5.4), and Demands specifies a set of origin-destination pairs and their
corresponding demands (Section 2.5.5). Finally, the Graph file defines a graph representation of
the considered problem with way points. The data items are illustrated in Figure 2.5 giving an
overview of the attributes of each item.

Port List P
Port αP

Name nP

Country oP

Cabotage aP

Region rP

Latitude xP

Longitude yP

Max berthing length ℓP

Draft δP

Move cost mP

Transshipment cost tP

Fixed portcall cost fP

Variable portcall cost vP

Fleet List F
Vessel class vF

Capacity cF

TC rate TF

Draft δF

Min speed sFmin

Max speed sFmax

Design speed sF∗
Fuel consumption fF

∗

Fuel consumption fF
0

Quantity of vessels qF

Suez fee sF

Panama fee pF

Cargo Demand List C
Origin port αC

Destination port βC

Quantity qC

Freight rate fC

Max transit time tC

Graph
Vertex (Port, Waypoint, Canal)
Edge (Source, Target, Distance, Draft)

Distance List D
Origin port αD

Destination port βD

Draft δD

Distance dD

Suez traversal sD

Panama traversal pD

Figure 2.5: Data objects of an instance

The benchmark suite does not dictate a planning horizon for the models at hand. However, a
weekly frequency is a business standard (Notteboom and Vernimmen, 2009; Network and Product
at Maersk Line) and hence demand scenarios are based on weekly calls. A week is easily scaled
to longer planning periods if desired. The cost and revenues are not meant to reflect the actual
cost of any carrier. The costs and revenues are constructed with care to reflect the relative cost
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structure within the network. This means that a large port is proportionally cheaper to call at
than a small port. Likewise, it is cheaper to transship a container in Asia than in Europe or the
US. Revenues reflect demand and supply such that visiting a distant port with low demand require
higher revenues per FFE than a central port with extensive own demand and supply.

2.5.2 Port List

Ports are identified by UNLOCODE, a unique 5-character identifier (for Europe)). The port
list specifies the ports in the instance and contains the following fields: Port (in UNLOCODE);
Name; Country; Continent; Cabotage region if applicable; Revenue Region (maps port to the
revenue data supplied by Drewry Shipping Consultants); Latitude; Longitude; Maximal berthing
length (in meters); Maximal acceptable vessel draft (in meters); (Un)Load cost per FFE (in USD);
Transshipment cost per FFE (in USD); Fixed port call cost (in USD); Variable port call cost per
FFE (in USD) as seen in table 2.2.
The port list reflects real ports ensuring that a solution can be mapped to a geographical

coverage. This allows network planners and others without optimization background to evaluate
a proposed network.

Port Name Country Cabotage Region Long LatDraft MoveTrans FixedVar
αP nP oP aP rP xP yP δP mP tP fP vP

CNYTNShenzhen China China South China 114.26 22.58 13.5 176.69 78.14 7220.21 3.8

Table 2.2: Example of port entry. Port is given by UNLOCODE. Draft is the maximal draft. Move is
the (un)load cost and Trans is the cost of a full transfer for transshipment. Fixed is the fixed port call
cost and Var is the variable port call cost as a function of the capacity.

The transshipment cost will usually be lower than the sum of loading and discharging as trans-
shipping does not require customs paperwork at the terminal in question. In an optimization
model, the load and discharge may be viewed as fixed costs once the demand is chosen for trans-
port.

The geographical location and the port size will determine a fixed cost for visiting the port and
a variable cost related to the capacity of the vessel visiting the port. This relation is deduced
experimentally from the perturbed Maersk Line data giving a non-zero fixed cost and a variable
cost corresponding approximately to a linear function of the capacity.

2.5.3 Fleet List

Six generalized vessel classes are constructed from the fleet list of Maersk Line (A.P. Møller-Mærsk
Fleet List) representing realistic capacity classes in the network. A vessel class will contain the
following information: TC rate per day per vessel (in USD), this value includes OPEX, crew
and maintenance costs; Capacity (in FFE); Design draft (in meters); Minimal speed (in knots);
Maximal speed (in knots); Design speed (in knots); Daily bunker consumption in metric tonnes at
design speed; Own consumption in metric tonnes when idling at ports; Number of vessels in the
vessel class currently in the fleet; Suez canal fee (in USD); Panama canal fee (in USD) as seen in
Table 2.3.

The minimal- and maximal-speeds referred to in the fleet list are not the technical mini-
mum/maximum speeds. The speed interval is related to the average speed on a service deploying
the vessel class in question. This means the vessel will be doing less than the minimal speed on
part of the service and hence the minimal speed referred to in the fleet list is higher than the tech-
nical minimum speed. The technical maximum speed will also be higher than the maximum speed
referred to in the fleet list and likewise refers to the maximal average speed that can be assigned
to a service with the vessel class in question deployed. The minimal speed is the “slow steaming”
speed of a service deploying the vessel class. The only size measure describing the vessels is draft.
Other measures such as length and beam width, should be seen as a proportional function of draft.
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This generalization is done to simplify the problem, keeping in mind that a full description of the
problem can extend to more than this one size measure without losing applicability.

Vessel class Cap TC/$ Draft Min s Max s Des s Fuel* Fuel0 Quantity Suez/$ Panama/$
vV cV T V δV sVmin sVmax vV

∗
fV
∗

fV
0 qV sV pV

Feeder 450 450 5000 8.0 10 14 12.0 18.8 2.4 38 175769 64800

Feeder 800 800 8000 9.5 10 17 14.0 23.7 2.5 77 218445 115200

Panamax 1200 1200 11000 12.0 12 19 18.0 52.5 4.0 124 267217 172800

Panamax 2400 2400 21000 11.0 12 22 16.0 57.4 5.3 161 413533 345600

Post panamax 4200 35000 12.5 12 23 16.5 82.2 7.4 91 633007

Super panamax 7500 55000 13.5 12 22 17.0 126.9 10.0 10 1035376

Table 2.3: Example of the fleet list. Vessel class is the name of the class. Cap is the capacity in
FFE. TC is the TC rate. Draft is a single measure expressing width, length and draft for port/vessel
compatibility. Min s, Max s is the minimum and maximum average speed interval of the vessel whereas
Des s is the design speed. Fuel*,Fuel0 are bunker consumption at design speed and idling respectively.
Quantity is the available number of vessels in the fleet with these specifications. Suez, Panama are the
canal fees for the respective vessel classes.

The fleet list reflects the demand scenario of the instance as a trade lane has a smaller fleet than
a world instance.

TC rates

The TC rates fluctuate with the market and hence capturing TC rate is very dependent on the
date it was retrieved. We have compared data from Alphaliner charter rates 2000-2010 and
“HAMBURG INDEX Containership Time-Charter-Rates” Vereinigung Hamburger Schiffsmakler
und Schiffsagenten, which have charter rates for vessels up to 4000 and 4800 TEU respectively. For
vessel classes above 4800 TEU, we have constructed a TC rate based on the percentage increase of
TC rate in the Maersk Line data to corresponding capacity intervals of the fictitious vessel classes
and have increased the Hamburg index of charter prices with the corresponding percentage. The
TC rates have been ceiled to the nearest thousand for vessel classes below post panamax size and
to the nearest 5000 for the two largest vessel classes.

Bunker consumption

Bunker cost is a significant cost component of the network. The bunker curves for the generalized
vessel classes are based upon the formulas of Stopford (2009) and Alderton (2005). There is general
agreement that bunker consumption, F , may be estimated by a cubic function

F (s) = (s/sV∗ )
3 · fV

∗ (2.1)

for any speed s between the min speed sVmin and max speed sVmax of the vessel V , where sV∗ is
the design speed, and fV

∗ is the fuel consumption at design speed. This function disregards draft
although it is a significant factor, so the bunker consumption should be the consumption at design
draft as well. The design draft is the draft the vessel has with an average load and for which it
is designed to have the lowest bunker consumption as a function of speed. The fleet list specifies
the design speed and consumption at design speed for the cubic formula for each vessel class.
The bunker price is variable and the effect of bunker price could be a scenario for a user of the
benchmark suite. In the computational results we use a flat bunker price of 600 USD per ton.

2.5.4 Distances

The distances between ports are based on information from the National Imagery and Mapping
Agency (NIMA, 2001). The data from NIMA contain distances from each port to major way
points (ocean junctions) and ports in the vicinity. The data enables a mapping of global sailing
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routes onto a graph of ports and way points. Each arc is given specifications such as the maximal
draft and maximal width such as the Panama canal, which has a width restriction. A single-source
shortest path algorithm between each pair of ports determines the shortest feasible path for each
vessel class based on this data. It means that the distance between Oakland on the US West Cost
and Savannah on the US East Coast will differ for vessels able to traverse the Panama canal as
opposed to vessels not able to traverse the Panama canal. To account for canal cost, a parameter
indicates whether the distance is based on a visit to the Suez Canal and/or the Panama canal.
The distance file is a table with multiple entries for each port pair depending on draft limitations
and canal usage.
The distance data consists of: Origin port α (in UNLOCODE); Destination port β (in UN-

LOCODE); Distance (in nautical miles); Draft limit (in meters) δD; Suez traversal (yes/no);
Panama traversal (yes/no) as seen in Table 2.4.

Origin Destination Distance Draft limit Suez traversal Panama traversal
αD βD dD δD sD pD

GBABD USOAK 7953 12 No Yes
GBABD USOAK 13862 No No

Table 2.4: Example of distance file. Origin is the origin (in UNLOCODE), Destination the destination
(in UNLOCODE). Draft limit is the draft limit in meters (if relevant). Suez traversal, Panama
traversal indicate whether the respective canals are passed to calculate canal fees.

The canal dues for the world’s two most important canals; Panama and Suez, are included in
the benchmark suite. These are based on their published cost structure (Suez; Panama Canal)
and created for the relevant vessels classes. Additional canals are omitted from the benchmark
suite.
After manual inspection of the distances, several entries were identified to be erroneous. We

have attempted to verify the correctness of several distances through external data sources and to
correct obvious errors in the data. However, the distances are not guaranteed to be the shortest
distances due to the selection of way points and due to possible undetected errors.
The distances have been collected and put into a graph G = (V,E). The set of ports P and

the set of way points W constitute V = P
⋃

W . The edge set E is from National Imagery and
Mapping Agency. Two distance files are generated

1. An all-to-all distance matrix only for the port set P × P . This graph has few vertexes and
many edges.

2. A (sparse) graph G = (V,E), of the instance with V = P ∪W nodes.

The graph file contains all vertices’s and edges needed to navigate between any pair of ports in
P with the fleet F . The files are generated using a shortest path algorithm between all pairs of
ports for each vessel class in the fleet F .

2.5.5 Cargo Demands

Realistic demand data that captures the asymmetry in world trade is important when deciding
on capacity and port sequences. A maximal transit time for each demand is provided for future
models incorporating level of service or maximal transit time constraints.
The demand table contains the following information: UNLOCODE of the origin port α; UN-

LOCODE of the destination port β; Quantity (in FFE); Freight Rate (in USD per FFE); Maximal
transit time (in days) as seen in Table 2.5. The demands are assumed to be the expected weekly
demand.
For world instances, demands are aggregated onto the main ports.
The revenues are based on the trade lane prices found in “the container freight rate index”,

courtesy of Drewry Shipping Consultants. The rates are independent of any carrier and contains
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Origin Destination Quantity Freight rate Max. transit time
αC βC qC fC tC

USLSA CNYAT 370 1500 15

Table 2.5: Example of demand file. Origin, Destination give the origin and destination of the demand.
Quantity states the number of FFE needed. Freight rate is the freight rate in USD per FFE. Max
transit time states the maximum transit time in days.

reliable market data collected across several carriers and markets. Drewry Shipping Consultants
do not keep data for South America West coast and some region pairs. In such cases the official
rates from the website of Hapag-Lloyd have been applied. The revenues are taken from a specific
period of time, and it should be noted that these fluctuate greatly dependent on volume changes,
new buildings, bunker price, etc. The revenue is 70% of the market freight rates as we are only
dealing with the network cost and must be able to pay for the administrative overhead estimated
to 30% by Stopford (2009). The volume of the origin/destination ports along with the distance
to the nearest main or transshipment port are used to vary the trade lane price according to
the demand structure, such that a demand from a transshipment/main port is cheaper than a
demand from a feeder port and feeder port revenues are dependent on the distance from the main
port. Lastly, the freight rates are perturbed within an interval of ±5% to reflect price variance of
different markets and cargoes.

2.5.6 Instance range of the benchmark suite

The instances are meant to challenge both exact and heuristic methods. Exact methods are cur-
rently limited to approximately 10 ports, whereas the tabu search heuristic of Alvarez (2009)
provides results for 120 ports. Furthermore, the instances are meant to encourage the progress of
method development and hence include instances of real life scale, although we cannot yet solve
them to optimality. Most of the instances are subsets of a larger network, where the subset is
selected to highlight various aspects of the LSNDP such as using a single hub or multiple hubs,
the importance of draft restrictions or the capacity in terms of the fleet size is low compared
to the demand and vice versa. The provided instances are listed in Table 2.6. In addition to
the instances we have generated a set of rules to transform the base cases into two additional
scenarios, where there is low capacity and high capacity compared to demand volume. The sce-
narios are created by adjusting the fleet data in terms of the number of vessels available and
the TC rate, which is adjusted to reflect whether there is a deficit or surplus of capacity in the
market. For the low capacity case TC-rates are multiplied by 1.4 to reflect a 40% increase of
TC-rates, while the fleet quantity is decreased by 20% by multiplying the quantity with 0.8 and
rounding to nearest integer value. In the high capacity case TC-rates are decreased by 20% by
multiplying TC-rate by 0.8 and the fleet quantities are increased by 20% multiplying each ves-
sel class quantity by 1.2 and rounding it to the nearest integer. The instances may be found at
http://www.or.man.dtu.dk/English/research/instances under the name LINER-LIB 2012.

The Pacific and the single/multiple hub instances should be challenging for the exact approaches
and will also be applicable to model development as models of LSNDP can be verified by analyzing
the results of the benchmark suite.

To have a medium sized multi hub instance, the Mediterranean case has been constructed. It
includes 39 ports between Morocco and Suez and includes ports in the black sea. Several ports
have large demand sets throughout the seaboard. The demands in the Mediterranean instances are
constructed and not comparable to a real world setting. The AsiaEurope trade lane instance and
World instances should be challenging for the heuristics developing new methods, neighborhoods
and competing for the current best known objective value. Exact methods solving these instances
to optimality are not expected in the near future. We do not provide computational results for the
WorldLarge instance as the size is currently considered out of reach even for heuristic methods.

The Benchmark suite LINER-LIB 2012 can also be used in other optimization models related
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Category Instance and description Ports Dmnds
Single hub instances Baltic Baltic sea with Bremerhaven as hub 12 22

WAF West Africa with Algeciras as hub to West African
ports

19 38

Multi hub instances Mediterranean Mediterranean with Algeciras, Tangier,
Giao Tauro as hub

39 369

Trade lane instances Pacific (Asia-US West) 45 722
AsiaEurope Europe, Middle East and Far east regions 111 4000

World instances Small 47 Main ports worldwide identified by Maersk Line 47 1764
Large 197 ports - the majority of ports serviced directly
by Maersk Line

197 9630

Table 2.6: The instances of the benchmark suite with indication of the number of
ports and the number of distinct origin-destination pairs. The instances may be found at
http://www.or.man.dtu.dk/English/research/instances

to liner shipping network design such as evaluation of a set of candidate services, synchronization
of services to reduce transit times, sailing speed optimization etc.

2.6 Reference Model for the LSNDP

The following model is based on the model presented in Alvarez (2009) with extensions to handle
butterfly rotations and weekly frequencies. Butterfly rotations (illustrated in Figure 2.6) make it
more difficult to account for transshipment costs. The planning horizon remains open, but in the
route generation a constraint has been added such that the number of vessels are aligned with the
planning horizon and service duration to provide a frequency of service within a limited band of
a (bi)-weekly frequency.

2.6.1 MIP formulation

In this section, we present a possible formulation of the LSNDP. In the maritime sector, a service
is defined as a sequence of ports to be visited following a published schedule. While we adhere
to this convention, the core entity of our model must be more specific in order to capture all
transshipment costs properly. We therefore define a rotation as a particular configuration of a
service, vessel class, number of vessels deployed, and speed.

Our formulation of LSNDP addresses butterfly routes, as these are often used in practice. This
means that the flow balance equations need to be extended. In order to balance the flow at
butterfly nodes correctly, a three-index formulation is necessary. Consider the rotation in Figure
2.6, where port c is the butterfly port. With a traditional flow balance at port c, cargo that arrives
from b might be redirected towards port a under the same conditions as cargo that continues on
to port d. However, cargo travelling on the port sequence b-c-a must be unloaded at c as the
vessel continues to d, and later reloaded as the vessel arrives from e. Hence, it appears that we
must track the latest port visited by the cargo, as well as its immediate destination, which we
can encapsulate using a three-index formulation. Notice, that the cardinality of the problem is
not affected by this representation, given that one requires the same number of port pairs or port
triples to specify a service uniquely.

The following sets are used in the formulation (In square brackets it is described how the sets
relate to the graph defined in Section 2.5.4 and data objects defined in Figure 2.5):



Chapter 2. A base integer programming model and benchmark suite for liner shipping network
design 40

a

c

b e

d

f7

1

6

2 3

45

Figure 2.6: An illustration of the flow balancing of butterfly routes. The numbers on the arcs denotes
the sequence the vessel sails in the butterfly. Commodities travelling from b to a either follows the vessel
on route b− c− d− f − e− c− a or are transshipped at c, where the handling cost of the container must
be paid in full.

R All rotations in the model, indexed using r.
P All ports in the model. [P := P ]
E Set of all possible edges in the model [E ⊂ P × P ]. All edges are directed and

uncapacitated.
Er Set of edges used in rotation r.
Ωr Set of ordered port triples (h, i, j) in rotation r. The triples are ordered in the same

manner as they will be visited by a vessel in the rotation.
V Vessel classes in the model, indexed using v. [V := F ]
G Set of port pairs with demand for transport, indexed using (o, d). [G ⊂ P × P ].

The following parameters represent the known data for the problem (In square brackets it is
described how the parameters are calculated from the benchmark suite data):
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avij Canal costs for vessels of type v when traversing arc (i, j). [sV (Suez), pV (Panama)]
cv Capacity (in FFE) of vessels of type v. [cF ]
dvj Port call costs for vessels of type v when entering port j. [fP + vP × cv, where cv is

the number of FFEs the vessel can carry].
e Fuel price per ton. [$600 for all instances]
fv Daily running costs for vessels of type v over the entire planning horizon. [fv = T v·180

as we have a 180 days planning horizon, and daily TC rate is T v]

f̃v Cost or revenue of excluding a vessel of type v from operations. This can be the
revenue obtained from chartering the vessel out over the entire planning horizon, or
the cost of laying up the vessel, depending on transportation market conditions. [fv

(vessel in use), fv − f̃v = 0 (vessel not in use)]
gvs Fuel consumption (tons per mile) for vessels of type v steaming at speed s. [A table of

possible values of speed and gvs is generated a-priori by the program using equation
(2.1)]

hv Fuel consumption (tons per day) for vessels of type v when idle at port. [fF
0 ]

kod Total demand (in FFE) to the liner company for transport from o to d over the
planning period. [qC where o = αC and d = βC ]

lvij Length in nautical miles of a direct sailing from port i to port j using vessel type
v. Notice, for instance, that canal width restrictions will result in different voyage
lengths for wider vessels. [dD where i = αD, j = βD and δD > δF ]

mr Number of round trips performed by a vessel on rotation r during the planning period.
We do not impose an integrality restriction on this parameter, as we assume that a
fractional portion of the voyage can be completed at the beginning of the following
planning period.

pvj Time at port j for vessels of type v. [Based on historical data we set pvj = 24h
regardless of vessel size]

qod Revenue from transport of one FFE from o to d. [fC where o = αC and d = βC ]
q̃od Penalty for failing to transport one FFE from o to d. [$1000 USD per FEU in all

cases]
sr Speed of all vessels used in rotation r. [generated by the algorithm. The code tries

several speed-vessel-route combinations (respecting the vessel speed range) and picks
the one that leads to a better objective value for that iteration]

uj Cost of lifting one FFE at port j. [mP ]
tj Cost of transshipping one FFE at port j. [tP ]
vr Vessel type used in rotation r. [vF ]
zv Number of vessels of type v available. [qF ]

Finally, the decision variables used in the MIP are:

Xr
(ij)d Number of containers travelling to their final destination at port d along edge (i, j)

on rotation r.
U rs
(hi)d Number of containers travelling to port d which arrive to port i via edge (h, i) of

rotation r for transshipment to rotation s.
W r

(id) Number of containers travelling to port d reaching their final destination via edge
(i, d) using rotation r.

V r
od Demand from port o to port d that enters the network for the first time as it is loaded

to a vessel in rotation r.
Ood Demand from port o to port d that will not be serviced by the liner company.
Y r Number of vessels assigned to rotation r.

The MIP model is presented below, followed by an explanation of the objective function and all
the constraints.
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(V RD) minimize ZMP =
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+ r, s ∈ R, r 6= s (i, j) ∈ Er d ∈ P (2.8)

Ood, V
r
od ∈ R

+ r ∈ R o, d ∈ G (2.9)

Y r ∈ Z
+ r ∈ R (2.10)

Expression (2.2a) in the objective function captures the daily running costs incurred by vessels in
operation, as well as costs or revenues obtained when excluding some vessels from the operating
fleet. The next term (2.2b) obtains the fuel costs (including consumption during steaming and
while idling at ports), canal cost, and port calling fees for all active vessels. The term (2.2c)
obtains the total revenues from transporting cargo as requested, and the penalties incurred when
rejecting carriage requests. Finally, the term (2.2d) computes charges from loading and unloading
containers, both at their origin and destination, and at transshipment points.
Constraints (2.3) balance the flow of containers loaded and unloaded from each rotation at

nodes other than their final destination. Every container not destined for the port in question must
either continue along in the same rotation or be unloaded for transshipment to a different rotation.
Constraints (2.4) represent the flow of containers that were accepted for carriage arriving at their
final destination. Every container arriving at its final destination is unloaded and grounded.
Constraints (2.5) tally demand from the originating hinterland. The variables Ood allow us to

obtain a feasible solution for any fleet configuration. When there is not a sufficient number of
vessels to transport all the demand, or when it is not economically convenient to transport all
containers, the variables Ood are set to a positive value, indicating that some demand has been
forfeited.
Constraints (2.6) impose restrictions on the total number of containers that can be transported

by each edge in a rotation. The total that can be transported is limited by the number of vessels
assigned to the rotation, the capacity of those vessels, and the number of trips the vessels perform
over the planning horizon. Constraints (2.7) ensure that the number of vessels that are deployed
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does not exceed the number of available vessels of each type. Finally, constraints (2.8), (2.9), and
(2.10) impose non-negativity and integrality restrictions on the corresponding variables.

Summary of simplifications in the model

In this section we summarize some of the practical constraints and business rules stated in Sec-
tion 2.4 that are not considered in the presented reference model for LSNDP. A subset of these
constraints are accounted for in the data of the benchmark suite, while others are considered
out of scope for mathematical models on the LSNDP. The reference model does not consider a
maximal Transit time for each commodity, and transit times are supplied for each commodity
in the benchmark suite for future model development. Non-linear handling costs in ports is not
considered in the reference model or the benchmark suite data. The port productivity and pilot
times for berthing are not considered in the fixed port stay of the reference model. The reference
model considers a single container type and thus reefer capacity and the bunker consumption of
reefer containers are not included in the reference model. Lastly, we do not consider equipment
cost and cabotage rules.

2.6.2 Metaheuristic

The heuristic that coordinates the overall algorithm is based on a heuristic column generation
framework (not to confuse with column generationDesrosiers and Lübbecke (2005) in LP) where
an auxiliary problem is used to generate new rotations (columns) to the overall model (2.2)-(2.10)
and a tabu search is applied to select the most promising set of rotations to constitute the network.
At any iteration i, we solve a multicommodity flow problem (MCFP) with aggregated origins using
the then-current set of rotations, Ri. The MCFP is defined in the Xr

(ij)d variables for the edges
of the rotation, the U rs

(hi)d variables to account for transshipments between rotations with edge

cost ti and W r
(id), V

r
id variables for (un)load to ports at their origin or destination with edge costs

ui. Rejected demand (Ood) is modeled by adding an auxiliary edge (o, d) with cost q̃od for each
commodity.

The overall framework for the heuristic column generation scheme using a MIP neighbourhood
to generate rotations is similar to the method applied in Alvarez (2009). The algorithm presented
in this paper differs because the MIP neighbourhood applied is new and includes more heuristic
measures on cargo composition. The MIP used for route generation includes (bi)-weekly frequency
constraints and respects business rules 1 and 2 from Section 2.4.2. Subtour elimination constraints
are also used to generate routes of high quality during the last phase of the search.

The traffic demand that is not assigned to any of the routes in Ri is the residual traffic demand
for the following iteration, k̂i+1. For i = 0 there are no rotations in Ri, and k̂0od = kod.

Let us assume that, for each vessel family v, a number nv of vessels are available at the end
of iteration i. For each family of vessels where nv > 0, we launch a collection of sub-problems
AUX(v, s, κ), for s ∈ [sFmin, s

F
min+1, ...sFmax] and various values of the number of vessels deployed,κ.

In practice, this might give rise to a fairly large number of sub-problems. Therefore, during the
initial iterations, we focus on a narrow subset of speeds and number of vessels to be deployed.

In solving the sub-problems AUX(v, s, κ), we will typically obtain multiple feasible integer so-
lutions. All these solutions are added to the overall model (2.2)-(2.10), since in any case the
sub-problem contains some approximations, and the optimal solution to the AUX(v, s, κ) may not
be the solution that advances the overall heuristic the most. Our current implementation paral-
lelizes the sub-problems, and we obtain batches of sixteen sub-problems that run simultaneously.

After the heuristic column generation for iteration i has terminated, we proceed to evaluate each
new column ζj in conjunction with Ri. We set Ri+1

j = Ri∪{ζj} and run the multicommodity flow

algorithm on this network. We select from amongst the Ri+1
j the network with the best objective

function, and set Ri+1 to be this network.

At some iterations, none of the candidate networks will result in a globally improved objective
function. We permit the algorithm to exploit this neighborhood for a limited number of iterations.
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If the overall objective function does not improve after a predefined number of iterations, we
trigger a backtracking process. First, we return to the best known configuration R∗. Then we
delete rotations from R∗ based on three criteria: empty FFE-miles, underutilized legs, and mixed
integer programming gap when the column was generated. The number of rotations that are
deleted depends on how many times we have returned to this same R∗ – a larger number of
returns to R∗ possibly indicates that this is no longer a promising point of departure, and the
algorithm will remove a larger subset of rotations from it. The set of routes that results after
backtracking is used as the basis for the following iteration.

If at any iteration the heuristic column generation procedure fails to produce any new columns
(for instance, because no vessels are available) we delete a small number of rotations from Ri. In
order to reduce cycling, we add recently added rotations to the tabu list to avoid it being deleted
from Ri.

2.6.3 Route Generation

The auxiliary problem AUX(v, s, κ) generates rotations based on the current network. We allow
one butterfly node per rotation. We also designate one port as the ”master” port of the service
for ease of writing the subtour elimination constraints.

The following additional parameters are required for the formulation of the auxiliary problem.

k̂od Residual demand (in FFE) to the liner company for transport from o to d. At any
iteration in the heuristic, the residual demand is computed by taking the original
demand, and subtracting the flow that is carried by existing rotations.

T Length of the planning horizon, in days.
δ Empirical parameter, estimates the amount of additional flow flowing through a but-

terfly node, as compared to a regular node.
φin
n , φout

n Empirical parameters that capture the importance of a port as an exporter or im-
porter.

κ Number of sister vessels on the new service.
v Vessel type to be deployed.
s Speed of all vessels that will be deployed.

Problem AUX(v, s, κ) has the following decision variables:

Nj Binary variable, indicates whether port j is visited in the rotation.
Bj Binary variable, indicates whether port j is a butterfly port in the rotation.
Ij Continuous variable, used to indicate the sequence of port j in a rotation (for subtour

elimination).
Cj Binary variable, indicates if port j is the master port of the route.
Aij Binary variable, indicates whether edge (i, j) forms part of the new rotation.
Qod Continuous variable, indicates the number of FFEs with origin at port o and final

destination at port d that will be carried per sailing of each vessel in the rotation.
W1,W2 Binary variables, respectively indicating whether the new rotation will have weekly

or bi-weekly call frequency.
µ Inverse of the number of trips to be completed over the entire planning horizon by

each vessel on the new service.
ω Estimated cost per sailing, per vessel, of the new service.

The auxiliary column generation model is then given by:

AUX(v, s, κ) maximize ZAUX(v,s,κ) = sκω (2.11)
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subject to

ω = µ(f̃v − fv)−
∑

(i,j)∈E

Aij

(

ehvpvj + egvslvij + dvj + avij
)

+

∑

(o,d)∈G

(qod − uo − ud + q̃od)Qod (2.12)

24Tµ =
∑

(i,j)∈E

Aij

(

pvj +
lvij
s

)

(2.13)

The objective function (2.11) maximizes the net revenue contribution from each sailing of the
additional rotation. Constraint (2.12) defines the contribution from each sailing by prorating
the daily running cost of the vessel, the opportunity/layup cost of the vessel, sailing and hotel
fuel expenses, port calling fees, canal fees, and the revenues generated by the sailing. Constraint
(2.13) establishes the number of trips to be completed by each vessel over the decision horizon as
a function of sailing time between ports and port stay duration.
The following constraints establish the basic logic for variables Aij , Ni, and Bi.

∑

j∈P

Ajn =
∑

j∈P

Anj n ∈ P (2.14)

Aij ≤ (Ni +Nj)/2 (i, j) ∈ E (2.15)
∑

j∈P

Bj ≤ 1 (2.16)

∑

i∈P

Aij ≤ Nj +Bj j ∈ P (2.17)

∑

j∈P

Aij ≤ Ni +Bi i ∈ P (2.18)

Constraints (2.14) balance the number of arcs entering and leaving any port in the rotation.
Constraints (2.15) allow an arc (i, j) to be part of the rotation only if ports i and j are part of the
rotation. Constraints (2.16) limit to one the number of butterfly nodes in a rotation. Constraints
(2.17) and (2.18) limit the number of arcs that can enter or leave a port. If a port is a butterfly
port, two arcs may enter and leave the port. Otherwise, a single entry and departure are permitted
for each sailing.
In order to establish an approximate balance between the cargo that will flow through the new

rotation and the capacity of the vessels deployed to the rotation, we have the following constraints:

Qod ≤ µk̂od/κ (o, d) ∈ G (2.19)

Qod ≤ k̂odNo (o, d) ∈ G (2.20)

Qod ≤ k̂odNd (o, d) ∈ G (2.21)
∑

d∈P

Qod ≤ φout
o cv(No + δBo) o ∈ P (2.22)

∑

o∈P

Qod ≤ φin
d cv(Nd + δBd) d ∈ P (2.23)

∑

(o,d)∈G

lvodQod ≤
∑

(i,j)∈E

Aij l
v
ijc

v (2.24)

Constraints (2.19) limit the amount of cargo that can be carried between any o-d pair by each
vessel on each sailing, by pro-rating the total remaining demand amongst all vessels sailing in
the rotation, and the number of trips to be performed by each vessel. Constraints (2.20) and
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(2.21) require ports o and d to be active in the rotation whenever any part of the residual demand
for the corresponding o-d pair is carried by the candidate rotation. Our formulation does not
represent the amount of cargo on board the vessels on every leg of the rotation. Rather, we use
two approximations to balance the amount of cargo that is targeted for the proposed rotation
against the capacity and number of vessels being deployed there. First, constraints (2.22) and
(2.23) ensure that the amount of cargo loaded, respectively discharged, at any port d is less than
a certain fraction φout

d , respectively φin
d , of the vessel capacity. The factors φout

d and φin
d capture

the importance of each port as an importer or exporter of cargo relative to the overall residual
demand for transport in the network. For the second approximation, we generate a lower bound
(because we use the direct sailing distance for all o-d pairs) for the FFE-miles of cargo being
transported. For the second approximation, we estimate the FFE-miles that are required by cargo
being transported as well as the maximum FFE-miles that can be provided by the new rotation.
The left-hand side of constraints (2.24) represents a (rather weak) approximation on the FFE-miles
that will be consumed by the cargo being carried. The approximation is weak because we use the
direct distance between origin and destination port lvod, whereas the cargo will more often travel
indirectly, visiting several ports before reaching its destination. The right-hand side of constraints
(2.24), however, provides an accurate measure of the FFE-miles that will be provided by the new
rotation.

The subtour elimination constraints are:

∑

j∈P

Cj = 1 (2.25)

Bj ≤ Cj ≤ Nj j ∈ P (2.26)

Nj ≤ Ij ≤ |P|Nj j ∈ P (2.27)

1 + Ii − |P|Cj − |P|(1 −Aij) ≤ Ij (i, j) ∈ E (2.28)

Constraint (2.25) identifies exactly one port within the rotation as the base port. If the rotation has
a butterfly node, constraint (2.26) requires that it must be at the rotation’s base port. Constraints
(2.27) forces variables Ij away from zero if and only if the corresponding port is to be visited by
the rotation. Constraints (2.28) force the value of sequence number Ij to increase along the path
of the rotation, except when returning back at the rotation’s base port.

In order to ensure that all rotations have weekly or bi-weekly frequency we have the constraints:

W1 +W2 = 1 (2.29)

W2 = 0 cv ≥ 1200FFE (2.30)

(W1 − 1) +
5κ

T
≤ µ ≤

7κ

T
+ (1 −W1) (2.31)

(W2 − 1) +
10κ

T
≤ µ ≤

14κ

T
+ (1 −W2) (2.32)

Constraint (2.30) reflects highly competitive conditions in markets where larger vessels are de-
ployed. This constraint requires that rotations employing vessels with capacity at or above 1200
FFE must have weekly calling frequency. It would be unwise to require rotation frequencies to be
exactly seven or fourteen days. This would likely prevent the heuristic column generation process
from obtaining many routes that are of commercial value. Additionally, many carriers build some
schedule slack into their routes to address fluctuations in the weather or delays at one of the ports
in the rotation. With this in mind, we write constraints (2.31) so that rotations with nominal
weekly frequency might in fact call as often as every five days. Similarly constraints (2.32) permit
that rotations with nominal bi-weekly frequency might call as often as every ten days.
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Finally we have the integrality and non-negativity constraints:

Aij ∈ {0, 1} (i, j) ∈ E (2.33)

Nj , Bj , Cj ∈ {0, 1} j ∈ P (2.34)

W1,W2 ∈ {0, 1} (2.35)

Qod ≥ 0 (o, d) ∈ G (2.36)

Ij ≥ 0 j ∈ P (2.37)

µ, ω ≥ 0 (2.38)

Our practical experience with problems of type AUX(v, s, κ) is that these can be solved to
optimality very quickly when the instance includes about 15 ports or less. Instances that entail
more than 25 ports are significantly harder to solve, and are therefore not suitable for our overall
strategy, where several thousand instances of AUX(v, s, κ) may be launched. Our approach is to
create clusters of ports that are tightly linked both geographically and by trade volumes. We sort
such clusters according to the total demand for transport between the cluster’s ports, and select
the top cluster. We then formulate problems AUX(v, s, κ) using up to 20 ports from the selected
cluster. We believe that this approach results in a good compromise between the speed (allowing
us to generate many rotations in the heuristic column generation) and solution quality (finding
the best rotations).
We also note that the subtour elimination constraints (2.28) are an important source of the

difficulty in solving problem AUX(v, s, κ). In an effort to build up the network very quickly when
the algorithm starts, we suppress constraints (2.28) for ten iterations. In many cases, we obtain
solutions that do not contain subtours, allowing us to progress rapidly. As the network becomes
more complex, however, it is necessary to reinstate constraints (2.28) in order to obtain valid
solutions.

2.6.4 Complexity

In the following we will prove that the LSNDP is strongly NP hard by reduction from the Travelling
Salesman Problem (TSP) in the general case and the set-covering problem for the case of the model
(2.2)-(2.10). Agarwal and Ergun (2008a) proved their model to be weakly NP hard by reduction
from the knapsack problem so the here presented proofs are stronger.
In the general case we may choose rotations arbitrarily. We show that LSNDP is strongly NP-

hard by reduction from the TSP. The TSP may be defined as follows: Let G = (N,A,C) be a
graph where N = {1, . . . , n} is the set of nodes, A = {(i, j)|i, j ∈ N, i 6= j} is the set of edges and
C = cij is a cost or distance matrix associated to the edges A. An optimal solution to the TSP is
a minimal cost Hamiltonian cycle covering the nodes in N .

Theorem 2.6.1. The LSNDP in the general case is NP-hard

Proof. We reduce from TSP. Let the set of ports P correspond to the set of nodes N in the TSP,
and let the travel cost between ports correspond to the cost matrix C between nodes in the TSP.
Moreover, set the demand between each pair of ports to 1, and limit the fleet list to one vessel of
infinite capacity. The LSNDP will then choose the minimal cost Hamiltonian cycle between the
ports P in order to satisfy all demands and is exactly an instance of the TSP.

If the rotations are given beforehand as in (2.2)-(2.10) it is easy to see that LSNDP is NP-hard
by reduction from the set-covering problem. Given a number of nodes N and a family of sets
S1, . . . , Sℓ, Si ⊆ N with corresponding costs c1, . . . , cℓ, the set covering problem asks to choose a
subset of S1, . . . , Sℓ covering all nodes in N at the cheapest possible cost.

Theorem 2.6.2. The LSNDP based on fixed rotations is NP-hard

Proof. In order to reduce the set covering problem to LSNDP we let the set of ports be P = N∪{0}.
For each subset Si we introduce a rotation Ri = Si ∪{0} which visits the ports in arbitrary order.
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The cost of a rotation is set to c̃i = ci. There is one vessel type, with ℓ vessels each having capacity
|N |. All transshipment costs are set to zero, and there is a demand of 1 between each port i ∈ N
and port 0. The revenue of delivering one unit is qod = 0, while the penalty of not delivering one
unit is q̃od = ∞. The LSNDP will now choose the cheapest set of rotations covering all ports
which is exactly the set covering problem.

2.7 Computational results

The model described in Section 2.6.1 has been solved heuristically for the benchmark data using
the algorithm described in Section 2.6.2. The tests were performed on an Intel Xeon E5345, 2.66
GhZ Quad core with 20 GB RAM. As LP solver we have used Gurobi 4.5. The running time of the
algorithm varies due to the large difference in the size of the instances. The maximal running times
have been set experimentally. As described in Section 2.5.6 on page 38 there are three scenarios
of each case representing high, medium and low capacity related to the base case referred to as
Low,Base, and High. In Table 2.7, column t sec. reports the running time per case and reports
algorithmic performance for the Median run of the Low, Base, and High cases. Ten replications
of each instance have been made. The Median is given as the fifth worst value of the ten runs. All
figures and remaining tables display the best and median solution with regards to the objective
function. Please note that a profit will be negative, as we are minimizing the objective value, but
are in reality maximizing revenue.

Several parameters in the heuristic are model and algorithm dependent. The planning period is
set to 180 days and all demands are scaled accordingly. A weekly or biweekly frequency has been
enforced in (2.31)-(2.32), and the first and second business rules of Section 2.4.2 are imposed.
All bunker costs are fixed at 600 USD per metric Tonne. Port-draft incompatibilities are also
considered in the model implementation.

Instance t sec.
Columns evaluated Unique columns MCF Eval
Low Base High Low Base High Low Base High

Baltic 300 12912 12586 14046 1521 1719 1866 13680 13255 14809
WAF 900 13120 15343 12248 3858 4637 3951 13481 15343 12602

Mediterranean 1200 1582 2323 3192 1039 1197 1502 1634 2383 3244
Pacific 3600 4987 4203 4726 2552 2361 2660 5060 4268 4769

AsiaEurope 14400 4882 4291 4889 2322 2215 2806 4972 4357 4942
WorldSmall 10800 7313 7209 7628 2543 2937 3424 7425 7304 7731
WorldLarge NA NA NA NA NA NA NA NA NA NA

Table 2.7: Performance of the algorithm and the search progress for the median run with regards to
the objective value. Instance denotes the instance, t sec. is the running time in seconds. Columns
evaluated is the number of rotations evaluated in the tabu search,Unique columns is the number of
unique rotations and finally MCF eval is the number of times the multicommodity flow solution was
calculated. Note that we do not solve WorldLarge due to its size.

Tables 2.7 and 2.8 report the algorithmic performance, Tables 2.9 and 2.10 report the objective
values and cost components and finally some network key performance indicators are reported in
Tables 2.11 and 2.12.

Figures 2.7(a) and 2.7(b) show the objective value for the median solution of the 10 randomized
runs, as a function of the computational time, for the Baltic and AsiaEurope scenarios. For the
remaining scenarios refer to Appendix A.

The figures show that the objective value is converging for most cases; rapidly for the smaller in-
stances while for the larger instances there are still iterative improvements in spite of the increased
run times. The ratio between unique columns(rotations) and total evaluated columns(rotations)
is seen to increase with scenario size. This is due to the rotation generating MIP easily finding
new unique columns in the larger search space of the larger instances, as opposed to the smaller
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Instance
Iter Improving Iter Last Improving Iter

Low Base High Low Base High Low Base High
Baltic 548 358 459 12 12 9 151 30 12
WAF 267 337 271 19 30 26 115 195 221

Mediterranean 37 39 33 8 15 18 15 31 33
Pacific 57 54 33 31 26 30 57 30 33

AsiaEurope 102 80 87 64 60 58 102 80 85
WorldSmall 75 55 65 41 41 45 75 55 64
WorldLarge NA NA NA NA NA NA NA NA NA

Table 2.8: Performance of the algorithm and the search progress for the median run with regards to the
objective value. Instance denotes the instance Iter is the number of iterations, where an iteration refers
to Ri, Improving Iter is the number of iterations, where an improving solution was found, and finally,
Last Improving Iter is the last iteration, where an improving solution was found.

instances. The Mediterranean instance is an exception, where the ratio is rather high. It is be-
lieved to be due to a much denser demand matrix compared to the Baltic and WAF case. The
number of iterations refers to Ri of Section 2.6.2 and can be seen in Table 2.8. It can be seen that
the number of iterations decreases with scenario size, even though computational time increases
for the larger instances. That the solution space grows significantly with instance size can be seen,
as we find more improving solutions even in the last iterations.
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(a) Performance for Baltic case.

(b) Performance for AsiaEurope case

Figure 2.7: The objective value for the median Run Solution of the Low, Base and High instance of the
Baltic and AsiaEurope case, as a function of the running time.
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Instance Z Q cv cb cp cc cm ct Lv F

Baltic

Low
best -6044 96750 7740 9522 8808 0 53780 0 0 10850

median 838 92840 7740 9405 9509 0 51530 0 0 15490

Base
best -8365 98310 6480 10897 10440 0 55820 0 0 6306

median -6582 97860 6480 10208 10920 0 54760 62,49 0 8844

High
best -15678 103500 5760 11464 10520 0 59140 0 0 942,2

median -11509 101200 5760 9894 11670 0 57240 159,4 0 4954

WAF

Low
best -115361 345800 57420 51750 15150 0 83130 3264 5940 25710

median -109470 336500 57420 43624 17270 0 79930 0 3960 32790

Base
best -143110 370600 52920 55447 20710 0 90760 3192 5760 10270

median -137681 355200 52920 44925 18940 0 84280 1690 8640 23360

High
best -159944 382000 48960 60519 16910 5827 94830 3859 10800 1956

median -152635 367800 48960 48756 19160 5827 88650 1376 11880 14330

Mediterranean

Low
best 29504 128900 27540 23649 18730 0 64030 10090 0 14360

median 42636 121700 27540 27546 17320 0 62000 9694 0 20270

Base
best 12209 136800 26640 22217 20190 0 69620 9475 1440 2311

median 24934 134200 26640 23591 20610 0 68430 16630 1980 5187

High
best 6606 137100 26100 22069 19330 0 69920 9861 5400 1807

median 14267 136700 26100 25450 20260 0 70350 11720 4860 1904

Table 2.9: The objective value separated by cost and income components according to the model in section 2.6 on page 39. Instance denotes the name of the
instance with a separate row for the best and median values over 10 replications. The best values correspond to the best solution obtained. Z is the objective
value, note that we are minimizing expenses such that a negative value of Z is preferable, Q is the total revenue collected, cv is the total vessel cost, cb is the
total fuel cost, cp is the total port call cost, cc are the canal fees, cm is the total move cost at origin and destination nodes, ct is the pure transshipment cost.
Lv is the income from chartered out vessels and finally F is the sum of goodwill penalties for rejected cargoes. All costs are in k$.
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Instance Z Q cv cb cp cc cm ct Lv F

Pacific

Low
best 84615 1120000 276300 342536 31580 3180 429700 34610 2700 89080

median 132020 1044000 276300 300382 32460 2989 390100 31450 0 142700

Base
best -54087 1197000 247700 348882 31610 6101 451600 34870 13500 35440

median -12774 1160000 247700 351830 35210 2967 444400 29110 17460 53710

High
best -101671 1208000 236500 350535 38340 6071 456400 33100 36720 22360

median -75321 1222000 236500 388324 36000 6016 460400 36180 31140 14150

WorldSmall

Low
best -551842 4917000 1040000 1018924 100100 255400 1211000 199800 106200 646000

median -417100 4902000 1040000 1023956 103100 237900 1220000 247000 48060 661300

Base
best -1152761 5366000 942100 1114906 123800 271000 1336000 195200 160000 390500

median -888669 5199000 942100 1108834 126300 298400 1296000 213400 164000 489000

High
best -1291718 5550000 911700 1201543 129300 287800 1377000 263600 223200 310400

median -1168067 5266000 911700 1076555 109400 267100 1319000 244000 261500 431800

AsiaEurope

Low
best -361041 3109000 718600 672023 117200 233600 609100 128800 17640 286900

median -228186 2998000 718600 661107 106800 228800 584400 125800 0 344000

Base
best -657972 3283000 648700 690406 134400 255700 637600 132700 81180 206700

median -561417 3179000 648700 726061 108800 254800 615600 132500 118100 248700

High
best -766385 3390000 625700 834862 130000 276700 656000 127900 176600 149400

median -670099 3181000 625700 708934 117700 253900 622400 131400 184900 235300

Table 2.10: The objective value separated by cost and income components according to the model in section 2.6 on page 39. Instance denotes the name of the
instance with a separate row for the best and median values over 10 replications. The best values correspond to the best solution obtained. Z is the objective
value, note that we are minimizing expenses such that a negative value of Z is preferable, Q is the total revenue collected, cv is the total vessel cost, cb is the
total fuel cost, cp is the total port call cost, cc are the canal fees, cm is the total move cost at origin and destination nodes, ct is the pure transshipment cost.
Lv is the income from chartered out vessels and finally F is the sum of goodwill penalties for rejected cargoes. All costs are in k$.
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Instance dep% |R| PCpW BPU% WPU% BAU% WAU% t/d% rej%

Baltic

Low
Best 100,0 5 2,81 100,0 100,0 93,9 47,9 0,0 8,6

Median 100,0 3 4,36 100,0 100,0 80,3 69,8 0,0 12,3

Base
Best 100,0 4 4,06 100,0 100,0 75,9 43,2 0,0 5,0

Median 100,0 5 2,96 100,0 100,0 92,9 48,2 0,3 7,0

High
Best 100,0 5 3,48 100,0 100,0 98,6 56,6 0,0 0,7

Median 100,0 4 4,12 100,0 100,0 83,6 61,5 2,7 3,9

WAF

Low
Best 89,4 7 5,19 100,0 95,1 90,4 50,4 7,0 11,7

Median 92,9 8 4,04 100,0 100,0 79,4 49,7 13,5 14,9

Base
Best 88,9 11 3,69 100,0 95,9 82,9 44,6 16,5 4,7

Median 83,3 10 3,38 100,0 83,3 78,6 46,3 8,3 10,6

High
Best 77,0 12 3,39 100,0 39,1 85,5 24,0 9,2 0,9

Median 74,7 10 3,64 100,0 39,1 93,1 24,0 1,6 6,5

Mediterranean

Low
Best 100,0 7 5,97 100,0 100,0 94,4 70,1 56,8 7,4

Median 100,0 7 5,57 100,0 100,0 95,3 76,9 50,4 10,4

Base
Best 94,6 7 6,83 100,0 100,0 93,7 79,7 46,0 1,2

Median 91,9 8 5,68 100,0 90,2 90,4 62,3 84,0 2,7

High
Best 78,4 11 4,75 100,0 76,1 96,3 60,5 48,8 0,9

Median 80,5 9 5,52 100,0 29,4 89,4 21,0 58,7 1,0

Table 2.11: Key Performance indicators for the smaller instances. Instance denotes the name of the
instance with a separate row for the best and median values over 10 replications. The best values
correspond to the best solution obtained. The median value is the median value of all KPI over the
10 replications. dep% is the percentage of the fleet deployed, |R| is the number of rotations in the
final solution, PCpW is the average number of port calls per service per week, BPU%, WPU% is the
best and worst peak utilization percentage respectively, BAU%, WAU% is the best and worst average
utilization percentage respectively. t/d% is the percentage of transshipments performed of all delivered
units and rej% is the percentage of rejected cargo.

Tables 2.11 and 2.12 give some key performance indicators for the networks generated. The
utilization percentage is the relation between cargo transported and the available capacity on
a vessel for a single voyage between two ports. The Peak utilization of a rotation relates to
the voyage between two ports with the highest utilization percentage. Best Peak Utilization
(BPU) denotes the peak utilization of the rotation with the highest peak utilization, and Worst
Peak Utilization (WPU) the rotation with the lowest peak utilization. The Average Utilization
relates to the average utilization percentage of all voyages on a rotation. Best Average Utilization
(BAU) describes the average utilization of the rotation with the highest average utilization, and
Worst Average Utilization (WAU) the average utilization of the rotation with the lowest average
utilization.

Fleet utilization and rejected demand The percentage of the fleet deployed, dep%, seen in
relation to the percentage of rejected demand, rej%, reveals lack of capacity to carry all demand
for the low capacity instances as expected. Likewise, there is excess capacity in most high capacity
instances with a corresponding low rejection rate. AsiaEurope and WorldSmall High instances are
an exception to this pattern, which may be due to the profitability of cargo, but as the large
instances are continuously finding improving rotations, solutions with a higher deployment and a
decrease in rejected demand may exist.

Number of rotations The number of rotations are seen to increase with instance size. WorldS-
mall has a larger number of rotations than AsiaEurope correlated to the number of average port-
calls on a service, PCpW being lower in WorldSmall than in AsiaEurope.

Utilization All solutions have a BPU of 100 % meaning that at least one service is fully
utilized on one voyage between two ports. Low WPUs are also seen and can be acceptable for
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Instance dep% |R| PCpW BPU% WPU% BAU% WAU% t/d% rej%

Pacific

Low
Best 99,0 22 5,41 100,0 87,4 100,0 50,0 42,3 7,8

Median 100,0 21 5,09 100,0 32,8 100,0 18,8 41,7 12,6

Base
Best 95,0 21 5,73 100,0 36,6 100,0 21,0 46,0 3,1

Median 93,3 21 5,54 100,0 58,8 100,0 38,5 44,8 4,7

High
Best 85,1 20 6,53 100,0 100,0 100,0 50,0 47,5 2,0

Median 87,0 24 5,02 100,0 7,7 100,0 5,3 39,0 1,2

WorldSmall

Low
Best 90,1 35 5,60 100,0 100,0 100,0 50,9 64,7 19,6

Median 95,5 42 4,04 100,0 48,7 100,0 42,7 74,7 20,0

Base
Best 83,0 41 4,87 100,0 37,0 100,0 28,3 64,7 11,8

Median 82,8 40 4,67 100,0 22,1 100,0 21,1 65,3 14,8

High
Best 76,5 41 4,68 100,0 24,0 100,0 23,1 73,7 9,4

Median 71,9 37 5,06 100,0 79,6 100,0 52,7 78,3 13,1

AsiaEurope

Low
Best 97,5 30 6,39 100,0 34,0 98,5 22,4 80,2 14,5

Median 100,0 32 5,50 100,0 32,5 100,0 25,7 75,3 17,4

Base
Best 87,0 35 6,59 100,0 34,9 96,0 32,2 91,1 10,4

Median 81,1 38 5,48 100,0 22,9 100,0 16,0 81,6 12,6

High
Best 71,0 37 6,29 100,0 11,1 100,0 7,5 81,5 7,6

Median 70,6 34 6,28 100,0 33,4 100,0 23,7 82,9 11,9

Table 2.12: Key Performance indicators for larger instances. Instance denotes the name of the instance
with a separate row for the best and median values over 10 replications. The best values correspond
to the best solution obtained. The median value is the median value of all KPI over the 10 replications.
dep% is the percentage of the fleet deployed, |R| is the number of rotations in the final solution, PCpW
is the average number of port calls per service per week, BPU%, WPU% is the best and worst peak
utilization percentage respectively, BAU%, WAU% is the best and worst average utilization percentage
respectively. t/d% is the percentage of transshipments performed of all delivered units and rej% is the
percentage of rejected cargo.

feeder services for outlying profitable cargo. Looking at the average utilization, BAU%, WAU%,
the networks are overall well utilized as some variation must be expected given the asymmetry of
world trade and low utilization in some parts of the feeder network.

Transshipment percentage The percentage of number of transshipments over the demand
units transported, t/d%, reveal that Baltic and WAF instances have very few transshipments
and as expected, the Mediterranean case has a larger percentage of transshipments. For the
Pacific, WorldSmall and AsiaEurope most demands are subject to one or more transshipments.

2.7.1 Discussion

Overall the solutions obtained are promising. The solutions utilize the available capacity well and
the constructed networks transport the majority of the profitable cargoes, as can be seen in Tables
2.11 and 2.12.

Review by Network Planners Network planners at Maersk Line have evaluated that the given
solutions are feasible liner shipping networks for the scenarios, but with room for improvement by
inspection of experienced eyes. Some of these are dealt with by the incorporated business rules
but other such as cabotage rules, commercially driven transit time restrictions, etc. is not dealt
with. Realistic traits of the networks can be seen in the construction of shorter feeder services
and longer inter continental services. Hubs are used realistically by connecting several feeders and
inter continental services to the same hubs.
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Baltic and WAF These small instances show very fast convergence in Figures 2.7 and A.1. The
generated networks consist of services with few port calls (Table 2.11) (except lowly capacitated
Low WAF instances), as expected of feeder networks with few or no transshipments as seen in
Table 2.11.

Mediterranean Has a dense demand matrix which facilitates some hub structure and trans-
shipments. No runs generated a profitable solution but the high capacity cases are close, the best
with a loss of 6606 k$. A study of the revenues of the demands reveal a rather low revenue com-
pared to e.g. the baltic case and also the actual demand is spread on a large number of demand
pairs meaning that the cargo compositions are more complex. The analysis indicates that the
Mediterranean case is not very attractive from an economic standpoint.

Pacific and WorldSmall For these large instances complex networks are created with 20 to 40
services calling 5 to 6 ports on average. For Pacific most cargo is transported, except for the lowly
capacitated instances, for the WorldSmall a little less is moved, but as vessels are chartered out it
must be due to unprofitable demand, but still it is the most complex scenario and improvement
are possible. The Pacific case has relatively few transshipments, due to the direct connections
over the pacific and the high North American transhipment costs. WorldSmall has realistically,
massive use of transshipments.

AsiaEurope The AsiaEurope case is a large challenge due to the size of the instance but also
because the revenue is tight. From the utilization indicators (BAU / WAU) in Tables 2.11 and
2.12 it can be concluded that traffic flow is very intense in one direction displaying the trade
imbalance, which is very decisive for network design today due to the excess capacity on the back-
haul. This case is well suited for future work optimizing on empty repositioning. The amount of
rejected cargo of the larger instances clearly indicate that some demand is in reality loss giving, a
trait any real life case will have.

Cost Structure Looking at the median solution for the Base capacity largest scenario, WorldS-
mall, the network cost is distributed as 24 % for vessel costs, cv, 28 % for fuel costs cb, 10 % for
port call and canal costs, cp + cc and 38 % for move cost, cm + ct. Noting that this is a simplified
case with demand aggregated to larger ports, reducing the needed number of transshipments and
portcalls, this cost distribution can resemble the cost distribution of real liner shipping networks,
although this off course fluctuates with cost and market changes.

Transshipments and Hubs The cases vary greatly in the hub-and-spoke structure and hence
the desire to transship cargo. The Baltic case has very few transshipments as will be the case for
a feeder network. In the AsiaEurope case all cargo transship more than once on average. Seen
from a commercial point of view a transshipment carries a risk in terms of disruptions and an
administrative overhead in transshipped cargo. These perceived “costs” of transshipping is not
considered in the mathematical model and the found solution may have excess transshipments
compared to real life. Adding customer satisfaction costs to the transshipment costs in the model
can to some extent account for this problem.

Service Types The solutions clearly display the capacity levels of a feeder network and an inter-
continental network, where larger vessels are servicing intercontinental routes. Network planners
at Maersk Line confirm that the structure of the networks in terms of capacity deployment and
the use of transshipment locations is fairly coherent with the operations of Maersk Line. Also the
rotations vary greatly in design and display all of the design structures seen in Figure 2.1 and 2.2,
showing the algorithms adaptability for different situations.
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Fleet Size The different fleet size instances Low, Base and High capacity, results in different
types of networks. The Low capacity instances obviously have less services, which on average
are better utilized, as they will fill the vessels with the most profitable cargo and reject more
cargo. The high capacity instances will have to create additional services to make a profit of the
remaining cargo. Thus the resulting networks of the related fleet size scenarios will result in quite
different networks and adds to the complexity of the benchmark suite.

2.8 Conclusion and future work

In this paper we have given an introduction to Liner Shipping Network Design for Operations
researchers. The problem domain has been described and a discussion of mathematical modelling
of the domain and the constraint set has been provided. A set of data instances was introduced as
a benchmark suite, resembling real world problems. The problem has been proven to be strongly
NP-hard and comparing with optimal methods for solving related Liner shipping Network Design
models, it is apparent that this problem is among the most difficult network design problems. The
model of Alvarez (2009) has been extended to handle the structure of a complex network, and a
heuristic column generation algorithm has been presented using a new method for route gener-
ation. Computational results using the benchmark suite have been presented, and the solutions
will be made available on a web-page in order to encourage a competition in developing the best
algorithms. The algorithmic performance indicators suggest that we have created a benchmark
suite that may be used for the development of both exact and heuristic approaches as the smaller
cases should be suitable for benchmarking exact algorithms and the large instances poses a sub-
stantial challenge for state of the art heuristics. Overall, the benchmark suite provides a thorough
test of a network design algorithm. The cases challenge the fleet deployment, port call sequence
generation, the transshipment structure of the network and the selection of demand to transport
in the network. At the same time the cases created closely resembles the real life operations of
a global liner shipping company and the market for liner shipping in terms of trade imbalance,
geographical transshipment points and fluctuations in demand compared to the capacity available.
We also believe that the benchmark suite will prove valuable to future model development of the
liner shipping network design problem. There is a large potential for future work on modelling
as several commercial requirements such as low transit times and slow steaming have not been
incorporated in the current network design models. The results have been evaluated by network
designers of Maersk Line, who affirm that the traits of individual rotations resembles real world
rotations, and that the overall network fulfill most of the relevant properties. It is also apparent by
inspection, that the heuristic solutions may be improved upon, which encourages the development
of better solution methods. We hope that this work will serve as a foundation for unifying and
encouraging further work in Liner Shipping Network Design, which is a challenging real world
problem having a huge impact on the cost of the world’s supply chains. Moreover, the scientific
world needs complex challenges in order to push algorithm development forward.
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(a) Performance for WAF case

(b) Performance for Mediterranean case

Figure A.1: The objective value for the median Run Solution of the Low, Base and High instance, as
function of the running time.
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(a) Performance for Pacific case

(b) Performance for WorldSmall case

Figure A.2: The objective value for the median Run Solution of the Low, Base and High instance, as
function of the running time.
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Abstract This paper is concerned with the cargo allocation problem considering empty repositioning

of containers for a liner shipping company. The aim is to maximize the profit of transported cargo in a

network, subject to the cost and availability of empty containers. The formulation is a multi-commodity

flow problem with additional inter-balancing constraints to control repositioning of empty containers. In

a study of the cost efficiency of the global container-shipping network, Song et al. (2005) estimate that

empty repositioning cost constitutes 27% of the total world fleet running cost. An arc flow formulation

is decomposed using the Dantzig-Wolfe principle to a path flow formulation. A linear relaxation is solved

with a delayed column generation algorithm. A feasible integer solution is found by rounding the fractional

solution and adjusting flow balance constraints with leased containers. Computational results are reported

for seven instances based on real-life shipping networks. Solving the relaxed linear path flow model with

a column generation algorithm outperforms solving the relaxed linear arc flow model with the CPLEX

barrier solver even for very small instances. The proposed algorithm is able to solve instances with 234

ports, 16278 demands over 9 time periods in 34 minutes. The integer solutions found by rounding down

are computed in less than 5 seconds and the gap is within 0.01% from the upper bound of the linear

relaxation. The solved instances are quite large compared to those tested in the reviewed literature.

3.1 Introduction

This paper presents a cargo allocation model for strategic planning and network evaluation within
a liner shipping company. A cargo allocation model is a strategic tool that, given a schedule
and a fleet over time, evaluates network profitability concerned with routing profitable cargo in
a fixed network incorporating the overall empty repositioning cost. The model is denoted the
cargo allocation problem with empty repositioning (CAPER). CAPER is a multi-commodity flow
problem similar to the revenue management booking model for air cargo transport presented by

1Published in I N F O R Journal, Special issue on Maritime Transportation (2011) (Brouer et al., 2011)
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Bartodziej and Derigs (2004). However, air cargo is not container based as is the case for liner
shipping. Therefore, we argue that a cargo allocation model for liner shipping must consider the
cost of repositioning empty containers. Empty containers tend to accumulate at import intensive
regions due to a significant imbalance in world trade. In a cost efficiency study of the global
container trade, Song et al. (2005) estimate that empty repositioning cost accounts for 27% of
the total world fleet running cost. Empty repositioning problems are well-studied in the literature
on maritime transportation as a post optimization procedure given the allocation of cargo in the
network. Several papers on pricing strategies in transportation markets with empty repositioning
problems (Gorman, 2001; Topaloglu and Powell, 2007; Zhou and Lee, 2009) emphasize the prob-
lem of evaluating the empty repositioning problem separately. A network pricing perspective is
supported experimentally in Gorman (2001): A 3.5 % increase in net profitability is possible by
a 61% reduction in empty repositioning cost accepting a decrease in revenue and direct market
profits: ”To increase networkwide profits in this case, pricing managers must accept a reduction
in both total revenues and direct market profits, which are more than recovered from the reduced
repositioning cost”(Gorman, 2001). Literature within the area of liner shipping does not allow
load rejection in general, although the limited capacity of a single liner shipper may require load
rejection and the derived demand for empty repositioning may make it profitable. This paper
presents the cargo allocation problem with load rejection and empty repositioning. The model
enables exploration of several leasing policies. This allows for a network pricing perspective to
strategically evaluate a given liner shipping network and select the most profitable set of cargo
contracts given the derived empty repositioning and equipment leasing cost.

The mathematical model of CAPER is an augmented multi-commodity flow problem where
inter-balancing constraints (Crainic et al., 1989) ensure repositioning or leasing of empty containers
at ports with a positive net flow. In a multi-commodity flow problem a graph G = (N,A) and
a set of commodities K is given. The classical formulation of the standard multi-commodity
flow problem is the arc flow formulation with |K||A| variables and |A| + |K||N | constraints due
to flow conservation at every node. Although the number of variables is polynomially bounded,
representing a global shipping network is too large for standard linear programming (LP) solvers.
Dantzig-Wolfe decomposition can be applied to generate a path flow formulation with only |A|+|K|
constraints. However, the number of variables in the path flow formulation may be exponential.
To circumvent this problem we use delayed column generation, as it can be proven that at most
|K| + |A| paths carry positive flow (Ahuja et al., 1993). The pricing problem is a shortest path
problem, where the cost of a path represents the reduced cost of a path variable. Due to the
structure of the dual problem, the arc costs of the pricing problem for the path flow model
are positive, which results in a polynomially solvable pricing problem when considering column
generation. Ahuja et al. (1993) argue that delayed column generation on multi-commodity flow
problems converge slowly and that an interior point method on the arc flow formulation is superior
for large scale LPs. Experimental results performed in this study indicate that column generation
outperforms interior point methods even for small instances of CAPER. This is believed to be due
to the structure of the liner shipping network design, which results in a sparse graph with few
competitive routings for each commodity.

As containers cannot be split, CAPER is an integer multi-commodity flow problem which is
NP-hard. Because the number of containers transported in a global shipping network is huge,
rounding down the fractional part of demands may be considered insignificant. This is confirmed
by experimental results in this paper. A nice property of the path flow formulation is that flow
conservation constraints are implicitly satisfied on a path. Hence, a feasible integer solution can
be obtained by rounding down all fractional variables and supplying empty containers through
a leasing variable at nodes with violated inter-balancing constraints. Therefore, we consider the
linear relaxation of the path model of CAPER and obtain a heuristic integer solution by rounding
down the LP solution of the path flow model. The contribution of this paper is threefold:� To present an augmented multi-commodity arc flow formulation of the cargo allocation prob-

lem with load rejection and empty repositioning. The arc flow formulation is decomposed
into an equivalent path flow formulation using the Dantzig-Wolfe decomposition principle.
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Publication Routes Method Specialities Ports

Reinhardt and Kallehauge (2007) multiple branch-&-cut transhipment 20
Agarwal and Ergun (2008) multiple greedy, column generation,

benders
transhipment 10

Alvarez (2009) multiple tabu search transhipment 120
Shintani et al. (2007) single genetic algorithm empty repositioning,

bunker consumption
20

Table 3.1: Recent literature within the field of liner shipping network design. Routes indicate whether
single or multiple services are optimized. Method indicates the algorithm applied. Specialities concern
additional cost and constraints considered. Ports indicate the number of ports in the test instances solved.� To demonstrate experimentally that our column generation algorithm is computationally

tractable and attractive for solving large scale instances of CAPER. The instances generated
are derived from real-life liner service networks. The computational results show that delayed
column generation scales well for large instances. Instances with up to 234 ports and 16273
demands over 9 time periods were solved in less than 34 minutes with the column generation
algorithm. The largest instance solved for 12 time periods contains 22433 commodities
between 222 ports and was solved in approximately 71 minutes. It is shown that high quality
integer solutions within 0.01% from the LP upper bound of the path flow formulation can
be found by a simple rounding heuristic.� Lastly, the computational results indicate that delayed column generation outperforms inte-
rior point methods for the cargo allocation problem. The cargo allocation problem is believed
to have a special structure as the graph is sparse. The structure may aid the convergence of
delayed column generation although this cannot be concluded.

This paper is organized as follows: The following section describes related work. Section 3.3
describes the network representation used throughout this paper. Section 3.4 presents the arc
flow model, and Section 3.5 presents the decomposed path flow model and the pricing problem
used in the delayed column generation algorithm. Section 3.6 reports our computational results
on seven generated test instances. Section 3.7 provides some concluding remarks and future work
on CAPER.

3.2 Literature Overview

Excellent reviews on operations research in shipping up until 2007 is found in (Christiansen et al.,
2004, 2007). Literature on optimization problems within liner shipping is particularly scarce, but
interest in the research area is growing. The area of liner shipping network design (Reinhardt
and Kallehauge, 2007; Agarwal and Ergun, 2008; Alvarez, 2009; Imai et al., 2009) has received
increasing attention in recent years. The cargo allocation problem, which is the subject of this
paper, is considered part of the liner shipping network design problems studied by (Reinhardt
and Kallehauge, 2007; Agarwal and Ergun, 2008; Alvarez, 2009). The much harder problem
of designing the network depends on the cargo allocation problem. All papers apply a multi-
commodity arc-flow formulation of the cargo allocation problem without consideration for empty
repositioning. The paper of Alvarez (2009) is to the best of our knowledge the only study of large
scale instances of the liner service network design problem. In Alvarez (2009) the cargo allocation
problem is solved as a subroutine of the tabu search algorithm solving the network design problem.
Alvarez calls for faster algorithms for solving the cargo allocation problem.
Shintani et al. (2007) presented a model for routing a single service in Asia considering empty

repositioning. Load rejection is not allowed at ports called and hence empty repositioning is
conditioned by excess capacity on vessels. Repositioning cost is the penalty cost of storing or
leasing empty containers. Shintani et al. (2007) conclude that empty repositioning is decisive for
the calling sequence and bunker consumption. An overview of the literature within liner shipping
network design and the size of test instances for experimental problems is presented in Table 3.1.
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Publication Focus Environment problem sizes
Erera et al. (2009) Robust optimization Empty repositioning problems 20 ports, 600 tank con-

tainers
Francesco et al. (2009) Multi-scenario policies Empty repositioning problems Regional size network,

no numbers
Dong and Song (2009) Joint optimization Container fleet size considering

empty repositioning
3 ports, 1 voyage, 550
TEU

Feng and Chang
(2008)

Regional repositioning plans Port-to-port empty reposition-
ing

33 ports, 17 voyages ,
3380 TEU, 880 FFE,
1146 FFE HQ

Lam et al. (2007) Approximate dynamic program-
ming

Empty repositioning problems 3 ports, 9 voyages

Jula et al. (2006) Empty repositioning strategies Empty container reuse at
LA/LB port

Computational results
not comparable

Li et al. (2007) Reduce holding of empty con-
tainers

Single port inventory model 1 port, 100 TEU

Li et al. (2004) Reduce holding of empty con-
tainers

Multiple port inventory model 3 ports, 226 TEU

Shen and Khoong
(1995)

Repositioning and leasing strat-
egy

Decision support system at port
level

NC

Cheung and Chen
(1998)

Two stage stochastic network
model

Empty repositioning problem 10 ports, 6 voyages

Crainic et al. (1993) Empty repositioning strategy Empty repositioning problem NC

Table 3.2: Recent literature within the field of empty repositioning. FFE= Forty-foot Equivalent Unit
(The standard measurement unit of containerized cargo), TEU=Twenty-foot Equivalent Unit, HQ= High
Cube container, NC= No computational results.

Empty container repositioning for maritime transport has received significant attention (Crainic
et al., 1993; Shen and Khoong, 1995; Li et al., 2004, 2007; Shintani et al., 2007; Erera et al., 2005,
2009; Francesco et al., 2009; Imai et al., 2009). Erera et al. (2005) study the empty repositioning
of a fleet of tank containers in a time-extended uncapacitated network. They advocate the simul-
taneous optimization of routing current bookings and the derived empty repositioning to achieve
higher utilization of tank containers and minimize cost for the operator. Computational results
are presented to prove that the simultaneous optimization of routing bookings and empty repo-
sitioning is possible with standard solvers for a problem with 900 commodities over a six month
planning horizon.

(Crainic et al., 1993; Shen and Khoong, 1995; Li et al., 2004, 2007; Shintani et al., 2007; Imai
et al., 2009; Francesco et al., 2009; Erera et al., 2009) are concerned with empty repositioning
plans based on known or forecasted demand and supply at ports. An overview of the literature
on empty repositioning along with the size of experimental results is provided in Table 3.2.

Francesco et al. (2009) present an operational empty container repositioning model. The model
minimizes the repositioning cost as the total sum of transportation, storage, loading and unloading
cost. There is specific focus on storage capacities and costs as these may vary between ports.
The model is used to investigate multi-scenario policies for repositioning given the uncertainty
of historical data and demand. Li et al. (2004) present the empty container problem as a non
standard inventory model for a single port to reduce holding of redundant empty containers. The
model is extended to multiple ports with a repositioning plan in Li et al. (2007).

Lam et al. (2007) present a dynamic container allocation model based on approximate dynamic
programming. Jula et al. (2006) studies empty container reuse on the land-side of the Los An-
geles/Long Beach ports. The aim is to reduce congestion at the port at a lower overall inland
repositioning cost and reduce pollution in the Los Angeles area through alternative repositioning
strategies. Erera et al. (2009) present a robust optimization framework for dynamic empty repo-
sitioning problems acknowledging the uncertainty of demand. Feng and Chang (2008) present a
study of empty repositioning along with a routing plan for the repositioning of empty equipment.
The study is concerned with intra-Asia transport. The aim is to free long haul vessel slots for
loaded traffic. Dong and Song (2009) present a model for the joint optimization of container fleet
size and empty repositioning. Song et al. (2005) studies the global container fleet in order to study
the impact of empty repositioning. The study concludes that empty repositioning cost constitutes
27% of the total world fleet running cost. Crainic et al. (1993) present a dynamic and stochastic
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model for the empty container allocation problem. The context is an international shipping com-
pany with focus on the land operations, i.e., movements between customers and depots. Shen and
Khoong (1995) present a decision support system for empty container distribution planning for a
shipping company at port level. Cheung and Chen (1998) have developed a two stage stochastic
network model for the dynamic empty container allocation problem. The model is highly related
to Crainic et al. (1993).
Crainic et al. (1989) present a multi mode multi-commodity location-distribution problem with

inter-depot balancing requirements. The model is primarily a location problem deciding the num-
ber and locations of inland depots for empty vehicles. However, it also determines the empty flows
between depots according to the inter-balancing constraints.
The network pricing perspective is explored in Gorman (2001) by a case study of the Burlington

Northern and Santa Fee Railway (BNSF). An economic pricing model considering derived empty
repositioning cost implied a rationale in decreasing direct market profit to achieve significant empty
repositioning cost, which could cater for the reduction in direct market profit. The result for BNSF
was an increase of 5% in loaded miles and a 3% reduction in repositioning from 1998 to 2001.
Topaloglu and Powell (2007) study the coordination of pricing decisions and fleet management
in a freight transportation market. They emphasize that profit maximization of separate origin-
destination must incorporate the network downstream effect of empty repositioning. Zhou and
Lee (2009) study pricing and competition in a transportation market with empty repositioning.

As can be seen from Table 3.2 repositioning of empty containers has been studied from different
perspectives and has been approached by several solution methods. Only Erera et al. (2005)
handle loaded and empty containers simultaneously. Although CAPER is related to Erera et al.
(2005) our model differs in several respects. First, Erera et al. (2005) does not allow load rejection
and only seek to minimize the cost of transport and empty repositioning. Second, tank containers
must be cleaned at a designated site before reuse. Third, Erera et al. (2005) transport the tank
containers in an uncapacitated intermodal network as opposed to the capacitated liner shipping
network of this paper. The liner shipping company owns the fleet of containers and wish to
reposition them using the capacity of its own network. Lastly, our algorithm solves instances with
up to 16000 commodities over a twelve month planning period within one hour. However, the
problem of Erera et al. (2005) is solved to integer optimality using standard solvers as opposed
to the rounded integer solution presented here, but this is necessary due to the large scale. The
results of Erera et al. (2005) confirm the economic rationale in simultaneously considering loaded
and empty containers.
The papers on empty repositioning in Table 3.2 are mainly focused on operational reposition-

ing plans. CAPER is considered a strategic tool for network evaluation and cargo selection,
where empty container repositioning is seen as a significant cost component of the cargo allocation
problem. The transport of empty and loaded containers share the capacity of the network, and
demand for empty containers is derived from the allocation of loaded containers. Crainic et al.
(1993) wish to jointly optimize loaded and empty container allocation, but reject the idea due
to the computational complexity of the problem. Erera et al. (2005) argue that the joint opti-
mization of loaded and empty container allocation is feasible today due to the advances in both
mathematical programming as well as computer hardware and software. This is confirmed by the
computational results of this paper and that of Erera et al. (2005). The experimental results of
this paper demonstrate that it is computationally tractable to simultaneously optimize loaded and
empty movements even for large scale instances. The size of the instances solved in this paper is
significantly larger than the instances presented in the literature of liner shipping network design
problem (see Table 3.1) as well as for empty repositioning problems (see Table 3.2).

3.3 Network Representation

CAPER operates on a capacitated network representing the service network of a liner shipping
company. The liner shipping network consists of a set of unique ports P connected by the services
S offered by the liner shipping company. All services are cyclic and may take several months
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to rotate. The network is modeled over time to allow for varying planning periods and a rolling
horizon planning scheme. In the CAPER network the time periods are divided into time slots
of length equal to the greatest common divisor for all voyage times between two ports, e.g., one
day. Obviously, a detailed network can become very large and may therefore be intractable for
practical purposes. Hence we propose to aggregate the time periods into larger time slots to
produce a smaller network. For strategic planning this is assumed to be reasonable. Aggregation
of the network is discussed at the end of this section.
A time-space network is created as a capacitated directed acyclic graph G = (N,A). Let T be

the set of time periods and let the node set be N = {pt | p ∈ P, t ∈ T }. The arc set A = AG

⋃

AR

consist of a set of uncapacitated ground arcs AG = {(pt, pt+1) | pt, pt+1 ∈ N, t ∈ T } representing
the stock at a port p between two subsequent time periods, and a set of capacitated travel arcs
AR = {(pt, qt+τpq ) | (pt, qt+τpq) ∈ N, t ∈ T, p 6= q, p, q ∈ P, u(pt, qt+τpq) > 0} representing a travel
between two different ports p and q with travel time τpq such that the capacity is more than 0.
Let S be the set of services such that Cs is the capacity of the vessel belonging to service s and
let As = {(p0, q0+τpq ), . . . , (rt, pt+τrp) | p, q, r ∈ P} be the set of arcs representing the sequence
of ports in the rotation starting at the first time period and ending at time T S . Assume that all
rotations start in the first time period. The capacity of an arc (pt, qt+τpq ) ∈ AR is

u(pt, qt+τpq ) =
∑

s∈S

∑

(pi,qj)∈As

Cs

where i = t mod T S and j = (t + τpq) mod T S . That is, the capacity ui,j of arc (i, j) ∈ AR is
the accumulated vessel capacity of all services with a voyage on arc (i, j).

travel arc ar ∈ AR

Ground arc ag ∈ AG

A1

B1

A2

B2

XTime

Y

Space

Figure 3.1: Example of time-space network.

Consider aggregating time periods T into larger time slots each with h of the smaller time slots
creating a set of new time periods T ′. A time slot t ∈ T is aggregated into the new time slot
t′ ∈ T ′ by integer division with h, that is t goes into the aggregated time slot t′ = t − ⌊t/h⌋.
This results in an aggregated graph with a factor h less nodes G′ = (N ′, A′) where the node set
is N ′ = {pt

′

| p ∈ P, t′ ∈ T ′}, and the arc set is A′ = A′
G

⋃

A′
R. The aggregated ground arcs are

A′
G = {(pt

′

, pt
′+1) | pt

′

, pt
′+1 ∈ N ′, t′ ∈ T ′} and the aggregated travel arcs
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R =
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∃(pi, qj) ∈ AR, where i′ = ⌊i/h⌋, j′ = ⌊j/h⌋, i, j ∈ T
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.

The capacity of the aggregated travel arc (pi
′

, qj
′

) is

u(pi
′

, qj
′

) =
∑

(pi,qj)∈AR

u(pi, qj)

where i′ = ⌊i/h⌋ and j′ = ⌊j/h⌋. That is, the capacity of the aggregated arc is a sum of the
capacities of the original arcs that have been aggregated. Note that the aggregated graph is not
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necessarily acyclic. However, due to the objective function the commodities do not cycle since it
will result in an increased expense.

3.4 Arc Flow Formulation

A set of commodities K is transported in the liner shipping network represented by the time-space
graph described in section 3.3. A commodity is defined as the tuple (Ok, Dk, dk, rk) representing
a demand of dk in number of containers from node Ok = pt to node Dk = qt

′

with a sales price
per unit of rk. The unit cost of arc (i, j) for commodity k is denoted ckij . The non-negative integer

variable xk
ij is the flow of commodity k on arc (i, j). The capacity of arc (i, j) is uij .

The standard multi-commodity flow model does not consider the supply of empty containers.
Inter-balancing constraints are applied to every node to account for availability of empty contain-
ers. The constraints require that every node is balanced with regards to the in- and out-flow of
containers. Hence, the current allocation of loaded commodities results in a derived demand for
empty containers. The empty containers may flow between any nodes and the derived demand
from the current cargo allocation decides origin, destination and quantity of empty containers. To
model the empty containers an empty super commodity ke is introduced. The flow of the empty
super commodity is defined ∀(i, j) ∈ A as the integer variables xke

ij . The unit cost of arc (i, j) for

commodity ke is denoted cke

ij . The empty super commodity has no flow conservation constraints
and appear in the objective with a cost and in the bundled capacity and inter-balancing con-
straints. For convenience the commodity set is split into the loaded commodities and the empty
super commodity: Let KF be the set of loaded commodities. Let Ke be the set of the single empty
super commodity. Finally, let K = KF ∪ Ke. The inter-balancing constraints also introduce a
new set of variables representing leased containers at a node. The cost of leasing is modeled in the
objective. Let cil be the cost of leasing a container at port i, while li is the integer leasing variable
at port i. Demand may be rejected, due to capacity constraints and unprofitability from empty
repositioning cost. The slack variable γk represents the amount of rejected demand for commodity
k. The cost of transport, leasing and derived demand for the empty super commodity must be
subtracted. The arc flow model of CAPER with a profit maximizing objective, an empty super
commodity, leasing variables, load rejection and inter-balancing constraints is stated as:

max
∑

k∈KF

∑

j∈N

rk(dk − γk)−
∑

k∈K

∑

(i,j)∈A

ckijx
k
ij −

∑

i∈N

cill
i (3.1)

s.t.
∑

j∈N

xk
ij −

∑

j∈N

xk
ji + γk = dk i = Ok k ∈ KF (3.2)

∑

j∈N

xk
ji −

∑

j∈N

xk
ij + γk = dk i = Dk k ∈ KF (3.3)

∑

j∈N

xk
ij −

∑

j∈N

xk
ji = 0 i ∈ N \ {Ok, Dk} k ∈ KF (3.4)

∑

k∈K

xk
ij ≤ uij (i, j) ∈ A (3.5)

∑

k∈K

∑

j∈N

xk
ij −

∑

k∈K

∑

j∈N

xk
ji − li ≤ 0 i ∈ N (3.6)

xk
ij ∈ Z+ k ∈ K, (i, j) ∈ A (3.7)

li ∈ Z+ i ∈ N (3.8)

γk ∈ Z+ k ∈ KF (3.9)

The objective (3.1) is to maximize the profit of the demanded flow of all commodities in K on
the arcs. Constraints (3.2)-(3.4) are the flow conservation constraints which guide the flow of a
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demand from origin to destination. Furthermore, the flow and the rejected demand must equal
the demanded quantity dk. Constraints (3.5) are the bundle constraints ensuring that the flow of
all commodities do not exceed the capacity of the arcs. Constraints (3.6) are the inter-balancing
constraints which give a derived demand for the empty super commodity and leased containers.
It is possible to raise the bound on (3.6) for nodes in the first time period (t = 1) to reflect the
current stock of empty equipment. Constraints (3.7)-(3.9) ensure non-negative and integral flow
and leasing variables. The formulation is polynomial in the input size as the number of variables
is O(|K||A| + |N |) and the number of constraints is O(|N ||K|+ |A|+ |N |).
It should be noted that when a container is leased, it remains in the network for the rest of the

period. This corresponds to long-term leasing for the first period and short term leasing in the last
periods. The cost of a leasing variable should depend on the amount of time periods remaining
in T at the node where it is leased. Off-leasing can be modeled by an off-leasing variable making
cost dependent on the net leasing between in- and off-leasing variables at the nodes. This changes
the objective function (3.1) to:

max
∑

k∈KF

∑

j∈N

rk(dk − γk)−
∑

k∈K

∑

(i,j)∈A

ckijx
k
ij −

∑

i∈N

cil(l
i
in − lioff)

and the inter-balancing constraints (3.6):

∑

k∈K

∑

j∈N

xk
ij −

∑

k∈K

∑

j∈N

xk
ji − liin + lioff ≤ 0 i ∈ N

The above model assumes off-leasing can occur at any port. Off-leasing can be restricted to
certain ports by defining off-leasing variables accordingly. When the container is leased, the
remainder of the optimization period is paid for. When it is off leased, the remainder of the
optimization period at the off-leasing point is refunded.
Various services are offered by leasing companies that own half the maritime container fleet

worldwide, see (IICL). Leasing services vary from one-trip and round-trip leases to short-, medium-
and long-term leasing ranging from one month to 42 months, see (TAL).
The experimental tests in section 3.6 apply the original model allowing only in-leasing at nodes.

As a result leasing may range from a single time period to the entire time period optimized
upon. The model allows exploration of different leasing strategies by altering variables for in- and
off-leasing.

3.5 Path Flow Formulation

In the following we introduce a path flow model for CAPER. The arc flow model of CAPER (3.1)-
(3.9) has block-angular structure with |KF | subproblems given by the flow conservation constraints
for each full commodity. The commodity subproblems are tied together by the bundle constraints
(3.5), i.e., the arc capacity constraints, and the inter-balancing constraints (3.6) regarding the
supply of empty containers. The structure of the arc-flow model enables us to present an equivalent
path flow model by applying the Dantzig-Wolfe decomposition principle(Dantzig and Wolfe, 1961).

3.5.1 Path flow reformulation

Using Dantzig-Wolfe decomposition we get a master problem considering paths for all commodities,
and a subproblem defining the possible paths for each commodity k ∈ K. Due to the flow
decomposition theorem (Chapter 3.5 in (Ahuja et al., 1993)), which states that every non-negative
arc flow can be represented as a non-negative path and cycle flow, this can be formulated such
that master problem variables define the flow of a commodity on a path, and the subproblem finds
valid paths for that commodity.
Let p be a path connecting Ok and Dk and Pk be the set of all paths belonging to commodity k.

The flow on path p is denoted by the variable f(p). The binary indicator δij(p) is one if and only



Chapter 3. Liner Shipping Cargo Allocation with Repositioning of Empty Containers 76

if arc (i, j) is on the path p. Finally, ckp =
∑

(i,j)∈A δij(p)c
k
ij is the cost of path p for commodity

k. The master problem is:

max
∑

k∈KF

∑

p∈Pk

(rk − ckp)f(p)−
∑

(i,j)∈A

cke

ij x
ke

ij −
∑

i∈N

cill
i (3.10)

subject to
∑

k∈KF

∑

p∈Pk

δij(p)f(p) + xke

ij ≤ uij (i, j) ∈ A (3.11)

∑

p∈Pk

f(p) + γk = dk k ∈ KF (3.12)

∑

k∈KF

∑

p∈Pk

∑

j∈N

(δij(p)− δji(p))f(p) + xke

ij − xke

ji − li ≤ 0 i ∈ N (3.13)

f(p) ∈ Z+ p ∈ Pk k ∈ KF (3.14)

γk ∈ Z+ k ∈ KF (3.15)

xke

ij ∈ Z+ (i, j) ∈ A (3.16)

li ∈ Z+ i ∈ N (3.17)

Where the xk
ij variables are replaced by

∑

p∈Pk
δij(p)f(p) according to the flow decomposition

theorem for all k ∈ KF . The domains of the subproblems for commodities k ∈ KF are given by
the polytopes:
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The convexity constraints for the individual subproblems (3.12) bound the flow between the
(Ok, Dk) pair from above (a maximal flow of dk is possible). The extreme points of Pk are
paths between the (Ok, Dk) pair. Decomposing the arc flow model to the path flow model reduces
the size of the constraint set to |A|+ |K|+ |N |, but the number of variables are the extreme points
of Pk, ∀k ∈ KF , which may be exponential.
The exponential number of variables is handled by considering only a small subset in a restricted

master problem. Paths/columns are generated on the fly using delayed column generation. The
dual variables corresponding to the three constraint sets are:� wij for each (i, j) ∈ A corresponding to the bundle constraints (3.11)� σk corresponding to the convexity constraints (3.12) for each commodity k ∈ K� αi corresponding to the inter-balancing constraints (3.13) for each port i ∈ N .

The reduced cost ĉ of a path p ∈ Pk for the variable f(p) in subproblem k ∈ KF is given as:

ĉp = rk −
∑

(i,j)∈A

δij(p)
(

ckij − wij

)

− σk − αOk + αDk

Note that the dual values αi cancel each other out for intermediate ports on a path in constraints
(3.13), i.e., only the supply port Ok and the demand port Dk of a path are affected by these
constraints.
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As the subproblems are only dependent on the arc variables xij , the constant terms given by
commodity k may be treated independently implying:

∑

(i,j)∈A

δij(p)(c
k
ij + wij) < rk − σk − αOk + αDk

An extreme point of Pk where
∑

(i,j)∈A(cij+wij)xij is minimal corresponds to the path variable
with the maximal reduced cost for the subproblem belonging to k. The subproblem corresponds
to an ordinary shortest path problem with positive arc costs as cij , wij ≥ 0:

min
∑

(ij)∈A

(cij + wij)xij (3.18)

s.t.
∑

j∈N

xij −
∑

j∈N

xji = 1 i = OK (3.19)

∑

j∈N

xji −
∑

j∈N

xij = 1 i = Dk (3.20)

∑

j∈N

xij −
∑

j∈N

xji = 0 i ∈ N \ {Ok, DK} (3.21)

xij ∈ {0, 1} (i, j) ∈ A (3.22)

Solving the LP relaxed path flow model using delayed column generation has several advantages
compared to solving the arc flow model:� Although there is a polynomial bound on the number of variables in the arc flow formulation,

it is a large polynomial factor. Even though the number of paths in the network may be
exponential, it depends on how dense the network is. If the network is sparse, like in most
liner shipping networks, there will be few path variables for each commodity k ∈ KF .� The network size of an international liner shipping company means that column generation
is our only hope to solve the problem in reasonable time. Even the LP relaxation of the arc
flow model cannot be represented with 8 GB memory for sufficiently large instances.� An LP-solution to the path flow formulation can be transformed to a feasible IP solution to
CAPER by rounding, as flow conservation is respected implicitly in the path variables (see
figures 3.2 and 3.3). This makes it possible to translate the solution directly into itineraries
for the demand pairs.� The average volume of demand between (O,D) pairs are in 3 orders of magnitude. As a
result rounding down the fractional solution is a reasonable approximation to the optimal
integer solution. This is confirmed by the experimental results of this paper, where the gap
between the integer solution found by rounding and the optimal LP solution is within 0.01%.

A B C D

E F

x1
AB = 5 x1

BC = 2.75

x1
BE = 2.25

x1
CD = 5

x1
EF = 2.25

x1
FC = 2.25

Figure 3.2: A fractional solution to the arc flow model: Containers may be split at every node.
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A B C D

E F

δAB(p1)f(p1) = 2.75

δAB(p2)f(p2) = 2.25

δBC (p1)f(p1) = 2.75

δBC(p2)f(p2) = 0

δBE(p1)f(p1) = 0, δBE(p2)f(p2) = 2.25

δCD(p1)f(p1) = 2.75

δCD(p2)f(p2) = 2.25

δEF (p1)f(p1) = 0

δEF (p2)f(p2) = 2.25

δFC(p1)f(p1) = 0, δFC(p2)f(p2) = 2.25

Figure 3.3: Fractional solution to the path flow model: Containers may only be split at the origin.

3.5.2 Solution method

Although the integer formulation of CAPER is NP-hard to solve, the LP relaxation may be solved
in polynomial time. The challenge lies in the expected size of a liner shipping network and the
number of periods in the planning horizon, which result in very large LPs.

The solution method for solving the LP relaxed arc flow model is an interior point method using
a standard solver. The path flow model is solved using delayed column generation (Wolsey, 1998).
Due to load rejection a feasible solution to CAPER is to provide a single path variable for each
commodity by solving a shortest path problem for each commodity using Dijkstra on a graph with
the original arc cost ckij , ∀(i, j) ∈ A. The LP is solved to optimality with an associated dual cost
vector. Hereafter, |K| subproblems are solved by applying Dijkstra’s shortest path algorithm to
each subproblem with arc costs corresponding to the original arc cost and the dual cost of each
capacity constraint. The new columns generated by the subproblems are added to the master
problem. After resolving the master, arc weights are adjusted and the subproblems are solved
again. The column generation algorithm terminates, when no path variable with positive reduced
cost can be found for any commodity. The column generation algorithm applied is simple and no
improvement methods such as constraint aggregation, non-basic variable removal, etc. is applied
to give a fair comparison to solving the arc flow model by a standard solver.

An integer solution is found by applying a rounding heuristic to the optimal LP solution of the
path flow model. The rounding heuristic is simple. Initially all fractional variables of the path
flow LP relaxation solution are rounded down to ensure that capacity constraints are respected.
At nodes with violated inter-balancing constraints we supply empty containers through the leasing
variables to maintain feasibility. The rounding heuristic is applied in order to verify that the LP
relaxation solution is equitable for evaluating the liner shipping network (see Section 3.6.3).

3.6 Computational Results

The algorithms were experimentally evaluated on data based on real life shipping networks. The
test instances are created from a snapshot of the Containership Databank (Containership Data-
bank). The set P of ports (and hence the set N of nodes) and the set of arcs A with capacities are
created from services found at (Containership Databank). The time frame of the initial time-space
networks are one, three, six, nine and twelve months which are aggregated into one, three, six, nine
and twelve time slots respectively representing one month each. Cost and demand functions are
generated randomly but such that both profitable and unprofitable products are present, demands
are asymmetric in the sense that an area such as Asia should have more export than import (and
vice versa for, e.g., Europe and North America), the total demand must exceed the capacity of
the network for some areas, and the profit of some products must be able to support the price
of leasing containers. Liner shipping operators are chosen so that the instances vary in size from
34 ships to 316 ships. Test instances are named according to the number of ships in the fleet,
see Table 3.3. Note that instance CAPER293 is larger than instance CAPER316 in terms of the
number of ports and unique rotation legs. In Table 3.3 the average out degree of the nodes in
the liner shipping network is stated. The density of the network is believed to be decisive for
the convergence of the delayed column generation. The size of the network and the number of
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Test instance Ports Unique rotation legs Average out degree Fleet capacity in TEU
CAPER34 44 101 2.3 21035
CAPER62 60 104 1.7 111004
CAPER98 58 122 2.1 348356
CAPER136 96 198 2.1 383179
CAPER222 151 326 2.2 633719
CAPER293 234 565 2.4 846447
CAPER316 185 455 2.5 992479

Table 3.3: Test instances - instance name denotes the fleet size, e.g., CAPER34 has a fleet size of 34
ships. Unique rotation leg is the number of travel arcs AR disregarding travel times. Instances may be
found at http://www.or.man.dtu.dk/English/research/instances/

|T | instance |N | |A| |KF |
CAPER34 44 101 215
CAPER62 60 104 342
CAPER98 58 122 494

1 CAPER136 96 198 837
CAPER222 151 326 1277
CAPER293 233 565 2189
CAPER316 185 455 1930
CAPER34 132 391 645
CAPER62 180 432 1159
CAPER98 174 482 1751

3 CAPER136 288 786 2856
CAPER222 453 1280 4577
CAPER293 699 2161 7522
CAPER316 555 1735 6895
CAPER34 264 826 1290
CAPER62 360 924 2515
CAPER98 348 1022 3865

6 CAPER136 576 1688 6163
CAPER222 906 2711 10301
CAPER293 1398 4555 16278
CAPER316 1110 3655 15382
CAPER34 396 1261 1935
CAPER62 540 1416 3950
CAPER98 522 1562 6081

9 CAPER136 864 2550 9606
CAPER222 1359 4142 16311
CAPER293 2097 6949 25207
CAPER316 1665 5575 24404
CAPER34 528 1696 2580
CAPER62 720 1908 4979
CAPER98 696 2102 7444

12 CAPER136 1152 3432 13097
CAPER222 1812 5573 22433
CAPER293 2796 9343 34163
CAPER316 2220 7495 33654

Table 3.4: Network sizes of the respective instances divided into time periods

commodities is stated separately for each time period in table 3.4. The experimental tests are
based on the models defining only an in-leasing variable and all nodes in the first time period are
given 100 own containers. In a real setting the nodes in the first time period must be supplied with
the number of empty stock at each port, to model the liner shipping companies own containers.

All tests were performed on an Intel(R) Xeon(R) X5550 CPU 2.66 GHz processor with 8 GB
RAM. We have used the LP solvers from ILOG’s CPLEX 10.2 and the open source CLP solver
from COIN-OR. All tests were performed with the CPLEX Barrier solver, CPLEX dual simplex
solver and the CLP dual simplex solver. The best results for the arc flow model were obtained
with CPLEX barrier solver and for the path flow model with CLP dual simplex. Computational
results are stated for the best results for each model for 1, 3, 6, 9, and 12 time periods. The
models are solved to LP-optimality. The arc flow model of large instances cannot be generated
with the available memory.

In the following we compare performance of the arc flow and the path flow model for test
instances with 1 and 3 time periods, where the arc flow model can be generated for most instances.
Next we present results for the solution times for large instances using the path flow model in
conjunction with delayed column generation. For the path flow model all test instances up to
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|T | instance objective arc flow model path flow model

m × n time(s) m × n time(s) iter

CAPER34 2.59 · 1007 21860 × 9605 4.76 360 × 378 0.02 4
CAPER62 1.21 · 1009 35732 × 20684 23.30 506 × 542 0.03 4
CAPER98 5.37 · 1009 60448 × 28832 46.40 674 × 889 0.06 4

1 CAPER136 4.32 · 1009 166020 × 80646 180.00 1131 × 1589 0.20 6
CAPER222 7.92 · 1009 416779 × 193304 952.00 1754 × 2285 0.34 5
CAPER293 1.1 · 1010 1237583 × 510835 1670.00 2987 × 4008 1.03 8
CAPER316 1.22 · 1010 878790 × 357690 1140.00 2570 × 3352 0.70 6

CAPER34 7.9 · 1007 252718 × 85663 580.00 1168 × 2962 0.40 5
CAPER62 4.3 · 1009 501300 × 209232 1730.00 1771 × 2159 0.63 10
CAPER98 1.98 · 1010 844638 × 305330 5420.00 2407 × 3638 1.73 15

3 CAPER136 1.55 · 1010 2245890 × 823602 5690.00 3930 × 5863 2.98 11
CAPER222 2.62 · 1010 5860293 × 2075114 57600.00 6310 × 10039 14.10 16
CAPER293 3.65 · 1010 16257902 × 5260738 MEM 10382 × 16620 38.20 14
CAPER316 5.06 · 1010 11965115 × 3829015 MEM 9185 × 14097 33.50 24

Table 3.5: Results for solving test instances for 1 and 3 time periods (|T |). The size of the respective mod-
els is stated as m×n, where m is the number of columns(variables) and n the number of rows(constraints).
MEM indicates that memory was not sufficient for the process to complete. The size of the LP for the arc
flow model is reported for comparison with the size of the master problem of the path flow model. Column
time(s) denotes the CPU time in seconds to solve the respective model, while iter denotes the number
of iterations for the column generation algorithm. The arc flow model is solved in one LP iteration.

9 time periods can be solved within an hour. For 12 time periods, 5 out of 7 instances may be
generated with the available memory. They are solved in less than 71 minutes. Lastly, we present
the integer solutions for a simple rounding heuristic applied to the LP solutions of the path flow
model. The IP solutions presented are within a very reasonable distance of the LP upper bound
and the gap is sufficiently small to discard the need for a branch-and-price algorithm as well as
more sophisticated heuristics.

3.6.1 Arc flow and path flow compared

Table 3.5 shows the relative performance of the arc flow model and the path flow model for 1
and 3 time periods respectively. The path flow formulation in conjunction with delayed column
generation outperforms the arc flow model by a wide margin even for small instances. The size
of the LPs for the column generation algorithm is surprisingly small and the column generation
algorithm is at least two orders of magnitude faster than the arc flow model for one time period
and three orders of magnitude faster for three time periods.

Figures 3.4(a)–3.4(b) plot the solution time of the algorithms as a function of the size of the LP
model. The unit |N | + |A| + |K| is chosen at the x−axis because it is the decisive factors in the
size of the LP constraint set for both models. Figure 3.4(a) shows a fast growth in solution time
for the arc flow model (full lines). Using a logarithmic scale in Figure 3.4(b) it is seen that the
original growth is exponential. The solution times of the path flow model (dotted lines) grow more
moderately. Figures 3.4(c)–3.4(d) correspond to figures 3.4(a)–3.4(b) when considering three time
periods. Again, Figure 3.4(d) shows an exponential growth in the solution time of the arc flow
model (the two largest instances could not be generated due to memory limitations).

3.6.2 Increasing |A|

It is believed that the relatively fast convergence of the path flow model even for large instances
is due to the very sparse networks in our real life like instances. The number of extreme points in
the subproblems is therefore very small and yields small master problems. This means that only
few iterations are needed to find all relevant basic variables via the column generation method.
A test has been performed to support this theory. Test case CAPER62 was chosen randomly to
perform this test. In three steps the graph was made increasingly dense to see how this would effect
execution time. However, density is performed in a way that creates alternative paths for existing
commodities. In the tests the same node set and commodity set is used. Only the rotations are
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Figure 3.4: Relative performance of the arc flow and path flow model, 1 and 3 time periods. The size of
the test instance in terms of the accumulated number of nodes |N |, arcs |A| and commodities |K| is on
the x-axis. The computation time in seconds is on the y-axis.

different. Steps one and two create competitive routes for the existing commodity set while the
third step add routes in a random way to the existing commodity set.

Each step was completed as a test in itself. The original run had 421 arcs, the test where only
step one was performed has 725 arcs. Performing step one and two on the original test instance
yields 860 arcs and completing all three steps results in 1073 arcs. The number of vertices for all
test instances is 183. It is noted that the average out degree of the largest arc set is only 5.85,
which is still a fairly sparse network.

Figure 3.5 clearly displays a steep rise in execution times for the path flow formulation using
delayed column generation when the graph becomes denser. This supports our theory on why our
real life like instances are solved fast and do not show signs of degeneracy.

3.6.3 Solution of large instances

We now consider the solution times for 6, 9 and 12 time periods. The arc flow model cannot be
generated for the largest instances and hence is not discussed further in this section.

Table 3.6 shows that test instances with 6 time periods solved with the path flow model complete
within 10 minutes. The master problems are small compared to the arc flow model and the number
of iterations is reasonable. The sparsity of the networks probably results in few path variables for a
commodity, which leads to relatively fast convergence of the delayed column generation algorithm.
Note that test CAPER316 is slower than test CAPER293 in spite of a smaller LP. This might be
specific for test CAPER316 but may also be due to degeneracy, ǫ rounding or many cache misses.
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Figure 3.5: Effect of increasing the density of a graph. The number of arcs in the graph |A| is on the
x-axis. The computation time in seconds is on the y-axis.

Test instances with 9 time periods may all be completed in less than one hour. All but the two
largest tests, CAPER293 and CAPER316 complete within 12 minutes. The number of columns in
the two largest test instances is significant. Again we see that test CAPER316 needs more time and
iterations to complete than test CAPER293 although the LP is smaller. The increased solution
time seems to be problem specific and it is interesting to note that the network of CAPER316 is
denser than that of CAPER293. This supports the theory that the sparsity of shipping networks
is a key to success for the path flow model and the column generation algorithm. For 9 time
periods we see that the number of iterations varies from 9 to 89. However, execution times still
grow steadily and the size of the LPs is reasonable considering the size of the networks. For 12
time periods the LPs have reached a critical size and tests CAPER293 and CAPER316 do not
have sufficient memory to complete.

The number of iterations for the remaining test instances is reasonable and the solution times
are still within 71 minutes which is acceptable for large models representing a shipping network
for a whole year.

Figure 3.6(a)-3.6(b) depict the solution time of the path flow model for 1, 3, 6, 9, and 12 time
periods (|T |) as a function of the size of the LP. It is seen that the growth in solution times is
relatively steady for 3 time periods. Figure 3.6(a) shows an exponential tendency for the graphs of
9 and 12 time periods, where the LPs have reached a critical size. The trend is even more explicit
in figure 3.6(b) where the graphs are plotted on a logarithmic scale. The trend is particular for the
larger test instances, which have denser networks and hence, more path variables per commodity.
The exponential tendency is very clear in the graph of 12 time periods although the two largest
tests did not complete.

The delayed column generation method shows good convergence for the generated test instances,
and methods to reduce the master problem constraint set has not been required. We are able to
solve instances of large shipping networks spanning 9 time periods in less than one hour. For
12 time periods the two largest instances cannot be generated with the available memory, but
the remaining tests are solved within 71 minutes. The convergence is expected to depend on the
sparsity of the networks. The results of the tests show that the column generation technique is
very effective for solving CAPER for sparse networks. The path flow model and delayed column
generation outperforms solving the arc flow model with an interior point method by a wide margin,
contrary to the general view on interior point versus LP column generation for large instances. It
appears that the number of path variables for real life liner companies is very modest and therefore
the number of variables in the restricted master problem is relatively small. Instances are based on
modified real-life data which indicates that CAPER will perform well on such problems, but the
actual partition of surplus/deficit zones for empty containers and the commodity set may result
in harder instances than the generated instances presented in this paper.

Table 3.7 shows the average utilization of travel arcs (Av. util AR), the number of arcs that
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|T | instance objective arc flow model path flow model

m × n time(s) m × n time(s) iter

CAPER34 2.49 · 1008 1066630 × 341650 3410.0 2380 × 11070 4.6 7
CAPER62 9.18 · 1009 2325144 × 906684 7300.0 3799 × 5305 5.7 19
CAPER98 5.03 · 1010 3951400 × 1346390 35100.0 5235 × 7989 8.6 12

6 CAPER136 3.9 · 1010 3552132 × 10282128 MEM 8407 × 15251 43.7 17

CAPER222 7.29 · 1010 9339332 × 27929628 MEM 13918 × 25635 206.0 23

CAPER293 7.71 · 1010 22762597 × 74147688 MEM 22231 × 41419 480.0 23

CAPER316 1.18 · 1011 17078785 × 56225975 MEM 20147 × 36229 586.0 29

CAPER34 4.98 · 1008 767917 × 2441692 12500.0 3592 × 11205 5.7 9
CAPER62 1.78 · 1010 2134956 × 5595156 MEM 5906 × 12790 48.7 89
CAPER98 7.11 · 1010 3176366 × 9500606 MEM 8165 × 14201 66.1 21

9 CAPER136 7.17 · 1010 8302998 × 24496164 MEM 13020 × 24212 186.0 41

CAPER222 1.26 · 1011 22172150 × 67565663 MEM 21812 × 42444 618.0 17

CAPER293 1.37 · 1011 52866028 × 175158501 MEM 34252 × 69529 2010.0 27

CAPER316 2.18 · 1011 17078785 × 56222321 MEM 31643 × 63309 3120.0 45

CAPER34 3.69 · 1008 1364464 × 4377904 MEM 4804 × 20557 20.0 5
CAPER62 1.4 · 1010 3587508 × 9502560 MEM 7607 × 36750 125.0 27
CAPER98 8.62 · 1010 5183822 × 15650086 MEM 10242 × 39919 210.0 18

12 CAPER136 1.24 · 1011 15092328 × 44953488 MEM 17681 × 36455 329.0 30

CAPER222 1.72 · 1011 40655981 × 125020921 MEM 29818 × 67841 4240.0 32

CAPER293 - 95531887 × 319187701 MEM 46302 × 114088* MEM 25*

CAPER316 - 74721600 × 252239000 MEM 43369 × 90759* MEM 40*

Table 3.6: Test instances for 6, 9 and 12 time periods (|T |). The size of the respective models is stated
as m × n, where m is the number of columns(variables) and n the number of rows(constraints). MEM

indicates that memory was not sufficient for the process to complete. The size of the LP for the arc flow
model is reported for comparison with the size of the master problem of the path flow model. Column
time(s) denotes the CPU time in seconds to solve the respective model, while iter denotes the number
of iterations for the column generation algorithm. The arc flow model is solved in one LP iteration. *
indicates the size of the LP at the last iteration of the process when aborting due to insufficient memory.

are fully loaded, i.e., bottlenecks, per total number of travel arcs (|BN |/|AR|) and the percentage
of arcs being bottleneck (BN). Generally, the capacity is well utilized apart from CAPER34. A large
fraction of the travel arcs are fully utilized and constitute bottlenecks in the network. In strategic
planning, identification of bottlenecks is crucial along with sensitivity analysis when redesigning
parts of the network.

3.6.4 Quality of integer solutions and speed of rounding heuristic

Table 3.8 considers the integer solutions obtained by rounding.
Table 3.8 shows that 9 out of 33 ( ≈ 27%) of the LP solutions are integer. The optimal LP

solutions of test instance CAPER34 are integer for all values of |T |. We observe that 17 out of
33 (≈ 51%) LP solutions have less than 10% fractional basic variables. The highest percentage of
fractional variables among the remaining 16 LP solutions is 21.8%. Fractionality seems to increase
with |T |. Despite having more than 20% fractional basic variables at most 0.3% of the total flow
is rounded and the gap percentage in terms of the objective value does not exceed 0.01%. This
confirms that the rounded integer solution is a good solution in terms of the gap to the LP upper
bound. This is probably due to generally large flows on path variables making the rounding
insignificant. Execution times are mostly less than one second but on larger instances execution
times rise to at most 5 seconds. The optimal integer solution might be slightly better, but given
a gap less than 10−4% the computation time does not seem justified since the gap is smaller than
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Figure 3.6: Relative performance of the path flow model - 1,3,6,9 and 12 time periods The size of the
test instance in terms of the accumulated number of nodes |N |, arcs |A| and commodities |K| is on the
x-axis. The computation time in seconds is on the y-axis.

the data uncertainty.

3.7 Concluding Remarks

We have presented a mathematical model for the cargo allocation problem with empty reposi-
tioning and solved it to near-optimality using delayed column generation and a simple rounding
heuristic. CAPER resembles the model of Erera et al. (2005) in managing loaded and empty con-
tainers simultaneously. However, CAPER is solved for a capacitated network, allows load rejection
and has a profit maximizing objective which in our opinion creates a novel cargo allocation model.
Furthermore, CAPER is decomposed and solved by delayed column generation. The method is
computationally tractable for much larger LPs than presented in Erera et al. (2005). The mathe-
matical model is surprisingly simple. The inter-balancing constraints, which ensure repositioning
of empty containers, results in an augmented multi-commodity flow problem. It appears that
these constraints do not complicate the model to an extent where the solution time is significantly
affected. Furthermore, test results show that the inter-balancing constraints ensure transporta-
tion of low profitable products before repositioning empty containers to deficit ports, see Løfstedt
(2007) for a detailed discussion. This demonstrates the importance of considering empty container
repositioning in a cargo allocation/booking model for liner shipping. Also, the size of the instances
created and solved in this paper are significantly larger than previously reported in the reviewed
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|T | instance Av. util AR (%) |BN |/|AR| BN (%)

CAPER34 58.8 22/101 21.8
CAPER62 80.7 51/104 49.0
CAPER98 94.6 76/122 62.2

1 CAPER136 84.3 97/198 49.0
CAPER222 84.7 162/326 49.7
CAPER293 82.9 294/565 52.0
CAPER316 88.1 259/455 56.9
CAPER34 56.6 69/303 22.8
CAPER62 82.3 162/342 47.4
CAPER98 91.9 255/365 69.9

3 CAPER136 85.5 382/594 64.3
CAPER222 87.4 632/978 64.6
CAPER293 82.0 1021/1694 60.3
CAPER316 90.8 978/1365 71.6
CAPER34 60.6 149/606 24.6
CAPER62 83.9 391/624 62.7
CAPER98 91.7 551/732 75.3

6 CAPER136 87.9 853/1188 71.7
CAPER222 88.4 1375/1956 70.3
CAPER293 80.3 2052/3385 60.6
CAPER316 91.8 2126/2730 77.9
CAPER34 56.5 206/909 22.7
CAPER62 83.3 589/936 62.9
CAPER98 90.1 817/1098 74.4

9 CAPER136 85.0 1135/1782 63.7
CAPER222 87.3 2031/2934 69.2
CAPER293 82.5 3293/ 5085 64.8
CAPER316 91.6 3169/ 4095 77.4
CAPER34 47.2 209/1212 17.2
CAPER62 85.5 794/1248 63.6
CAPER98 88.8 1051/1464 71.8

12 CAPER136 85.9 1606/2376 67.6
CAPER222 87.4 2748/ 3912 70.2
CAPER293 - - -
CAPER316 - - -

Table 3.7: Average utilization of travel arcs in the network Av. util AR. BN ⊆ AR denotes the fully
loaded arcs, i.e., bottlenecks, in the network. |BN |/|AR| is the relation between the number of bottleneck
travel arcs and |AR| also provided in percentage in the last column.

literature. The cargo allocation problem with empty repositioning may aid network designers in
evaluating their network from a network pricing perspective. Changes to the network may be
evaluated with regards to the effect of empty repositioning and overall cargo flow. The problem
may also aid revenue managers in their pricing decisions as the derived empty repositioning cost
of each commodity may be incorporated into overall transportation cost.

Solving the LP relaxed path flow model with delayed column generation turned out to be very
successful compared to solving the arc flow model with the CPLEX barrier solver. The column
generation algorithm is at least two orders of magnitude faster for one time period and three
orders of magnitude faster for three time periods. The column generation algorithm is able to
solve all instances for 6 time periods in 586 seconds. For 9 time periods test instance 316 containing
1110 nodes (185 ports in 9 periods), 3655 arcs and 15382 commodities is solved in 3120 seconds.
For 12 periods the two largest test instances cannot be solved with the available memory. The
largest instance completed contains 1812 nodes (222 ports in 12 periods), 5573 arcs and 22433
commodities and is solved in 4240 seconds. A rounding heuristic is applied to the LP solutions
of the path flow model with great success. The heuristic finds a solution in less than 5 seconds.
All integer solutions have a gap to the LP upper bound of at most 0.01% which is well below the
data uncertainty.

An area of future work is to incorporate booking and empty repositioning into routing/scheduling
decisions of the vessel fleet as the overall cost of running a liner shipping company is the fixed
cost of committing to a schedule. Also, it would be very interesting to incorporate substitution
of containers into the path flow model of CAPER. Some modifications may result in hard pricing
problems (complexity and computationally wise), but we believe that even a complex pricing prob-
lem may be solved in reasonable time as the graph may be split into sub graphs according to time
periods, and because paths are generally very short. Furthermore, pricing problems may be solved
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|T | instance fractional/basic fractional (%) Rounded (%) obj gap gap (%) time (s)

CAPER34 0/183 0.0 0.0 0 0.0 0.01
CAPER62 0/214 0.0 0.0 0 0.0 0.01
CAPER98 0/331 0.0 0.0 0 0.0 0.01

1 CAPER136 10/538 1.9 2.7 · 10−4 1.4 · 104 3.2 · 10−6 0.01
CAPER222 0/836 0.0 0.0 0 0.0 0.02

CAPER293 23/1430 1.6 2.2 · 10−4 2.9 · 103 2.7 · 10−6 0.06
CAPER316 28/1210 2.3 2.5 · 10−4 3.4 · 104 2.8 · 10−6 0.05
CAPER34 0/588 0.0 0.0 0 0.0 0.02

CAPER62 46/723 6.4 1.4 · 10−3 8.2 · 104 1.9 · 10−6 0.03
CAPER98 116/1020 11.4 1.06 · 10−3 2.7 · 105 1.37 · 10−5 0.03

3 CAPER136 0/1680 0.0 0.0 0 0.0 0.08

CAPER222 324/2600 12.5 1.81 · 10−3 7.7 · 105 2.93 · 10−5 0.20
CAPER293 375/4450 8.4 1.41 · 10−3 9 · 105 2.47 · 10−5 0.48

CAPER316 161/3620 4.4 5.03 · 10−4 5.2 · 105 1.02 · 10−5 0.36
CAPER34 0/1060 0.0 0.0 0 0.0 0.04
CAPER62 102/1330 7.7 1.7 · 10−3 4.6 · 105 4.98 · 10−5 0.10

CAPER98 290/1960 14.8 1.37 · 10−3 1.3 · 106 2.66 · 10−5 0.14

6 CAPER136 453/3290 13.8 2.17 · 10−3 1.6 · 106 4.13 · 10−5 0.36
CAPER222 969/5060 19.1 2.40 · 10−3 3.8 · 106 5.28 · 10−5 0.86

CAPER293 1114/9460 11.8 2.14 · 10−3 3.7 · 106 4.74 · 10−5 2.01
CAPER316 1281/7660 16.7 2.04 · 10−3 5.2 · 106 4.44 · 10−5 1.55
CAPER34 0/1560 0.0 0.0 0 0.0 0.10

CAPER62 259/1990 13.0 3.22 · 10−3 1.8 · 106 1.02 · 10−4 0.21

CAPER98 673/3080 21.8 2.18 · 10−3 3.8 · 106 5.30 · 10−5 0.29
9 CAPER136 744/4800 15.5 2.44 · 10−3 4.3 · 106 5.94 · 10−5 0.82

CAPER222 1568/7610 20.6 3.05 · 10−3 8.1 · 106 6.41 · 10−5 1.99
CAPER293 1838/13900 13.2 2.39 · 10−3 7.5 · 106 5.49 · 10−5 4.93

CAPER316 2357/11500 20.5 2.61 · 10−3 1.3 · 107 5.92 · 10−5 3.70
CAPER34 0/2030 0.0 0.0 0 0.0 0.15

CAPER62 50/2470 2.0 4.53 · 10−4 3.7 · 105 2.61 · 10−5 0.38
CAPER98 532/3300 16.1 1.25 · 10−3 2.9 · 106 3.32 · 10−5 0.49

12 CAPER136 630/6280 10.0 1.63 · 10−3 5.5 · 106 4.41 · 10−5 1.46
CAPER222 2163/10600 20.3 3.05 · 10−3 1.4 · 107 7.89 · 10−5 3.59
CAPER293 - - - - - -
CAPER316 - - - - - -

Table 3.8: Rounded integer solutions presented as the fraction of non-integer basic variables
(fractional/basic), the percentage of non-integer basic variables (fractional), the fractional moves
as a percentage of total moves (Rounded), the objective gap (obj gap) and gap percentage (gap) between
the LP and IP solution and finally, the CPU time for the rounding heuristic in seconds (time)

in parallel to decrease solution times. For network evaluation it might prove significant to evaluate
the competitiveness of the network in terms of e.g. transit time of a commodity. Reinhardt and
Pisinger (2011) solve a multi-objective shortest path problem for liner shipping with non-additive
costs. These techniques could be relevant for CAPER because it is likely that several criteria need
to be taken into account when defining the attractiveness of a path and various strategic goals
may have a non-additive cost structure.
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1

Abstract Containerized transport by liner shipping companies is a multi billion dollar industry car-

rying a major part of the world trade between suppliers and customers. The liner shipping industry has

come under stress in the last few years due to the economic crisis, increasing fuel costs, and capacity out-

growing demand. The push to reduce CO2 emissions and costs have increasingly committed liner shipping

to slow-steaming policies. This increased focus on fuel consumption, has illuminated the huge impacts of

operational disruptions in liner shipping on both costs and delayed cargo. Disruptions can occur due to

adverse weather conditions, port contingencies, and many other issues. A common scenario for recovering

a schedule is to either increase the speed at the cost of a significant increase in the fuel consumption or

delaying cargo. Advanced recovery options might exist by swapping two port calls or even omitting one.

We present the Vessel Schedule Recovery Problem (VSRP) to evaluate a given disruption scenario and to

select a recovery action balancing the trade off between increased bunker consumption and the impact on

cargo in the remaining network and the customer service level. It is proven that the VSRP is NP-hard.

The model is applied to four real life cases from Maersk Line and results are achieved in less than 5 seconds

with solutions comparable or superior to those chosen by operations managers in real life. Cost savings

of up to 58% may be achieved by the suggested solutions compared to realized recoveries of the real life

cases.

Keywords: disruption management, liner shipping, mathematical programming, recovery
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4.1 Introduction

Disruptions occur often in a global liner shipping network. According to Notteboom (2006) ap-
proximately 70-80% of vessel round trips experience delays in at least one port. The common
causes are bad weather, strikes in ports, congestions in passageways and ports, and mechanical
failures. More exceptional causes include piracy and crew strikes on the vessels.
Example: The vessel Maersk Sarnia is deployed on a scheduled service providing transport of

container cargo between South-East Asia and the west coast of Central America, see Figure 4.1.
During the pickup of cargo in South-East Asia the weather conditions cause Maersk Sarnia to
suffer a 30 hour delay when leaving Kwangyang in South Korea. The delay can cause the vessel to
miss an important scheduled port call in the transhipment port of Balboa in Panama. As a result
large parts of the cargo will miss their onward connections and most cargo will not be delivered
on time.
In order to mitigate the negative effects of the delay on Maersk Sarnia the operations center at

Maersk Line has several options:� Omit the upcoming port calls at Yokohama, Lazaro Cardenas, or Balboa.� Speed up significantly to try to reach Balboa on time.� Swap the port calls of Lazaro Cardenas and Balboa.� Accept the delay and catch up the schedule returning to South-East Asia from Balboa.

Figure 4.1: A trans-pacific round trip is depicted. Cargo is collected in transshipment ports in Asia and
sailed to transshipment ports in Central America. The round trip takes 56 days implying that 8 vessels is
required to maintain a weekly service. Feeder vessels are used to connect all ports in a geographical area.

Currently when a disruption occur, the operator at the shipping companies manually decides
what action to take. For a single delayed vessel a simple approach could be to speed up. However,
the cost of bunker fuel is a cubic function of speed (Alderton, 2004) and vessels’ speeds are limited
between a lower and upper limit. So even though an expensive speed increase strategy is chosen,
a vessel can arrive late for connections, propagation delays to other parts of the network.
In recent years liner companies have had an increased focus on minimizing the bunker consump-

tion in order to provide environmentally friendly transport and to minimize the operational costs
(Maersk, 2010). On the other hand, on time delivery is very important for a global liner shipping
company as delayed cargo carries a high cost by customers and key clients. Nevertheless, the
negative effects of miss-connections or delaying a key clients merchandise can be hard to measure
against a concrete cost of for example bunker. Furthermore, the ripple effect of the recovery on
to the remaining network is very complex to overview for a human. In the considered example
Maersk Sarnia recovered the situation by a general speed increase with a high bunker cost, but
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Figure 4.2: A feeder service collect containers in the hub in Bremerhaven and transport them to their
destinations in Norway.

nevertheless the speed increase did not ensure timely delivery of containers to the hub port of Bal-
boa, and final recovery was done returning to Asia. As a result all the cargo was delayed and some
cargo missed the onward connection at the hub. The mathematical model presented in this paper
suggested omitting the last port call in Asia reaching the transhipment port without increasing
the vessel speed and on time. The cost saving, including a delay penalty, of the suggested solution
is more than 20 %.

A standardized way of handling disruptions based on mathematical grounded decision support
may significantly lower the cost of handling disruptions as seen in the airline industry (Rakshit
et al., 1996; Yu et al., 2003) and simplify implementation of strategic decisions among stakeholders.
According to UNCTAD (2010) slow-steaming has resulted in a significant increase in delays and
they expect carriers to resume higher speeds in order to increase reliability and productivity.
According to Notteboom (2006) reliability is generally achieved by introducing sufficient buffer
time into a service. We believe that a mathematical decision support tool as the one presented in
this paper may result in sustaining a slow-steaming policy, while increasing reliability of service
without the need to introduce additional buffer time. In this paper, we introduce a mathematical
model for handling the most common disruptions in liner shipping called the Vessel Schedule
Recovery Problem, VSRP.

We make four contributions: First, we propose a novel formulation for the VSRP inspired by
similar models within the airline industry. To the best of our knowledge the present article is the
first to apply optimization to handle disruption management within the domain of liner shipping
networks. Secondly, We prove the VSRP to be NP-complete. Third, we report computational re-
sults for four cases representing common disruptions, selected by experienced personnel at Maersk
Line Operations Center. The recovery options identified by the mathematical model are compa-
rable or superior to the decisions implemented in real life with cost savings of as much as 58%.
The model is solved by a MIP solver within seconds for the selected cases. Fourth, a set of generic
test instances is used to provide insights into the network sizes that may be handled in seconds
by the current model and solution methods.

The remainder of the paper is organized as follows. Section 4.2 introduces disruption manage-
ment in the liner shipping business. Section 4.3 describes related literature. In Section 4.4 we
introduce the Vessel Schedule Recovery Problem (VSRP), the graph topology, and a mathemat-
ical model for the VSRP along with proofs of the NP- completeness of the problem. In Section
4.5 we introduce the four real life cases and the generic test instances and report computational
results. Following this section we conclude that a decision support tool based on mathematical
optimization of a disruption scenario could greatly aid an operations manager in evaluating the
different recovery options.
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4.2 The Liner Shipping Business

Liner shipping of containers is the backbone of world trade. Even though containerization simplifies
the operations and reduces the cost per transported unit, the earned return is less than 10% on
assets (Stopford, 2009). Customers demand fast and reliable delivery, while the shipping companies
constantly search to cut costs. These issues have motivated major investments in improving the
daily operations at large shipping companies (Notteboom, 2006). The liner shipping company
referred to as a carrier has a public schedule of services. A service consists of a cyclic route with
a scheduled time for each port call en route. Containers travel through the network as passengers
in a public transit network, often combining several services. The port calls of a service, must
usually happen at a predefined time and place in the port, often called the berth slot. This is
defined by the physical place that the vessels moors, the berth, and a time window where the
vessel is serviced. Most carriers provide weekly frequency of port calls. In recent years major
companies are using slow-steaming to lower the variable cost and the CO2 emission (Løfstedt
et al., 2011; Rosenthal, 2010; Maersk, 2010). To stay competitive, research has been focused on
designing the network to operate as efficiently as possible. For shipping companies, a division
of the ports into hubs and spokes is common(Christiansen et al., 2007). The network is not a
traditional hub and spoke network design with direct links between two hubs or a spoke and a
hub. As an alternative large vessels operate main lines between a set of hub ports and smaller
vessels operate feeder lines connecting a set of spokes to a hub. An example of a main line service
between hub ports is given in Figure 4.1 and an example of a feeder service servicing a hub and
several spokes is given in Figure 4.2.
The motivation for this hub-and-spoke network design is to benefit from the economies of scale on

container vessels (Stopford, 2009). The majority of containers are transhipped at least once during
transport adding to the operational complexity and the impact of a disruption. Liner shipping
companies operate with a head haul and a back haul direction. In the head haul direction vessels
are almost full as opposed to the back haul direction. The head haul generally generates the
majority of the revenue retrieved by operating the full service. As described above disruptions
are accounted for and handled in the network by adding buffer time. Customer demand for fast
delivery results in increased speeds and nearly no buffer time on the head haul, whereas the back
haul is slower and has more buffer time. Due to the complexity of recovering from a disruption
additional buffer time is included on the back haul with the option of a slight speed increase to
catch up with the schedule on the back haul.
The most important variable costs in a liner shipping network is the bunker cost, the cost of

using passageways such as the Suez and Panama canals, and the cost of calling ports to load
and unload cargo. The fixed cost of operating a network in terms of asset costs on vessels,
containers, and equipment are significant. Whenever a vessel fails to operate in accordance with
the original schedule it is hurting the shipping company’s business (and the business of their
customers) (Notteboom, 2006). The utilization of vessels will often be affected negatively as
containers miss-connect, resulting in a higher cost per transported unit. Furthermore, it might be
necessary to arrange alternative transport for the miss-connected units also adding to the cost.
Finally, the customers demand a reliable service and expect on time delivery. A major concern is
therefore how to handle disruptions when they occur.

For larger liner shipping companies the information about disruptions are gathered in the com-
pany’s Operational Control Center (OCC), from where decisions are also taken with respect to
how the disruptions should be handled. Decisions here are taken in real-time and any system to
support this process should support real-time decision making. The reason for this is two-fold.
1) Weather is changing quickly in some parts of the world, which may cause a port to close for
a period of time. In such a case it is important to make a reasonable quick decision regarding
whether the port should be skipped, which typically will lead to a change of course and the possi-
bility of slowing down and saving on bunker fuel. 2) The other and more important reason is that
controllers working in the OCC are in some periods faced with the need for taking many decision
and evaluating various alternatives. This is where the requirement for a quick response becomes
imperative. For this reason controllers at Maersk have stated 10 seconds as a reasonable response
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time for a disruption management system.

4.2.1 From airline disruption to liner shipping disruption

Operations research has for many years been applied extensively in the airline industry (Barnhart,
2009). Initially OR was mainly used in the planning phase, but during the last two decades OR has
also found its way into the disruption management tools, which are used on the day of operation
where the planned schedule is being executed.
This paper focuses on utilizing the findings in disruption management tools for the airline in-

dustry in order to construct a mathematical model of the VSRP to handle disruptions in the
context of the liner shipping business. The airline and liner shipping businesses have evident sim-
ilarities, but also some core differences (Christiansen et al., 2004). Larger airlines and larger liner
shipping companies both operate a hub and spoke network, where either passengers or containers
need to flow from an origin, through one or more hubs to a destination. Here, they need to ar-
rive with the least possible amount of delay. In this way vessels resemble aircraft and containers
resemble passengers. While crew recovery is a significant part of disruption management for an
airline, this is not the case for a liner shipping company, as crew always follow the vessel and
do not have work rules, which significantly limit the utilization of the vessel. Traditional aircraft
recovery as described by Thengvall et al. (2001) or Dienst et al. (2012) makes use of 3 recovery
techniques: Delays, Swaps and Cancellations. In addition to these techniques Marla et al. (2011)
show that a large improvement in the number of passenger miss-connections can be obtained if
speed-changes are included as a fourth recovery technique. In the following we discuss how each
of these techniques can be applied to disruption management in a liner shipping network:� Delays. For an airline the most straight forward way of handling a disruption is to delay

flights and let the delays propagate to the subsequent flights of an aircraft. After a number
of delay propagations the initial delay will have disappeared due to the fact that the gap
between flights is usually a bit longer than the required turn time and most aircrafts are
idle over night. For an airline this recovery technique is unfortunately also the one which,
when applied alone, often ends up causing a lot of miss-connections (Dienst et al., 2012). In
liner shipping it is also possible to delay the departure of a vessel, but port calls do not have
additional slack built into them and container vessels are constantly in service, which means
that delay propagation will not be able to resolve a disruption on its own. It will need to be
combined with some of the techniques presented below in order to have the desired effect of
recovering from a disruption.� Swaps. This is a very efficient recovery technique for an airline, as it can be used to elim-
inate a lot of delay propagation to subsequent flights. Swaps are possible as an aircraft
becomes empty after each flight. As a result one aircraft may be substituted for another.
Unfortunately, this technique is not applicable to a liner shipping company, as a container
vessel servicing a certain service is never empty and it is both extremely costly and time
consuming to empty it completely. While vessels cannot be swapped in the VSRP it is for a
liner shipping company possible to swap the order in which ports are being visited, whenever
these ports are located geographically close to each other.� Cancellations. This technique is usually not preferred in the aircraft recovery problem, but
it is an efficient way of recovering, whenever the airline experience large delays or reduced
runway capacity. For a liner shipping company this technique is unfortunately not directly
applicable as it would interrupt the service operation of the vessel. In the VSRP it is however
possible to cancel or omit a port call. In this case containers, which are destined for the
omitted port, are then off-loaded at a subsequent nearby port and containers for on-loading
in the omitted port are being held for the next vessel on that service, or another service
covering the same ports, which often results in a delay of up to a week.� Speed changes. Including speed changes from a network perspective as an integrated part of
disruption management turns out to be a very effective way of balancing passenger delays
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versus fuel burn for an airline (Marla et al., 2011). This is in spite of the fact that a flight
usually can only be sped up with 8-10% compared to its planned speed. For a vessel, which
is originally scheduled to sail at a slow steaming speed of e.g. 16-18 knots, it is possible to
speed up with 40% to e.g. 22-24 knots. This additional speed flexibility may be promising
for the application of this technique in a liner shipping network.

As it is seen there are some clear similarities in the techniques, which can be applied in recovering
a disruption in an airline network, and the techniques, which can be applied in recovering a
disruption in a liner shipping network. The aircraft swapping technique available to an airline
provides increased interaction between aircrafts in an airline network as opposed to vessels in a
liner shipping network. An additional complication in a liner shipping network is that vessels
operate around the clock and cannot naturally recover by using some of the overnight slack,
which is often available in an airline network. For this reason recovering from a liner shipping
disruption may take days and even weeks as opposed to a typical maximum of 48 hours for
airlines. If a container fails to connect to a succeeding vessel the impact will often be more severe
in liner shipping. International airports have a number of daily departures for a given destination
presenting the option to re-accommodate passengers with a slight delay on a subsequent flight.
For liner shipping a missed connection will normally result in a major delay.

We must estimate the effect on the cargo on-board with regards to missed onward connections
and delays in order to assess a given recovery plan. Ideally the container groups would be reflowed
on the residual capacity of the entire liner shipping network simultaneously with a recovery plan for
the delayed vessels. This would significantly increase the graph of our instance as the containers on-
board will include services, not considered in the disruption scenario. Additionally, reflowing the
cargo is a large scale multicommodity flow problem. Mathematical models incorporating a large
multicommodity flow problem such as capacitated network design (Frangioni and Gendron, 2009)
and liner shipping network design (Álvarez, 2009) are severely restrained by the size of the problem
and excessive solution times for general MIP solvers. We expect similar issues if incorporating
the reflow of miss-connected containers into the VSRP and most certainly the application will
no longer be able to provide real time suggestions when considering reflowing containers on the
residual capacity of the network in a joint optimization. This is furthermore supported by findings
in the airline literature where Bratu and Barnhart (2006) concludes that a combined model for
solving a combined aircraft recovery and passenger re-accommodation model is too complex to
solve to make it useful for real time optimization. Similarly the review Clausen et al. (2009) shows
that full passenger re-accommodation is always handled in a subsequent optimization phase. An
approach, which has been useful in the airline industry (Marla et al., 2011) is not to solve the full
passenger re-accommodation problem together with aircraft recovery, but rather let the aircraft
recovery be guided towards passenger friendly solutions by penalizing misconnecting passengers.
A similar approach could be deployed for disrupted containers.

4.3 Literature review

Notteboom (2006) analyze the negative effects of disruptions in liner shipping and the actions taken
by liner shipping companies to mitigate them. The recent paper by Notteboom and Vernimmen
(2009) demonstrates how the increased bunker price has a significant impact on the liner shipping
business. The cost of fuel is a dominant cost driver when transporting containers, nevertheless
shipping companies are willing to burn extra fuel to arrive according to the schedule. Disruption
management is a major concern for liner shippers given this trade-off. Notteboom and Vernimmen
(2009) argue that the increased price on bunker has resulted in lowering the speed of vessels to
save fuel, which in turn gives the vessels more buffer time and the operators more possibilities to
recover from a disruption.

Even though the research within maritime transportation has gained increased focus during the
last decades, we have encountered no journal papers devoted to disruption management in (liner)
shipping. This can be caused by various things; firstly as mentioned the usage of mathematical
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modeling in maritime transportation is still in its infancy and secondly the market of liner shipping
is extremely competitive. The development of decision support software will often be carried out
for a major player in the market and therefore not necessarily published. After the submission
of this article another model on disruption management in liner shipping was published in the
thesis of Kjeldsen (2012). A heuristic is presented for solving a relaxed version of the model and
computational results are provided for a set of generated disruption scenarios. The work by Yang
et al. (2010) and Li et al. (2009) addresses disruption management for berth allocation in container
terminals. Their papers are focused on how to recover the berthing schedules when vessels are
delayed from the terminal point of view. Yang et al. (2010) presents an MIP Model and a heuristic
solution approach. The problem handled is very different from the VSRP dealing with disruptions
from the carriers point of view. The work of Du et al. (2011) allocates berths considering fuel
consumption and has a good review on other berth allocation literature. Well-established OR
departments at many airlines have addressed the severe economical impact of flight delays and
how to mitigate the effects of delays through disruption management based on OR. In 2008 the
Joint Economic Committee under the U.S. Congress published a report estimating the infused
cost to the American society to more than $40 billion (JEC, 2008). The order of magnitude of
the cost of disruptions has later been confirmed in a more theoretically profound study by Ball
et al. (2010) even though their final estimate is ≈ 20% lower. Both Rakshit et al. (1996) and Yu
et al. (2003) document significant savings by implementing real-time decision support systems to
handle the disruptions at major US airlines where the later estimates the annual saving to amount
to $40 million for Continental Airlines.
Disruption management research for airlines generally deals with recovering the 3 resource areas

aircraft, crew and passengers. The full problem of optimizing all of these areas simultaneously
is, however, so complex that no work has been published so far, which cover all 3 areas in one
single integrated model. Most of the published models address one single resource. A few of the
models focus on one resource area, while including specific aspects of other areas. For a good
general introduction to disruption management in the airline industry the reader is referred to
Yu and Qi (2004) and Barnhart (2009). The paper of Kohl et al. (2007) describes a large scale
EU-funded project, called Descartes, which addresses various aspects of disruption management
for all 3 resource areas. The reader is also referred to an extensive survey of operations research
used for disruption management in the airline industry by Clausen et al. (2009). In order to
adapt disruption management techniques applied to the airline industry to the liner shipping
industry the aircraft recovery problem resembles vessel recovery and the recovery of passenger
itineraries resembles container recovery. Since liner shipping companies do not have to deal with
crew recovery, this literature review will only focus on aircraft and passenger recovery.
The first model on the Aircraft Schedule Recovery Problem, presented in the literature, is a net-

work flow model by Teodorović and Guberinić (1984), who contributed by solving small problems
with 3 aircraft and 8 flights. This work was extended by Teodorović and Stojković who extended
the model in later papers. The solvable problem sizes still remained small with 14 aircraft and
80 flights. Jarrah et al. (1993) presented the first work, which were applicable in practice based
on instances from United Airlines. They published 2 models, which in combination were capable
of producing solutions handling all 3 traditional recovery techniques delays, swaps and cancel-
lations. The drawback of handling this in 2 separate models was that delays and cancellations
could not be traded off against each other. This drawback was resolved in the work by Yan and
Yang (1996) who were capable of trading off delays, swaps and cancellations in one single model
based on a time-line network. Thengvall et al. (2001) extended this model to also include so-called
protection arcs, which serve the purpose of keeping the proposed solutions somewhat similar to
the original schedule. This is important for real-life application of the suggested solutions as an
unlimited number of changes cannot be applied to the schedule last minute. The work by Dienst
et al. (2012) extends this model to also cover aircraft specific maintenances and preferences in an
aircraft specific recovery model.
The Passenger Recovery Problem is an area of disruption management, which has been addressed

to a rather limited extent by published research. Our observation from airlines show that most of
these use a sequential re-accommodation process, which is carried out after an aircraft recovery
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schedule has been decided upon. Vaaben and Alves (2009) do a comparison of sequential passenger
re-accommodation with re-accommodation based on an MIP-model. The main contribution in the
area of passenger recovery is done by Bratu and Barnhart (2006), who present two models. Both
are basically aircraft recovery models with some crew recovery guidance. One of them also includes
passenger recovery, but is not solvable in real time. The other one is solvable but does not include
complete passenger recovery. Instead it penalizes passenger miss-connections.
The work by Marla et al. (2011) extends on the work by Dienst et al. (2012) and Bratu and

Barnhart (2006) by doing aircraft specific recovery with penalized passenger miss-connections,
while at the same time also introducing the additional recovery technique of speed changes, which
enables the model to balance the trade-off between passenger delay cost and fuel burn cost in
a network perspective. The purpose of the present paper is to investigate if the application of
similar disruption recovery techniques in a liner shipping context will be beneficial.

4.4 The Vessel Schedule Recovery Problem - (VSRP)

A given disruption scenario consists of a set of vessels V , a set of ports P , and a time horizon
consisting of discrete time-slots t ∈ T . The time slots are discretized on port basis as terminal
crews handling the cargo operate in shifts, which are paid for in full, even if arriving in the middle
of a shift. Hence we only allow vessels arriving at the beginning of shifts. Reducing the graph to
time-slots based on these shifts, also has the advantage of reducing the graph size, although this is
a minor simplification of the problem. For each vessel v ∈ V , the current location and a planned
schedule consisting of an ordered set of port calls Hv ⊆ P are known within the recovery horizon,
a port call A can precede a port call B, A < B in Hv. A set of possible sailings, i.e. directed
edges, Lh are said to cover a port call h ∈ Hv. Each Lh represent a sailing with a different speed.
The recovery horizon, T , is an input to the model given by the user, based on the disruption in

question. Inter continental services will often recover by speeding during ocean crossing, making
the arrival at first port after an ocean crossing a good horizon, severe disruptions might require
two ocean crossings. Feeders recovering at arrival to their hub port call would save many missed
transhipments giving an obvious horizon. In combination with a limited geographical dimension
this ensures that the disruption does not spread to the entire network.
The disruption scenario includes a set of container groups C with planned transportation sce-

narios on the schedules of V . A feasible solution to an instance of the VSRP is to find a sailing
for each v ∈ V starting at the current position of v and ending on the planned schedule no later
than the time of the recovery horizon. The solution must respect the minimum and maximum
speed of the vessel and the constraints defined regarding ports allowed for omission or port call
swaps. The optimal solution is the feasible solution of minimum cost, when considering the cost
of sailing in terms of bunker and port fees along with a strategic penalty on container groups not
delivered “on-time” or misconnecting altogether.

4.4.1 Graph topology

A disruption scenario is conceptualized as a directed graph in a time-space network similar to the
one used by Thengvall et al. (2000, 2001, 2003), Marla et al. (2011) and Dienst et al. (2012). The
horizontal axis corresponds to a point in time within the given planning horizon, and the vertical
axis corresponds to a geographical position; a port in the context of VSRP. A simple example of a
time-space network is presented in Figure 4.3(a). Here, two geographical positions are given and
a vessel can connect from the initial position A to the next position B with three different speeds.
A directed graph G = (N,E) with node set N = {pt ∈ N |p ∈ P, t ∈ T } where pt denotes

port p at time t representing the time-space network. n− and n+ denotes the in- and out-going
edges of node n ∈ N respectively. Nv ⊆ N is the set of all nodes for vessel v ∈ V . The set
consists of a source node nv

s corresponding to the current position of the vessel and a sink node
nv
t corresponding to the scheduled position at the end of the recovery horizon. Additional nodes

are created for the set of port calls h ∈ Hv within a time window of {ahv , b
h
v} defining the earliest



Chapter 4. The Vessel Schedule Recovery Problem (VSRP) - a MIP model for handling
disruptions in liner shipping 98

and latest arrival time respectively given the vessels minimum and maximum speed, the current
position and the remaining set of port calls.
Define the edge set E = Es ∪ Eg where Es represents a sailing of a vessel v ∈ V such that

Es = {(pt, qt
′

)|pt, qt
′

∈ N, p 6= q, t ≤ t′} and Eg = {(pt, pt
′

)|pt, pt
′

∈ N, t < t′}. The duration of
a port call is fixed for each vessel v ∈ V according to the scheduled port call duration from the
original schedule. Because the port call duration is fixed port call edges Eg are included in the
sailing edges Es, thereby removing the set Eg as seen in Figure 4.3(b). Including the edge set Eg

in Es reduces the number of columns in the mathematical model. For illustrative purposes the
port call edges are still visualized in Figures 4.3(c) and 4.3(d), while the remainder of the figures
in this paper only visualize the combined edges.

(a) Edges connecting two ports with various sail-
ing speed.

(b) An edge combining sailing and port call edge.

(c) Edge corresponding to omitting a port call and
decreasing speed.

(d) Edges corresponding to changing the order of
port calls.

Figure 4.3: Possible moves in the time-space network model. Port call edges are gray.

The edge sets Ev ⊆ Es are the edges that define feasible sailings among the nodes of Nv for a
given vessel v ∈ V . cve ∈ R+ is the cost of using edge e ∈ Ev for vessel type v ∈ V consisting
of the bunker cost at a given speed and port fee for port p = target(e). tve is the time it takes
to traverse edge e ∈ Es given speed, distance and port call time. The edge set Es =

⋃

v∈V Ev is
defined according to the planned schedule and the possible recovery actions defined below:� Adjusting vessel speed (Figure 4.3(a))

In the span of the minimum and maximum speed of vessel v ∈ V several edges may connect
ports A and B. Define the set of edges Lh ⊂ Ev covering port call h ∈ Hv as Lh =
{(At, Bt′)|A,B ∈ Hv, A < B, t ≤ bAv , a

B
v ≤ t′ ≤ bBv , t < t′, ∀t′ = aBv +K · δB} where K is a

positive integer denoting the shift and δB is the duration of a shift at terminal B.� Omitting a port call (Figure 4.3(c))
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Vessels might omit port calls to recover a delay or simply to save the port cost. Omitting
port calls will result in miss-connected containers. Allowing to omit port B on a sailing
from port A via port B to port C corresponds to having an edge (AtA , CtC ) where tC − tA
corresponds to the sailing time. Edges Lh with differing sail speeds must be created as
described in above bullet.� Swap order of calls (Figure 4.3(d))
In some cases, a delayed vessel needs to call a number of ports close to each other. It might
be possible to swap port calls within a designated geographical area. In the time-space
network a swap is included by adding, first an omitting edge, followed by an edge back to
the original port call. Again this must be executed for differing vessels speeds, as described
in first bullet.

Figure 4.4: Example of a time-space network for a test problem with three vessels, sinks and sources,
three ports, speed adjusting edges, and port swap for the delayed vessel. In the network only the edges
taking part in a feasible path are shown.

Figure 4.4 gives an example of a full time-space network for a small test instance. Three vessels
are affected by the delay of the delayed vessel.
The set of vessels is

V = {delayed, feeder,mother} = {d, f,m}

and for each vessel a set of port calls is given. These are

Hd = {P1, P2, P3, S1}

Hf = {S1, P2, S2}

Hm = {S1, P3, P2, S2}

where Pi is Port i and Si corresponds to onward sailing according to schedule. For each of the
port calls h ∈ Hv a set of possible sailings Lh covering the call is given. As an example vessel d
has the set of four possible sailings/legs covering the call in Port 2:

L(d,P2) = { (P1, 0)→ (P2, 38) , (P1, 60)→ (P2, 48) ,

(P1, 0)→ (P2, 58) , (P3, 62)→ (P2, 98) } .
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The cost of each of these edges is the sum of the bunker cost from sailing with the necessary speed
between the ports and the cost of calling Port 2. The cost of using leg (P1, 0)→ (P2, 38) is higher
than the cost of using leg (P1, 0)→ (P2, 58) as the sailing time is smaller (38 < 58) resulting in a
higher sailing speed and consequently an increased bunker fuel burn.
The problem has characteristics that are not directly reflected in the graph. These are the flow of

containers, extended port stays due to omissions, limits on the capacity of a port, and port closure
in a period of time. The extended port stay due to an omission can readily be handled in the
graph construction by adjusting the duration of the set of sailing edges in Es, that represent the
omission. This has not been done to simplify modeling, as the effect will small. The port capacity
issue can be modeled by constraining the number of vessels arriving (or used legs) at each port
in each given time interval. Port closures are included by removing all edges corresponding to
arriving at a port while it is closed.

4.4.2 Transportation scenarios - the impact of a recovery on the affected
cargo

In order to evaluate which container groups will suffer from missed onward connections and delays
we define a transportation scenario for each container group in terms of their origin, destination
and planned transhipment points. Bc ∈ Hv is defined as the origin port for a container group
c ∈ C and the port call where vessel v picks up the container group. Similarly, we define Tc ∈ Hw

as the destination port for container group c ∈ C and the port call where vessel w delivers the
container group. Intermediate planned transshipment points for each container group c ∈ C are
defined by the ordered set Ic = (I1c , . . . , I

m
c ). Here Iic = (hi

v, h
i
w) ∈ (Hv, Hw) is a pair of calls for

different vessels (v, w ∈ V |v 6= w) constituting a transshipment. Each container group c has mc

transshipments. M e
c is the set of all non-connecting edges of e ∈ Lh that result in miss-connection

of container group c ∈ C. cdc ∈ R+ is the cost of a delay to container group c ∈ C exceeding a
day of the planned arrival and cmc ∈ R+ is the cost of one or several misconnections to container
group c ∈ C, which is added to the delay penalty in the model.
The cost of delaying the arrival of a container at its destination is to a large extent related to

the loss of goodwill from the affected customers. This may vary by the type of container and the
importance of the customer to the liner shipping company. In general refrigerated containers are
more costly to delay than non-refrigerated, but more detailed classification by container type and
customer value may be applied. The cost classifications used in the case-studies in this paper have
been supplied by Maersk Line and are based on their internal approximations of these costs.

4.4.3 Mathematical model

The mathematical model is inspired by the work within aircraft recovery with speed-changes by
Marla et al. (2011). Like others before Marla et al. (e.g. Dienst et al. (2012)) we use a time
space graph as the underlying network, but reformulate the model to address the set of available
recovery techniques, which are applicable to the VSRP.
Define binary variables (xe) for each edge e ∈ Es set to 1 iff the edge is sailed in the solution.

Define binary variables (zh) for each port call h ∈ Hv ∀v ∈ V set to 1 iff call h is omitted. For
each container group c we define binary variables oc ∈ {0, 1} indicating whether the container
group is delayed or not and yc to account for container groups misconnecting. Oc

e ∈ {0, 1} is a
constant set to 1 iff container group c ∈ C is delayed when arriving by edge e ∈ LTc

. Mc ∈ Z+ is
an upper bound on the number of transshipments for container group c ∈ C.

Sn
v =











−1 , n = nv
s

1 , n = nv
t

0 Otherwise

is applied to the flow conservation constraints.
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Minimize:

∑

v∈V

∑

h∈Hv

∑

e∈Lh

cve xe +
∑

c∈C

[

cmc yc + cdcoc
]

(4.1)

Subject To:

∑

e∈Lh

xe + zh = 1 ∀v ∈ V, h ∈ Hv (4.2)

∑

e∈n−

xe −
∑

e∈n+

xe = Sn
v ∀v ∈ V, n ∈ Nv (4.3)

yc ≤ oc ∀c ∈ C (4.4)
∑

e∈LTc

Oc
e xe ≤ oc ∀c ∈ C (4.5)

zh ≤ yc ∀c ∈ C, ∀h ∈ Bc ∪ Ic ∪ Tc (4.6)

xe +
∑

λ∈Me
c

xλ ≤ 1 + yc ∀c ∈ C, e ∈ {Lh|h ∈ Bc ∪ Ic ∪ Tc} (4.7)

xe ∈ {0, 1} ∀e ∈ Es (4.8)

zh ∈ R+ ∀v ∈ V, h ∈ Hv (4.9)

yc, oc ∈ R+ ∀c ∈ C (4.10)

The objective function (4.1) minimizes the cost of operating vessels at the given speeds, the
port calls performed along with the penalties incurred from delaying or misconnecting cargo. The
weighted sum scalarization (Ehrgott, 2005), the ǫ-constraint method (Ehrgott, 2005), and variable
fixing has been implemented for the VSRP with promising results in the thesis by Dirksen (2011).

Constraints (4.2) are Set-Partitioning constraints ensuring that each scheduled port call for
each vessel is either called by some sailing or omitted. (4.3) are Flow-Conservation constraints.
Combined with the binary domain of variables xe and zh they define feasible vessel flows through
the time-space network. A misconnection is by definition also a delay of a container group and
hence the misconnection penalty is added to the delay penalty. This is expressed in (4.4).

Each container group has a planned arrival time upon which it can be decided whether or not
a given sailing to the destination will cause the containers to be delayed. Constraints (4.5) ensure
that oc takes the value 1 iff container group c is delayed when arriving via the sailing represented
by edge e ∈ Es. The right hand side does not have to be multiplied despite the number of
summed variables may be larger than one due to the cover constraint (4.2) as this constraint
ensures that only one incoming edge xe, e ∈ LTc

can have flow. Constraints (4.6) ensure that if a
port call is omitted, which had a planned (un)load of container group c ∈ C, the container group
is misconnected. Constraints (4.7) are coherence constraints ensuring the detection of container
groups’ miss-connections due to late arrivals in transshipment ports. For each of the possible
inbound sailings of a container transshipment a constraint is generated. On the left-hand side the
decision variable corresponding to a given sailing, xe, is added to the sum of all decision variables
corresponding to having onward sailing resulting in miss-connections, λ ∈M e

c .

The constraint is illustrated in Figure 4.5. When implementing the constraint the variables
corresponding to inbound sailings are summed.

The variable xe is required to be binary, whereas the remaining variables are only required to
be non-negative. Binary xe combined with constraints (4.2) implies zh to be binary. Given the
binary domains of xe and zh combined with constraints (4.6), (4.7) and a minimization implies yc
to be binary. Finally, Minimization, binary domains of xe and yc combined with constraints (4.4)
and (4.5) imply that oc is binary.
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A container group transship from vessel vAT

to vessel vTB at port T . It has three in-
bound (x11, x12, x13) and four outbound
(x21, x22, x23, x24) opportunities. The miss-
connection constraint gives the following three
equations:

x11 +x23 + x22 + x21 ≤ y + 1

x12 +x23 + x21 + x22 ≤ y + 1

x13 + x21 + x22 + x23 ≤ y + 1

Figure 4.5: Example of the miss-connection constraint (4.7).

4.4.4 Model extensions

The model can be extended to incorporate additional features of a given problem instance such
as the berth occupation constraint.

∑

v∈V

∑

h∈Hv

∑

e∈Lh

Upt
e xe ≤ 1 ∀p ∈ P, t ∈ T (4.11)

Upt
e ∈ {0, 1} is a constant set to 1 iff edge e ∈ Lh occupy a berth in port p ∈ P in time slot

t ∈ T . The constraint ensures that only a single vessel can enter and use a berth at a given
time. This constraint will not handle berth allocation in general, which specified methods exist
for, as mentioned in literature review. But when several vessels have to compete for a single berth
available at a terminal, this constraint can be used to model the liner shipping company’s choice
of prioritization, irrespective of the terminal’s options.

4.4.5 Complexity

The VSRP is NP-hard if omissions of ports is allowed, or if port swaps are allowed. Even if
only one of the recovery actions is allowed, the problem is NP-hard as shown in the following: If
ommissions of ports are allowed in VSRP, the NP-hardness can be proved by reduction from the
0-1 Knapsack Problem (KP). Given an instance of the KP with a knapsack of capacity c, and
n items having profit pi and weight wi, we transform it to an instance of the VSRP by using a
single vessel and n ports which can be omitted. The cost of omitting a port is set to −pi and
the duration of a port call is set to wi. Sail times between ports are set to zero, and the recovery
horizon is set to c, ensuring that a maximum profit subset of the items is chosen satisfying the
capacity of the knapsack.

If port swaps are allowed in VSRP, the NP-hardness is shown by reduction from the Traveling
Salesman Problem (TSP). Given an instance of TSP with n nodes and edge costs cij , we construct
an instance of the VSRP by introducing n ports which can be visited in arbitrary order. Port calls
and travel times are set to zero, while the sail cost between ports is cij . The cost of omitting a
port is set to infinity ensuring that all ports are visited following the shortest Hamiltonian cycle.

The above reductions prove that the VSRP with allowed omissions is weakly NP-hard and the
VSRP with multiple omissions to be stronglyNP-hard. Extended proofs for the NP-completeness
of the VSRP may be found in Dirksen (2011).
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4.5 Computational results

The program has been run on a MacBook Pro with 2.26 GHz processor and 2 GB of memory
running Mac OSX using IBM ILOG CPLEX 12.2.0.0 as MIP solver. To test the performance
and applicability of the developed model, it has been run on four real instances and a number of
auto generated instances.

4.5.1 Real-life Cases from Maersk Line

The cases used to evaluate the VSRP are based on historical events at Maersk Line (ML). They are
selected to represent the most common disruption scenarios and recovery options. Each case in-
cludes information about vessel schedules, port distances, container movements, recovery options,
vessel speeds, and costs. ML handles these types of disruptions on a daily basis. The purpose
of the cases is to test the suggested model, but also to clarify typical disruptions and how they
are currently handled. An overview of the cases is given followed by a detailed presentation. The
cases are

1. A Delayed Vessel
The vessel Maersk Sarnia is delayed out of Asia due to bad weather. The vessel is, filled
with cargo, about to cross the Pacific Ocean and unload in Mexico and Panama.

2. A Port Closure
The port Le Havre in France is closed due to a strike. The vessel Maersk Eindhoven arriving
with cargo from Asia can either wait for the port to open (giving an expected 48 hour delay)
or omit the call in Le Havre.

3. A Berth Prioritization
The port in Jawaharlal Nehru (India) does not have the capacity for a ME3-service vessel and
a MECL1-service vessel to port at the same time. As the MECL1-service vessel is delayed
and the vessels will arrive at the port simultaneously, it is necessary to decide which vessel
to handle first.

4. Expected Congestion
The feeder vessel Maersk Ravenna is planned to call three Colombian ports. Due to port
maintenance at the last port to call, a delaying congestion is expected if arriving as planned.
ML has to decide if the plan should be changed to avoid the congestion.

4.5.2 Case results

The computational results for the cases are promising. Good recovery strategies have been gen-
erated within 5 seconds, which proves the model applicable as a real-time decision support tool
for liner shipping companies. The optimization based recovery strategies are generated with a
strategic penalty for delaying and misconnecting containers. The two penalties are given the same
value, i.e. cmc = cdc . For each of the cases discretization of the time horizon is δ = 3 hours. Table
4.1 shows different size measures for the four cases. The results from the optimized runs (OPT)
have been compared to the real life solution (RS). RS is the realized sailings for the affected
vessels and the realized impact on containers. All presented costs are relative to the real cost to
preserve the relativeness of bunker, port fees and container impact of a solution. However, the
costs have no relation to real life costs.
An overview is given in Table 4.2. The results clearly show potential in the mathematical

model. The experts at ML have indicated that in two out of the four cases they would prefer
OPT, in one OPT is the same as RS, and in the last RS is preferred. However, in the case
where RS is preferred, the recovery strategy is based on re-flowing cargo, which is not considered
by the VSRP. The tendency is clearly that the model generates competitive solutions and would
be a substantial support to the operator resulting in better recovery solutions using significantly
less time. However, based on just four cases it is not reasonable to conclude that the optimized
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solutions are generally superior. The computational times are less than 5 seconds with CPLEX
consuming roughly half the execution time, while graph generation consumes the rest. Please
note that Case 1 (A Delayed Vessel) has a much longer planning horizon than the remaining
cases, which accounts for the increase in running times. Even for Case 1 the solution time is
indeed acceptable for a operational application.

4.5.3 Case 1 (A Delayed Vessel)

Within the planning horizon of Case 1 Maersk Sarnia delivers containers to a single ML vessel in
Lazaro Cardenas and seven ML vessels in Balboa. Each vessel may be delayed to the originally
planned arrival time. The vessel Maersk Sarnia is allowed to omit Yokohama and either Lazaro
Cardenas or Balboa. The OPT is structurally different to RS. Both are plotted in Figure 4.6.
ML has chosen to call all ports with a speed increase (RS). However, the speed-up is not sufficient
to reach the head haul ports in time. The optimized solutions (OPT) is to omit the call in
Yokohama resulting in 400 misconnected containers while the remaining ports are called in time.
The combined costs and penalties of RS are 24% higher than the costs and penalties of OPT.
The experts at ML confirm that omitting Yokohama was a superior solution and note, that they
were unable to convince a single important stakeholder of the superiority of this solution. It is
very clear that the generalized mathematical assessment provided by a decision support tool would
have been a strong argument in the discussion.

4.5.4 Case 2 (A Port Closure)

In Case 2 (A Port Closure) either Le Havre is called 48 hours delayed, or Rotterdam is called at
the planned time. In Le Havre 649 containers need to be loaded and 1911 need to be unloaded.
The time-space network of the case is presented in Figure 4.7.

Again OPT is different in structure compared to RS (Figure 4.8). However, as noted earlier
RS is based on re-flowing containers not considered by the VSRP. Surprisingly, the data for the
suggested solutions show that OPT is a better alternative with respect to cost. In real life the
delay turned out to be 72 hours and a solution was obtained by allowing to merge two port calls.
This option was not available to the model and hence the results are not comparable.

4.5.5 Case 3 (A Berth Prioritization)

In the third case, the additional berth occupation constraint (4.11) is added to ensure that the
vessels call the port in India one at a time. The berth prioritization case is interesting as four
of the connecting ML vessels may be delayed significantly and still reach their next port to call.
OPT and RS result in the same solution presented in Figure 4.9. The runs confirm the decision of
RS and verify the applicability of a decision support system in an operational setting, providing
fast solutions. In this case the decision would have been reached in a matter of seconds as opposed
to hours.

Case V PC CG C RH N E xe zh yc / oc Constraints

1 8 26 23 5145 961 301 7073 7073 10 23 1706
2 6 22 19 12358 969 118 290 290 10 19 122
3 10 33 24 5671 548 171 411 411 13 24 221
4 1 5 6 838 166 103 416 416 3 6 300

Table 4.1: An overview of the relative sizes of the cases in terms of the number of vessels (V), the number
of port calls in the scenario (PC), the number of container groups included (CG), the total number of
containers (C), the recovery horizon in hours (RH), the size of the graph (N,E), and the number of
variables (xe, zh, yc, oc).
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Figure 4.6: Case 1: Suggested recovery solutions for Case 1 (A Delayed Vessel).

Figure 4.7: Time-space network for Case 2.

Sailing Cost Delays Misconnections Solve
RS OPT RS OPT RS OPT Time Best

C
a
se

1 1,000,000 914,063 (2449) (0) (26) (400) 4.529 OPT
2 1,000,000 977,392 (3111) (3111) (58) (58) 0.718 RS
3 1,000,000 1,000,000 (687) (687) (0) (0) 0.681 Equal
4 1,000,000 1,033,334 (222) (0) (0) (0) 0.518 OPT

Table 4.2: Overview of results for the cases. The costs are relative, the container impact in units, and
the time to solve in seconds. The best-column shows which solution the ML experts would prefer today.
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Figure 4.8: Suggested recovery solutions for Case 2.

Figure 4.9: Time-space network and solution for Case 3. The ME3-vessel (full line) or the MECL1-vessel
(dashed line) calls Jawaharlal Nehru in India first.

4.5.6 Case 4 (Expected Congestion)

The last case where a feeder vessel is expecting port congestions in the last port differs completely
from the former cases. The feeder only carries direct import and export cargo to and from
Colombia, meaning that no additional vessels need to be taken into account and that a single
run is generated as misconnections are not possible. The expected port delay (of 24 hours if
Santa Marta is called after t = 100) combined with the possibility of calling the three ports in
Colombia in any order defines the problem. The time-space network of possible sailings along
with the solutions is given in Figure 4.10. RS was to alter the order of the port calls to ensure
that Santa Marta was visited long before the expected congestion. This resulted in a delay to the
cargo in Cartagena. Contrary to RS, OPT suggests continuing as planned, but speeding up to
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arrive at Santa Marta before the expected congestion. This solution displays slightly increased
bunker cost but ensures that all containers are delivered on time. According to the experts at ML,
the optimized solutions should have been implemented. The costs and penalties reveal a saving
amounting to a stunning 58%.

Figure 4.10: Suggested recovery solutions for Case 4 (Expected Congestion) in the time-space network.

4.5.7 Auto generated test instances

The four cases utilize different parts of the solution space satisfactorily, but lack in size and are
thus relatively fast to solve. To test the scalability of the model, a set of random instances have
been generated, refer to Figure 4.11 for an example. η2 ports are placed in a squared grid, where
distances and sailing times are proportional to Euclidean distances. Vessels are generated with
a random schedule of κ < η2 ports to call. Container itineraries are generated such that each
intermediate call for each vessel and arriving container group is added with some probability. For
these instances the computational time grow with increasing number of calls per vessel and number
of vessels in instance as seen in Figure 4.12. It can be seen that the computational time handles
an increased number of vessels well, but is impacted harder by an increased number of port calls.
It seems viable that the model will solve in minutes for instances with up to 10 vessels and port
calls making it viable for use in a wide range of real world problems. For more details on how the
instances are generated and details on computational time please refer to the thesis by Dirksen
Dirksen (2011).

4.6 Conclusion and future work

To the best of our knowledge this paper is the first literature on decision support for disruption
management in a liner shipping network. We have presented a novel mathematical model for the
Vessel Schedule Recovery Problem (VSRP). The model addresses frequently occurring disruption
scenarios in the liner shipping industry. The model is based on disruption management work
from airline industry and adapted to liner shipping. We show the VSRP to be NP-complete.
The model is solved using a MIP solver and computational experiments indicate that the model
can be solved within ten seconds for instances corresponding to a standard disruption scenario
in a global liner shipping network. Computational results for four real-life cases show similar or
improved solutions to historic data. The solutions have been verified by experienced planners. A
set of generic test instances have been provided and computational results indicate that the model
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Figure 4.11: Graphical explanation of the standard way random instances of the VSRP are generated.

(a) Computational times increasing the number of port
calls per vessel, with 5 vessels

(b) Computational times increasing the number of ves-
sels, with 5 port calls

Figure 4.12: Computational times for generic generated problems with varying number of ports and
vessels respectively. The times are average values based on 5 repeated runs.

is capable of handling larger disruption scenarios than the real-life cases in seconds. However,
with an increasing number of vessels, the computational time show exponential growth and can
no longer reach an optimal solution within ten seconds, for larger instances. An analysis of the
four real life cases, show that a disruption allowing to omit a port call or swap port calls may
ensure timely delivery of cargo without having to increase speed and hence, a decision support
tool based on the VSRP may aid in decreasing the number of delays in a liner shipping network,
while maintaining a slow steaming policy. This initial work on disruption management in liner
shipping show potential for interesting extensions. Other recovery modes than the three considered
(speed adjustment, port call omission and port call swap) could be investigated, e.g. reducing the
time spent at port by unloading but not loading, merging port calls or adding protection arcs.
Another extension would be to reroute the non-satisfied cargo on the remaining, or even third
party network. The connection with berth scheduling problems with disruption of fixed scheduled
services as considered here could also be explored further.
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1

Abstract We present a matheuristic, an integer programming based heuristic, for the Liner Shipping
Network Design Problem. The liner Shipping Network Design Problem is to find a set of container shipping
routes defining a capacitated network on which a set of demands can be transported. The cargo transports
make extensive use of transshipments between services. The services have weekly frequency. The weekly
frequency is an industry standard as liner shipping companies publish a set of scheduled services to their
customers. The heuristic applies a greedy construction heuristic, where the liner shipping network is split
into routes solving a multiple quadratic knapsack problem. The construction heuristic is combined with
an improvement heuristic with a neighborhood defined as a mixed integer program. The mixed integer
program optimizes the removal and insertion of several port calls on a liner shipping service. The objective
function is based on evaluation functions for revenue and transshipment of cargo along with in/decrease of
vessel- and operational cost for the current solution. The evaluation functions may be used by heuristics in
general to evaluate changes to a network design without solving the underlying large scale multicommodity
flow problem. Computational results are reported for the benchmark suite LINER-LIB 2012 and are the
first results reported for a strict weekly frequency. The heuristic minimizes the operational cost and
computational results are able to find profitable transportation networks for four out of six cases (12/18
instances). The heuristic shows overall good performance and is able to find profitable solutions within a
very competitive execution time. The matheuristic is also evaluated as a decision support tool, where the
initial solution is an existing network and optimization is allowed for a subset of the services considering
the flow in the entire network. Results are promising for this approach.

Keywords: liner shipping, matheuristic, mathematical programming, network design
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ROUTES SERVICES

West Coast of North America - Asia 68
East Coast of North America - Asia 22
North America - Northern Europe 17
North America - Mediterranean 20
Asia - North Europe 35
Asia - Mediterranean 40
North America - East Coast of South America 8
North America - West Coast of South America 16
North America - North Coast of South America 26
Europe - East Coast of South America 10
Europe - West Coast of South America 8
Europe - North Coast of South America 10
Asia - East Coast of South America 8
Asia - West Coast of South America 13
South Africa - Europe 5
South Africa - North America 2
South Africa - Asia 19
West Africa - Europe 37
West Africa - North America 3
West Africa - Asia 18

Total 385

Table 5.1: Worldwide services from WSC (2011). Notes: Services may be counted on more than one
route. ”Asia” includes Australia and New Zealand. Source: ComPair Data World Liner Supply Report
Summary, October 1, 2010; Drewry, Container Forecast Q3 2010; Drewry, Container Forecast Q4 2010.

5.1 Introduction

Liner shipping is the mass transit system of the ocean ways with regular scheduled services of
varying capacity between geographical regions. A service is a sequence of port calls sailed by
a number of vessels with a designated capacity. It is common for the industry to call every
port on a service every week, which is achieved by the deployed vessels sailing exactly one week
apart. Liner shipping and containerized transportation of goods over sea is a key component in
todays supply chains. Approximately 400 liner shipping services are operated by a vessel fleet
of close to 6000 container vessels (WSC (2011)). The services are distributed on regional areas
as seen in Table 5.1. The liner shipping industry transports about 60% of the goods measured
by value transported internationally by sea (WSC (2011)). The significance and magnitude of
the liner shipping network makes the network design an important transportation problem. The
network has high fixed asset costs in terms of the container vessels deployed and hence capacity
utilization and network efficiency is crucial to a competitive liner shipping operation. At the
same time maritime transport is accountable for an estimated 2.7% of the worlds CO2 emissions,
whereof 25% is attributable to container ships alone (WSC, 2009). Fuel cost is the largest variable
cost of operating a liner shipping network (Stopford, 2009). Performing optimization on the
liner shipping network can have a huge impact on the trade of liner shipping as maximizing the
revenue while considering variable operational cost may ensure a better capacity utilization in the
network. Improved capacity utilization will increase profit for liner shipping companies, and give
competitive freight rates for global goods. In due time optimization may target reducing the speed
of the container fleet to decrease the CO2 emissions from liner shipping in general as seen in the
case of tramp shipping (Fagerholt et al., 2009).
The liner shipping network design problem (LSNDP) is to construct a set of non-simple cyclic

services to form a capacitated network for the transport of containerized cargo. The network design
maximises the revenue of container transport considering the cost of vessels deployed to services,
overall fuel consumption, port call costs and cargo handling costs. Literature on the LSNDP is

1Conference paper published in proceedings of LOGMS 2012 (2012)



Chapter 5. A matheuristic for the Liner Shipping Network Design Problem 114

quite scarce (Brouer et al., 2012) compared to related maritime shipping transportation problems,
but a surge in publications over recent years show increased interest in the LSNDP. The works of
Agarwal and Ergun (2008); Alvarez (2009); Reinhardt and Pisinger (2011); Plum (2010); Brouer
et al. (2012) reveal that the liner shipping network design problem is a very complex optimization
problem, where current mathematical formulations and state-of-the-art exact solution methods
cannot scale to realistic sized problem instances at the time of writing. One heuristic approach
has been applied to large scale instances in (Alvarez, 2009; Brouer et al., 2012). A core concept
in liner shipping is the transshipment of containers. More than 50% of cargoes are transported
on more than one service from origin to destination. This means that we can model the LSNDP
with an underlying multicommodity flow problem (MCF). Alvarez (2009) identifies the excessive
time used for solving the MCF to evaluate a given network configuration as a bottleneck in local
search methods. As a result, within reasonable computation time the tabu search by Brouer et al.
(2012) only performs a limited search of the solution space of large scale instances.

In this paper, we present a matheuristic for solving the LSNDP. Matheuristics are an emerging
field within optimization and are defined as methods exploiting the synergies of mathematical
programming and metaheuristics (Maniezzo et al., 2009). The domain is wide and includes the use
of mathematical programming techniques in a heuristic variant as well as deploying mathematical
programming methods within a metaheuristic framework (Maniezzo et al., 2009). In the present
paper we use mathematical programming to explore our neighborhood defined as the solution space
of a mixed integer program designed to capture the complex interaction of the cargo allocation
between routes.

One of the first approaches of using this technique was Franceschi et al. (2006) for the Distance-
Constrained Capacitated Vehicle Routing Problem. The method has also been explored for the
Split Delivery Vehicle Routing Problem by Chen et al. (2007), the Split Delivery Vehicle Routing
Problem with minimum delivery amounts by Gulczynski et al. (2010), by Archetti et al. (2010)
for the The Split Delivery Capacitated Team Orienteering Problem and lately in Gulczynski et al.
(2011) for the Periodic Vehicle Routing Problem. In all cases the matheuristic solution method
combining local search with an integer program as neighborhood has proven very successful com-
pared to other state-of-the-art heuristics.

In the present paper we exploit this technique in a metaheuristic framework for the LSNDP.
We make four main contributions: We present a construction heuristic for the LSNDP by trans-
forming the problem into an instance of the multiple quadratic knapsack problem. Secondly, an
improvement heuristic is applied to the solution of the construction heuristic. The improvement
heuristic is a large neighborhood search defined as a mixed integer program inserting and removing
port calls from a single service. Thirdly, the heuristic makes use of estimation functions for the
change in a large MCF, in order to avoid the bottleneck of solving a large scale MCF. Once moves
are applied to a service the neighborhood of subsequent services is based on an optimal solution of
the MCF in order to decrease the error of the evaluation functions. The MCF is resolved using an
advanced warm start basis and column generation, decreasing solution times significantly. Lastly,
we present computational results using the matheuristic to solve instances of the benchmark suite
LINER-LIB 2012. The results are the first results for the benchmark suite enforcing a strict weekly
frequency for all services. The implementation is quite fast in solving the instances and is able to
improve the constructed initial solution with 60-400% yielding profitable networks for tvelwe out
of eighteen solved instances. Additionally a single test case has been constructed to evaluate the
matheuristic as a decision support tool, where the initial solution is an existing network and we
allow optimization of a subset of the services considering the flow in the entire network. Results
are promising for this approach.

The outline of the paper is as follows. In Section 5.2 we review the literature on liner shipping
network design. Section 5.3 describes the individual components of our matheuristic. Section
5.4 presents the design of the complete algorithm for the matheuristic. Section 4.5 presents
computational results for the matheuristic for LSNDP using the benchmark suite LINER-LIB
2012 followed by a brief conclusion and perspectives for future work.
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5.2 Literature on the LSNDP

Brouer et al. (2012) give an introduction to the LSNDP focusing on mathematical modelling of
the business domain and the introduction of a benchmark suite of LSNDP problems.
Christiansen et al. (2004) review the field of operations research within shipping in general

and a good introduction to the LSNDP may be found in Christiansen et al. (2007). Recently,
Kjeldsen (2011) published a classification scheme for routing and scheduling problems within liner
shipping reviewing and classifying 24 references. The LSNDP was initially studied by Rana and
Vickson (1991) as a Mixed Integer Program (MIP) for a multiple container-ship problem without
transshipment and where vessels return to the origin node empty. Benders decomposition principle
divides the MIP into an integer network subproblem (INS) and a cargo allocation problem (CAS).
Results are reported for 10-20 ports and three vessels.
In recent literature several variants of the LSNDP have been presented. Fagerholt (2004) devel-

oped a model and solution method for a regional carrier along the Norwegian coast. The model
assumes the carrier loads at a single port and finds optimal routes of vessels to service the unload-
ing facilities. The problem may be dealt with as a VRP problem, given that a designated depot is
known and transhipments are not allowed. The solution method is based on complete enumeration
solved by a MIP solver. Similarly, Karlaftis et al. (2009) solved a problem for the region of the
Aegean sea using a genetic algorithm. These models do not deal with the important concept of
transhipments at multiple ports and the resulting interaction between different services.
The simultaneous ship scheduling and cargo routing problem (SSSCR) by Agarwal and Ergun

(2008) is based on a time-space network with each port represented on 7 consecutive weekdays.
This construction allows non-simple cycles with multiple visits to a port on different weekdays.
Computational results were reported for three different heuristics exploiting the separability of
solving the route generation problem and the MCF: a greedy cycle-generation heuristic, a column
generation based heuristic and a two-phase Benders decomposition algorithm. Results are reported
for 6, 10, 15 and 20 ports with up to 100 ships and 114 demands. The Benders decomposition
algorithm is the best performing heuristic of the three, but no optimality gap can be reported for
the solutions found as a standard branch-and-bound procedure is invoked for both the Benders,
and the column generation algorithm without a complete set of routings. An important limitation
of the SSSCR is that it allows transshipments at no cost.
Reinhardt and Pisinger (2011) presented the LSNDP for a multiple container ship problem with

separate routings for each vessel accounting for transshipment costs between routes. The model
allows pseudo-simple cycles, where multiple visits are allowed to one port on a service. A branch-
and-cut algorithm is applied to the problem and computational results are reported for 15 ports
and up to 6 vessels. Instances of up to 10 ports using 3 vessels are solved to optimality, but the
solutions for the larger test instances have a gap of up to 25%.
Alvarez (2009) presented the joint routing and fleet deployment model for the LSNDP. The

model accounts for transshipment costs and the option of laying up or forward leasing vessels not
in use. The model is separable into a service generating problem and a MCF. A service consists
of a port call sequence, a number of vessels deployed and an average sailing speed. The overall
objective is to maximise the revenue of cargo transported, while considering operational cost of
the fleet-, fuel-, transshipment-, and port call-cost. The model is the first to incorporate routings
with different speeds in order to optimize on the fuel consumption in the network. Exact solutions
are obtained for a six port instance using a MIP solver. Alvarez (2009) describes a tabu search
heuristic to solve the problem which is applied to a 120 port instance with a full demand matrix.
Recently, Meng and Wang (2011) presented a mixed integer programming model with the objec-

tives to select among a set of predefined candidate shipping routes, and to select ship deployment
to the chosen routes while considering the cargo allocation of full and empty containers regard-
ing the weekly frequency constraint. The model aims at providing decision support on existing
routes as well as user-defined candidate routes by minimizing the fixed cost of deployment and
the variable costs associated with full and empty containers. The model is solved using CPLEX
and numerical results are presented for 60 candidate shipping lines, eight vessel types and 600
commodities.
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Brouer et al. (2012) presents a reference model for the LSNDP similar to the model of Alvarez
(2009) accounting correctly for transshipments on butterfly routes. A heuristic column generator
generating routes using a MIP is used to solve the benchmark suite LINER-LIB 2012. The largest
instance solved contains 111 ports and 4000 demands.
In light of the literature published on the LSNDP exact solution methods are presently not

able to solve large scale instances to optimality. Heuristic methods published are often based on
route generation in a branch-and-bound framework with the exception of Alvarez (2009); Brouer
et al. (2012), where the overall framework is a local search with route generation as the underlying
method for producing a new candidate solution. The present paper aims at improving an existing
solution by modifying the current services with insertion and removals of port calls using a multiple
quadratic knapsack problem to create an initial solution and a simple method for generating new
services to diversify the search. To the best of our knowledge, it is the first heuristic presented
for LSNDP using a mixed integer program to define the neighborhood of insertions and removals.
The literature identifies a bottleneck in evaluating a candidate solution by solving a large scale
arc flow formulation of the MCF using a MIP solver. To increase performance of evaluation we
apply a novel method exploiting a warm started delayed column generation algorithm on a path
flow formulation of the MCF to evaluate a candidate solution.

5.3 A matheuristic for the liner shipping network design
problem

An instance of the liner shipping network design problem consists of:� A set of ports P .� A set of demands K, where each demand has an origin, Ok ∈ P , and a destination, Dk ∈ P .� A set of vessel classes A and a quantity of each vessel class Na. Each vessel v belongs to a
given vessel class a specifying its capacity Ca, minimum and maximum speed limits, bunker
consumption per nautical mile and a weekly sailing distanceW a

d . The weekly sailing distance
is based on the design speed of the vessel, where fuel consumption is optimized.� A distance table of the direct distance dpq between all pairs of ports p, q ∈ P .

A solution to the liner shipping network design problem is a set of services S. A service is a
cyclic route visiting a set of ports P ′ ⊆ P . The service may be non-simple. The rotation time is
the time needed to complete the cyclic route including a day for each port call en route for cargo
handling. Depending on the vessel class a a minimum (T a

min) and maximum (T a
max) rotation time

in weeks may be defined. It is common in liner shipping to offer a regular service with a weekly
frequency. The weekly frequency of port calls is obtained by deploying multiple vessels to a service
sailing one week apart. Let na

s be the number of vessels of vessel class a ∈ A deployed to service
s ∈ S to maintain a weekly frequency. A service carries a set of demands ks ⊆ K either by serving
both Ok and Dk or by serving either Ok or Dk and a designated transshipment port Gk valid for
transshipping demand k ∈ K.

5.3.1 Mathematical model

A reference model for the LSNDP is provided in Brouer et al. (2012). The variables of this
model are rotations defining a service with a vessel class a, the number of vessels deployed and a
speed. The rotations generated by the heuristic column generator in Brouer et al. (2012) have a
frequency corresponding to the number of vessels, the speed and the distance travelled allowing for
(bi)weekly frequencies for vessel classes below 1200 FFE and weekly frequencies for all remaining
vessel classes. Additionally this (bi)weekly frequency has a span of 5-7 days frequency for weekly
frequency and 10-14 days for bi-weekly frequency. In the work on the LSNDP the question of
weekly frequency is disputed as one research trend is towards a planning horizon introducing some
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flexibility on the frequency as in Alvarez (2009); Brouer et al. (2012); Reinhardt and Pisinger
(2011) whereas Agarwal and Ergun (2008); Plum (2010) enforce strict weekly frequency. In the
present paper we focus on a strict weekly frequency for all vessel classes, which gives a more
restricted solution space than in the heuristic presented in Brouer et al. (2012). However, the only
difference is in the solution space of the rotations and we adhere to the objective function and the
constraints of the reference model. The objective accounts for the daily running cost of vessels
deployed, the fuel consumption, canal costs and port call cost. A revenue is obtained for the cargo
transported and a penalty is incurred for cargo not transported. Finally, a cargo handling costs
for loading, unloading and transshipments is charged. Note that we are solving a minimization
problem, which means that a negative objective value represents a profit.

5.3.2 Algorithmic overview

The matheuristic creates an initial solution using a greedy construction heuristic. The construction
heuristic returns a set of services, S, that are iteratively improved using a MIP for each service
to indicate a set of port insertions and removal of each individual service. The MIP returns a set
of moves and the resulting candidate solution is evaluated using a warm started delayed column
generation algorithm and a simulated annealing scheme decides whether the candidate is accepted.
This phase of the heuristic fine tunes a given solution. The composition of the set of services is
important in a high quality solution and we subsequently apply a local search on the composition
of the set of services S. Note that the reference model is defined as a minimization problem and
a negative objective value is a profitable network. An algorithmic overview is illustrated in figure
5.1.

5.3.3 Generating an initial solution using a greedy construction heuris-
tic

We obtain an initial solution to the LSNDP by constructing a set of services in which we place a set
of predefined port calls in order to transport the demand. The construction heuristic transforms
an instance of the LSNDP into an instance of the multiple quadratic knapsack problem, where a
service corresponds to a knapsack and the items are port calls. It is quadratic in the sense that
profit is obtained by adding port pairs to the services in order to transport demand.
The service set problem is based on a subdivision of the available fleet into a set of services

S constituted by subsets Sa ⊆ S according to vessel classes. It is desirable to have services of
varying duration within an interval [T a

min;T
a
max]. A random integer h ∈ [T a

min;T
a
max] is selected

and a service s with na
s = h of h weeks duration (an h-week rotation requires h vessels) is added

to the set of services S. Set v = Na. After creation of a new service s ∈ Sa, v is updated by
subtracting h from v. This process is repeated until v ≤ T a

max. If v ≥ T a
min the final service is

created with h = v ∈ [T a
min;T

a
max] otherwise we add h vessels to the previously created service s′

possibly exceeding T a
max. If n

a
s′ ≥ 2 ·T a

min we split the service into two services each with na
s = h/2.

After this procedure, a set of services S is defined, a vessel class a and a number of vessels na
s is

assigned to each service s. The subdivision of the fleet into services means that the initial solution
attempts to assign the entire fleet to services.
Next we define a set of port calls to place in the services. Each port can be defined as a main

port or an outport. The initial solution is limited to the creation of simple cycles. A port call
may be placed only once in each service, but in mp services. Outports have mp = 3, whereas main
ports have mp = 10. There is no constraint requiring all port calls placed in the set of services.
The profit of transporting a demand from port i ∈ P to j ∈ P is the revenue rk obtained by

the transport subtracted the loading and unloading cost (cil and ciu respectively) of the container
en route. A demand transported with no transshipments will have net revenue ρOkDk

= (rk −
cOk

l − cDk
u ) for one unit of k. As described in the introduction more than 50% of the demands

are transshipped resulting in a MCF. The multiple quadratic knapsack problem does not consider
this MCF, and in order to model transshipments the demand matrix is transformed such that
each demand is represented by a direct demand and a demand transshipped at a designated
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Figure 5.1: A flow chart of the matheuristic.

transhipment port Gk, where ρOkGk
= (12rk − cOk

l − cGk
u ) and ρGkDk

= (12rk − cGk

l − cDk
u ). This

is a simplifying assumption fixing a single transshipment port for each demand to incorporate
interaction between services in the construction heuristic. The subsequent improvement heuristic
will have no restrictions on transshipment facilities. A port call cost, cap, is associated with a port
call depending on the vessel class and a sailing cost is associated with each port pair, capq.

The construction heuristic is a greedy parallel insertion heuristic. The services are seeded with
a random number l ∈ {1; 3} of ports p ∈ P . The seeding is either by random or by selecting
a port p ∈ P and a transhipment port q ∈ P matched to p. The construction heuristic is
based on parallel insertion by a football teaming principle i.e. the services take turn at choosing
the next port to call. We apply parallel insertion in order to disperse the attractive port call
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combinations throughout the network. A greedy choice of the most revenue generating port call
is made between all feasible port calls with regards to route duration. Feasibility of a given port
call is estimated using best insertion in order to respect the weekly frequency constraint, requiring

the distance of a route Ds ≤ W
a(s)
d (n

a(s)
s − ( |Ps|

7 )), where |Ps| are the number of port calls in

service s, a(s) is the vessel class a ∈ A deployed to service s ∈ S. The number |Ps|
7 accounts for

the accumulated port stay of the service, where 24 hours are used in each port of call effectively
decreasing the time left for actually sailing a round trip. The actual routing with regards to
distance and capacity utilization is improved using a local search based on simulated annealing
and two-opt after assignment of port calls to services by the greedy construction heuristic. The
initial solution may have unplaced port calls and excess vessels for services s, where the distance

of a route allows this (Ds ≤ W
a(s)
d (n

a(s)
s − ( |Ps|

7 ) − 1)). Port calls as well as vessels may be
included in the solution of the subsequent improvement heuristic. Finally, we apply standard
column generation to the MCF of transporting the cargo on the resulting liner shipping network
of the initial solution. The solution of the MCF is used to calculate the estimation function values
of the improvement heuristic.

5.3.4 Improvement heuristic

Given a solution to the LSNDP x′ with services S′ serving demands K ′ ⊆ K we introduce an
integer program to estimate the effect of removing and adding port calls. We define:� P s is the set of nodes in the service s ∈ S′.� Ns ⊂ P \ P s is the set of neighbors of a service s ∈ S′ defined as nodes within a certain

geographical distance of nodes in P s.

We have the variables:� λi = 1 if item i ∈ P s is removed from service s ∈ S′, 0 otherwise.� γi = 1 if item i ∈ Ns is inserted in service s ∈ S′, 0 otherwise.� ωs ∈ Z+ an integer variable indicating the number of vessels service s is expanded with. ωs

can be negative if less vessels are needed after removal of a port call.

We want to make an integer program that removes and inserts port calls in S′, while considering
an estimation of the duration of each service (the fleet deployment) and an estimation of the
alternative flow of demands arising, when we remove/insert several port calls from/to S′. Routing
the cargo is a MCF, but we cannot afford to evaluate the MCF in its entirety and hence we make
some simplifying assumptions about rerouting the flow.

Estimation functions for the distance travelled by each service s ∈ S′

When inserting a port call the estimated distance increase is calculated by use of a best insertion
heuristic. For each service s ∈ S′ we calculate the distance increase ∆s

i for each i ∈ Ns. Likewise
we calculate the decrease of distance Γs

i for every i ∈ P s. For modelling the distance in-/decrease
of insertions/removals we define the following constants and sets:

∆s
i : estimated distance increase for inserting item i in service s ∈ S according to a best insertion
method.

Γs
i : estimated distance decrease for removing item i from service s ∈ S joining its predecessor
with its successor.

Es : set of edges used by the Hamiltonian cycle in service s ∈ S.

D(s) : current distance of the Hamiltonian cycle in service s ∈ S.
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Figure 5.2: The neighborhood consists of a combination of insertion and removal moves

Ma : number of undeployed vessels of class a in the current service set S′.

na
s : number of deployed vessels of class a to service s ∈ S′.

Ca
v : cost of deploying a vessel of type a ∈ A.

Estimation functions for the change in the multicommodity flow

Whenever a MIP is solved for some s ∈ S′ we estimate the effect on the flow in the network by
solving shortest path problems on the residual capacity of the network. The quality of the flow
solution depends on:

1. The number of transshipments performed overall in the network.

2. The capacity installed compared to the demand for flow.

We define the following estimation functions:

Θ(i) : estimated value of inserting a node i ∈ Ns in the best insertion position identified when
calculating the distance.

Υ(i) : estimated value of removing a node i ∈ P s.

Ψ(i) : estimated value of reinserting a node i ∈ P s by best insertion limited to insertions two
port calls away from the current position of i in s.

Graph topology

In order to estimate the change of the network flow a graph G = (V,E) defined by the residual
capacity is constructed, representing the solution x′ with services S′ and commodity allocation
K ′ mapped onto the network by solving the MCF on S′. Let:� |s| denote the number of unique ports in s and let |P s| = m denote the number of port calls

in a rotation rs for s, |P s| = m ≥ |s|.� rs be a rotation defined by the port sequence ps1, p
s
2, . . . , p

s
m.� Vp be the set of port vertices.
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s
2, . . . , p

s
m for rotation rs.� Vr =

⋃

s Vrs be the set of rotation vertices representing all port calls by all rotations.� V = Vp ∪ Vr be the set of vertices.� E = El ∪Ed ∪ Ev ∪ Et be the set of edges, where

1. El = {(p, v)|p ∈ Vp, v ∈ Vrs} is the set of load edges representing a departure from port
p to the rotation rs.

2. Ed = {(v, p)|v ∈ Vrs , p ∈ Vp} is the set of discharge edges representing an arrival at
port p from the rotation rs.

3. Et = {(v, u)|v ∈ Vrs , u ∈ Vrs′ } is the set of transshipment edges representing a trans-

shipment between rotations rs and rs
′

defined for every (v, u) where p(v) = p(u), where
p(w) denotes the physical port of the port call w.

4. Ev = {(v, u)|v, u ∈ Vrs , v = psh, u = ps((h+1)mod m)} is the set of voyage edges represent-

ing a voyage between two consecutive port calls in rs defined ∀ h ∈ {1, 2, . . . ,m}.� Ce be the capacity of edge e ∈ E, where Ce =∞ for e ∈ El ∪Ed ∪Et and Ce, e ∈ Ev be the
residual capacity of edge e after flow assignment of the MCF onto S′.� ce be the edge cost, where ce = 0, e ∈ Ev (as the cost is on the vessel) and let ce = cpl , e ∈ El

and ce = cpu, e ∈ Ed be the cargo handling cost of loading or unloading a container at
port p ∈ VP , where p is either the source or the target of the edge respectively. For the
transshipment edges ce = cpt , where p is the physical port of the port calls of the source and
the target of edge e.

An example of a hub and spoke network with one hub, C, and five spokes (A,B,D,E, F )
and 3 rotations is illustrated in Figure 5.3. The rotations are A → B → C → A (index 1),
C → A → C → D → C (index 2), F → E → C → F (index 3). Each rotation vertex has a
load and a discharge edge to the physical port and a voyage edge to the next port en route. A
demand from A to F transships at C using rotations 2 and 3: A → A2 → C2 → C3 → F3 → F
(edge colours green and blue in Figure 5.3) or using rotations with indices 1 and 3: A → A1 →
B1 → C1 → C3 → F3 → F (edge colours red and blue in Figure 5.3). The load/unload cost
and the transshipment cost is accounted for by the path cost. The load/unload is distinct from
the transhipment as some ports have a different(lower) cost for transshipment than for a load
combined with an unload. Note, that multiple visits to a port on a service results in multiple
vertices. To adhere to the reference model a single port is allowed to be called twice.

The estimated value of insertion - Θ(i)

When we insert a port call vertex is ∈ Ns with corresponding port vertex i ∈ Vp in the position
between nodes hs and ls the demands of the set Ki = {k ∈ K|i = Ok ∨ i = Dk} become eligible
for transport using service s ∈ S′. Solving a shortest path problem on G′ where V ′

rs ∪ {i
s}, and

E′
v = Ev \ {(hsls)} ∪ {(hsis), (isls)}, E′

l = El ∪ {(iis)}, E′
d = Ed ∪ {(isi)} will identify for each

k ∈ Ki whether there is an (improved) path for k in G′ in terms of transshipment costs (TC), the
increase of revenue in demand transported (RK) and the capacity available. The estimated value
Θ(i) should account for in-/decrease in transshipment cost, in-/decreased revenue of the flow, and
increase in port call cost: Θ(i) = TC(G′,Ki)− TC(G,Ki) +RK(G′)−RK(G)− csi .

The estimated value of removal - Υ(i)

When a port call vertex is ∈ P s is removed between nodes hs and ls, commodities of the set
Ki transported on s must be rerouted or omitted. Define Ks

i = {k ∈ Ki|k is transported on s}.
Υ(i) estimates rerouting Ks

i in the remaining network by solving a shortest path problem on
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A B C D E F

A1 B1 C1

C2

C2.2

D2

E3 F3C3

A2

Figure 5.3: Example network with 6 ports (A, B, C, D, E, F) and 3 rotations. C is the linking hub.
Continuous arcs are voyage edges Ev, whereas dotted arcs are load, discharge and transshipment edges
El

⋃

Ed

⋃

Et. Et are yellow to set them apart from load/unload edges. The red (A, A1, B1, C1, C)-and
green (A, A2, C2, C) paths are two distinct ways to travel from A to C. The blue (C, C3, F3, F) path is
the only path from C to F .

G′ = (Vrs \ {is}, Ev \ {(hsis), (isls)} ∪ {(hsls)}). G′ will identify for each k ∈ Ks
i whether there is

an alternative path in the network. The estimated value Υ(i) should account for the in-/decrease
in transshipment cost TC for each commodity k ∈ Ks

i rerouted in G′, and the decrease of revenue
flow RK for omitted cargo and the decrease in port call cost.
Υ(i) = TC(G′,Ki)− TC(G,Ki) +RK(G′)−RK(G)− csi .

Lock sets

The estimation functions are used to make a MIP for a single service with the remaining services
fixed. A solution to the MIP may result in several insertions and removals referred to as a move
in the following. The estimation functions are based on performing a particular move without
consideration of additional removals/insertions. In order to reduce the error of the estimation
functions we define lock sets of a move constraining insertions/removals on port calls related to a
move.
When inserting a port call i, a set of new commodities Ki may be transported. The origins

and destinations of k ∈ Ki should not be removed. The estimation function relies on the residual
capacity of the remaining network. Insertions before bottlenecks introduced by the routing of Ki

should be avoided. We define the set of Insertion locks on inserting i ∈ Ns as L(i+). L(i+) place
a lock on removal of origin/destination nodes (i ∈ P s) for k ∈ Ki, and lock on insertion of nodes
(i ∈ Ns) with best insertion position before bottlenecks introduced by routing Ki.
The total number of removals from a service is constrained to Fs. Fs is input by the user or

dependent on the number of port calls on a service. Fs should be small to reduce the error of the
distance decrease function Γs

i .

5.3.5 MIP formulation

The following MIP optimizes a single service and suggests a set of removals and insertions of port
calls. The function a(s) returns the vessel class assigned to service s.
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max
∑

i∈Ns

Θ(i)γi +
∑

i∈P s

Υ(i)λi − Ca(s)
v ωs (5.1)

subject to: D(s) +
∑

i∈Ns

∆s
iγi −

∑

i∈P s

Γs
iλi ≤

W
a(s)
d (na

s −
|Ps|+

∑

i∈Ns γi −
∑

i∈P s λi

7
+ ωs) (5.2)

ωs ≤Ma(s) (5.3)
∑

i∈P s

λi ≤ Fs (5.4)

∑

j∈L(i+)

γj + λj − 2|L(i+)|(1 − γi) ≤ 0 ∀i ∈ Ns (5.5)

λi ∈ {0, 1} ∀i ∈ P s (5.6)

γi ∈ {0, 1} ∀i ∈ Ns (5.7)

ωs ∈ Z (5.8)

Sets
P s The set of nodes in the service s.
Ns The set of neighbors of service s.
L(i+) Lock set of inserting i in s.
Constants

C
a(s)
v The weekly cost of a vessel from vessel class a assigned to service s.

Ma(s) The number of undeployed vessels of vessel class a assigned to service s in the current solution.

W
a(s)
d The weekly sailing distance of a vessel of class a at design speed.

Fs number of removals allowed on each service
Variables
λi 1 iff i ∈ P s is removed from service s, 0 otherwise.
γi 1 if item i ∈ Ns is inserted in service s, 0 otherwise.
ωs ∈ Z+ The number of vessels service s is expanded with.
Functions
∆s

i Estimated distance increase if i is inserted in s.
Γs
i Estimated Distance decrease for removing item i from s.

Θ(i) The estimated value of inserting i in s.
Υ(j) The estimated value of removing j from s

Table 5.2: Overview of Sets, variables, and functions used in the MIP

The objective function (5.1) maximises the benefit obtained from removing and inserting several
port calls accounting for the estimated change of revenue, transshipment cost, port call cost and
fleet cost. The number of vessels needed to maintain weekly frequency on the service after inser-
tion/removal is estimated in Constraints (5.2) accounting for the duration of the port stay given
insertions/removals. Constraints (5.3) ensure that the solution does not exceed the available fleet
of vessels. The set of nodes that are affected by the insertion move are fixed by Constraints (5.5).
Constraints (5.4) ensure that we can only remove Fs nodes from the service.

To diversify the search using the MIP the geographical distance to the ports included in the
neighborhood Ns is increased for every iteration, where no improvement is found. As the ports on
a service are often geographically close to each other some ports in the service have neighboring
ports in common. For this reason the neighborhood size varies a lot for the service even when
increasing the geographical distance. The increase in geographical distance is inspired by Variable
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Neighborhood Search (VNS)(Mladenović and Hansen, 1997), where the neighborhood depth is
increased iteratively.

We introduce a number of taboos in each service to avoid cycling between solutions. This is to
ensure that ports inserted in the previous iteration cannot be removed in the subsequent MIP for
a specific service. Likewise, ports removed in the last iteration are not considered for reinsertion
in the following iteration.

5.3.6 Reinsertion neighborhood

It is important to be able to construct non-simple routes (butterfly rotations), that revisit a
single port twice. Butterfly routes are very important to utilize the capacity efficiently in a liner
shipping network. A reinsertion neighborhood is defined to construct butterfly routes by evaluating
reinsertion of port calls on every service in S. The reinsertion neighborhood loops through the
services in S and identifies the most promising port call to reinsert based upon a rating. The
method identifies every port call, where the outgoing voyage arc has no residual capacity. Each
of the candidate port calls on a service are rated based on the residual demand. A score of 1 is
obtained for each residual demand originating at the candidate port and an additional score is
obtained if the destination of the commodity is found on the service. The port obtains an additional
score of 3 if the port is a designated hub port. Based on the rating the port with the highest rating
is reinserted using the best insertion heuristic requiring the reinsertion to be a minimum of one
port call away from the original port call. The reinsertion is immediately evaluated and accepted
if it improves the objective value or increases the amount of cargo transported. An overview of
the reinsertion neighborhood is found in Algorithm 1

Algorithm 1 EvaluateReinsertion(S′, x′, K̃)

Require: A solution S of the LSNDP (S, K̃, x)

1: Ŝ ← S′

2: x̂← x′

3: for all s ∈ S′ do
4: Candidate← ∅
5: for all psi ∈ s do
6: if flow(psi , p

s
i+1)− Capacity(psi , p

s
i+1) = 0 then

7: Candidate← psi
8: ratingps

i
← AssignRating(K̃, psi , S)

9: end if
10: end for
11: if Candidate != ∅ then
12: R←MaxRating(Candidate)
13: S̄ ← ApplyReinsertion(R, s)
14: x̄← ∆MCF (S̄,K)
15: end if
16: if obj(x̄) ≤ obj(x′) ∨ trans(x̄) > trans(x′) then
17: x′ ← x̄
18: S′ ← S̄
19: K̃ = CalcResidualDemand(S′, x′)
20: end if
21: end for
22: return (S′, x′)
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5.3.7 Local search

The solution space of an instance of the LSNDP has several sub-neighborhoods that must be
considered in a search for a high quality solution. The main sub-neighborhoods are listed below:

1. The individual port calls on each service.

2. The selection of the butterfly port.

3. Transhipment points.

4. Deployment of a number of vessels to a service (i.e. the duration assigned)

5. Average speed of the vessels on a service.

6. The composition of the services.

7. The number of services in the solution.

8. Matching vessel classes to services.

The MIP and the reinsertion neighborhood target sub-neighborhood 1, 2, 3, and 4. In the
application of a move sub-neighborhood 5 is considered as well. An adjustment of the number of
vessels is performed relative to the feasibility and cost of assigning one less or one more vessel to
the service. If it is cheaper and feasible to add/subtract a vessel from a service, this optimization is
performed, when applying the move. This procedure also adjusts the speed of a service, although
the design speed will be the cheapest choice if it can be matched with the duration and the number
of vessels assigned to a service.
A weakness of the MIP neighborhood is that it is not able to adjust the number of services. The

number of services in the initial solution of the construction heuristic is not likely to be optimal.
At the same time the composition of services is not considered for example if two services are
roughly identical and therefore both underutilized with regards to their capacity.
Therefore, a local search is performed on the set of services after every fourth loop of the MIP

neighborhood application to the set of services.
The local search rates every service according to its average utilization of the capacity on all

voyage edges. In increasing order of utilization removing a service is evaluated. Up to two services
are removed using this procedure. The limitation is imposed to decrease the size of the move. The
residual demand is updated for the solution with services removed and a procedure to add new
services based on the residual demand is invoked. A single service is added for every vessel class
with undeployed vessels with the largest matching residual demand respecting feasibility of the
capacity and duration of serving the demand with the vessels available.
Lastly, the MIP sub-neighborhood cannot assign a different vessel class to a service for example a

service which is fully utilized and in general needs to be upgraded to a larger vessel class with more
capacity and likewise a service with a medium average utilization may become more profitable by
assigning a smaller vessel class to the service. In the current implementation we do not consider
swapping vessel classes between services although it would be very interesting to investigate the
performance of such a neighborhood. The neighborhood would require extensive analysis to find
good candidate services for swapping vessel classes and would involve reflowing the cargo upon
each swap to evaluate the move. It is hence not trivial to implement.

5.4 Algorithm

Algorithm 2 gives an overview of the matheuristic. The initial solution is constructed by the
greedy parallel insertion GreedyLSNDP (I) of an instance I in line 1. The initial solution does
not contain exact evaluation of the flow and hence we explicitly solve the resulting MCF in line
2. The problem MCF (S′,K) is solved using standard column generation to construct a graph of



Chapter 5. A matheuristic for the Liner Shipping Network Design Problem 126

Algorithm 2 MatHeuristic(I)

Require: An Instance I of the LSNDP (S, P,A,D,K)

1: S′ ← GreedyLSNDP (I)
2: x′ ←MCF (S′,K)
3: iter← 0
4: temp← temp0
5: IMPROV E ← true
6: while (IMPROV E ∧ (temp > 0)) do
7: IMPROV E ← false
8: for all s ∈ S′ do
9: if obj(x′) ≤ obj(x̂) then

10: SaveBest(S′, x′)
11: end if
12: for all i ∈ Ns do
13: (L(i+),Θ(i))← CalcInsert(i, S′)
14: end for
15: for all i ∈ P s do
16: Υ(i)← CalcRemoval(i, S′)
17: end for
18: MIP ← constructMIP (s, P s, Ns,Θ,Υ,Ψ,

⋃

i∈Ns∪P s L(i+),
⋃

i∈P s L(i2))
19: M ← solve(MIP )
20: if M != ∅ then
21: S̄ ← ApplyMoves(M,L(is−), s)
22: x̄← ∆MCF (S′,K)
23: end if
24: if (obj(x̄) ≤ obj(x′)) ∨ (exp(obj(x

′)−obj(x̄)
temp ) > random [0, 1 [ ) then

25: x′ ← x̄
26: S′ ← S̄
27: IMPROV E ← true
28: end if
29: temp← temp · 0.95
30: end for
31: if iter mod 2 = 0 then
32: (S′, x′)← EvaluateReinsertion(S′, x′)
33: end if
34: if iter mod 5 = 0 then
35: S′ ← LocalSearch(S′, x′)
36: temp← temp ∗ 10
37: end if
38: end while
39: return (Ŝ, x̂)

the residual capacity and mapping the current flow to specific services. In every iteration of the
for loop the solution is evaluated according to the best found solution (line 9).

The improvement heuristic loops over the set of services S. The estimation functions and lock
sets for s are calculated in lines 12-17. The MIP (5.1)-(5.8) for s is constructed and solved in lines
18-19.

The solution is evaluated by resolving the new MCF in line 22. ∆MCF (S′,K) is a column gen-
eration algorithm for the MCF using a warm start basis. The basis consists of all commodities and
services not directly affected by the moves identified by the MIP. The algorithm ∆MCF (S′,K) is
expected to decrease solution times, but the performance will depend on the number of commodi-
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ties affected by the move and also the number of moves applied. If the solution is improved the
new solution is saved in line 24-26 before the next MIP is calculated for the following s ∈ S′. If the
solution is not improved a simulated annealing scheme is invoked, to accept worse solutions with
a decreasing probability as the search progresses in lines 24-27. The simulated annealing scheme
should help the algorithm escape from local minima. In every second loop over the set of services
S a reinsertion neighborhood is invoked in order to evaluate the construction of butterfly services
in line 32. In every fourth loop a local search is performed on the set of services evaluating the
removal of underutilized services and adding new services based on the residual demand and the
excess fleet (line 35). The algorithm terminates, when there is no improvement through a loop or
the temperature of the simulated annealing is zero. The best found solution is returned in line
39.

5.5 Computational Results

The matheuristic was tested on the benchmark suite LINER-LIB 2012 presented in Brouer et al.
(2012). Table 5.3 gives an overview of the instances, which may be found at http://www.or.man.dtu.dk/English/research/

Category Instance and description Ports Dmnds
Single hub instances Baltic Baltic sea with Bremerhaven as hub 12 22

WAF West Africa with Algeciras as hub to West African
ports

19 38

Multi hub instances Mediterranean Mediterranean with Algeciras, Tangier,
Gioia Tauro as hub

39 369

Trade lane instances Pacific (Asia-US West) 45 722
AsiaEurope Europe, Middle East and Far east regions 111 4000

World instances Small 47 Main ports worldwide identified by Maersk Line 47 1764
Large 197 ports - the majority of ports serviced directly
by Maersk Line

197 9630

Table 5.3: The instances of the benchmark suite with indication of the number of
ports and the number of distinct origin-destination pairs. The instances may be found at
http://www.or.man.dtu.dk/English/research/instances

The matheuristic is coded in C++ and run on a linux system with a Intel(R) Xeon(R) X5550
CPU at 2.67GHz and 24 GB RAM.
The following sections analyze the performance and the results of the algorithm. The first section

analyzes the execution time required to solve the MIP neighborhood with growing instance size
and the speed up of using delta column generation, when evaluating the neighborhood. The next
section describes the results seen in relation to the results presented in Brouer et al. (2012) because
our solution space is more restricted due to a required weekly frequency in the matheuristic for
LSNDP. This makes it difficult to compare results. The final section presents the computational
results for the benchmark suite LINER-LIB 2012 with a weekly frequency and discusses the results
obtained.

5.6 Performance of delta column generator and MIP neigh-

borhood

In this section the performance of solving the MIPs to decide on the moves made to each service
is evaluated. Secondly, the performance of evaluating a given solution for the flow transported
using a warm started delayed column generation algorithm to solve the underlying MCF problem
is presented.
In Table 5.4 the performance of the MIP neighborhoods are reported. The focus is on the

execution time of building the MIP in terms of calculating the estimation functions and solving
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the resulting MIP. The table shows that calculating the estimation functions and building the MIP
is very fast. At the same time the MIPs are very small and solved fast both for small, medium
and large cases. The growth in the neighborhoods is hence a linear growth with the number of
services that increase with the instance size. The aim of the heuristic was exactly to achieve a
linear growth in evaluating the neighborhood of services, such that it is fast to decide on the best
moves for each service with regards to inserting and removing a number of port calls for each
service considering the network flow as a whole.

Instance av. time build (sec.) av. time MIP (sec.) av. vars av. rows
Baltic 0.00012 0.00748 9.26 10.53
WAF 0.00036 0.00946 11.19 12.27

Mediterranean 0.00100 0.00972 19.32 19.81
Pacific 0.00390 0.00902 19.11 20.44

WorldSmall 0.01260 0.00600 17.41 18.72
AsiaEurope 0.02100 0.00820 19.93 21.33

Table 5.4: Av. time build: Time to build MIP (estimation functions), av. time MIP: Time to solve
MIP , av. vars: Average number of variables (binary),av. rows: average number of rows.

In Table 5.5 the performance of an average run of the delta column generator is reported.
The delta column generator is designed to exploit that inserting/removing a few port calls only
invalidate a small fraction of the current optimal basis for the network. Therefore, we are able
to reuse the optimal basis to a large extent. The table shows the time to solve the initial full
multicommodity flow problem and the subsequent columns show the average solution time for the
delta column generator as the maximal, minimum and average time throughout a single run of the
algorithm for each instance. The result show a speed up of a factor 2-10 on average for evaluating
a given solution with regards to the transported commodities and their transhipment costs.

Instance full sec. max sec. min sec. av. sec av. speedup max speedup
Baltic 0.0040 0.004 0.000 0.0015 2.67 –
WAF 0.0240 0.008 0.004 0.0045 5.33 6

Mediterranean 0.3760 0.050 0.016 0.0314 11.97 23
Pacific 3.6122 1.528 0.072 0.7178 5.03 50

WorldSmall 24.5400 12.316 0.024 2.7800 8.80 1022
AsiaEurope 147.9612 60.667 0.836 19.7500 7.49 177

Table 5.5: full sec.: Time to solve full lp, max sec.: maximum time for a warm start , min sec.: min
sec for a warm start, av. sec: average time for warm start. av. speedup is the solution time for solving
the full MCF divided by the av. seconds to solve the warm start. max speedup is the solution time for
the full MCF divided by the minimum seconds to solve the warm started solution.

5.7 Comparing results

The problem solved with the matheuristic for LSNDP uses the reference model presented in Brouer
et al. (2012) and adheres to the same set of general constraints and the same objective function.
However, the routes generated by the matheuristic are restricted to have strict weekly frequencies
for all vessel classes, whereas the heuristic column generator creates routes with both weekly and
even biweekly frequencies for vessel classes under 1200 FFE. The rotations are allowed to deviate
from a strict weekly frequency and may call as often as every five days for weekly frequencies.
Vessel classes below 1200 FFE are allowed to have biweekly frequencies deviating to call as often
as every ten days. This means that the network generated with the heuristic column generator
has a less restricted solution space and may deploy the capacity in a different manner than the
matheuristic for the LSNDP is able to. A direct comparison with the solutions and objective values
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for the heuristic column generator is not meaningful as the best solutions found are not feasible
solutions for the matheuristic. As a result the overall revenue obtained for the matheuristic and
the reference model with strict weekly frequencies are expected to be lower. Please note, that
we are solving a minimization problem and a negative objective value represents a profit. The
computational results presented here are the first results requiring strict weekly frequency using
a restricted version of the reference model to solve LINER-LIB 2012.

Instance Method Best Cost trans % Depl. % Time
Baltic Best weekly freq. −4.98 · 106 97.1 100 –
Baltic Best weekly freq. + matheuristic −6.78 · 106 96.76 88.88 4.46
Baltic MQKP+matheuristic (best) −8.60 · 106 97.23 88.89 2.05
Baltic MQKP+matheuristic (Avg.) −1.19 · 106 94.77 88.89 4.17
Pacific Best weekly freq. −6.64 · 106 96.80 98.10 –
Pacific Best weekly freq. + matheuristic −3.57 · 107 96.70 93.5 623.45
Pacific MQKP+matheuristic (best) 1.03 · 108 96.02 94.39 825.96
Pacific MQKP+matheuristic (Avg.) 1.91 · 108 84.18 87.47 567.84

Table 5.6: Comparing the heuristic column generators best solution for the Baltic and Pacific case with
an adjusted increased fleet to enforce strict weekly frequency. Instance denotes the instance. Method
describes, which initial solution is used, and whether the matheuristic is invoked. Best cost denotes the
best objective value found. When calculating with the construction heuristic as initial solution ten runs
were performed and the best as well as the average solution is reported. trans % denotes the percentage
of total cargo transported and Depl. % the percentage of the fleet deployed. Time denotes the CPU
time in seconds.

In an attempt to compare the performance of the algorithms the best solutions from the Baltic
case and the Pacific case have been altered to respect a weekly frequency by increasing the number
of vessels in the fleet to meet this requirement. It is obvious, that the heuristic column genera-
tor could find different and possibly better solutions enforcing strict weekly frequency with the
increased fleet. There will be excess capacity on the routes with biweekly frequency, which for
the Baltic case is all vessel classes in the instance. In the Pacific case it represents half the vessel
classes and less than half the total number of vessels (36%).

The Baltic case has been chosen as a reference because it is a small case and the matheuristic
for LSNDP is relatively stable at finding good solutions for this instance, whereas the Pacific case
is more complex and less influenced by biweekly frequency. The revenues and the fleet available,
makes it hard to obtain a revenue and the matheuristic consistently performs poorly on this case.

The comparison takes the services from the best solution for the base case using the heuristic
column generator adjusting the number of vessels to meet a weekly frequency requirement (Best
weekly freq. in Table 5.6). They are used as initial solution and the matheuristic is able to improve
upon the solution in its subsequent optimization for both instances. These results are compared
against the same fleet using the construction heuristic. The matheuristic is able to find better
solutions using the construction heuristic as opposed to the generated solutions for the Baltic case,
but cannot compete on the Pacific case using the construction heuristic. In the Pacific case results
show great variance in the revenue obtained and it is clear that this case is very dependant on
the quality of the initial solution. The more complex instances have a solution space with many
sub-neighborhoods and it seems that the matheuristic gets trapped in a local minimum, where it
is not able to improve further or access more promising areas of the solution space. The results
are presented in Table 5.6.
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5.8 Algorithmic performance and results for LINER-LIB

2012

The results of testing the matheuristic on LINER-LIB 2012 is presented in Table 5.8. For each
instance ten replications with random seeds have been run. Randomness affects the initial solution
constructed by the MQKP method and also the simulated annealing scheme incorporated in the
subsequent improvement heuristic.
The algorithm has been set to terminate after the time limits imposed in Brouer et al. (2012)

as stated in Table 5.7.

Baltic WAF Mediterranean Pacific AsiaEurope WorldSmall
300 900 1200 3600 14400 10800

Table 5.7: Time limits imposed on each instance. the time is in CPU seconds.

The results are the first presented for a strict weekly frequency on rotations and the revenue
is generally lower than the results presented in Brouer et al. (2012) as expected due to different
frequency requirements. Results show a large deviation between the best found solutions and
the average solution for most cases. The heuristic is very dependant on the quality of the initial
solution, which deteriorates with instance size, as it is harder to get the right composition and
fleet deployment as instance sizes grow. Furthermore, the solution space is complex with many
sub-neighborhoods and the algorithm seems to get easily trapped in a local minimum. In the
Mediterranean case the fleet deployment is very low and there is rejected cargo. It seems that
the algorithm is not able to properly deploy the excess vessels to capture the residual demand.
In general the fleet deployment is high, meaning that requiring a weekly frequency may not give
sufficient capacity to transport the entire demand or the demands are not profitable to transport
given the fleet /service configuration. The algorithm is fast for all instances but the AsiaEurope
instance, which is the only one terminating due to the time limit imposed of 14400 seconds. The
log files indicate that the loop structure over the entire set of S as illustrated in Algorithm 2 is in
this case very time consuming and very little local search is performed within the time limit. The
loop structures seem to be restraining at least for this case and it would be an enhancement to
introduce an adaptive layer like the ones seen in ALNS algorithms (Pisinger and Ropke, 2007) to
make more frequent and instance specific swaps between the neighborhoods and the local search
procedure. Also a rating of the services to be optimized upon could be introduced as the MIP for
some services return no moves for implementation in several contiguous for loops.
Since the solution times are generally very low it would be possible to implement a restart

functionality with a new initial composition of services with a differing fleet deployment and
seeding, perhaps based on the best found solution. Additionally, it is possible to experiment with
additional neighborhoods and a more advanced local search procedure, than the one implemented.
Additional neighborhoods could target swapping vessel classes between rotations and perform
optimization of the port call sequence given the cargo allocated to the service. Speed optimization
could also be enhanced. A more advanced local search could be used, where several methods for
generating new services could be tested as this is a drawback of the current search especially for
the larger instances. Generating routings of very high quality as seen in Brouer et al. (2012) could
be implemented as there seems to be time for performing more advanced techniques for generating
new promising routings.

5.8.1 Alternative method for generating new services

The local search implemented is relatively simple as described in Section 5.3.7. The services are
rated based on the average utilization percentage of all individual voyages on the service. The
resulting solution of removing the lowest utilized services is evaluated and at most two services are
removed in each iteration. Subsequently new services are added based on the residual demand of
the solution with the services removed. The original method creates a single service for each vessel
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Instance Cost(180 days) Cost(weekly) imp% dep% trans% Time

Baltic

Low
Best 3.11 · 106 124419 95.02 100.00 84.83 10.12

Average 1.19 · 107 476568 80.24 96.00 79.23 8.57

Base
Best −5.90 · 106 -236038 110.21 100.00 92.07 3.65

Average −7.32 · 105 -29261 101.66 100.00 89.92 4.06

High
Best −5.87 · 106 -234718 107.52 100.00 92.84 9.14

Average 1.78 · 106 71144 98.15 96.10 88.21 11.76

WAF

Low
Best −9.39 · 107 −3.76 · 106 221.03 100.00 90.15 13.22

Average −8.24 · 107 −3.30 · 106 198.82 96.67 84.84 10.89

Base
Best −1.28 · 108 −5.13 · 106 274.32 90.47 94.88 9.24

Average −1.14 · 108 −4.56 · 106 254.32 96.43 94.15 8.14

High
Best −1.31 · 108 −5.25 · 106 412.35 98.04 97.35 13.09

Average −1.02 · 108 −4.06 · 106 259.79 82.35 89.90 12.63

Mediterranean

Low
Best 6.05 · 107 2.42 · 106 42.67 78.26 81.20 155.78

Average 6.82 · 107 2.73 · 106 37.85 86.52 80.98 98.56

Base
Best 4.09 · 107 1.64 · 106 65.65 85.71 91.00 70.37

Average 5.36 · 107 2.14 · 106 49.16 80.00 84.87 77.26

High
Best 4.10 · 107 1.64 · 106 54.18 81.82 94.35 56.57

Average 4.78 · 107 1.91 · 106 59.29 73.94 85.32 91.95

Pacific

Low
Best 2.10 · 108 8.40 · 106 70.23 97.56 81.14 359.76

Average 2.92 · 108 1.17 · 107 61.20 92.56 79.29 368.39

Base
Best 4.36 · 107 1.74 · 106 90.65 100.00 93.44 651.85

Average 1.62 · 108 6.47 · 106 78.74 89.00 85.03 512.95

High
Best −4.26 · 107 −1.71 · 106 109.41 97.48 96.80 833.32

Average 1.20 · 107 4.80 · 105 96.92 90.92 93.20 838.74

WorldSmall

Low
Best −4.76 · 107 −1.90 · 106 101.98 99.02 83.63 5481.76

Average 6.93 · 107 2772230 93.09 97.30 79.84 5836.64

Base
Best −7.97 · 108 −3.19 · 107 178.36 95.82 91.83 8738.23

Average −4.39 · 108 −1.76 · 107 148.34 93.69 86.44 7881.96

High
Best −1.05 · 109 −4.18 · 107 433.05 94.64 92.89 4561.85

Average −5.77 · 108 −2.31 · 107 215.90 95.80 90.09 6735.87

AsiaEurope

Low
Best −4.45 · 107 −1.78 · 106 103.60 100.00 83.17 14405.00

Average 7.04 · 107 2815218 94.41 98.14 81.07 13962.74

Base
Best −3.07 · 108 −1.23 · 107 151.10 98.30 93.18 14426.60

Average −9.22 · 107 −3.69 · 106 112.17 95.17 86.42 14502.02

High
Best −5.03 · 108 −2.01 · 107 185.96 96.70 95.70 14569.40

Average −1.32 · 108 5288480 120.18 96.42 90.77 13836.17

Table 5.8: Overview of the results obtained for the benchmark suite LINER-LIB 2012 using the
matheuristic for LSNDP. The tests are based on ten runs with different random seeds. Instance is
the name of the instance, Best is the best solution found, Average is the average of all ten runs. Low
is the low capacitated case, Base is the medium capacitated case and High is the high capacity case.
Cost(180 days) is the objective value for a planning horizon of 180 days similar to Brouer et al. (2012),
whereas Cost(weekly) is the weekly cost/revenue of the network. Note that a negative value represents
a profitable network. imp% is the percentage improvement from the objective value of the initial solution
constructed by the MQKP construction heuristic, dep% is the percentage of the fleet deployed in terms
of number of vessels, trans% is the percentage of demand transported and Time is the CPU time in
seconds.

class targeting the largest residual demand in terms of the volume multiplied with the revenue
per unit. Feasibility of the generated service given the duration of transporting the demand and
the available number of vessels in the vessel class is considered in the method. The method is
denoted One Service Single Demand (OSSD). The approach creates very crude new services and
in particular for the large instances with extensive use of transhipments the new services are
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often removed in the subsequent local search as they have not evolved into a promising service.
An alternative method (MQKP) invokes the construction heuristic for the ports present in the
residual demand and the available fleet. We have tested the new method for the Baltic and the
WAF instance. Ten runs of each instance was performed with identical seeds, such that the
constructed solutions that are basis for the optimization are identical for both methods. Table
5.9 shows the average and best solutions found by each method. It can be seen that the more
advanced method constructing new services using the construction heuristic gives better results for
both instances on average. This means that introducing the MQKP method for larger instances
should be investigated as it might improve the search.

Instance Method Best cost (weekly) Average cost
Baltic OSSD -58165 245667
Baltic MQKP -41209 58601
WAF OSSD -4468130 -3843604
WAF MQKP -5128090 -4560574

Table 5.9: Average and Best weekly cost for two different methods of constructing a new service set
in the local search. The ten runs are performed with the same random seed such that the basis for the
optimization (the constructed solution)is identical for both methods.

5.9 The matheuristic as a decision support tool

The matheuristic can be used as a decision support tool for evaluating and altering a given network.
A given network can be used as initial solution and it is furthermore possible to assign a subset
of the services for optimization, while maintaining full knowledge of the capacity and flow in the
remaining network. The matheuristic will keep the remaining network fixed and only apply the
MIP neighborhood and local search to the designated subset of the services, while maintaining full
knowledge of the entire network. Network planners are often responsible for a particular trade or
geographic area and the method enables optimization of this designated part of the network. The
method has been tested on a single case from Maersk Line.
The case is constructed from a real network at Maersk Line. The original network satisfies

several constraints that are not incorporated in the matheuristic in its current form, such as several
capacity types (DRY, REEFER, High Cube etc.), transit time restrictions, cabotage restrictions,
and empty repositioning. Furthermore, the original network uses a larger set of vessel classes than
the constructed case. The original network has been modified to fit the input of the matheuristic,
which means that the capacity allocation has been set to match 6 vessel classes and demands
have been mapped to a single capacity type without transit time restrictions, cabotage rules and
empty repositioning. This means that the resulting case will be slightly overcapacitated and
fulfills several constraints not considered by the matheuristic. This makes the mapped case an
”easy optimization problem” compared to the real life case. Revenues have been constructed as
an upper bound of the revenues found in the WorldLarge instance from LINER-LIB 2012 and
therefore, the objective value of the optimization does not represent the real value of the network
in any way. Bearing these assumptions in mind, three cases have been constructed based on the
mapped case optimizing on 3, 8 and 10 services respectively. These tests were performed on a
regular desktop with an Intel(R) Core(TM)2 Duo CPU P9400 at 2.40GHz with 4 GB RAM.
The solutions calculated by the matheuristic are encouraging as there is a decent improvement

in the cost, which for all cases show a revenue. The improvement seems to be primarily due to
removing excess capacity looking at the deployment percentage (Depl.%). As a proof-of-concept
implementation it shows that the matheuristic is capable of optimizing upon a real sized network
with good results. It would be interesting to investigate an implementation fulfilling additional
real-life constraints and testing it on a larger variety of cases and scenarios. Possible scenarios
are adjustments to changes in demands and/or revenues, alternative fleet deployment and the
introduction of new/changed services, that may have effects in other parts of the network.
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Case |S| trans% Depl.% Cost Time
Base Case with no optimization 0/139 99.5 100.00 −5.67 · 108 140.59
Base Case - 3 services optimized 3/139 98.3 98.70 −5.73 · 108 1862.48
Base Case - 8 services optimized 8/139 99.3 94.48 −6.09 · 108 2385.66
Base Case - 10 services optimized 10/139 99.3 90.80 −6.28 · 108 2803.58

Table 5.10: Tests optimizing a partial network based on Maersk Line network. |S| denotes the number of
services optimized upon compared to the full number of services in the network. trans% is the percentage
transported of the total demand in units, Depl.% denotes the number of vessels deployed and Cost is
the objective value (Again we are minimizing and a negative number means a profit). Time denotes the
CPU time in seconds.

5.10 Conclusions

In this paper a matheuristic for the LSNDP has been presented using the reference model from
Brouer et al. (2012) with strict weekly frequencies for all services. The matheuristic consists of
a novel construction heuristic viewing the liner shipping network design problem as a specialized
variant of the multiple quadratic knapsack problem. The initial solution is then improved using an
integer program as neighborhood for each individual service considering insertion and removal of
port calls based on estimation functions. The estimation functions allows us to circumvent solving
a large scale multicommodity flow problem for evaluating a given candidate solution and may be
applied in other heuristics for liner shipping network design. To circumvent the multicommodity
flow a delta column generator is used to evaluate a candidate solution. The idea is to reuse
the optimal basis for all variables not invalidated by the implemented moves and restart delayed
column generation from here. A speedup of a factor 2-10 is achieved on average on the testbed
for the LINER-LIB 2012. The improvement heuristic is used in combination with a simple local
search based on a ruin-and-recreate principle, where vessels are freed by removing low utilized
services and the resulting excess vessels are redeployed to services targeting the residual demand
of a solution. Computational results are provided for the benchmark suite LINER-LIB 2012 and
are the first results enforcing strict weekly frequency. For twelve out of eighteen instances the
algorithm seems to be performing well making a reasonable profit. For two cases (five out of six
instances) the solutions are loss giving. Both cases have low or no profit using bi-weekly frequencies
in Brouer et al. (2012) indicating that the solution spaces of the test cases do not contain many
if any profitable solutions. The pacific case is profitable for bi-weekly frequency as seen in Brouer
et al. (2012). The average performance is poor compared to the best solutions found, which
indicates that the solution space is complex with many sub-neighborhoods and the matheuristic
gets trapped in a local minimum too easily. The heuristic is also highly dependent on the initial
solution and it may be worthwhile spending more time creating a good initial network by enhancing
the construction heuristic. Finally, the matheuristic has been tested as a decision support tool
with an existing liner shipping network as input only optimizing on a subset of the services in the
network. Three cases are have been evaluated based on a real-life inspired network. The real life
network contains additional constraints on the flow and hence is conceived as suboptimal for the
matheuristic as these constraints are not enforced in the optimization. As a results the solutions
from the optimized case may not be feasible in a real life network. Nevertheless, results are very
encouraging as the algorithm is able to improve on all three cases tested and may prove as a
valuable decision support tool for making incremental changes to a network and analyze different
scenarios during network configuration.
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Abstract Liner shipping networks are the backbone of international trade providing low transportation

cost, which is a major driver of globalization. These networks are under constant pressure to deliver

capacity, cost effectiveness and environmentally conscious transport solutions. This article proposes a new

path based MIP model for the Liner shipping Network Design Problem minimizing the cost of vessels and

their fuel consumption facilitating a green network. The proposed model reduces problem size using a

novel aggregation of demands. A decomposition method enabling delayed column generation is presented.

The subproblems have similar structure to the subproblems of the Vehicle Routing Problems, which can

be solved using dynamic programming. An algorithm has been implemented for this model, unfortunately

with discouraging results due to the structure of the subproblem and the lack of proper dominance criteria

in the labelling algorithm. Instead we discuss heuristic approaches for solving the pricing problem, and

the possibility of solving the model in a heuristic column generation scheme. Keywords: liner shipping,

network design, mathematical programming, column generation, green logistics
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6.1 Introduction

Global liner shipping companies provide port to port transport of containers, on a network which
represents a billion dollar investment in assets and operational costs.

Figure 6.1: A Canada-Northern Europe service. FFE is Forty Foot Equivalent unit container used to
express the volume of containers in each cargo category.

The liner shipping network can be viewed as a transportation system for general cargo not unlike
an urban mass transit system for commuters, where each route (service) provides transportation
links between ports and the ports allow for transshipment in between routes (services). The liner
shipping industry is distinct from other maritime transportation modes primarily due to a fixed
public schedule with a given frequency of port calls (Stopford, 2009). The network consists of a
set of services. A service connects a sequence of ports in a cycle at a given frequency, usually
weekly as an industry standard. In Figure 6.1 a service connecting Montreal-Halifax and Europe
is illustrated. The weekly frequency means that several vessels are committed to the service
as illustrated in the figure, where four vessels cover a round trip of 28 days placed with one
week in between vessels. This round trip for the vessel is referred to as a rotation. Note that
the Montreal service carries cargo to North Europe, the Mediterranean and Asia, with the two
latter transshipping in Bremerhaven. In a similar way cargo headed for Canada has multiple
origins. This illustrates that transshipments to other connecting services is at the core of liner
shipping. Therefore, the design of a service is complex, as the set of rotations and their interaction
through transshipment is a transportation system extending the supply chains of a multiplum of
businesses. Figure 6.2 illustrates two services interacting in transporting goods between Montreal-
Halifax and the Mediterranean, while individually securing transport between Montreal-Halifax
and Northern Europe, and Northern Europe and the Mediterranean respectively. The Montreal
service additionally interacts with a service between Europe and Asia, which is partly illustrated.
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Figure 6.2: Two connecting services. The Montreal service from Figure 6.1 and a Europe-Mediterranean
service with a round trip time of 2 weeks illustrated by two white vessels. The cargo composition on board
vessels illustrate transshipments at the core of the liner shipping network design. The light blue incomplete
service illustrates a larger service transporting cargo between Europe and Asia.

6.1.1 Modelling the Liner Shipping Network Design Problem (LSNDP)

The Liner Shipping Network Design Problem (LSNDP) aims to optimize the design of the networks
to minimize cost, while satisfying customer service requirements and operational constraints. The
mathematical formulation of the LSNDP may be very rich as seen in Løfstedt et al. (2011), where
a compact formulation along with an extensive set of service requirements and network restric-
tions is presented. A rich formulation like the one presented in Løfstedt et al. (2011) serves as a
description of the LSNDP domain, but is not computationally tractable as the number of feasible
services is exponential in the number of ports. Therefore, a formulation of the LSNDP is typically
restricted to an interpretation of the domain along with the core costs and constraint structures of
the problem. The LSNDP has been modelled as a rich Vehicle Routing Problem (VRP) (Baldacci
et al., 2010), where transhipments are not allowed and vessels can be assumed to return empty to
a single main port of a voyage in, e.g., Fagerholt (2004) and Karlaftis et al. (2009). The structure
is applicable for regional liner shippers referred to as feeder services as opposed to global liner
shipping in focus in the present paper. Models where the LSNDP is considered as a specialized
capacitated network design problem with multiple commodities are found in Reinhardt and Kalle-
hauge (2007), Agarwal and Ergun (2008), Alvarez (2009), and Plum (2010). The network design
problem is complicated by the network consisting of disjoint cycles representing container vessel
routes as opposed to individual links. The models allow for transshipments, but transshipment
cost is not always part of the objective (e.g.,Agarwal and Ergun (2008)). The vessels are not re-
quired to be empty at any time. The works of Agarwal and Ergun (2008); Alvarez (2009) identify
a two tier structure of constraint blocks: the first deciding the rotations of a single or a collection
of vessels resulting in a capacitated network and the second regarding a standard multicommodity
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flow problem with a dense commodity matrix. The cost structure of LSNDP places vessel related
costs in the first tier and cargo handling cost and revenue in the second tier. The work of Plum
(2010) has identified two main issues with solving the LSNDP as a specialized capacitated network
design problem:

1. Economy of scale on vessels and the division of cost and revenue on the two tiers results in
highly fractional LP solutions.

2. The degeneracy of the multicommodity flow problem results in weak LP bounds.

Furthermore, it is well known that the linear multicommodity flow problem and hence capacitated
network design problems are increasingly complex to solve with the number of distinct commodi-
ties. Computational results for existing models confirm the hardness of this problem and the
scalability issues, struggling to solve instances with 10-15 ports and 50-100 commodities.
The model presented in this paper has a single tier and combines revenue with total cost in the

service generation problem. The motivation is to ensure efficient capacity utilization of vessels and
avoid highly fractional LP solutions. Service generation is based on pick-up-and-delivery of cargoes
transported entirely or partly on the service. The cost of a service reflects asset, operational and
port call costs of the vessels on the service, along with the cargo handling cost and revenue of
collected cargo on the service. The cargo handling cost includes load, unload and transshipment
costs. The model is inspired by the Pick-up-and-Delivery VRP problem, but is considerably more
complex as we allow transshipments on non-simple cyclic routes, where the vessel is not required
to be empty at any point in time.
The degeneracy of the multicommodity flow problem is mitigated both by modeling the flow

as assignments to services as opposed to the traditional multicommodity flow formulation, but
also by exploiting the liner shipping concept of trade lanes to aggregate the number of distinct
commodities to a minimum. Trade lanes are based on the geographic distances within a set of
ports and their potential to import/export to another region.
Maritime shipping produces an estimated 2.7% of the worlds CO2 emission, whereof 25% is

accounted to container vessels according to the Council (2010). Many liner shipping companies
focus on the environmental impact of their operation and the concept of slow steaming has become
a value proposition for some liner shipping companies List (2010). Cariou (2011) estimate that
the emissions have decreased by 11 % since 2008 by slow steaming alone. A break down of the
cost of a service to each vessel Stopford (2009) state that 35-50% of the cost is for fuel (bunker)
whereas capital cost accounts for 30-45%, OPEX (crew, maintenance and insurance) accounts for
6-17% and port cost for 9-14%. Slow steaming minimizes the fuel cost, but comes at an asset cost
of additional vessels deployed to maintain weekly frequency (Notteboom and Vernimmen, 2009).
Slow steaming is not always an option as some cargo may have crucial transit times. Current
models of LSNDP assumes fixed speed on a service. The model of Alvarez (2009) explicitly aims
at minimizing the fuel cost and consumption in the network by varying the speed of services in
the model. The works of Løfstedt et al. (2011); Notteboom and Vernimmen (2009); Fagerholt
et al. (2009) state that the speed on a service is variable on each individual voyage between
two ports. Calculating fuel consumption based on an average fixed speed on a roundtrip is an
approximation, as the fuel consumption is a cubic function of speed (Stopford, 2009). As a
result the actual fuel consumption of a service cannot be estimated until the schedule is fixed.
Tramp shipping companies often model their routing and scheduling problem as rich Pick-up-and-
Delivery VRP problems with Time Windows (Fagerholt and Lindstad, 2007; J. E. Korsvik and
Laporte, 2011). Fagerholt et al. (2009) is the first article within tramp shipping with variable
speed between each port pair in the routing. The optimization of speed and hence minimizing
the fuel consumption and environmental impact is driven by the time windows and the optional
revenue of spot cargoes. (Fagerholt et al., 2009; I. Norstad and Laporte, 2011) report significant
improvements in solution cost using variable speed. Minimizing the fuel consumption of the
network can be a post optimization regarding speed of the liner shipping network, when deciding
on the schedule in terms of berthing windows or the transit time of individual cargo routings. The
path based model presented in this paper assumes a fixed speed for each vessel class and in the



Chapter 6. A Path Based Model for a Green Liner Shipping Network Design Problem 142

dynamic programming algorithm the number of vessels deployed to a service is rounded up to the
nearest integer in order to ensure that a weekly frequency can be maintained on each service.
The path based model is inspired by operations research techniques within the airline industry,

where the optimization is divided into faces. Therefore, a solution to the path based model is a
generic capacitated network of cyclic services based on a weekly frequency of port calls. The generic
network is transformed into an actual network by deciding a specific schedule, deploying vessels
and deciding on the speed of the individual voyages and actual flow of all distinct commodities.
The slow steaming speed of a vessel is 12 knots and depending on size and age a vessel has a
maximal speed of 18 to 25 knots. If the fixed speed is chosen 30-40% above slow steaming speed
for each vessel class, rounding up the number of vessels will allow post optimization of the schedule
to achieve an energy efficient network with focus on slow steaming, while ensuring the transit time
of products. The generic network facilitates the design of a green liner shipping network, while at
the same time enabling scalability due to a more general description of the network.

6.1.2 Demand Aggregation

In models of the LSNDP using a specialized capacitated network design formulation the second
tier is a standard multicommodity flow problem. The work of Alvarez (2009) identifies solving the
multicommodity flow problem as prohibitive for larger problem instances due to the large number
of commodities considered. In Alvarez (2009) the commodities are aggregated by destination,
giving a smaller model to solve. This could result in worse LP bounds as identified in Croxton
et al. (2007), since the LSNDP will have a concave cost function, due to the economies of scales
of deploying larger vessels, and high start up costs, as at least one vessel must be deployed.
A contribution of this paper is to formulate a model that considers aggregated aspects of the

demand instead of specific origin-destination (o-d) pairs. This is motivated by the trade-centric
view of liner-shipping present in the liner shipping industry instead of the o-d -centric view consid-
ered in the literature. As seen in Figure 6.1, the (o-d demand from Halifax to Rotterdam could be
considered, but in practice it will be hard to estimate such a specific demand. More realistically
one could estimate the volume of exports from Halifax to Northern Europe and reversely the vol-
ume of imports from East Coast Canada to Rotterdam (or exports from Mediterranean to Halifax
as in Figure 6.2). Each commodity k ∈ K will then be characterized by a volume dXY from a
region X to a region Y i.e. East Coast Canada or Northern Europe as seen in Figure 6.1 on the
vessels in deep sea. Each set of X ,Y will symbolize a trade. Each port p ∈ X will also have an
export and import in the trade: dpY , dXp, where

∑

p∈X dpY =
∑

p∈Y dXp as seen in Figure 6.1 on
the vessels in a region. In effect a port as Halifax will be ensured a volume of export to Mediter-
ranean ports and each of these will be insured a volume of imports from East Coast Canadian
ports, without specifying the concrete origin-destination pairs. Note the difference in aggregation
approach, compared with the models of Croxton et al. (2007), as we are now aggregating by trade
origin-region to destination-region, instead of aggregation by destination port. This should give
the benefit of fewer variables due to the aggregation, while we still have quite tight LP-relaxations.
The aggregation of demand may be more or less fine grained according to the definition of ports,

regions and trade lanes, enabling both detailed networks for a smaller region and coarse network
designs for a larger set of ports that may be refined by subsequent optimization methods. We
foresee a computational tractability trade-off between the number of ports and the number of
distinct commodities when defining regions for ports.
This can also be seen in the light of forecasting accuracy, usually the more detailed the level

of forecasting is the more inaccurate it will be. This allows a forecasting to be done at a more
natural level, i.e. on total trade volumes and total port import and export volumes.
In the following we will present a path-based formulation of the LNSDP and a column generation

approach generating capacitated, cyclic rotations with assigned flow. We will outline a dynamic
programming algorithm to solve the pricing problem. Preliminary computational results of an
implementation of the algorithm will be given, which reveals poor performance for solving the
pricing problem. This leads us to believe that alternative methods must be developed to efficiently
solve the pricing problem, for the approach to be able to solve instances of a significant size. This
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work is an extension of a contribution to the proceedings of IMECS 2011 of Jepsen, Løfstedt,
Plum, Pisinger, and Sigurd (2011).

6.2 Service Based Model

In the following we introduce a model based on a combination of feasible services for each vessel
class, into a generic liner shipping network solution. The service based model is based on a
Dantzig-Wolfe decomposition of the model presented in Løfstedt et al. (2011). Let Sv denote the
set of feasible services for a vessel class v ∈ V and let S = ∪v∈V Sv. Let αXY

kps and βXY
kps be the

amount of respectively load and unload of containers from region X to region Y on the k’th visit
to port p on service s ∈ S. We assume that αXY

kps = βXY
kps = 0, ∀p /∈ X ∪ Y ∪GXY , where GXY is

the set of ports where transshipments is allowed for trade XY . Let Mp be the maximal number of
port visits to port p for each service. Furthermore, let γpq equal the number of times the service
sails between ports p ∈ P and q ∈ P . The move cost in a port p for a trade XY ∈ K consist of
the unload cost uXY

p and load cost lXY
p . For ports p ∈ X the transshipment cost is included in the

unload cost and the revenue is rXY
p . For ports p ∈ P \X the transshipment cost is included in the

load cost. Each vessel of vessel type v ∈ V has costs cv for fuel-, crew- and depreciation of vessel
value or time-charter-costs per week. The cost of vessel type v calling a port q is cvq . The number
of vessels used by the service is the round trip distance of the service divided by W v

d , the weekly
distance covered by vessel type v at the predefined speed. This value is rounded up to ensure the
vessels can complete the round trip at the predefined speed. The number of vessels used by the

service is given as ns =
⌈

∑

p∈P

∑

q∈P
dpqγpqs

Wv
d

⌉

. The cost of a service s ∈ S is given as:

cs =
∑

XY ∈K

∑

p∈X

∑

k∈Mp

rXY
p (αXY

kps − βXY
kps )

−
∑

XY ∈K

∑

p∈P

∑

k∈Mp

(lXY
p αXY

kps + uXY
p βXY

kps )

− cvns −
∑

p∈P

∑

q∈P

cvqγpqs

The model based on services is as follows:

max
∑

s∈S

csλs (6.1)

s.t 0 ≤
∑

s∈S

∑

k∈Mp

(αXY
pks − βXY

pks )λs ≤ dpY ∀XY ∈ K, ∀p ∈ X (6.2)

0 ≥
∑

s∈S

∑

k∈Mp

(αXY
pks − βXY

pks )λs ≥ −d
Xp ∀XY ∈ K, ∀p ∈ Y (6.3)

∑

s∈S

∑

k∈Mp

(αXY
pks − βXY

pks )λs = 0 ∀p ∈ GXY , ∀XY ∈ K (6.4)

∑

s∈S

∑

p∈X∪Y

∑

k∈Mp

(αXY
pks − βXY

pks )λs = 0 ∀XY ∈ K (6.5)

∑

s∈Sv

nsλs ≤ |v| ∀v ∈ V (6.6)

αXY
kps , β

XY
kps ∈ Z

+ ∀s ∈ S, ∀XY, ∀p ∈ X, ∀k ∈Mp (6.7)

λs ∈ {0, 1} ∀s ∈ S (6.8)

The objective (6.1) maximizes the profit, constraints (6.2) and (6.3) ensure that the difference
between what is loaded and unloaded (unloaded and loaded) by all services in a port is positive
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and less than the export capacity (import capacity) of the port for the given trade. Constraints
(6.4) ensure that the amount of containers loaded equals the amount of containers unloaded in a
transhipment port and constraints (6.5) ensure that all containers loaded are unloaded for each
trade. Constraints (6.6) ensure that the number of available vessels for each vessel class is not
exceeded and the binary domain on the variables is defined by (6.8).

The key issue with the service based model is that the set of feasible services S can be exponential
in the number of ports. Therefore, we cannot expect to solve instances of significant size. To
overcome this issue we propose to write up the model gradually using delayed column generation
and then solve the problem through Branch-and-Cut-and-Price. Branching is done by imposing a
limit on the number of times an arc can be used by a given vessel class. We will investigate the
possibility of applying an enumeration technique similar to the one used within CVRP (Baldacci
et al., 2008).

6.2.1 Pricing Problem

The pricing problem calculates a non-simple cycle σ centered around any starting node ps with
associated loads and unloads. The cycle respects the capacity of the vessel class, Cv, at every port
p, ensures feasibility of a weekly frequency for the vessel class v given the distance of the schedule,
and lastly, that port p is visited no more than Mp times ∀p ∈ P . The pricing problem returns
a variable representing a load and an unload pattern, which implicitly defines a non-simple cycle
starting and ending at the same port p ∈ P v, deploying ns vessels to maintain weekly frequency at
the fixed speed enforced on the service pattern. The above problem has a similar structure to the
pricing problems of Vehicle Routing Problems modelled as a Resource Constrained Shortest Path
problem (see Irnich and Desaulniers (2005). The Resource Constrained shortest Path Problem is
often solved by label setting algorithms. As it is possible for the demand to be split on different
paths, we need to ensure that we allow all possibilities of transshipments. This necessitates that,
labels are created for each integral unit of the demand up to the minimum of the available capacity
or the demand.

Objective function of the pricing problem

The objective function of the pricing problem is to find the best reduced cost of a master problem
variable at the given iteration of the master problem. For each XY ∈ K a port p ∈ P is present
in at most one of the constraints (6.2) to (6.4). Let ωXY

p , ∀XY ∈ K, ∀p ∈ X ∪ Y ∪ GXY denote

the duals from (6.2) to (6.4). Let δXY be the dual variables of constraints (6.5) and πv are the
duals of constraints (6.6).

For each vessel class v ∈ V the reduced cost of a service (column) s ∈ Sv

ĉs =cs −
∑

XY ∈K

∑

p∈X∪Y ∪GXY

∑

k∈Mp

ωXY
p (αXY

kps − βXY
kps )

−
∑

XY ∈K

∑

p∈X∪Y

∑

k∈Mp

δXY (αXY
kps − βXY

kps )− πvns

Expanding the term ĉs and rearranging the terms according to load and unload combined with
the port belonging to either X,Y or Gk we obtain the following reduced cost:



145 6.2. Service Based Model

ĉs =
∑

XY ∈K

∑

p∈X

∑

k∈Mp

(rXY
p − lXY

p − ωXY
p − δXY )αXY

kps

+
∑

XY ∈K

∑

p∈X

∑

k∈Mp

(−rXY
p − uXY

p + ωXY
p + δXY )βXY

kps

+
∑

XY ∈K

∑

p∈Y

∑

k∈Mp

(−lXY
p − ωXY

p − δXY )αXY
kps

+
∑

XY ∈K

∑

p∈Y

∑

k∈Mp

(−uXY
p + ωXY

p + δXY )βXY
kps

+
∑

XY ∈K

∑

p∈GXY

∑

k∈Mp

(−lXY
p − ωXY

p )αXY
kps

+
∑

XY ∈K

∑

p∈GXY

∑

k∈Mp

(−uXY
p + ωXY

p )βXY
kps

− (πv + cv)ns −
∑

p∈P

∑

q∈P

cvqγpqs

The reduced cost can be rewritten as a cost connected to loading, unloading, and sailing in terms
of the number of vessels deployed and the cumulative port call cost. The cost of (un)loading a
demand from trade XY depends on the region of the port. If the port is from the origin region
X a revenue is obtained for loading and subtracted for unloading at the port. This ensures that
revenue is only collected at the initial load. The costs are the (un)load cost, and the dual values
from constraints (6.2)-(6.4) concerning the flow conservation and the dual value from the flow
balance constraint for the trade (6.5). If the port is from the destination region Y the cost is the
(un)load cost, and the dual values from constraints (6.2)-(6.4) concerning the flow conservation
and the dual value from (6.5). For a transhipment port p ∈ GXY the cost is only related to
(un)load cost and the dual values of (6.2)-(6.4).

l̂XY
p =











rXY
p − lXY

p − ωXY
p − δXY ∀p ∈ X

−lXY
p − ωXY

p − δXY ∀p ∈ Y

−lXY
p − ωXY

p ∀p ∈ GXY

ûXY
p =











−rXY
p − uXY

p + ωXY
p + δXY ∀p ∈ X

−uXY
p + ωXY

p + δXY ∀p ∈ Y

−uXY
p + ωXY

p ∀p ∈ GXY

Finally, the port call cost cvq is paid upon each sailing/extension onto a new port p ∈ P and the
cost ĉv = πv + cv is inferred each time the distance of W v

d is traveled.

Label setting algorithm for LSNDP

The |V | pricing problems for each vessel class can be formulated as the following graph problem.
Given a directed graph Gv = (Nv, Av) where the node set is Nv = P v ∪ Lv ∪ Uv. P v is the
set of ports ∈ P compatible with vessel class v, Lv =

⋃

w∈Pv Lw the set of load nodes. The sets
Lw = {ρXY

w |∀XY ∈ K,w ∈ X∨Y ∨GXY } represents all possible loads at port w, Uv =
⋃

w∈Pv Uw

is the set of unload nodes. The sets Uw = {µXY
w |∀XY ∈ K,w ∈ X ∨ Y ∨ GXY } represents all

possible unloads at port w. In order to correctly identify transshipments and unloads of a trade
each demand XY ∈ K is associated with a set of load nodes LXY ⊆ Lv and a set of unload nodes
UXY ⊆ Uv, where LXY = {ρXY

w |w ∈ X ∪ Y ∪GXY } and UXY = {µXY
w |w ∈ X ∪ Y ∪GXY }.

The arc set is Av = As ∪ Au ∪ Al. Define the function h : Uv ∪ Lv → P v, Lq 7→ q, Uq 7→ q
for mapping between the load and unload nodes and the actual port q ∈ pv of the (un)load.
The set of sailing arcs is defined as follows As = {(i, j)|i ∈ Lv ∪ Uv, j ∈ P v \ {h(i)}} , the set
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of unload arcs Au = {(i, j)|i ∈ P v, j ∈ Ui} ∪ {(i, j)|i ∈ Uv, j ∈ Uh(i)} and the set of load arcs
Al = {(i, j)|i ∈ P v, j ∈ Li} ∪ {(i, j)|i ∈ Uv = µXY

h(i), j ∈ Lh(i) \ {ρ
XY
h(i)}} ∪ {(i, j)|i ∈ Lv, j ∈ Lh(i)}.

The graph topology is illustrated in Figure 6.3. The distance of an arc depends on the arc type:

dij =

{

dh(i)j (i, j) ∈ As

0 (i, j) ∈ Al ∪ Au
(6.9)

P v

Uw:

Lw:

UXY

LXY

w ∈ X q ∈ X r ∈ Z s ∈ Y

µXY
w µXY

q µXY
r µXY

s

µYX
w µYX

q µYX
r µYX

s

µXZ
w µXZ

q µXZ
r

ρXY
w ρXY

q ρXY
r ρXY

s

ρYX
w ρYX

q ρYX
r ρYX

s

ρXZ
w ρXZ

q

Figure 6.3: A network representation of a graph associated with the label setting algorithm. The set of
port call nodes P v(blue nodes) form a clique. For port w ∈ P v the sets Uw (light red nodes), Lw(grey
nodes) are illustrated. They represent possible loads and unloads at port w. The sets Uw, Lw form a
cliques. A path in the network will follow sequences of n ∈ Pv → Un → Ln → m ∈ Pv. It is possible
to only unload or load. The load set of a port w is not connected to the unload set of w. Each trade
XY ∈ K is associated with a loadset LXY and an unloadset UXY as illustrated.

In a label setting algorithm, a label Ei is associated with a node i and represents a (partial)
path with a (reduced) cost C of the service and a number of resources θ accumulated along the
path. A resource may be associated with lower and upper bounds often referred to as a resource
window. The proposed pricing problem differs significantly from the Elementary Shortest Path
Problem with Resource Constraints (ESPPRC) known from VRP:� The path is not elementary as Mp ≥ 1.� The path represents a cycle, σ.� It is a longest cycle problem as the reduced cost ĉs ≥ 0.
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every possible port p ∈ P v.� The ability to perform a load on the partial path, which can be unloaded at a previous node
of the cycle σ. A second pass of all ports in the cycle σ must be performed only allowing
the unload extension function to check for load balance.� There are multiple commodities.� The route is combined with a loading/unloading pattern not unlike the labelling algorithm
for the SDVRPTW in Desaulniers (2010).

In the label setting algorithm for LSNDP a label E contains the following information:� Current port, pc� Start port, ps� (reduced) cost, t� Accumulated distance, ds� The load of each trade, FXY ∀XY ∈ K� Current load, Fc =
∑

XY ∈K FXY� Visit number, kp ∀p ∈ P v

The resources are ds, (F
XY )XY ∈K , Fc, (kp)p∈Pv i.e. we have 2 + |K| + |pv| resources. The

extension function (Irnich and Desaulniers, 2005) of the distance is defined as ed(ij)(Ei) = d(Ei) +
dij . The feasibility and resource consumption of extending label Ei along an arc depends on the
arc type:� Case 1: extending along a sail arc (i, j) ∈ As

A feasible extension of label Ei to node j along a sail arc (i, j) ∈ As must satisfy the following
conditions:

⌈

ed(ij)(Ei)

W v
d

⌉

≤ |v| (6.10)

kij + 1 ≤Mj (6.11)

Here, (6.10) ensures the feasibility of the number of vessels deployed to the service and (6.11)
ensures the number of port calls to port j does not exceed Mj. If the extension is feasible a
new label Ej is created. Define

̟ =

⌈

ed(ij)(Ei)

W v
d

⌉

−

⌈

d(Ei)

W v
d

⌉

(6.12)

̟ expresses whether the label extension will require an additional vessel on the service to
maintain weekly frequency. The following extension functions are applied to create label Ej :

pjc = j, pjs = pis, t
j = ti − cvj − ĉv ·̟, d = ed(ij)(Ei), F

j
C = F i

C , F
XY
j = FXY

i , kjj = kij + 1, kjp =

kip ∀p ∈ P v \ {j})� Case 2: extending along an unload arc (i, j) ∈ Au, j = µXY
p

A feasible extension of label Ei to node j along unload arc (i, j) ∈ Au must satisfy the
following conditions:

FXY > 0 (6.13)
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where (6.13) ensures that the commodity XY is currently loaded on the vessel i.e. that a
previous visit to a node in LXY has been performed. To ensure that all possible transhipment
and unload patterns are considered all integral unloads in o ∈ {1, . . . ,max{dXY , FXY

i }} are
created with separate labels.

If the extension is feasible a new label Eo
j is created using the extension functions:

pjc = h(j), pjs = pis, t
j = ti + ûXY

p · o,d = ed(ij)(Ei), F
j
C = F i

C − o,FXY
j = FXY

i − o,FZW
j =

FZW
i ∀ZW ∈ K \ {XY }, kjp = kip ∀p ∈ P v.� Case 3: extending along a load arc (i, j) ∈ Al, j = ρXY

p

A feasible extension of label Ei to node j along a load arc (i, j) ∈ Al must satisfy the
following conditions:

F i
c < Cv (6.14)

(6.14) ensures that the vessel has excess capacity for loading. To ensure that all possible tran-
shipment and load patterns are considered all integral loads in o ∈ {1, . . . ,max{dXY , Cv −
F i
C}} are created with separate labels. If the extension is feasible a new label Eo

j is created

with the following extension function: pjc = h(j), pjs = pis, tj = ti + l̂ · o,d = ed(ij)(Ei),

F j
C = F i

C + o,FXY
j = FXY

i + o,FZW
j = FZW

i ∀ZW ∈ K \ {XY }, kjp = kip ∀p ∈ P v.

A state is feasible when the start node is reached (pc = ps) and the containers are balanced
for all trades (FXY = 0 ∀XY ∈ K) by applying unload extensions to the cycle starting from ps
ending in ps. To obtain the solution to a service the auxiliary data of what has actually been
loaded and unloaded has to be stored and a mapping from L to α and from U to β creates the
column entries for (un)load in the master problem. For an exact solution to the pricing problem
the service with the best reduced cost (max ĉs) is added to the master problem. However, the
label setting algorithm may find several services, where the cost t is greater than 0 and add several
columns in an iteration to accelerate convergence of the column generation algorithm.

6.2.2 Dominance

In order to dominate a label it must hold that the dominating label has the same possibilities for
extensions and that no extension of the dominated label can yield a better reduced cost than the
dominating label.
A label E1 dominates a label E2 if the following holds� p1c = p2c� p1s = p2s� t1 ≥ t2� d1s ≤ d2s� k1p ≤ k2p ∀p ∈ P v� F 1

c ≤ F 2
c� FXY

1 = FXY
2 ∀XY ∈ K

Requiring the cargo loads to be identical gives rise to a weak dominance criteria. This means
that the labelling algorithm resorts to being practically brute force and a vast number of labels
are generated even for relatively small instances. In recent work on dominance criteria for the
Pick-up-and-Delivery problem (Ropke and Cordeau, 2009) the dominance criteria for the cargo
loads are strengthened by relaxing such that in our case we would have� FXY

1 ≤ FXY
2 ∀XY ∈ K
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if the delivery triangle inequality defined by Ropke and Cordeau (2009) as dij + djk ≥ dik holds
∀i, j, k ∈ V . Here j is a delivery node. It is however not trivial to see, whether this relaxation
holds for the pricing problem in this paper as each commodity may have several delivery nodes
attached and there are no precedence relation between pickup and delivery nodes, due to the cyclic
nature of a route.

6.2.3 Complexity

Let T denote an upper bound on the distance of a service. The running time of the label setting
algorithm can be shown to be
O((T |P |C|K|

∏

p∈X dpY
∏

p∈GXY C)2). Increasing the number of trades and the number of trans-
shipment ports will increase the number of states in the Dynamic Programming algorithm. To
solve practical problem instances it is therefore important to make a careful choice of the trades
and the ports, where transshipment is allowed.

6.2.4 Relaxation of pricing problem

In CVRP a pseudo polynomial relaxation is used when solving the strongly NP-hard pricing
problem (Baldacci et al., 2008) to reduce the practical running time of the algorithm. The method
has proven to be very powerful for the CVRP. A pseudo polynomial relaxation of our pricing
problem can be obtained as follows: Each port is assigned the minimal load and unload cost
and the bounds on the load are removed. In each port the number of different states will then be
limited to T |P ||C| and a running time of O(T |P |2|C|) can be obtained. However, defining a strong
bound for the minimal load and unload cost for each port is not trivial as several commodities may
origin or transship at a given node and further research must be conducted in order to achieve a
relaxation with a good bound.

As the pricing problem is very complex, we need not solve the pricing problem to optimality in
each iteration, but one could stop once a sufficient amount of columns with positive reduced cost
has been found. An easy way to do this is to run the dynamic programming algorithm using a
greedy variant adding any reduced cost column instead of the best reduced cost column.

6.3 Preliminary computational Results

The described algorithm has been implemented using CPLEX to solve the master problem and
a labelling algorithm to solve the pricing problem. The results are currently not satisfactory
for solving the pricing problem. The structure of the labelling algorithm, the lack of proper
dominance criteria and especially the need to generate labels for all integral steps of load and
unloads (o ∈ {1, . . . ,max{dXY , FXY

i }} respectively o ∈ {1, . . . ,max{dXY , Cv − F i
C}}) creates a

huge number of very similar labels. The combinations of these causes the labelling algorithm to
effectively be a brute force algorithm in an extremely large search space. Even for very small
graphs (n = 4) the number of considered labels are in the 10’ths of millions.

A simplification of the model is to only consider demand paths, which are fully loaded or
unloaded either regarding the demand or capacity, i.e. o = {FXY

i , dXY } respectively o =
max{dXY , Cv − F i

C}. Unfortunately, this approach is inconsistent with the idea of aggregated
demands, as these will need to split to reach their respective origins / destinations, discouraging
this direction.

As a result we have not pursued methods such as bounding to improve upon the current algo-
rithm of the pricing problem as we believe alternative solution methods must be applied for an
efficient algorithm to solve the pricing problem. Another alternative is the design and implementa-
tion of efficient heuristics to generate variables and subsequently solve a heuristic implementation
of a Branch-and-Price algorithm similar to the one seen in Agarwal and Ergun (2008).
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6.4 Conclusion

We have presented a new model for LSNDP. Among the benefits of the proposed model is a novel
view of demands in liner-shipping, which are considered on a trade basis. This has the advantage
of giving a natural understanding, and requiring fewer variables. The model assigns cargo to
routes, which may result in a tighter search space for a branch-and-bound algorithm.
A solution approach using delayed column generation has been presented, where the proposed
subproblem is related to the pricing problems in VRP, where Branch-&-Cut-&-Price has been used
with great success. We have discussed a pseudo polynomial relaxation to be used as bounding
function, when solving the pricing problem in combination with heuristics and other techniques
that have been effective in solving VRP problems. In the VRP context resource limitations have
proven to be effective for the dynamic programming algorithms in reducing the state space. In
the dynamic programming algorithm presented in this paper these resource limitations do not
reduce complexity of the subproblem sufficiently, because dominance criterions are different. The
proposed algorithm has been implemented but showed disappointing results, due to the lack of
dominance criteria and a large search space for the label setting algorithm. We still believe that
the main ideas in this paper can be useful to solve the LSNDP, i.e. the thoughts of combining cost
and revenue in a single pricing problem and especially the notion of demand aggregation, which
lends to a natural understanding in Liner Shipping. However, we must conclude that alternative
methods or extensions of the current dynamic programming algorithm will be needed to solve a
pricing problem, where cargo load patterns for multiple commodities are combined with a routing.
Further work with richer formulations of LSNDP, considering aspects as transit time limits on

paths, and other operational constraints from liner shipping will tighten the search space of the
pricing problems. However, it is uncertain whether additional real-life complexity in the pricing
problem will allow for effective dominance criteria in a label setting algorithm.
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Chapter 7

Models of liner shipping network
design

This chapter is a discussion of models for the LSNDP investigating possibilities for strengthen-
ing current formulations of the problem. The discussion is inspired by state-of-the-art within
Multicommodity Capacitated Network Design problems (hereafter denoted MCND) and Pick-up-
and-Delivery Vehicle Routing Problems (PDVRP) with split deliveries, which contains similarities
to the LSNDP problem. The discussion is motivated by the fact that the LSNDP may be modeled
as a specialized variant of MCND often displaying a higher degree of freedom for the flow. As a
result some of the known cutting planes and methods developed for MCND cannot be exploited in
current models of the LSNDP. The LSNDP can also be seen as a rich formulation of the PDVRP
with split deliveries without designated depots. The latter complicates the use of existing methods
developed for the PDVRP with time windows and Split Deliveries (St̊alhane et al., 2012).

In Chapter 2 a reference model for the LSNDP was proposed. Providing a reference model for
the benchmark suite is important, because nearly every journal paper on the LSNDP provides
a different model of the LSNDP. In order to compare algorithms on a given benchmark set it is
important to agree on an objective function and a set of constraints, which reflect real life operation
of global liner shipping companies. However, the formulation is not a compact formulation suitable
for exact methods. The model is based on the set of possible rotations combining different port
calls with a vessel class and an average speed. This yields an exponential number of variables.
The most common technique to overcome this problem is to apply delayed column generation in a
ranch-and-Price context, where the reference model would be the Master problem, and a pricing
problem would be applied to generate the route variables based on their reduced cost in the master
problem. The drawback of the reference model for applying this technique is that each column is
associated with specific rows defining the capacity of the arcs sailed. This complicates the use of
a delayed column generation technique, as columns are evaluated according to their reduced cost
and the optimality condition is based on proving that all non-basic variables have a non-negative
reduced cost in the case of a minimization problem. The addition of a variable requires addition of
a new set of rows meaning that the calculation of the reduced cost of a column must be reevaluated
after adding it to the master problem. It also affects the optimality criterion as rows exist, which
are not present in the master problem at the time of evaluation. Therefore, it is still important
to explore alternative ways of formulating the LSNDP as a mathematical program in order to
achieve a strong and compact formulation for the purpose of developing exact methods exploiting
state-of-the art techniques within mathematical programming.

This Chapter explores how to strengthen mathematical models of the LSNDP and identifies the
major challenges in constructing a strong mathematical formulation for the LSNDP. The extensive
research done on the polyhedra of MCNDs and the decomposition methods, that constitute state-
of-the-art exact solution methods for both MCND and VRPs are used as a reference and inspiration
to the discussion in this chapter. A model inspired by PDVRP with Split Deliveries is presented
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at the end of the Chapter. The model is not a perfect, standardized mathematical model for
the LSNDP and it is not trivial to design a Branch-and-Cut-and-Price algorithms for the model
given a complex pricing problem. Heuristics can be designed and research into relaxations of
the pricing problem is needed to obtain good bounds for the LP relaxation. In this way the
model can contribute to design a mathematical formulation for the LSNDP, which is suitable for
a Branch-and-Cut-and-Price algorithm to solve smaller instances of the LSNDP.

7.1 Scope of LSNDP models in this thesis

The classification scheme of Kjeldsen (2011) gives a good overview of the key components in routing
and scheduling problems of liner shipping. However, the definition of routing and scheduling
problems in liner shipping by Kjeldsen (2011) is broader than the definition of LSNDP as it is
understood in this thesis. The scope of the thesis, and hence also the models discussed in this
thesis, can be related to the classification scheme using the characteristics presented in Table 7.1.

No. Characteristic Options
1 Number of starting Points None
2 Type of operation Pick-up and delivery interwoven
3 Nature of Demand Deterministic
6 Fleet composition Heterogeneous
8 Demand Splitting Allowed

10 Number of Capacity Types Multiple
11 Cargo Transshipment Allowed
14 Ships required to be empty No

Table 7.1: Classification of the models considered in this thesis in the terms used in Kjeldsen (2011).
Only terms, where a certain option is required are described.

In this thesis models of liner shipping network design refers to the determination of multi-
ple routes for container vessels to provide network wide transportation of multiple commodities.
Within the scope defined for the LSNDP there are several models differing on the cost of transship-
ping, if there is a scheduling component (Agarwal and Ergun, 2008), weekly frequency (Agarwal
and Ergun, 2008; Jepsen et al., 2011) or not (Alvarez, 2009; Reinhardt and Pisinger, 2011). The
challenges occurring when transferring known methods from the MCND and the VRP problems
are mainly in the area of characteristic 11 described in table 7.1, where cargo transshipments
are allowed and characteristic 14, where ships are not required to be empty at any point along
the route. Note that, in the case where transshipment costs must be charged, it is even more
complicated.

7.2 Relation to capacitated network design problems

Models adhering to the classification in Table 7.1 may be seen as a special case of the classical
MCND defined for a directed graph G = (N,A) and a set of commodities K. Each commodity is
defined by its origin Ok and destination Dk and a volume to be transported dk. For each arc (i, j)
there is a fixed cost fij of assigning capacity to the arc and for each commodity and arc, the cost,
ckij , denotes the transportation cost for a unit of commodity k on arc (i, j). Each arc has a capacity
of uij and the in-and-out going arc sets of a node i is defined as N+(i) = {(j ∈ N : (i, j) ∈ A},
N−(i) = {(j ∈ N : (j, i) ∈ A} . Continuous variables, xk

ij , are defined to model the cargo flow
and integer design variables, yij , are defined for each arc to model, where capacity is assigned. An
arc-flow formulation of the MCND is stated below:
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Min
∑

k∈K

∑

(ij)∈A

ckijx
k
ij +

∑

(ij)∈A

fijyij (7.1)

s.t.
∑

j∈N+(i)

xk
ij −

∑

j∈N−(i)

xk
ji =















−dk if i = Ok,

0 if i ∈ A \ {Ok, DK}

dk if i = Dk.

∀i ∈ N ∀k ∈ K (7.2)

∑

k∈K

xk
ij ≤ uijyij ∀(i, j) ∈ A (7.3)

xk
ij ≥ 0 ∀(i, j) ∈ A ∀k ∈ K (7.4)

yij ∈ {0, 1} ∀(i, j) ∈ A (7.5)

The objective function (7.1) minimizes the transportation cost of the flow and the asset cost of
providing capacity on arcs. Constraints (7.2) are the mass balance constraints (Ahuja et al., 1993)
for each commodity and constraints (7.3) are the capacity constraints for the capacity provided
matched with the commodity flow for each arc. If the yij variables are fixed, a linear multicom-
modity flow problem defined for the resulting graph remains. The relation to LSNDP concerns
the general setup with a two tier structure of asset cost at the upper tier and operational cost of
flow at the second tier. There is a vast body of literature on the MCND, e.g., the comprehensive
survey Gendron et al. (1999), the article of Stoer and Dahl (1994) and the more recent paper
of Frangioni and Gendron (2009). The MCND is considered a challenging optimization problem
from the perspective of model and algorithmic development (Gendron et al., 1999). The problem
requires advanced solution techniques to solve even moderate sized instances of the problem to
optimality. There are different aspects as to why the MCND is considered hard to solve. First
and foremost, the integrality gap is often prohibitively large. The linear relaxation of the MCND
becomes highly fractional, as the linear multicommodity flow problem will prefer to provide ex-
actly the fraction of all capacities needed to meet the demand requirements (Gendron et al., 1999).
Therefore, the lower bounds for the Branch-and-Bound methods are often poor resulting in very
large Branch-and-Bound trees. As a result extensive research has been done to strengthen the
bounds using valid inequalities and cutting planes (Atamtürk, 2002; Costa et al., 2009; Günlük,
1999, e.g.). The problem of high fractionality is severe for models of the LSNDP due to economies
of scale on container vessels guiding fractions of the largest container vessel onto all arcs (Alvarez,
2009; Plum, 2010). In models of the LSNDP with the objective of maximising revenue with partial
demand satisfaction (Agarwal and Ergun, 2008; Alvarez, 2009; Plum, 2010) the problem is even
more explicit because a revenue is obtained in the lower tier, resulting in differing objectives for
the flow and the capacity installation. Secondly, the linear multicommodity flow problem scales
poorly due to the vast amount of arc flow variables. The LSNDP is a special case of the MCND
as the following constraints are added to the classical formulation:

1. The capacity assigned constitute vessel routes in the form of cycles also known as design
balance requirements,

∑

j∈N+(i) yij =
∑

j∈N−(i) yji.

2. A heterogeneous fleet of vessels results in a discrete set of capacities available.

3. The model and/or graph topology will be able to detect and price transshipments of cargo.

Specialised MCND models with the first and second requirement are common within airline,
e.g. Hane et al. (1995), and telecommunication network design, e.g., Dahl and Stoer (1998),Uster
and Kumar (2010), but the third requirement is not as common. In Reinhardt and Pisinger (2011)
the transshipment cost, which is a significant part of the total network cost, is modelled by using
a distinct network layer for each vessel in the fleet. This modelling technique does not lend itself
well to LSNDP models applying a weekly frequency and hence deploying several vessels to a single
route.
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7.3 Strengthening formulations of LSNDP

The complexity of the LSNDP is partly due to high degrees of freedom resulting in an enlarged
solution space compared to the classical MCND. The network consists of non-simple cyclic routes,
partial demand satisfaction is allowed, and all commodities are allowed to transship (Characteristic
8 and 11 in Table 7.1). The following Section is a discussion of techniques, constraints and
requirements, which may be used to strengthen formulations of the LSNDP.

7.3.1 Cutting planes for capacitated network design related to LSNDP

Cutting planes, in particular the cut-set inequalities, for the MCND are well studied, e.g., Atamtürk
(2002); Costa et al. (2009); Günlük (1999) and Stoer and Dahl (1994). Computational results from
Atamtürk (2002); Costa et al. (2009) and Günlük (1999) show that adding cut-set inequalities re-
sult in better bounds at the root node and fewer nodes in the search tree, due to the tighter
bounds. A single cutting plane algorithm has been presented for the LSNDP (Reinhardt and
Pisinger, 2011), however, not using the cut-set inequalities. In the case of Reinhardt and Pisinger
(2011) cut-set inequalities may be used to strengthen the formulation as partial satisfaction of de-
mand is not allowed. In many models of the LSNDP partial satisfaction of demand is allowed and
hence metric, cut-set and Benders inequalities cannot be applied. Future models of the LSNDP
allowing partial demand satisfaction could be strengthened by distinguishing between optional
and “contracted” cargo as seen in the case of tramp-shipping (Christiansen et al., 2007). The
distinction is desirable from a carriers point of view as cargo contracts do exist between carriers
and key clients as described in Section 2.4.4 on page 31. These contracts are not legally binding for
neither carrier nor shipper, but are a sign of a mutual commitment. Therefore, it is good practise
to ensure that the capacity needed to fullfill the contracts is available. The carrier may also have
a strategic position on a particular trade, which requires carrying a significant volume on a trade.
Partial demand satisfaction may also be in conflict with the carriers value position. However,
not allowing partial demand splitting, may force vessels into regions with limited demand, and of
minor strategic relevance to the carrier, at a very high cost. This means that some flexibility is
required, but it would be beneficial to establish a minimum bound on the demand transported for
most commodities. This minimum bound may be used to introduce cut-set inequalities for the
lower bound on demand satisfaction and thus contribute to strengthening models of the LSNDP.

7.3.2 Variable aggregation

In order to reduce the number of arc flow variables for the linear multicommodity flow problem a
common method is to aggregate variables by either origin or destination as seen in Agarwal and
Ergun (2008); Alvarez (2009). However, the aggregation and reduction of arc flow variables may
come at a high price in terms of closing the integrality gap. In Croxton et al. (2007) computational
experiments on formulations of the MCND with and without aggregation of variables show that
the aggregation may result in worse LP-bounds and therefore, there is a trade off between a leaner
formulation of the flow through the network and the integrality gap, which must be closed by the
Branch-and-Bound method used to obtain an integer solution.

The aggregation of variables presented in Chapter 6 is another way of reducing the number
of variables was introduced, in order to reduce problem size without deteriorating the integrality
gap, but computational results must be performed to evaluate the aggregation method in relation
to the integrality gap.

7.3.3 Level of service requirements

From a business perspective introducing level of service is crucial to construct a competitive liner
shipping network. Level of service requirement enforces a maximum transit time for each com-
modity and hence limits the number of allowed paths in the network for the individual commodity.
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It requires adding a time dimension to each arc in the network with special consideration for the
time spent transshipping between services.
Introducing maximum transit time limits is not trivial in arc flow models of a MCND variant, as

it is hard to keep track of the individual paths of commodities if you allow a demand to travel via
several paths from origin to destination (in the Origin-Destination Integer Multicommodity Flow
Problem (Barnhart et al., 2000), level of service would be easier to model as it allows for a single
path per commodity, but it is NP- hard to solve just for the flow). In a path-flow formulation a
time-dimension may be added to the paths, but it requires the linear multicommodity flow problem
to be decomposed into a path-flow formulation solved by delayed column generation as seen in
Brouer et al. (2011). The pricing problem generating paths for commodities has added complexity,
because it requires a resource-constrained shortest path problem to find a time feasible path with
the best reduced cost. The resource constrained shortest path problem is weakly NP-hard and
can be solved in pseudo-polynomial time with a label setting algorithm (Irnich and Desaulniers,
2005).
It is not trivial to see whether requiring level of service will tighten the formulation and decrease

the integrality gap as the time requirements constrain the feasible flow, but are only implicitly
constraining the integer variables. Level of service requirements are important to pursue in future
models of the LSNDP to evaluate, whether they improve the integrality gap or merely complicate
solving the linear relaxation. In either case they describe an additional complexity of a real life
liner shipping network design problem.

7.3.4 Empty container repositioning through load balancing

Empty repositioning is an important part of the traffic flow in any liner shipping network and
empty loads constitute a significant part of all container transports as discussed in Chapter 3. It
is possible to account for the empty flows by adding interbalancing constraints to the multicom-
modity flow problem solved in the LSNDP models. An empty commodity must be introduced with
a variable for each arc to account for the empty flows in models similar to MCND. Interbalancing
constraints are introduced for each node of the network requiring flow into a node to equal flow
out of the node constituted by commodities and the empty flow. The computational experiments
presented in Chapter 3 indicate, that this can readily be incorporated, when solving the flow. The
requirement, to balance flow at nodes, constrains the solution space of the multicommodity flow
problem. The number of non-integer variables will increase by the number of edges, while the
constraint set will increase by the size of the nodes. Like level of service requirements empty repo-
sitioning constrains the linear multicommodity flow problem, and implicitly constrains capacity.
It is uncertain, whether it will improve upon the integrality gap.

7.4 Path-based decomposition of the LSNDP

Chapter 6 presented a model of the LSNDP constructing routes with cargo loading patterns
inspired by the models developed within various Vehicle Routing Problems (VRP). Modelling the
LSNDP inspired by VRP is complicated by both the non-simple cyclic routes, with no predefined
starting point, where vessels are not required to be empty at any point along a route (Characteristic
14 in Table 7.1) as well as having multiple commodities allowing for transshipments (Characteristic
8 and 11 in Table 7.1) .
The idea of the model is to construct service variables that carry both cost and revenue to de-

crease the integrality gap. Moreover a new approach to aggregate the number of explicit demands is
formulated rooted in the perception of trades between regions instead of specific origin-destination
pairs in liner shipping. In this way it reduces the number of commodities in a novel way, which is
close to the perception of trades in liner shipping. The model is suitable for Dantzig-Wolfe Decom-
position. The project explores the possibilities of constructing a Branch-and-Price algorithm on a
compact formulation with demand aggregation to get a coarse network design. The network design
can subsequently be refined by new models and methods not unlike the sequential approach to
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network design seen in the airline industry. The model resembles the PDVRPTW with split loads
described in St̊alhane et al. (2012). In the paper profit is maximised for transporting contracted
and optional cargoes using a fleet of heterogeneous vessels. The paper expands the label-setting
algorithms and dominance criteria for the Pick-up-And-Delivery Vehicle Routing Problem with
Time Windows (PDVRPTW) (Ropke and Cordeau, 2009) and for the Split-Delivery Vehicle Rout-
ing Problem with Time Windows (SDVRPTW)(Desaulniers, 2010). The sub-problem returns a
route and delivery pattern that violates the optimality condition the most by solving a resource
constrained shortest path problem for the route combined with a multidimensional linear knapsack
problem to determine the cargo quantities. In the model of Jepsen et al. (2011) transshipments
are allowed and unlike St̊alhane et al. (2012) routes are cyclic and cannot be assigned a starting
point or an artificial ending point, meaning that the vessel is not guaranteed to be empty at any
point. These properties add to the complexity of the pricing problem as the usage of delivery pat-
tern variables cannot be directly transferred to this model, because the calculation of the reduced
cost in Desaulniers (2010) and St̊alhane et al. (2012) is calculated once the truck/vessel is empty.
As a consequence solving the pricing problem using dynamic programming and a label setting
algorithm does not make use of delivery patterns and apply discretization of all cargo quantities
to ensure optimality. This gives rise to a combinatorial explosion in the pricing problem, due to
the large scale of each demand in units. Furthermore, as there is no starting point, there are no
precedence relations on the pick-ups and deliveries of separate commodities, which is normally
exploited in variants of the PDVRP. Dominance criteria are weak for the discretization resulting
in a near brute-force method generating all paths and cargo combinations in the label setting
algorithm. The implementation of the label setting algorithm showed disappointing results. Var-
ious relaxations of the pricing problem or alternative solution methods maybe pursued in order
to obtain upper bounds for a Branch-and-price algorithm, or use the model to pursue a heuristic
column generation procedure.
The model in Jepsen et al. (2011) is based on a decomposition of the set of services. This set

contains an exponential number of combinations of a set of port calls, which may constitute a
non-simple cycle. The next section presents a model inspired by Jepsen et al. (2011), but with a
vessel class based decomposition. The set of vessel classes is finite and significantly smaller than
the set of services. The number of services possible given a finite number of vessels available in
the vessel class should be more tractable. The model decomposed by vessel class yields a new
sub-problem of multiple cycles with associated extreme cargo patterns modelled in the same way
as Desaulniers (2010); St̊alhane et al. (2012). Solving the pricing problem to optimality remains
an open research question. Heuristic methods, which can be used to obtain bounds, are discussed
at the end of this Chapter. However, the algorithm has not been implemented and hence ,we
do not yet know, whether these approaches are sufficient to make the problem computationally
tractable for small instances.

7.4.1 Path based model decomposing by vessel class

The path based model in Jepsen et al. (2011) is a Dantzig-Wolfe Decomposition of the arc-flow
model in Løfstedt et al. (2011). The model presented in this section is a reformulation of this
model, where the set of services is replaced by the set of the vessel classes. The set of services
is defined within each vessel class. In this model demand is not aggregated. It is possible to
transform the model to use the aggregation from Jepsen et al. (2011). The model presented here
is joint work with Guy Desaulniers, GERAD, Montréal.
The model presented here is still work in progress and is motivated by the difficulties of solving

the pricing problem discussed in Chapter 6. The pricing problem returns a set of routes, which
together deploys the vessels available in the individual vessel class. The model has a drawback
as the exponential set of services are represented using a variable for each subset of nodes, which
is decomposed and occurs in the pricing problem subsequently. However, we relax the pricing
problem to solve a set of routes without these subset variables. As a consequence the cycles
returned from the pricing problem may each deploy a fractional number of vessels and the reduced
cost must be reevaluated for the rounded up integer number of vessels.
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7.4.2 Notations

Here we define the sets and parameters used in this model:� A is the finite set of vessel classes considered with capacity Ca, a ∈ A.� P is the set of ports.� V is the set of port vertices in the graph. Several vertices may exist for a single port p ∈ P
to model non-simple routes. Each vertex i is associated with a port p by function p(i).� Hp ⊂ V is the set of port vertices belonging to port p.� K is the set of commodities. A commodity is defined by its origin portOk ∈ P , its destination
Dk ∈ P and a demand bk, k ∈ K.� Gk is the set of ports allowing transshipment of commodity k ∈ K.� MINk is a minimum required delivery of a commodity k ∈ K.� zk is the revenue of one unit of commodity k ∈ K.� lp is the cost to load one unit of flow in port p.� up is the cost to unload one unit of flow in port p.� cap is the cost to visit port p with vessel class a� cav is the weekly cost for a vessel of class a.� Ea

p ∈ {0, 1} is set iff vesselclass a is not draft restricted in port p.� W a is the weekly distance covered by a vessel of class a at a predefined slow steaming speed.� Na is the number of vessels of vessel class a in the fleet.� dqp is the distance in nautical miles from port q to p.� δ(S) =
∑

i∈S

∑

j∈S xij is the set of internal edges in S ⊂ V .

The variables used in the model are as follows:� Lk
ia is the amount of containers of commodity k ∈ K loaded in port vertex i ∈ V by vessel

class a. The variables are defined for i ∈ Ok ∪Gk� Uk
ia is the amount of containers of commodity k ∈ K unloaded in port vertex i ∈ V by vessel

class a. The variables are defined for i ∈ Dk ∪Gk� xa
ij ∈ {0, 1} is a decision variable indicating whether vessel class a will sail between port

vertex i and port vertex j.� fk
ia is the amount of containers of commodity k carried on vessel class a in port vertex i.� λa
S ∈ {0, 1} is a decision variable indicating if S ⊆ V is the minimal set containing a single

cycle of all subsets S′ ⊆ S of S for vessel class a.� na
S ∈ Z

+ is an integer variable counting the minimal number of vessels of class a needed for
a weekly frequency of the cycle defined in S ⊆ V .
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An arc-flow mathematical model is presented below:

max
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The objective function may be split into 4 terms. (7.6) is the revenue of container transport, (7.7)
are the cargo handling expenses including transshipment cost, (7.8) are the port call costs and
finally (7.9) is the cost of vessels deployed.
The constraints for the flow of multiple commodities are stated below:

MINk ≤
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Lk
ia ≤ bk ∀k ∈ K (7.10)
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∑
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ia ∀k ∈ K, ∀a ∈ A (7.13)

Constraints (7.10), (7.11) and (7.12) ensure load balance for each commodity for loads, unloads
and transshipments. Constraints (7.13) ensure that everything loaded on a vessel class is unloaded
from the vessel class. The constraints are redundant with (7.10), (7.11) and (7.12), but are needed
in the pricing problem when decomposing. A minimum delivery of each commodity is imposed in
order to enable the use of cut-set inequalities for the “contracted” demands. The flow is further
constrained by a designated set, Gk, of transshipment ports for each cargo k ∈ K. This limits
the number of possible paths for each commodity and forces transshipments onto the main ports
identified for an instance. The constraint is realistic as port have a certain productivity in terms of
the cranes available for a given vessel and also the efficiency of the cranes. Transshipping cargo at
feeder ports (spokes) is not desirable simply due to smaller ports being less effective at performing
transshipments.
The constraints defining the cycles and the number of vessels deployed to each cycle is defined

as:
∑

(i,j)∈δ(S)

xa
ij ≤ |S| − 1 +

∑

S′⊆S

λa
S ∀S ⊆ V, 2 ≤ |S| ≤ |V |, ∀a ∈ A (7.14)

na
S ≥

∑

(i,j)∈δ(S)

xa
ij

dp(i)p(j)

W a
− |Na|(1− λa

S) ∀S ⊆ V, 2 ≤ |S| ≤ |V |, ∀a ∈ A (7.15)

∑

S⊂V

na
S ≤ Na ∀a ∈ A (7.16)

∑

j∈V

xa
ij −

∑

j∈V

xa
ji = 0 ∀i ∈ V, ∀a ∈ A (7.17)

∑

j∈V

xa
ij ≤ 1 ∀i ∈ V, ∀a ∈ A (7.18)

Constraints (7.14) and (7.15) are used to detect the integer number of vessels needed for each
cycle. (7.14) sets λa

S only for the minimal set containing a cycle in all port vertex subsets of S
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and (7.15) sets na
S to the minimum integer number of vessels needed to complete the cycle with

the distance at a weekly frequency. The weekly frequency constraint limits the number of vessels
applied in a vessel class in (7.16). Cyclic rotations are ensured by (7.17) and constraints (7.18)
ensure that each port vertex i ∈ V can only be visited once. The definition of the port vertex
set V contains |Hp| duplicates of port p ∈ P and hence multiple port visits and non-simple cyclic
services are allowed.
In order to correctly calculate the cargo patterns respecting the capacity of the vessel for each

arc on its voyage we define:

Lk
ia − Ca

∑

j∈V

xa
ij ≤ 0 ∀k ∈ K, ∀i ∈ Ok ∪Gk, ∀a ∈ A (7.19)

Uk
ia − Ca

∑

j∈V

xa
ij ≤ 0 ∀k ∈ K, ∀i ∈ Dk ∪Gk, ∀a ∈ A (7.20)

∑

k∈K

fk
ia ≤ Ca

∑

j∈V

xa
ij ∀i ∈ V, ∀a ∈ A (7.21)

fk
ja ≥ fk

ia + Lk
ja − Uk

ja − 2Ca(1− xa
ij) ∀i ∈ V, ∀a ∈ A (7.22)

Constraints (7.19)-(7.20) limit load and unload to visited port vertices. Constraints (7.21) ensure
that a vessel class does not exceed its capacity at departure from a port. Constraints (7.22) sets
the flow variables for the entire cycle.

0 ≤ Lk
ia ≤ bk ∀i ∈ V, p(i) = Ok ∪Gk ∀k ∈ K ∀a ∈ A (7.23)

0 ≤ Uk
ia ≤ bk ∀i ∈ V, p(i) = Dk ∪Gk ∀k ∈ K ∀a ∈ A (7.24)

xa
ij ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀a ∈ A,Ea

p(i) = 0 ∧Ea
p(j) = 0 (7.25)

fk
ia ∈ R

+ ∀i ∈ V ∀k ∈ K ∀a ∈ A (7.26)

λa
S ∈ {0, 1} ∀S ⊆ V, ∀a ∈ A (7.27)

na
S ∈ Z

+ ∀S ⊆ V, ∀a ∈ A (7.28)

Constraints (7.23)-(7.28) define the domains of the variables.

7.4.3 Dantzig-Wolfe decomposition

Model (7.6)-(7.28) has block angular structure and may be decomposed according to the Dantzig-
Wolfe decomposition principle. Each separable block define a set of constraints as the sub-problem
domain. Extreme points of this domain can be used to reformulate the original linear program
into a master problem with a reduced set of constraints as only the linking constraints between
blocks remain in the master problem. In the master problem the variables are constituted by all
the extreme points and rays of the sub-problem domain. The block-angular structure is given
by constraints (7.13)-(7.28) separable by vessel class resulting in one sub-problem for each vessel
class. Define the feasible domain of the sub-problem for vessel class a as

Da = {(xa, La, Ua, λa, na)|(xa, La, Ua, λa, na) satisfies constraints (7.13)− (7.28) for vessel class a ∈ A}
(7.29)

Let the sets

S = {(i, j) ∈ δ(S), Lk
ia, U

k
ia, x

a
ij , n

a
S |λ

a
S = 1} (7.30)

define a cycle r with a loading pattern, a number of vessels deployed, and a speed. The speed
is predefined as 30-40% above slow steaming speed as in 6. An extreme point of domain Da

corresponds to a set of cycles Ra, where the total number of vessels deployed in Ra cannot exceed
|Na|. There are no extreme rays of domain Da as (7.13)-(7.28) is bounded.
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The set of cycles defining an extreme point of Da has a special property due to the fact that
constraint (7.16) is not tight: Each cycle r in the set of cycles Ra constitute an extreme point since
it satisfies constraints (7.13)-(7.28) for vessel class c. When reformulating the master problem we
will exploit this property as the variables returned by the sub-problem will constitute a single
cycle r ∈ Ra. In order to reduce the number of variables in the problem and reduce symmetry
in the problem a route is combined with a set of extreme feasible loading patterns Wr to avoid
discretization of cargo flows. This is due to the fact that once (xa

r , n
a
r) are fixed for a given set of

port vertices, where λa
S = 1 there are several feasible (and extreme) loading patterns consisting

of (La
r , U

a
r ) respecting the capacity constraint of the vessel. Determining the set Wr is a separate

optimization problem. In the solution of the master problem a single cycle may be associated with
a linear combination of the set of extreme feasible loading patterns w ∈ Wr.
The following definitions are introduced for the master problem:� Ra is the set of cycles of vessel class a.� yar ∈ {0, 1} is a binary variable indicating whether cycle r for vessel class a is selected in the

solution of the master problem.� yarw ∈ R is a non-negative continuous variable indicating the fraction of loading pattern w
associated to cycle r for vessel class a in the solution of the master problem.� αka
irw is the amount of containers of commodity k ∈ K loaded in loading pattern w for cycle

r at port vertex i ∈ V on vessel class a.� βka
irw is the amount of containers of commodity k ∈ K unloaded in loading pattern w for

cycle r at port vertex i ∈ V on vessel class a.� na
r ∈ Z

+ is an integer denoting the number of vessels of class a deployed on cycle r.� air ∈ {0, 1} is a binary parameter equal to one iff port vertex i ∈ V is visited by cycle r.

Let the cost of a cycle r ∈ Ra be defined as:

carw =
∑

k∈K

∑

i∈Ok

zkαka
irw −

∑

i∈V

∑

k∈K

(lp(i)α
ka
irw + up(i)β

ka
irw)

−
∑

i∈V

airc
a
p(i) − na

rc
a
v

This leads us to the decomposed model, where each column represents a rotation with a cargo
(un)loading pattern and an integer number of vessels deployed :

Max
∑

a∈A

∑

r∈Ra

∑

w∈Wr

carwy
a
rw (7.31)

s.t MINk ≤
∑

a∈A

∑

r∈Ra

∑

w∈Wr

∑

i∈Ok

αka
irwy

a
rw ≤ bk ∀k ∈ K (7.32)

∑

a∈A

∑

r∈Ra

∑

w∈Wr

(
∑

i∈Ok

αka
irw −

∑

i∈Dk

βka
irw)y

a
rw = 0 ∀k ∈ K (7.33)

∑

a∈A

∑

r∈Ra

∑

w∈Wr

∑

i∈Hp

(αka
irw − βka

irw)y
a
rw = 0 ∀p ∈ Gk, ∀k ∈ K (7.34)

∑

r∈Ra

na
ry

a
r ≤ Nc ∀a ∈ A (7.35)

yar =
∑

w∈Wr

yarw ∀r ∈ Ra, ∀a ∈ A (7.36)

yarw ≥ 0 ∀r ∈ Ra, ∀w ∈ Wr (7.37)

yar ∈ {0, 1} ∀r ∈ Ra, ∀a ∈ A (7.38)
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Objective (7.31) corresponds to (7.6)-(7.9). Constraints (7.32)-(7.34) corresponds to (7.10)-
(7.12). Constraints (7.37) enforce non-negativity on the loading patterns and the yar variables are
defined in terms of the yarw variables in constraints (7.36). Constraint (7.35) is the generalized
convexity constraint of domain Da. The convexity constraint has been relaxed due to the special
property of the feasible domain, where each individual cycle constitutes an extreme point in itself.
Normally the convexity constraints are required to sum to one, but in this case the convexity
constraint limits the deployment of vessels in the set of cycles to the vessels available in vessel
class a.

7.4.4 Pricing problem

To solve the master problem using delayed column generation it is desirable to add columns
consisting of a route with a feasible extreme cargo pattern for each vessel class with positive
reduced cost. The pricing problem for a vessel class a consist of constraints (7.13)-(7.28) with the
objective of maximizing the reduced cost for the vessel class a. To calculate the reduced cost we
define the following dual variables:� Let ωk be the duals of constraints (7.32) defined for each commodity k ∈ K. Please note

that there are two separate constraints per commodity k, but either one might be binding
and hence it will be positive or negative depending on which is binding. ωk ∈ R is hence a
free variable.� Let θk be the duals of constraints (7.33) defined for each commodity k ∈ K. θk ∈ R is a
free variable.� Let γk

p ∈ R be the dual variable of constraint (7.34) defined for each commodity k ∈ K and

for each transshipment port p ∈ Gk. γ
k
p is likewise a free variable.� Let πa ∈ R+ be the dual variable of constraint (7.35) for vessel class a ∈ A.

The reduced cost of the variable yarw is

ĉarw = carw −
∑

k∈K

∑

i∈Ok

αka
irwω

k −
∑

k∈K

(
∑

i∈Ok

αka
irw −

∑

i∈Dk

βka
irw)θ

k −
∑

k∈K

∑

p∈Gk

∑

i∈Hp

(αka
irw − βka

irw)γ
k
p − na

rπ
a

Expanding the term crw we get the following reduced cost for yarw:

ĉarw =
∑

k∈K

∑

i∈Ok

zkαka
irw −

∑

i∈V

∑

k∈K

(lp(i)α
ka
irw + up(i)β

ka
irw)−

∑

i∈V

airc
a
p(i) − na

rc
a
v

−
∑

k∈K

∑

i∈Ok

αka
irwω

k −
∑

k∈K

(
∑

i∈Ok

αka
irw −

∑

i∈Dk

βka
irw)θ

k

−
∑

k∈K

∑

p∈Gk

∑

i∈Hp

(αka
irw − βka

irw)γ
k
p − na

rπ
a

=
∑

k∈K

∑

i∈Ok

(zk − lp(i) − ωk − θk)αka
irw −

∑

k∈K

∑

i∈Dk

(up(i) + θk)βka
irw

−
∑

k∈K

∑

p∈Gk

∑

i∈Hp

((lp(i) + γk
p )α

ka
irw − (up(i) − γk

p )β
ka
irw)

−
∑

i∈V

airc
a
p(i) − (cav + πa)na

r

To find variables yarw with a positive reduced cost we define a pricing problem for vessel class
a ∈ A as follows:
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Max
∑

k∈K

∑

i∈Ok

(zk − lp(i) − ωk − θk)Lk
i −

∑

k∈K

∑

i∈Dk

(up(i) + θk)Uk
i

−
∑

k∈K

∑

p∈Gk

∑

i∈Hp

((lp(i) + γk
p )L

k
i − (up(i) − γk

p )U
k
i ) (7.39)

−
∑

i∈V

∑

j∈V

cap(i)xij −
∑

S⊆V

(cav + πa)nS

s.t.
∑

i∈V

Lk
i =

∑

i∈V

Uk
i ∀k ∈ K (7.40)

∑

(i,j)∈δ(S)

xij ≤ |S| − 1 +
∑

S′⊆S

γS ∀S ⊆ V, 2 ≤ |S| ≤ |V | (7.41)

nS ≥
∑

(i,j)∈δ(S)

xij

dp(i)p(j)

W a
−Na(1− γS) ∀S ⊆ V, 2 ≤ |S| ≤ |V | (7.42)

∑

S⊂V

nS ≤ Nc (7.43)

∑

j∈V

xij −
∑

j∈V

xji = 0 ∀i ∈ V (7.44)

∑

j∈V

xij ≤ 1 ∀i ∈ V (7.45)

Lk
i − Ca

∑

j∈V

xij ≤ 0 ∀k ∈ K, ∀i ∈ Ok ∪Gk (7.46)

Uk
i − Ca

∑

j∈V

xij ≤ 0 ∀k ∈ K, ∀i ∈ Dk ∪Gk (7.47)

∑

k∈K

fk
i ≤ Ca

∑

j∈V

xij ∀i ∈ V (7.48)

fk
j ≥ fk

i + Lk
j − Uk

j − 2Ca(1− xij) ∀k ∈ K∀i ∈ V (7.49)

0 ≤ Lk
i ≤ bk ∀i ∈ Ok ∪Gk∀k ∈ K (7.50)

0 ≤ Uk
i ≤ bk ∀i ∈ Dk ∪Gk∀k ∈ K (7.51)

xij ∈ {0, 1} ∀i ∈ V, ∀j ∈ V,Ea
p(i) = 0 ∧ Ea

p(j) = 0 (7.52)

fk
i ∈ R

+ ∀i ∈ V ∀k ∈ K (7.53)

λS ∈ {0, 1} ∀S ⊆ V (7.54)

nS ∈ Z
+ ∀S ⊆ V (7.55)

A solution to the pricing problem for vessel class a will be a set of cycles as explained in section
7.4.3. In order to identify yarw variables it is necessary to identify all subsets S ⊆ V containing
a cycle by the variables λS = 1 and identify the corresponding loading pattern w ∈ W by the
Lk
i , U

k
i variables for all i ∈ S. The obvious drawback of the pricing problem is the exponential

set of constraints (7.41) -(7.42) and variables (7.54)-(7.55) required to model every subset with a
cycle and assign an integer number of vessels to each cycle. For solving the pricing problem we
propose to relax (7.41)-(7.43) with the constraint:

∑

(i,j)∈δ(S)

xij

dp(i)p(j)

W a
≤ Nc
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This relaxation will return a set of cycles, that may be non-simple and which individually may
deploy a fractional number of vessels of class a. Post processing can identify each individual non-
simple cycle and its corresponding cargo pattern giving us a set of master variables, which jointly
has reduced cost. Once yarw variables have been identified the reduced cost ĉarw of each individual
cycle, is calculated to determine, whether it has positive reduced cost. Variables with positive
reduced cost should be added to the master problem.

7.4.5 Solving the pricing problem

To date we are not aware of a practically usable algorithm for solving the pricing problem as
it is defined in (7.39)-(7.55) to optimality. The pricing problem does not lend itself well to the
resource constrained shortest path algorithms seen in the split delivery VRP or Pick-up-and-
Delivery VRP, because the variables represent a cycle as opposed to a path. This poses two
problems: The resources are cyclic and it is difficult to compute the reduced cost as the vessels
are never empty. Secondly, the routes do not have a designated starting point which removes all
precedence relations from the resources. It is possible to solve the pricing problem heuristically,
perhaps in a two phased approach constructing a route and hereafter solving a multidimensional
knapsack problem for the commodities based on the reduced cost. The solution for constructing
cargo patterns in this manner must incorporate transshipments by defining a set of demands, that
are either transshipped or transported directly. It is not unlikely that the pricing problem in its
entirety can be solved using a MIP solver for smaller instances, as it is a variant of the selective
Travelling Salesman Problem, where no subtour elimination constraints are imposed. However, it
will undoubtedly not be efficient to solve the subproblems using a MIP solver in general due to
the exponential set of constraints and variables to ensure integral deployment of vessels to cycles.
It may prove computationally efficient to solve the pricing problem for a small subset of the set
of nodes. Alternative relaxations of the pricing problem could be investigated in order to be able
to obtain upper bounds for the problem, such as a tree-based relaxation.

7.5 Conclusions on modelling

The distinct models published on LSNDP reveal variants of the MCND with high degrees of free-
dom and a vast solution space of mathematical models. In particular partial demand satisfaction
result in large integrality gaps. Introducing minimum deliveries of a subset of demands in the
LSNDP would enable introduction of valid inequalities e.g. the cut-set inequalities known from
MCND’s. Constraints may also be imposed upon the cargo flow problem such as interbalancing
constraints to account for empty repositioning and imposing transit time restrictions for individual
commodities. This is an implicit constraint on the integer variables of the problem. This chapter
has discussed approaches seeking to reduce the integrality gap by using models inspired by the
VRP to circumvent the linear multicommodity flow problem. The model in Jepsen et al. (2011)
and the model presented in this chapter reveal decomposition schemes with complicated pricing
problems, that require extensions to known efficient methods or alternative solution methods.
This leaves several open research questions in modelling and solving such mathematical models of
the LSNDP to optimality. In this Chapter a model built upon the idea of Jepsen et al. (2011) has
been presented as we believe this research direction to be a promising. Relaxations of the pricing
problem may be used initially to produce bounds for the branching procedure. A very rough sketch
of a solution method has been discussed, but further research into constructing good heuristics
producing a cycle and/or a cargo pattern must be undertaken and an actual implementation is
needed to evaluate the quality of the model.
Heuristic methods may be applied to the reference model presented in Chapter 2, but even

developing heuristics is a complex and challenging task for the LSNDP as we have seen in Chapters
2 and 5.
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Chapter 8

Conclusion

This thesis has highlighted various aspects of liner shipping network design seen in the context
of mathematical modelling and optimization. Chapter 2 describes the domain of liner shipping
network design problems from the perspective of a global carrier and relates the domain to a
reference model of the core concepts of liner shipping network design. In conjunction with this a
set of realistic benchmark instances have been created, which have been made publicly available
to the research community to stimulate interest into this important transportation problem. A
heuristic column generation algorithm is described and computational results are reported for
small, medium and large instances of the benchmark suite. Best known solutions are provided as
an offset for the benchmark suite.

The heuristic column generation technique provides good solutions for all instances, except a
constructed case (the Mediterranean case). A challenge for heuristic methods is the performance
related to evaluating very large scale and complex neighbourhoods and also the performance of
evaluating a given move due to an underlying very large scale multicommodity flow problem.
The performance issues makes it essential to make larger moves in the vast solution space of the
LSNDP, and at the same time to make moves of very high quality. The heuristic column generator
in Chapter 2 uses a MIP to make new routes for preselected clusters of ports. The MIP must
be solved for a number of combination of vessel classes, number of vessels deployed and average
speed of the services. The MIP continues to find improved solutions and determine services of
high quality, but it converges slowly and each iteration is computationally expensive. In Chapter
5 we presented a matheuristic for the LSNDP, which aims to be computationally efficient in terms
of the time to search a neighbourhood for the most promising move(s), and in terms of quickly
evaluating a move. A Delta column generator is introduced, which uses the optimal solution of
the previous multi commodity flow problem adjusted for the local changes introduced by a given
move. The Delta column generator gives a performance increase in terms of execution times of
a factor 2-10 on average. The execution time of the warm starts vary greatly depending on the
centrality of the move in terms of the number of variables affected (i.e. the percentage of the
warm started basis that can be reused). The primary neighborhood of the matheuristic is an
integer program defined for each service estimating the value of inserting and removing ports in
a service. This MIP neighbourhood is intended to have a linear growth in evaluation time in
relation to the number of ports in the instance. A growth in the number of ports will typically
mean a larger set of services, but searching a neighbourhood of a single service remains stable with
growing instance size. The time to calculate the estimation functions needed to solve the MIP
neighborhood is low as well as solution times that averages to less than a second for most instances.
The matheuristic is combined with a local search framework attempting to adjust the total number
of services, the vessel class deployment and the number of vessels deployed to each service. The
MIP neighbourhoods are able to fine tune a given solution to the demands, but cannot change
the initial composition of the services or the vessel class deployed. However, the construction
heuristic provides a poor offset for the optimization and the local search must be effective in
transforming the solution. The results of the matheuristic display a large deviation between the
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best result found and the average of ten runs, but it is significantly faster than the heuristic column
generator. The approach can be combined with more effective local search methods and possibly an
improved construction heuristic. Experiments indicate that a more advanced method to generate
high quality new services during the search would improve the search of the solution space. The
results from the heuristic column generator in Chapter 2 cannot be compared to the solutions
using the matheuristic due to different frequency requirements. The best solution for two cases
found by the heuristic column generator are adjusted to meet strict weekly frequency as required
by the matheuristic. Experiments using this best solution from the heuristic column generator
as start solution shows improvements indicating that the matheuristic is able to produce good
results given a good initial solution. Additionally, the matheuristic has been tested as a decision
support tool, where a large network is given as input and a subset of the services are optimized
using the matheuristic. These experiments indicate that the matheuristic may provide valuable
decision support to network planners when incrementally adjusting their network to changes in
the markets for cargo and vessels.
The thesis also explore tactical and operational problems, where the overall network is fixed to

a greater extend. We have explored a tactical problem determining cargo flows considering the
significant repositioning of empty containers, which are inherent to the liner shipping network due
to trade imbalances. Traditionally the OR community has considered empty repositioning as a
post optimization process once the cargo transportation in the network has been fixed, creating a
given supply/demand of empty containers to be repositioned in the network.
In Chapter 3 a mathematical model has been presented for routing the most profitable cargo on

a given network considering the cost for repositioning empty containers to points of demand. The
mathematical model is a Multicommodity Flow Problem with interbalancing constraints. An arc
flow model is presented and a path-flow decomposition is presented. The path flow model is solved
using delayed column generation and computational results confirm that it is possible to evaluate
a realistic sized network over a longer planning period including the flow of empty repositioning to
evaluate network performance. Additionally, the solution may help determine, which commodities
are preferred for transport in the network. This can provide valuable decision support to network
planners, who may use the tool to evaluate changes to the network, changes in the demand or
alternative pricing schemes to optimize upon an existing network.
The Cargo allocation with Empty Repositioning model can be extended to handle additional

complexities such as a maximum transit time for each demand by adding a transit time constraint
for each demand and calculate the paths for a demand with a cost and a transit time. The
pricing Problem will become NP-hard, but can be solved as a resource constrained shortest path
problem for which quite effective dynamic programming algorithms are known. Cabotage rules
may likewise be incorporated as a resource. This extension would be very valuable to the network
planners as they would be able to incorporate important real life traits of a good liner shipping
network design.
Another paramount optimization problem in liner shipping is disruption management as 70-

80% of all round trip voyages experience delays in one or more ports. In Chapter 4 a novel
model for recovering from a given disruption scenario has been presented. The model is able
to combine different recovery techniques considering the cost increase including a penalty for
misconnecting and delaying containers on board affected vessels. The model has been tested on
four common real life scenarios from Maersk Line. The solutions identified by the model are
compared to the realised recovery actions performed at Maersk Line and results reveal solutions
that are tantamount or improved in terms of costs and misconnections. Future research may
investigate a post optimization process of rerouting the disrupted flow on the residual capacity of
the resulting network in order to accommodate efficient and easy transport for the misconnected
and delayed containers, without altering the flow of the remaining network.
Identifying tactical and operational problems inherent to the current business process of incre-

mentally adjusting and improving a given network design is possible given state-of-the-art opti-
mization techniques and scales well to liner shipping network instances of realistic size. Providing
decision support at this level to liner shipping network carriers appears to be a promising field for
future research, where success of actual applications may spur industry interest into optimization
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and decision support using mathematical modelling and optimization techniques.
The reference model in Chapter 2 is one mathematical interpretation of the liner shipping net-

work domain seen from a global carrier, but the model has an obvious drawback as the set of
variables is exponential and efficient methods to generate variables using delayed column gener-
ation is complicated by a set of rows specific to each variable. A model with the same structure
is presented in St̊alhane et al. (2012), where the complication is handled by obtaining a proof of
optimality with an implicit representation of all variables in the problem.
An interesting line of research would be to pursue a similar proof for optimality of the reference

model with a partial set of variables and a definition of the pricing problem combined with an
optimal solution algorithm for the pricing problem. This would open for development of efficient
exact solution methods for the reference model. Obtaining good bounds would help evaluate the
solutions provided by heuristic methods such as the heuristic column generator and the matheuris-
tic presented in this thesis. The reference model is a variant of the Multicommodity Capacitated
Network Design problem (MCND), which is recognised in the community as a very hard opti-
mization problem (Gendron et al., 1999). One challenge in MCNDs is the large integrality gap
of the LP relaxation resulting in large Branch-and-Bound trees and poor bounds to effectively
prune the tree. Chapter 6 presented an alternative mathematical model inspired by the develop-
ment of Branch-and-Price-and-Cut algorithms using delayed column generation within the VRP
community. This model combines routing with a cargo loading pattern in an attempt to close
this integrality gap by implicitly representing the multicommodity flow problem of transporting
cargo on the integer variables. The mathematical model reveals a very complex pricing problem
of creating a longest cycle with cargo loads. Designing an efficient dynamic programming algo-
rithms for this pricing problem is not trivial as dominance criterias are weak and the state space
is huge. Relaxations of the pricing problem and primal heuristics of high quality is needed to
make an effective Branch-and-Price-and-Cut algorithm for this model. The mathematical model
is based on a novel trade based aggregation of the commodity set effectively reducing the number
of demands. However, this aggregation also blocks an obvious relaxation of the pricing problem,
where it is required to load the maximum amount of a commodity in order to reduce the state
space. The maximum is the maximum of the total demand or the available capacity.
In Chapter 7 a model for the LSNDP with weekly frequency has been presented, inspired by the

model in Chapter 6. The difference consists in a decomposition based on the set of vessel classes
instead of the set of services and a minimum delivery of each demand is introduced enabling the use
of cut-set inequalities for a subset of the demands. The decomposition results in a pricing problem
for each vessel class returning a set of routing variables for each vessel class with a corresponding
cargo pattern. The pricing problem introduces cargo loading patterns as seen in Desaulniers (2010)
and St̊alhane et al. (2012) to reduce symmetry of the problem, which should results in a more
scalable pricing problem. However, exact solution methods for this pricing problem are equally
complex and at the time of writing we do not know efficient methods to solve the pricing problem
to optimality.
Again, an interesting line of research would be to find a good relaxation of the pricing problem

and design efficient primal heuristics in order to obtain good bounds for the model using Branch-
and-Price-and-Cut algorithms in a heuristic fashion. This was the offset for the pricing problem
of the VRP problems back in the early days of designing column generation algorithms for VRP
variants. The mathematical models are still considered promising in spite of their complexity and
hopefully, future research will be able to close the gap by finding good relaxations and eventually
efficient methods to solve the pricing problems to optimality. Luckily research within PDVRP
with split deliveries are progressing and the VRP community is starting to address more complex
variants with multiple commodities and cross dockings, which may help solve some of the challenges
present in the pricing problem of constructing routes with cargo patterns for LSNDP.
In conclusion the development of mathematical models for the LSNDP is ongoing and it is

a challenge to construct a mathematical model capturing the core concepts in a liner shipping
network, while obtaining a tight formulation suitable for designing efficient MIP and decomposition
algorithms. The thesis explores three models that closely reflects the core of a real life operation of a
global carrier such as weekly frequencies, extensive use of transhipments and non-simple (butterfly)
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cyclic routes. In time additional complexity of models is required to reflect level of service by
imposing a maximal transit time and designing a schedule, where speed optimization is considered
for each individual voyage of a vessel. Empty repositioning could possibly be incorporated without
adding increased complexity to current models. Furthermore, current models are deterministic
and demand fluctuates with freight rates and market conditions, which is not reflected in current
models. The field is young and we need to master the core model, before we start adding complexity
to the models such as stochastic demands, variable speed and level of service.
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Abstract The Liner Service Network Design Problem (LSN-DP) is the problem of constructing a set

of routes for a heterogeneous vessel fleet of a global liner shipping operator. Routes in the liner shipping

context are non-simple, cyclic routes constructed for a specific vessel type. The problem is challenging

due to the size of a global liner shipping operation and due to the hub-and-spoke network design, where

a high percentage of the total cargo is transshipped. We present the first construction heuristic for large

scale instances of the LSN-DP. The heuristic is able to find a solution for a real life case with 234 unique

ports and 14000 demands in 33 seconds.

Literature overview: A MIP model of the LSN-DP consist of a highly unconstrained routing
problem subject to a large degree of symmetry and a multicommodity flow problem dominating
the constraint set and accountable for a large fraction of the cost. Previous work on liner ser-
vice network design may be found in Rana and Vickson (1991),Reinhardt and Kallehauge (2007),
Agarwal and Ergun (2008) and Alvarez (2009). The models are distinct with regards to trans-
shipments and the vessel fleet. In the early paper of Rana and Vickson (1991) transshipments
are not supported, whereas they are supported in Reinhardt and Kallehauge (2007), Agarwal and
Ergun (2008) and Alvarez (2009). Transshipment costs are accounted for in the objective function
of Reinhardt and Kallehauge (2007),Alvarez (2009) as opposed to Agarwal and Ergun (2008).
The characteristics of the fleet differ as to whether it is heterogeneous for every vessel Rana and
Vickson (1991),Reinhardt and Kallehauge (2007) or consist of a heterogeneous fleet of homoge-
neous vessel classes Agarwal and Ergun (2008),Alvarez (2009). Non-linear capacity constraints
are found in Rana and Vickson (1991),Reinhardt and Kallehauge (2007) assuming that a vessel
may complete its route an integral number of times during the planning horizon. Integrality is not
imposed by Alvarez (2009). The weekly frequency constraint is introduced by Agarwal and Ergun
(2008) assuming a number of homogeneous vessels assigned to each service to offer a weekly visit
to each port en route with the capacity of the vessel class in question. Optimal results for smaller
instances are presented by Reinhardt and Kallehauge (2007) and Alvarez (2009). The approaches

1Conference abstract published in proceedings of TRISTAN VII (2010)
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of Rana and Vickson (1991),Reinhardt and Kallehauge (2007) and Agarwal and Ergun (2008) have
focused on solving the liner service network design problem with traditional decomposition and
integer programming methods and fail to produce results for realistic network sizes of a global
liner shipping operator anno 2009. This is addressed by Alvarez (2009) benchmarking a tabu
search approach presenting results within 3-5% of the optimal solution for up to 7 ports. The
multicommodity flow problem is solved in each iteration, which is reported by Alvarez (2009) to
become computationally expensive already for the 7 port instance. A case study of 120 ports in
Alvarez (2009) show that a heuristic approach may scale to large instances but no execution time is
reported and the quality of the solution is hard to evaluate. It is reported to visit important ports
infrequently. A global network connects several hundred ports worldwide and the corresponding
forecasted cargo demand comprises a commodity set of 4 orders of magnitude. Methods based on
relaxation of the proposed models or simply evaluating the objective function during a search is
not computationally efficient for large scale problems.
Heuristic approach: A solution to the LSN-DP is a set of routes covering the ports serviced

by the shipping operator and transporting the forecasted cargo demand. Viewed as a graph
partitioning problem the solution is a set of strongly connected components with a high degree
of interconnection. The construction heuristic is based on the Multiple Quadratic Knapsack
Problem (MQKP) and relies on a graph of the current schedule, which is divided into a set of
dense subgraphs related by demand, expected transshipment flow and geographical proximity. A
solution found by the construction heuristic is expected to be feasible and realistic, but the quality
of the solution cannot be guaranteed as the heuristic cannot account for the flow problem and the
transshipment cost. In MQKP a set of mutually exclusive items i ∈ V are placed in R knapsacks
with different weight bounds Cr. The objective is to maximise the profit of the knapsacks defined
by the profit matrix P .

maximize(MQKP ) =
∑

r∈R

∑

i∈V

∑

j∈V

pijx
r
ix

r
j +

∑

r∈R
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pjx
r
j (B.1)

subject to:
∑

i∈V

wix
r
i ≤ Cr ∀r ∈ R (B.2)

∑

r∈R

xr
i ≤ 1 ∀i ∈ V (B.3)

xr
i ∈ {0, 1} ∀i ∈ V (B.4)

The variables xr
i indicate whether item i is included in the r’th knapsack. The knapsack constraint

(B.2) makes the total item weight obey the bound Cr and constraints (B.3) ensure that items are
mutually exclusive to the knapsacks. When the MQKP is applied to the LSN-DP the knapsack
items i ∈ V are the accumulated port visits of each port t ∈ T and the knapsacks r ∈ R represent
services, which are a specific vessel class visiting a sequence of ports. Let A be the set of vessel
classes and let Na denote the number of available vessels of class a ∈ A in the fleet. Let Ca

denote the capacity in TEU of a single vessel of class a ∈ A. The number of services/knapsacks
is dependent on the expected rotation time of a service σ(Ca). σ(Ca) depends on vessel capacity
as large vessels are typically assigned to cross regional services and small vessels are assigned
to regional services. The number of knapsacks for the LSN-DP is hence |R| =

∑

a∈A |Ra| =
∑

a∈A⌈
Na

σ(Ca)
⌉. The profit matrix P defines each entry pij = f(lij , dij , hij) where lij is the sailing

distance in nautical miles and dij is the demand between ports i, j ∈ V . hij is the potential
hub flow between port i ∈ V and a hub port j ∈ H ⊂ V , where H ⊂ V are ports with a small
percentage of demand compared to the terminal capacity. A port t ∈ T may be visited multiple
times mt by multiple services according to the capacity and schedule requirements of a port. Let
M be a vector of size |T | containing the number of weekly visits to each port t ∈ T . In the MQKP
port t ∈ T is duplicated mt times for the knapsack items i ∈ V , V = {T ×M} to represent the
current schedule of ports. It is important to observe the weekly frequency constraint of the original
problem in order to obtain a feasible solution to the LSN-DP using the construction heuristic. To
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ensure feasibility, each knapsack r ∈ R is required to provide a Hamiltonian cycle of the items in
knapsack r. The length of the cycle cannot exceed the mileage coverable by the vessels assigned
to knapsack r. Edge variables yrij and enumeration variables ur

i are introduced in the MQKP to
order the ports in each knapsack into a simple, cyclic route constrained by σ(Ca). t

a
ij express the

sailing time between ports i and j and tai is the expected time spent in port i for vessel type a.

maximize(MQKP ) =
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Constraints (B.6) ensure that an edge variable can only be activated if both endpoints of the arc
are included in the knapsack. Constraints (B.7) ensure a cyclic route. Constraints (B.8) ensure
that the cyclic route is simple and constraints (B.9) that the route is connected. Constraints
(B.10) are the weekly frequency constraint ensuring that the simple, cyclic route has a voyage
duration less than the expected rotation time.
The MQKP is solved using a greedy heuristic, where the knapsacks apply the football teaming

principle taking turns at picking the best remaining item max ∆f(lij , dij , hij), i ∈ r, j ∈ V̄ where
V̄ are the unassigned items.
In a hub-and-spoke network design large vessels are deployed on deep sea services to achieve

economies of scaleShintani et al. (2007), while smaller vessels are deployed between spoke and hub.
The algorithm is multilayered to reflect the hub-and-spoke network design of major liner shipping
operators. The function f(lij , dij , hij) is adapted to each layer of the network and the ports are
correspondingly assigned to the layers according to their capacity requirements.
Computational results: The computational results are based on a real life case from Maersk

Line with 234 unique ports and 14000 demands. The MQKP is able to find a solution in 33
seconds for the entire network with some ports unplaced. The solutions have been evaluated
by optimization managers at Maersk Line regarding them as realistic with some modifications.
Current work is on implementing layer specific seeding to improve the number of unplaced ports.
We evaluate the actual flow and the network cost of the solution. We believe that meta heuristic
approaches are needed to optimize liner service networks of global shipping operators and are
working on specializing the Adaptive Large Neighbourhood Search Pisinger and Ropke (2007)
VRP framework towards the context of transshipments and cyclic routes. The first step is the
construction heuristic for the LSN-DP presented here. The ALNS is to search for an improved
solution according to a more sophisticated objective function and cargo allocation detection.
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