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A B S T R A C T

We study the practical setting in which regular- and reserve-crew schedules are dynamically
maintained up to the day of executing the schedule. At each day preceding the execution of
the schedule, disruptions occur due to sudden unavailability of personnel, making the planned
regular and reserve-crew schedules infeasible for its execution day. This paper studies the
fundamental question how to repair the schedules’ infeasibility in the days preceding the
execution, taking into account labor regulations. We propose a robust repair strategy that
maintains flexibility in order to cope with additional future disruptions. The flexibility in
reserve-crew usage is explicitly considered through evaluating the expected shortfall of the
reserve-crew schedule based on a Markov chain formulation. The core of our approach relies
on iteratively solving a set-covering formulation, which we call the Robust Crew Recovery
Problem, which encapsulates this flexibility notion for reserve crew usage. A tailored branch-
and-price algorithm is developed for solving the Robust Crew Recovery Problem to optimality.
The corresponding pricing problem is efficiently solved by a newly developed pulse algorithm.
Based on actual data from a medium-sized hub-and-spoke airline, we show that embracing
our approach leads to fewer flight cancellations and fewer last-minute alterations, compared to
repairing disrupted schedules without considering our robust measure.

. Introduction

Due to a significant growth in air traffic, airports are becoming more and more congested (Jacquillat and Odoni, 2015).
onsequently, efficient and effective disruption management is becoming crucial for hub-and-spoke airlines in order to stay
ompetitive (IATA, 2011). The airline’s capability to deal with inevitable disruptions such as crew absenteeism and sudden aircraft
navailability depends predominantly on the flexibility of an airline’s (reserve) crew schedule. The literature on how to create a
eliable crew schedule during initial schedule creation (see, e.g., Klabjan et al., 2002; Yen and Birge, 2006; Cacchiani and Salazar-
onzález, 2016; Wei and Vaze, 2018), and how to recover from perturbed schedules on the day of execution (see,e.g., Rosenberger
t al., 2003; Petersen et al., 2012; Maher, 2015; Ruther et al., 2016), is developing. However, the effect of using reserve crew
embers on the robustness of airline crew schedules, and how this affects the airline’s capability to deal with future disruptions

n the days before schedule execution, is still unknown (Wen et al., 2021). We will study these interactions where we incorporate
robust measure for the use of specific reserve-crew schedules in an airline crew recovery problem. In this way, a more flexible

chedule is provided which leads to fewer flight delays, flight cancellations, and changes in the crew schedule.
In practice, crew schedules are made available to the crew several weeks before the flights are executed and are continuously

pdated to ensure that all operations continue as planned. In the period between schedule publishing and flight execution, known
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as the tracking period, unexpected events may occur, which affects an airline’s capability to deal with future disruptions. To deal
with such disruptions, airlines typically exploit a reserve crew schedule next to their actual operations. However, using a reserve
crew-member might have severe implications for the ability to recover from future disruptions in the days until the execution of
the schedule. In other words, it is of crucial importance that recovering from disrupted schedules is done in such a way that the
flexibility (in reserve-crew usage) is preserved for recovering from future disruptions. Very little research has been done till now on
how to maintain a reliable schedule in the tracking period that can cope with additional disruptions in the hours or days following
current disruptions.

In our study, we consider a set of so-called crew-induced disruptions occurring during the tracking period. A crew-induced
disruption is defined as the inability of a crew member to follow their schedule consisting of flight legs (origin to destination flights)
and reserve shifts. Those may be due to reasons such as crew taking days off, sickness, as well as crew going over their maximum
duty time. In short, we consider reasons that a crew member becomes unavailable to fly on a given day in the schedule. Through
re-timing flights, swapping crew, and using reserve crew members, the goal is to return to a feasible, reliable, and cost-efficient
schedule, while preventing unnecessary altering of published schedules and respecting labor regulations. Robustness is explicitly
considered through the penalization of unfavorable pairing characteristics and through evaluating the effect of using reserve crew
based on the underlying reserve crew schedule. Basically, our approach modifies the cost of a crew-pairing integer program to
account for the expected shortfall of personnel on the day of flight execution for selecting a specific reserve-crew schedule. This
is contrary to the traditional crew recovery literature, where reserve crew costs are usually generalized to a single cost parameter
which is given exogenously rather than depending on the actual reserve-crew schedule being used.

Our approach is also different from the well-known robustness approaches in the literature on robustness optimization Soyster
(see, e.g., 1973), Ben-Tal and Nemirovski (see, e.g., 1998), Bertsimas and Sim (see, e.g., 2004). Under the assumption that the
uncertain data resides in the so-called uncertainty set, these approaches try to find a feasible solution for all possible scenarios
or deviations of uncertain parameters in their uncertainty set and aim at minimizing the objective function in the worst case.
Interested readers can refer to Bertsimas et al. (2011) for a comprehensive review. In our study, we modify the cost of a standard
integer program to balance between standard air-crew recovery cost and the expected shortfall of personnel of selecting a particular
reserve-crew schedule. Thus, our approach aims to create reliable reserve-crew schedules to control the risk of flight cancellations
or last minute flight alterations but does not employ standard robust optimization techniques.

A Markov chain framework is presented to evaluate reserve crew schedules underlying the flight schedule for a single day. We
evaluate reserve-crew schedules based on the Earliest Finisher First (EFF) recovery policy, in which reserve-crew members are used
based on their remaining time until the end of their reserve duty. We prove that under some conditions this recovery policy is
optimal. We test the effect of the developed robust measure for reserve-crew usage by repairing disrupted schedules dynamically
during the tracking period. The associated optimization problem, which needs to be solved multiple times during the tracking period,
is called the reliable Crew Recovery Problem (RCRP).

We present a set-covering model for the RCRP, and solve it using a branch-and-price algorithm. The associated pricing problem,
which can be reduced to the Resource Constrained Shortest Path Problem (see e.g. Irnich and Desaulniers, 2005), is solved using
a tailored pulse algorithm (see, e.g., Lozano et al., 2015; Schrotenboer et al., 2019). We show through a case study from a
medium-sized hub-and-spoke carrier in the Netherlands that our reliable approach outperforms traditional crew recovery methods.
In particular, our approach results in a lower risk of having an insufficient number of reserve crew members, which leads to fewer
flight cancellations and alterations.

In the following, we will highlight this paper’s contributions by reviewing the relevant literature on airline recovery operations
and airline (reserve) crew scheduling. We first review the crew pairing problem (see, e.g., Barnhart et al., 2003a) and then discuss
the crew recovery problem (see, e.g., Maher, 2015) afterward.

The crew pairing problem forms the basis of the initial schedule creation. It consists of generating minimum-cost anonymous
multiple-day work schedules that satisfy legal and contractual obligations (Barnhart et al., 2003a). Several papers have solved
the deterministic crew pairing problem to optimality using branch-and-price (e.g. Desaulniers et al., 1997; Gamache et al.,
1999). Zeighami and Soumis (2019) propose a model that integrates the crew pairing and crew assignment problems simultaneously
for pilots and copilots. They develop a method that combines Benders decomposition and column generation to solve the
model. Quesnel et al. (2020) consider crew rostering problem with crew preferences. They solve the problem by using a column
generation algorithm in which new pairings are generated by solving subproblems consisting of constrained shortest path problems.
However, in the creation of those pairings, robustness was not considered and the resulting schedules were extremely fragile to
the effects of disruptions during future operations. Since then, reliable approaches to this crew pairing problem are presented.
For example, Shebalov and Klabjan (2006) aim to maximize the potential number of so-called move-up crews, who are able to
move to subsequent later flights if necessary. This allows for mitigating further delays by swapping crew members from different
flights. Schaefer et al. (2005) discuss a model in which unfavorable characteristics of a crew pairing, such as a crew’s duty time
being close to the maximum allowed duty time, are discouraged using a penalty function. The robust measure for flexibility of
reserve-crew members, as is included in the RCRP, follows this approach by providing a sophisticated penalty function (based on
a Markov-chain formulation) to increase our flexibility to cope with future disruptions. Recently, Antunes et al. (2019) present a
robust pairing model for airline crew scheduling, but as opposed to our approach, they do not consider assigning crew pairings to
crew members and therefore do not consider the creation of reserve-crew schedules.

When disruptions are impossible to be covered by the regular crew, reserve crew on call needs to be utilized. One of the first
authors to consider the reserve crew pairing problem were Dillon and Kontogiorgis (1999). They consider reserve crew as a separate
2

entity and use a set partitioning formulation to create multi-day reserve pairings which cover the expected demand for reserve
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personnel. A similar problem is introduced by Sohoni et al. (2006), who consider the reserve cockpit crew scheduling from the
perspective of an American airline in which the authors regard open trips resulting from bidline-invoked conflicts as the primary
reason for reserve demand. More recently, Bayliss (2016) discusses the airline reserve crew scheduling problem for hub- and spoke
airlines. He proposes several probabilistic models to evaluate reserve crew schedules which can be used to mitigate crew delay-
and absence risk. Different from previous studies, we include the evaluation of reserve schedules in a crew recovery setting, where
future schedule flexibility is explicitly considered.

Crew recovery is first introduced by Wei et al. (1997). In their seminal paper, the authors consider the repair of disrupted crew
chedules using a set partitioning formulation of possible repair actions in a branch-and-price framework. Whereas (Wei et al.,
997) do not allow for cancelling flights, Lettovskỳ et al. (2000) do allow this and thereby extend the seminal work of Wei et al.
1997). Stojković et al. (1998) are the first to incorporate airline crew recovery in a personalized schedule setting. Their objective
s to minimize the recovery costs with the additional consideration that the adjusted monthly assignment should remain as close to
he original schedule as possible, as often schedule changes affects crew happiness.

The early literature on airline recovery provides sequential solution methods. First, aircraft recovery is performed for a given
isruption. Subsequently, for the resulting aircraft schedule, crew recovery takes place. This approach is shown by Papadakos
2009) to generally be sub-optimal and not even necessarily feasible. In the past decades, numerous authors proposed integrated
ecovery models integrating aircraft- and crew recovery. Stojković and Soumis (2001) improve on their crew recovery model
y including fixed time windows for which an aircraft may be delayed and provide an integrated pilot and aircraft recovery
roblem. Maher (2015) provides a new approach to the integrated one-day aircraft and crew recovery problem using column-
nd row generation. He argues that, with this improved solution method, large integrated problems can be solved efficiently and
uickly. Wen et al. (2020) study a crew pairing problem with flight flying time variability. They develop a reliable scheduling
y encouraging deviation-affected-free flights and discouraging deviation-affected flights. A customized column generation based
olution algorithm is proposed. Wang and Jacquillat (2020) formulate a two-stage stochastic program with integer recourse to
ointly optimize scheduling interventions and ground-holding operations across airports networks under operating uncertainty.
hey develop an original decomposition algorithm to solve it. Xu et al. (2021) investigate a robust scheduling problem of schedule
esign, fleet assignment, and aircraft routing by incorporating propagated delays and flight re-timing decisions. A column generation
rocedure as well as a sequential variable neighborhood search heuristic are designed for solution. In our paper, we consider an
ntegrated approach by allowing for the re-timing of flights, which increases the possibility to recover from disruptions significantly,
s is shown by Mercier and Soumis (2007).

Recently, the tracking period has been the motivation for Ruther et al. (2016) to study an integrated airline scheduling problem.
o the best of the authors’ knowledge, this is the only work focusing on the tracking period. However, those authors do not
onsider the actual creation of reserve-crew schedules but instead integrate other aspects of airline operations into their optimization
roblems. We refer interested readers on the integration of other airline operations into the crew pairing or crew recovery problem
o the excellent review by Kasirzadeh et al. (2017), refer to Woo and Moon (2021) for airline rescheduling problems from the
erspective of a single airport, and refer to Hu et al. (2016) for the recovery of aircraft and passengers after airline operations.
ummarizing, the contributions of this paper are twofold. First, we explicitly model the effects of using reserve crew members on
he robustness of the crew schedule. Based on a Markov chain formulation of the underlying reserve crew schedule, we are able to
rovide a penalty function ensuring robustness with regards to reserve crew usage. Our second contribution is to incorporate this
otion of reliable reserve crew usage within an airline crew recovery model, which, next to recovering the disrupted schedule in a
ost-efficient manner, has the secondary objective to maintain a schedule that is capable of absorbing further disruptions. Here we

Table 1
Related literature.

Literature FA AR CS GO Model Algorithm

Schaefer et al. (2005)
√

MC DA
Shebalov and Klabjan (2006)

√

MIP RO
Papadakos (2009)

√ √ √

MIP SO
Maher (2015)

√ √

MIP CRG
Bayliss (2016)

√ √

MIP SO
Hu et al. (2016)

√ √

IP GRASP
Ruther et al. (2016)

√ √

MIP B&P
Antunes et al. (2019)

√

MIP RO
Zeighami and Soumis (2019)

√

MIP BD, CG
Quesnel et al. (2020)

√

IP CG
Wang and Jacquillat (2020)

√ √

SP BD
Wen et al. (2020)

√

MIP CG
Xu et al. (2021)

√ √

MIP CG
Woo and Moon (2021)

√ √

SP GH
Our paper

√ √

MIP, MC B&P

FA: Fleet Assignment, AR: Aircraft Routing, CS: Crew Scheduling, GO: Ground Operations.
IP: Integer Programming, MIP: Mixed Integer Programming, SP: Stochastic Programming, MC: Markov Chain.
B&B: Branch-and-Bound, B&P: Branch-and-Price, BD: Benders Decomposition, CG: Column Generation.
CRG: Column-and-Row Generation, DA: Deterministic Approximation, RO: Robust Optimization.
GRASP: Greedy Randomized Adaptive Search Procedure, GH: Greedy Heuristic, S: Simulation Optimization.
3
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Fig. 1. Illustrative example detailing the practical context of the RCRP.

show that using our approach instead of traditional crew recovery methods is more reliable. In short, we use Table 1 to highlight
our contributions to the existing literature.

The remainder of this paper is structured as follows. In Section 2, we formally describe the RCRP. In Section 3, we introduce
the cost structures for the crew pairings and the reserve-crew schedules. For the latter, we discuss a framework to evaluate reserve-
crew schedules and their effect on the robustness of the overall crew schedule. The branch-and-price approach, including the pulse
algorithm for solving the pricing problems, is discussed in Section 4. Section 5 will present detailed results on actual data of a
medium-sized hub and spoke carrier. We conclude our work, and provide avenues for further research, in Section 6.

2. System description

In this section, we formally describe the system that embeds the reliable Crew Recovery Problem (RCRP). First, we provide a
general problem description of the RCRP, and second, we provide a Mixed Integer Programming (MIP) formulation. However, we
start this section with an illustrative example of our system and the RCRP, and sketch the practical context of airline scheduling
operations.

In Fig. 1, we provide a scheme that details the airline scheduling operations which facet the RCRP. Five flight days are denoted
(D1 - D5) and each of these flight days has a corresponding crew-schedule (both regular and reserves). Long before the actual flight
day, an initial schedule is published (T1 - T5). In this paper, we focus on a single flight day with accompanying tracking period,
as is denoted with the black ellipse. We consider that at the scheduling time point, the number of the available crew members are
known. The figure’s upper-part shows such a tracking period in detail. We indicate disruptions with the red arrows. When such a
disruption occurs, we recover from it by solving the RCRP. This provides us with a recovered schedule for the flight day, for both
regular crew and reserve crew. Every time a disruption occurs, the RCRP is solved which provides us with updated (reserve) crew
schedules. Since the RCRP schedules reserve crew in a reliable way, as will be detailed in Section 3.2, we end up with a (reserve)
crew schedule that can effectively cope with disruptions at the day of execution.

2.1. Problem description

In the following, we formally introduce the RCRP.
Let  = {1,… , 𝐹 } be the set of flight legs (in short, flights) in the schedule on the day under consideration. For each flight 𝑓 ∈  ,

we consider a discrete set of flight copies 𝛺𝑓 , consisting of copies of flight 𝑓 with different departure times that are feasible with
respect to the total airline schedule. We let 𝛺 = ∪𝑓∈𝛺𝑓 , and we denote a single flight-copy as 𝜔 ∈ 𝛺𝑓 . Whereas two flight copies

′

4

𝜔,𝜔 ∈ 𝛺 might be feasible on its own, selecting both might be infeasible due to, for instance, airport restrictions on flights departing
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Table 2
Summary of main notation.
Sets:
 Set of flight legs
 Set of all crew members on the day under consideration
 Set of reserve crew members
 Set of regular crew members
 Set of possible crew pairings including crew member 𝑘
𝑆 Set of reserve shifts
𝛺 Set of flight copies
 Set of all incompatible flight copies
𝛩𝑛 Set of reserve-crew schedule with 𝑛 reserve crew members available
Parameters:
𝑎𝑘𝜔𝑝 Binary parameter that is 1 if pairing 𝑝 of crew member 𝑘 includes flight copy 𝜔, and is 0 otherwise
𝑐𝜃 The costs for selecting reserve-crew schedule 𝜃
𝑐𝑘𝑝 The cost of selecting pairing 𝑝 for crew-member 𝑘
𝑐𝑑𝜔 The deadhead cost per crew member for flight leg 𝑑 and flight copy 𝜔
𝑐𝑐𝑓 The canceling cost for flight 𝑓
𝑐𝑡 Fixed transportation costs between bases
𝑐a Schedule altering costs
𝜆𝑘𝑝𝜃 Binary parameter that is 1 if a pairing 𝑝 can be matched by crew member 𝑘 in schedule 𝜃
𝑁𝜃 Maximum number of available reserve-crew members
Decision variables:
𝑥𝑘𝑝 Binary variable that equals 1 if pairing 𝑝 is selected for crew member 𝑘, and equals 0 otherwise
𝑦𝜔 The number of crew deadheading on flight copy 𝜔 ∈ 𝛺
𝑧𝑓 Binary variables 𝑧𝑓 being equal to 1 if flight 𝑓 is cancelled and zero otherwise
𝑢𝜃 Binary variable that equals 1 if reserve-crew schedule 𝜃 ∈ 𝛩𝑛 is selected, and is zero otherwise

and arriving at similar time slots or flights sharing the same aircraft. We let  ∶= {(𝜔,𝜔′) ∣ 𝜔,𝜔′ ∈ 𝛺 and 𝜔,𝜔′ are incompatible}
be the set of all incompatible flight copies.

Let  = {1,… , 𝐾} be the set of all crew members on the day under consideration, of which 𝑅 ⊂ 𝐾 denotes the set of reserve-
crew members and 𝑂 ⊂ 𝐾 denotes the set of regular crew-members. For each crew member 𝑘 ∈ , let 𝑘 denote the set of possible
crew pairings, and let  = ∪𝑘∈𝑘.

Five criteria should be met for a crew-pairing in order to comply with the duty legality rules. First, the maximum time spent flying
during a duty by a crew member is at most 𝜙l1 for a long duty (more than 4 flight legs) and 𝜙s1 for a short duty (less than 3 flight
legs), respectively. Second, the maximum length (in hours) of a duty is at most 𝜙L2 and 𝜙S2 for a long and short duty, respectively.
Third, the minimum time between two consecutive flights (sit time/turnaround time) should be at least 𝜙3. Fourth, the minimum
time between two duties (rest time) should be at least 𝜙4. In practice, rest time depends on the length of the duty. For the brevity
of the model representation we use a single parameter to reflect this. Lastly, the adjusted duties should fit in the overall flight
schedule for an individual crew member. That is, crew members start their duties at the location where their previous duties end,
and vice-versa.

Underlying the regular crew pairings that constitute a feasible flight plan, a reserve-crew schedule is present to mitigate risks
from possible disruptions. Let  = {1,… , 𝑆} be the set of reserve shifts. Each reserve shift 𝑠 ∈  has a fixed start time 𝐵𝑠 and
a fixed end time 𝐸𝑠. We consider a set of reserve-crew schedules 𝛩𝑛, where 𝑛 means the total number of reserve-crew members
available. We define 𝜃 ∶= (ℎ𝜃1 , ℎ

𝜃
2 ,… , ℎ𝜃𝑆 ) and 𝜃 ∈ 𝛩𝑛. 𝜃 represents a reserve-crew schedule consisting of a sequence of numbers of

crew members assigned to each shift with ∑𝑆
𝑖=1 ℎ

𝜃
𝑖 = 𝑛. That is, ℎ𝜃𝑠 denotes the number of crew members assigned to shift 𝑠 ∈ 

in reserve-crew schedule 𝜃 ∈ 𝛩𝑛. Let 𝛩𝑘𝑛 ⊂ 𝛩𝑛 be the set of reserve-crew schedules that contains crew member 𝑘. Note that shifts
typically overlap and selecting which reserve-crew member to use is non-trivial. This will be explained in Section 3.2.

We consider a set  = {1,… , 𝐷} of crew-induced disruptions, where each 𝑑 ∈  describes a flight leg no longer being covered.
The goal is to recover (i.e., once again cover all flights) at minimum cost while retaining the flexibility in the resulting schedule to
cope with potential additional disruptions in the future. In addition, one may choose to let crew deadhead (i.e., travel as a passenger)
on a flight at the price of incurring deadhead costs 𝑐𝑑𝑤, 𝑤 ∈ 𝛺, or a flight might be cancelled at the price of incurring a flight copy
dependent canceling cost 𝑐c

𝑓 .

2.2. Mixed integer programming formulation

Let 𝑥𝑘𝑝 be a binary decision variable that equals 1 if pairing 𝑝 is selected for crew member 𝑘, and equals 0 otherwise. Let 𝑎𝑘𝜔𝑝 be
a binary parameter that is 1 if pairing 𝑝 of crew member 𝑘 includes flight copy 𝜔, and is 0 otherwise. Furthermore, we introduce
artificial variables 𝑦𝜔 that denote the number of crew deadheading on flight copy 𝜔 ∈ 𝛺, and define binary variables 𝑧𝑓 being
equal to 1 if flight 𝑓 is cancelled and zero otherwise. Let 𝑢𝜃 be a binary variable that equals 1 if reserve-crew schedule 𝜃 ∈ 𝛩𝑛 is
selected, and is zero otherwise. The costs for selecting reserve-crew schedule 𝜃 equals 𝑐𝜃 . Let 𝑐𝑘𝑝 be the costs of selecting pairing 𝑝
5

for crew-member 𝑘. We detail those costs in Section 3. An overview of notation is given in Table 2.



Transportation Research Part E 178 (2023) 103283A.H. Schrotenboer et al.

i

a
c
L
T

We condition on the number of available reserve-crew members, and we write RCRP(𝑛) to denote an RCRP instance with 𝑛
reserve-crew members. The RCRP(𝑛) is formulated as the following mixed-integer linear programming model. The list of notation
s given in Table 1.

min
∑

𝑘∈

∑

𝑝∈𝑘
𝑐𝑘𝑝𝑥

𝑘
𝑝 +

∑

𝜔∈𝛺
𝑐𝑑𝜔𝑦𝜔 +

∑

𝑓∈
𝑐𝑐𝑓 𝑧𝑓 +

∑

𝜃∈𝛩𝑛

𝑐𝜃𝑢𝜃 , (1)

s.t.
∑

𝑘∈

∑

𝑝∈𝑘

∑

𝜔∈𝛺𝑓

𝑎𝑘𝜔𝑝𝑥
𝑘
𝑝 −

∑

𝜔∈𝛺𝑓

𝑦𝜔 + 𝑧𝑓 = 1 ∀𝑓 ∈  , (2)

𝑦𝜔 −
∑

𝑘∈

∑

𝑝∈𝑘
𝑎𝑘𝜔𝑝𝑥

𝑘
𝑝 ≤ 0 ∀𝜔 ∈ 𝛺 (3)

∑

𝑤∈𝛺𝑓

𝑦𝜔 ≤𝑀(1 − 𝑧𝑓 ) ∀𝑓 ∈  (4)

∑

𝑘∈

∑

𝑝∈𝑘
(𝑎𝑘𝜔𝑝𝑥

𝑘
𝑝 − 𝑦𝜔) +

∑

𝑘∈

∑

𝑝∈𝑘
(𝑎𝑘𝜔′𝑝𝑥

𝑘
𝑝 − 𝑦𝜔′ ) ≤ 1 ∀(𝜔,𝜔′) ∈ , (5)

∑

𝑝∈𝑘
𝑥𝑘𝑝 ≤ 1 ∀𝑘 ∈ 𝑂 , (6)

∑

𝑝∈𝑘
𝑥𝑘𝑝 ≤ 1 ∀𝑘 ∈ 𝑅, (7)

∑

𝑝∈𝑘
𝑥𝑘𝑝 −

∑

𝜃∈𝛩𝑘𝑛

𝜆𝑘𝑝𝜃 𝑢𝜃 ≤ 0 ∀𝑘 ∈ 𝑅, (8)

∑

𝜃∈𝛩𝑛

𝑢𝜃 ≤ 1 (9)

𝑥𝑘𝑝 ∈ {0, 1} ∀𝑘 ∈ ,∀𝑝 ∈ 𝑘, (10)

𝑦𝜔 ≥ 0 ∀𝜔 ∈ 𝛺, (11)

𝑧𝑓 ∈ {0, 1} ∀𝑓 ∈  , (12)

𝑢𝜃 ∈ {0, 1} ∀𝜃 ∈ 𝛩𝑛. (13)

The Objective (1) consists of the costs for the selected crew pairings, the costs incurred for the number of deadheads, the costs
incurred through canceling flights, and the costs incurred for the selected reserve schedule (and thus, for the selection which reserves
to use). Constraints (2) models (in combination with Constraints (3) and (4)) that if we cancel a flight, we do not allow deadheading
(i.e., 𝑦𝑤) on any flight copy and we do not allow to assign a crew member to that flight (i.e., 𝑎𝑘𝜔𝑝𝑥𝑘𝑝). If we do not cancel the flight,
we should always assign a crew member to that flight and we let crew members deadhead on that flight. Note that a crew member
can be interpreted both as an individual team member and as an entire team, all of whom are subject to the same work regulations.
This is inspired upon the collaboration with our industry partner. Constraints (3) and (4) ensure that no crew is deadheading on a
flight-copy which is not operated by at least one active crew member, so that consistency of departure times between crew flying and
crew deadheading is guaranteed. Constraints (5) ensure that no illegal pairs of flight copies are used, and Constraints (6) ensure that
not-disrupted regular crew is assigned to exactly one pairing. Reserve crew members are restricted to at most one pairing through
Constraints (7). Crew members without a pairing selected, start and end at the location where they originated from at the beginning
of the day. Constraints (8) ensure consistency of the reserve schedule accompanying the selected reserve crew members where 𝜆𝑘𝑝𝜃
indicates whether a pairing 𝑝 can be matched by crew member 𝑘 in schedule 𝜃. Finally, Constraints (9) ensure that at most one reserve
schedule is selected. Note that the formulation is as such that feasibility is always guaranteed (i.e., by canceling all the flights).The
set of pairings 𝑝 ∈ 𝑘 as encountered in the RCRP(𝑛) is cumbersome to enumerate up-front, and therefore column generation is an
appropriate method to solve the LP relaxation of RCRP(𝑛). We will refer to the linear relaxation of RCRP(𝑛) as L-RCRP(𝑛), where
we replace the integrality restrictions of the binary decision variables with 𝑥𝑘𝑝 ≥ 0 for all 𝑝 ∈ 𝑘 and 𝑘 ∈ , 𝑧𝑓 ≥ 0 for all 𝑓 ∈  ,
and 𝑢𝜃 ≥ 0 for all 𝜃 ∈ 𝛩. To solve L-RCRP(𝑛) with column generation, we will work with a restricted set of pairings 

𝑘
⊂ 𝑘, and

we will call the L-RCRP(𝑛) subject to these restricted set of pairings, the restricted linear relaxation of RCRP(𝑛) (RL-RCRP(𝑛)). Then,
column generation can be described as the procedure which iteratively: (1) solves RL-RCRP(𝑛), and (2) generates for each 𝑘 ∈ 
pairings 𝑝 ∈ 𝑘∖

𝑘
with negative reduced cost by solving a so-called pricing problem (defined below), and includes those pairings

in 
𝑘
. Optimality is ensured if no pairings of negative reduced cost are found after solving the pricing problem, in other words, the

corresponding dual solution of RL-RCRP(𝑛) is feasible for L-RCRP(𝑛), and thereby optimal for L-RCRP(𝑛) as well.
In order to formulate the pricing problem, let us define the appropriate dual variables. Note that the variables may depend on

n arbitrary crew member 𝑘 due to decomposing the problem in the crew-member dimension. Let 𝛼𝑓 and 𝛽𝜔 be the dual variables
orresponding to constraints (2) and (3), respectively. Dual variables for the infeasible flight-copy constraints (5) are given by 𝛾𝜔,𝜔′ .
et 𝛿𝑘 be the dual variables corresponding to Constraints (6) and (7), and 𝜖𝑘 be the dual variables corresponding to Constraints (8).
hen the pricing problems for a regular crew member 𝑘 ∈ 𝑂 asks for solving

min
𝑝∈𝑘

𝑐𝑘𝑝 ∶= 𝑐𝑘𝑝 −
∑ ∑

𝛼𝑓 𝑎
𝑘
𝜔𝑝 −

∑

𝛽𝜔𝑎
𝑘
𝜔𝑝 −

∑

𝛾𝜔,𝜔′ (𝑎𝑘𝜔𝑝 + 𝑎
𝑘
𝜔′𝑝) − 𝛿

𝑘, (14)
6

𝑓∈ 𝜔∈𝛺𝑓 𝜔∈𝛺 (𝜔,𝜔′)∈
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and the pricing problem for a reserve-crew member 𝑘′ ∈ 𝑅 asks for solving

min
𝑝∈𝑘′

𝑐𝑘
′
𝑝 ∶= 𝑐𝑘

′
𝑝 −

∑

𝑓∈

∑

𝜔∈𝛺𝑓

𝛼𝑓 𝑎
𝑘′
𝜔𝑝 −

∑

𝜔∈𝛺
𝛽𝜔𝑎

𝑘′
𝜔𝑝 −

∑

(𝜔,𝜔′)∈
𝛾𝜔,𝜔′ (𝑎𝑘

′
𝜔𝑝 + 𝑎

𝑘′
𝜔′𝑝) − 𝛿

𝑘′ − 𝜖𝑘
′
. (15)

The pricing problems depicted above are variants of the Resource Constrained Shortest Path Problem (see, e.g., Irnich and
Desaulniers, 2005). We will further elaborate on the structure of the pricing problems in Section 4, where we provide an efficient
algorithm to solve the pricing problems.

3. Cost structures

In this section, we introduce the two parts of the RCRP(𝑛) that are still undefined. Namely, we detail the crew paring costs
𝑐𝑘𝑝 (Section 3.1) and the reliable reserve crew schedule costs 𝑐𝜃 (Section 3.2). The RCRP selects a complete reserve crew schedule
covering all shifts (and thus periods) for the flight execution day. Thus, the cost 𝑐𝜃 for selecting a reserve crew schedule (i.e., the
expected shortfall) completely covers all periods and shifts on the day of execution.

3.1. Pairing costs for regular crew

The costs of a crew pairing 𝑐𝑘𝑝 (i.e., an assignment of a crew member to a duty) consist of several parts, that are detailed next.
Following (Barnhart et al., 2003b), we will consider the pay-and-credit for a pairing p, referred to as 𝑃𝐶(𝑝). For any crew-pairing
𝑝, let 𝐹𝑇 (𝑝) denote the cost associated with the flight time of the pairing and let 𝐷(𝑝) be the cost related to the total duration of
the pairing. Let 𝑃𝐶min be the minimum guaranteed pay-and-credit for any pairing. The pay-and-credit 𝑃𝐶(𝑝) is then defined as

𝑃𝐶(𝑝) = max{𝐹𝑇 (𝑝), 𝐷(𝑝), 𝑃𝐶min}. (16)

In addition to the pay-and-credit costs for a pairing 𝑝, transportation costs arise whenever the origin and destination of a crew
member’s pairing are at different locations. These costs are denoted by 𝑇𝐶(𝑝) for each pairing 𝑝 ∈  , where 𝑇𝐶(𝑝) ∶= 𝐼{𝑘(𝑝)∈𝑂}𝑐𝑡.
Here, 𝑘(𝑝) denotes the crew member corresponding to pairing 𝑝, 𝑂 is the set of the regular crew members, and 𝑐𝑡 is the fixed
transportation cost between bases for one crew member. 𝐼 is the indicator function showing whether a crew member is in a pair 𝑝.
These transportation costs are defined as a symmetric cost function taking as arguments the origin and destination location.

Evaluating a pairing solely by its planned costs without disruptions ignores the obvious effect of the pairing structure on the
robustness of the overall crew schedule. We, therefore, consider explicit penalties on the following four unfavorable characteristics
of a pairing 𝑝.

1. The pairing’s flight time is close to the maximum allowed flight time 𝜙𝐿1 or 𝜙𝑆1 .
2. The pairing’s duration is close to the maximum allowed pairing duration 𝜙𝐿2 or 𝜙𝑆2 .
3. The pairing’s sit time between consecutive flight legs is close to the minimum required rest time 𝜙3.
4. The rest time between consecutive flight legs is close to the minimum required time between consecutive flight legs 𝜙4.

The total penalty costs 𝑃𝐸𝑁(𝑝) of pairing 𝑝 is then given by

𝑃𝐸𝑁(𝑝) =
4
∑

𝑖=1

(

𝑔𝑖 − 𝛥𝑖|𝜒𝑖(𝑝) − 𝜙𝑖|
)+ , (17)

where 𝑔𝑖 equals the maximum penalty for characteristic 𝑖, 𝛥𝑖 is a parameter that determines the slope with which the penalty
decreases, 𝜒𝑖(𝑝) is the observed value for characteristic 𝑖 in pairing 𝑝, and 𝜙𝑖 equals the maximum or minimum value for the given
characteristic.

By Eq. (18), the penalty for characteristic 𝑖 is the maximum penalty 𝑔𝑖 iff 𝜒𝑖(𝑝) = 𝜙𝑖. This penalty takes into account uncertainty
and risk of being beyond the required threshold for the corresponding characteristic before the reliable modeling itself.

Re-timing costs 𝑐r𝑓 are included when a flight included pairing is re-timed. Let 𝑅𝐸𝑇 (𝑝) be the sum of those costs for pairing 𝑝,
i.e,. 𝑅𝐸𝑇 (𝑝) ∶= ∑

𝑓∈𝐹
∑

𝜔∈𝛺𝑓 𝑎
𝑘
𝜔𝑝𝑐

r
𝑓 . Note that we deduct these costs from the deadheading costs 𝑐𝑑𝜔 for non-original flight copies

𝜔 ∈ 𝛺𝑓 , otherwise the pairing associated with deadheading would also be penalized for being re-timed. By deducting the cost from
the deadhead cost, we ensure that if a crew member deadheads on a re-timed pairing, it will only incur deadheading cost and not
re-timing cost.

Finally, altering costs are incurred if a crew member gets assigned a pairing different than the already published schedule
prescribes. Let 𝐴𝐿𝑇 (𝑝) ∶= 𝐼{𝑘(𝑝)∈𝑂}𝑐𝑎 be those costs, where 𝑐𝑎 means the scheduling altering cost for one crew member. Note
that the altering costs will equal zero for reserve-crew members, and equal 𝑐𝑎 for regular crew members.

Then, the total pairing costs for a pairing 𝑝 are defined as

𝑐𝑘𝑝 = max{𝑃𝐶(𝑝) + 𝑇𝐶(𝑝) + 𝑃𝐸𝑁(𝑝) − 𝑐𝑘o , 0} + 𝑅𝐸𝑇 (𝑝) + 𝐴𝐿𝑇 (𝑝), (18)

where 𝑐𝑘o are the costs of the original pairing of member 𝑘, i.e., the costs of its corresponding pairing in the already published
schedules. Since we intend to make the optimal adjustment based on the already published schedules, we only counter the potential
7

cost increase caused by the adjustment.
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Fig. 2. Illustrative example of a reserve-crew schedule.

3.2. The reliable reserve-crew schedule costs

Recall that a reserve-crew schedule 𝜃 ∈ 𝛩𝑛 is defined as 𝜃 = (ℎ𝜃1 ,… , ℎ𝜃𝑆 ) as an assignment of ℎ𝜃𝑠 crew-members to shifts 𝑠 ∈ . In
this section, we develop a robust cost-measure (𝑐𝜃) for using reserve-crew schedule 𝜃. Recall the RCRP model focuses on the so-called
flight execution day. In the following, we will develop a Markov chain model that models operations on that flight execution day
in detail and use that to derive 𝑐𝜃 . We start with an illustrative example where we introduce the additional required terminology.

Example 1. Fig. 2 depicts the time horizon for an arbitrary day, starting at 06:00 h and ending at 23:59 h. Six flights and three
reserve shifts are scheduled. We assume that all reserve shifts are of length 𝜏. In Fig. 2, three reserve shifts are depicted with ℎ1, ℎ2,
and ℎ3 crew members assigned, respectively. Based on the schedule shifts, we define the set  of periods within a day. Note that,
shifts and periods are two different concepts. One shift may consist of multiple periods and may start even if the previous shift has
not finished yet. In Fig. 2, four periods are defined, where, for instance, shift 2 consists of two periods starting at the beginning of
period 2 and ending at the end of period 3. In order to capture all flights, it should be ensured that no flight occurs before the start
of the first period or the end of the last period.

We model the number of reserve-crew members available at period 𝑡 ∈  as a Markov-chain with state space  = {0,… , 𝑁𝜃},
where 𝑁𝜃 is the maximum number of available reserve-crew members in reserve-crew schedule 𝜃 ∈ 𝛩𝑛. The order of events in each
period 𝑡 is as follows. First, we consider the reserve crew members that finished their shift at the start of period 𝑡 (or equivalently at
the end of period 𝑡 − 1, but for notational convenience we consistently write that this happens at the start of period 𝑡). Second, we
consider the reserve crew members that start their shift at the start of period 𝑡. Third, we incur the stochastic demand for reserve
crew members during period 𝑡.

Let 𝑄𝜃𝑡 describe the distribution of remaining reserve crew at the end of period 𝑡, i.e., 𝑄𝜃𝑡 = (𝜋𝜃0𝑡, 𝜋
𝜃
1𝑡,… , 𝜋𝜃

𝑁𝜃 𝑡
), where 𝜋𝜃𝑒𝑡 denotes

the probability of having 𝑒 reserve crew members at the end of period t, or equivalently, at the start of period 𝑡+1 in reserve-crew
schedule 𝜃 as no further events happen in period 𝑡 after observing 𝑄𝜃𝑡 .

3.2.1. An optimal recovery policy
To correctly model 𝑄𝜃𝑡 , a recovery policy describing how and when to use reserve crew will be defined in the following. In order

to do so, we make the following three assumptions.

Assumption 1. Demand for reserve-crew members in period 𝑡 is described by a known discrete probability distribution 𝐹𝑡, with
density 𝑓𝑡 and domain [0, 𝑏𝑡]. Here, 𝐹𝑡 can for example be estimated based on historical data.

Assumption 2. Reserve crew demand is independently distributed among periods.

Assumption 3. Reserve crew are always available to take over a flight, as long as it departs within their associated shift.

In the following, we consider three transition matrices that model transitions due to reserve crew members finishing their shift
(step 1), starting their shift (step 2), and the stochastic demand for reserve crew members (step 3). These three transition matrices
as a function of the period 𝑡 determines how 𝑄 transitions to 𝑄 .
8
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Step 1: Reserve crew ending their shift: First, we will define transition matrix 𝑃𝐶𝜃𝑡 that describes the transitions due to reserve
crew ending their shift at the start of period 𝑡. We impose the Earliest-Finisher-First (EFF) recovery policy. This implies that if there
is demand for a reserve-crew members in a period, we always assign the reserve-crew members that finish their shift earliest. The
EEF policy allows us to calculate based on the observed number of remaining reserve-crew members (i.e., the ones that are not
used to fulfill demand) how many will end their shift in the transition associated with step 1. Note that this policy corresponds to a
First-In-First-Out policy if the shift lengths 𝜏 are equal for all reserve crew. We will prove that this recovery policy is optimal under
Assumptions 1–3.

Proposition 1. When maximizing the number of reserve crew available at any point in time, an EFF recovery policy is optimal.

Proof. Let an arbitrarily reserve-crew schedule 𝜃 be given. Let (𝑠, 𝑡) be an arbitrary state, where 𝑠 is the number of reserve-crew
members available at period 𝑡. Let 𝜋𝜃𝑒𝑡′ be the probability of having 𝑒 reserve-crew members after period 𝑡′ ≥ 𝑡 in reserve-crew
chedule 𝜃 according to the EFF policy. We show that for any other policy �̃�, it will hold that 𝜋𝜃𝑒𝑡′ ≥ �̃�𝜃𝑒𝑡′ for all 𝑡 ≥ 𝑡′.

Suppose we follow policy 𝜋. That means that at state (𝑠, 𝑡), upon scheduling a reserve-crew member, we select the crew member
𝑥 whose shift ends earliest. By construction, this leaves the maximum number of crew members in all following periods. Thus,
𝜋𝜃𝑒𝑡′ ≥ �̃�𝜃𝑒𝑡′ for all 𝑡 ≥ 𝑡′ for any policy �̃� unequal to the EFF. □

Let the start of period 𝑡 coincide with an end point 𝐸𝑠 of shift 𝑠, such that the reserve-crew members scheduled in shift 𝑠 are
off duty at the start of period 𝑡. Note if a period does not coincide with the end of a shift the transition associated with step 1 is
redundant and 𝑃𝐶𝜃𝑡 is the identity matrix. Define 𝑒𝜃𝑡−1 ∶= max{𝑒 ∣ 𝜋𝜃𝑒,𝑡−1 > 0} as the maximum number of reserve crew members that
can be available at the end of period 𝑡 − 1. Assuming the EFF recovery policy, the transition matrix 𝑃𝐶𝜃𝑡 is given by:

(𝑃𝐶𝜃𝑡 )𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑖 > 𝑗 and 𝑗 = 𝑒𝜃𝑡−1 − ℎ
𝜃
𝑠

1 if 𝑖 = 𝑗 and 𝑗 ≤ 𝑒𝜃𝑡−1 − ℎ
𝜃
𝑠 ,

0 otherwise.
(19)

The rationale behind each of the cases in Eq. (19) is as follows. The first case considers the case in which some reserve crew members
of shift 𝑠 will end their duty and these reserve crew members are not all being used to fulfill demand for reserve-crew members.
This happens if the observed number of reserve-crew members is larger than the maximum number of reserve-crew members at
𝑡 − 1 (𝑒𝜃𝑡−1) minus the number of reserve crew member ending their shift (ℎ𝜃𝑠 ) at the start of period 𝑡. Hence, we transition with
probability 1 from 𝑖 to 𝑒𝜃𝑡−1 −ℎ

𝜃
𝑠 reserve crew members if 𝑖 > 𝑒𝜃𝑡−1 −ℎ

𝜃
𝑠 . The second case covers all the situations in which we observe

less than 𝑒𝜃𝑡−1 −ℎ
𝜃
𝑠 reserve-crew members, implying that all the reserve crew members that end their shift at the start of period 𝑡 are

already used to fulfill the demand for reserve-crew members. The third case means that the rest of state transitions cannot occur.
Step 2: New reserve crew members starting their shift: Let the transition matrix 𝑃𝐴𝜃𝑡 describe reserve crew members starting

their shift at the start of period 𝑡. Recall from Assumption 3 that reserve crew are always available. Given ℎ′𝜃𝑠 reserve crew starting
their shift 𝑠′ at period 𝑡, the elements of 𝑃𝐴𝜃𝑡 are given as

(𝑃𝐴𝜃𝑡 )𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑖𝑓 𝑖 + ℎ𝜃𝑠′ ≤ 𝑁𝜃and𝑗 = 𝑖 + ℎ𝜃𝑠′
1 if 𝑖 + ℎ𝜃𝑠′ > 𝑁

𝜃 and 𝑗 = 𝑖
0 otherwise.

(20)

Here, the first case is trivial as it increases the number of reserve crew members with the number of reserve crew members starting
their shift ℎ𝜃𝑠 if the observed number of crew members is a feasible observation. The second case is a technicality to ensure that the
transition matrices are of the same dimension.

Step 3: Reserve crew assigned to duties: With the independent distribution of reserve-crew demand, the transition matrices
due to reserves being assigned to a duty are described by 𝑃𝐵𝜃𝑡 , where the elements of 𝑃𝐵𝜃𝑡 are given as

(𝑃𝐵𝜃𝑡 )𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑓𝑡(𝑥) if 𝑗 = 𝑖 − 𝑥 > 0,
1 − 𝐹𝑡(𝑖) if 𝑗 = 0,
0 otherwise,

(21)

here 𝑥 means the demand of reserve-crew members.
Then, the total transition matrix from period 𝑡 − 1 to period 𝑡 is given by 𝑃𝐶𝜃𝑡 𝑃𝐴𝜃𝑡 𝑃𝐵𝜃𝑡 , such that

𝑄𝜃𝑡 = 𝑄𝜃𝑡−1𝑃
𝐶𝜃
𝑡 𝑃𝐴𝜃𝑡 𝑃𝐵𝜃𝑡 . (22)

n illustrative example of such a transition is provided in Example 2.

xample 2. In Fig. 3, we illustrate the transition matrices 𝑃𝐴𝜃 , 𝑃𝐵𝜃 , and 𝑃𝐶𝜃 for a transition resulting from 1 reserve crew ending
is shift and 1 reserve crew starting his shift with 𝑁𝜃 = 𝑒𝜃𝑡−1 = 2. From left to right, we indicate the transition matrices 𝑃𝐶𝜃𝑡 , 𝑃𝐴𝜃𝑡 ,
nd 𝑃𝐵𝜃𝑡 . Since 𝑒𝜃𝑡−1 = 2 and 1 crew member ends his shift in this particular example, we know that if we observe 2 crew-members
t the start of this transition (the upper left node), we will move to a state of 1 crew-member resulting from the crew-member
9

nding his shift. However, if we observe 0 or 1 crew member, we are sure that the crew-member that ends his shift is used to fulfill
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Fig. 3. Example of the state space transitioning with transition probabilities on the edges.

demand for reserve-crew members in some period 𝑡′ < 𝑡. Hence, if we observe 0 or 1 crew member we are sure these crew members
do not end their shift, and thus the number of reserve-crew remains equal. This explains the horizontal arcs from the nodes on the
left. The transition matrix 𝑃𝐴𝜃𝑡 in the middle shows that 1 new crew-member starts his duty at this point. Note that arrow from

crew-members to 2 crew-members in the transition of 𝑃𝐴𝜃𝑡 is the technicality mentioned earlier. The right transitions 𝑃𝐵𝜃𝑡 show
the probability of using crew members during period 𝑡 caused the demand for reserve-crew members induces by disruptions to the
ctual flight schedule.

.2.2. The risk of a reserve crew schedule
Given the transition matrices 𝑃𝐴𝜃𝑡 , 𝑃𝐵𝜃𝑡 , and 𝑃𝐶𝜃𝑡 as described formerly, we are able to evaluate the risks associated with a given

eserve crew schedule 𝜃 = (ℎ𝜃1 ,… , ℎ𝜃𝑆 ). We express these risks in terms of the expected shortfall (also called the conditional value at
isk), which is defined as the expected shortage of reserve-crew members given that there is a shortage. Let 𝜉𝑡(𝜃) be the expected
hortfall of reserve personnel in period 𝑡 for schedule 𝜃, i.e.,

𝜉𝑡(𝜃) =
𝑏𝑡
∑

𝑖=1
𝑖 ⋅𝑄𝜃𝑡−1𝑃

𝐶𝜃
𝑡 𝑃𝐴𝜃𝑡 ⋅ 𝐠𝐢𝐭 (23)

here 𝑏𝑡 denotes the upper bound on reserve demand in period 𝑡 and 𝐠𝐢𝐭 is a row vector of size 𝑁𝜃 +1 obtained from the probability
ensity function 𝑓𝑡 for demand for reserve crew in period 𝑡 by setting 𝑔𝑖𝑡 [𝑎] = 𝑓𝑡(𝑎 + 𝑖) if 𝑎 + 𝑖 ≤ 𝑏𝑡, and 0 otherwise. The equation
onditions over having 𝑖 crew members short (the summation over 𝑖). For each 𝑖, we multiply the state probability vector with 𝑔𝑖𝑡
o evaluate each state with a demand realization resulting in 𝑖 crew members being short. In this way, we evaluate each potential
ealization of demand for reserve crew personnel in period 𝑡, which can result from multiple realizations of demand up and including
hat period.

Then, our robust cost measure for selecting a reserve-crew schedule 𝜃 ∈ 𝛩𝑛 is given by

𝑐𝜃 = (𝑐s
∑

𝑡∈
𝜉𝑡(𝜃) − 𝑐0), (24)

here 𝑐s is a fixed parameter denoting the costs of using reserve-schedule 𝜃, and 𝑐0 is the robust costs corresponding to the current
ublished schedule. For the first published schedule, we let 𝑐0 = 0.

In Algorithm 1, we denote how to calculate the ∑

𝑡∈ 𝜉𝑡 for a given reserve schedule. Here, we calculate this fraction iteratively
nd denote its cumulative sum with 𝛯(𝜃). We calculate 𝑄𝜃𝑡 in a similar way, i.e., we calculate it iteratively and denote it with 𝑄(𝜃).

. The branch-and-price algorithm

In this section, we present the branch-and-price algorithm for solving the RCRP. First, we detail the branch-and-price algorithm
y discussing branching rules. Second, we introduce the pricing problem and its solution procedure.

.1. Branching rules

We propose a sequential branching approach. First, we require all cancellations to be integral. Cancellations are typically highly
ostly and have a large effect on the resulting solution. By branching on these variables early, the number of flights which are to
e covered becomes fixed and the resulting question is restricted to which crew member is responsible for taking on the flights
o be covered. If multiple cancellation variables are fractional, branching is done on the most infeasible variable (i.e., the variable
ith value closest to 0.5). Secondly, we force the deadheading variables to be integral. By doing so, we also restrict the pairing
10
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variables which include the flight leg to be deadheaded on to be integral. Again, branching is done on the most infeasible variable
first. Finally, Ryan-Foster branching, as introduced by Ryan and Foster (1981), is applied. In this branching rule, two successive
flights in a fractional pairing (i.e., follow-ons) are forced to follow each other in a pairing on the one branch but not allowed to be
in the same pairing on the other branch. As in the previous branching rule, follow-ons from the most infeasible pairing are selected
to branch on first. Define the set of fractional pairing variables for crew member 𝑘 as 𝑃 𝑘 = {𝑝 ∈ 𝑃 𝑘|𝑥𝑘𝑝 ∉ Z}. Then we branch on
he follow-on connection (𝑖, 𝑗) that maximizes

min
⎛

⎜

⎜

⎝

∑

𝑘∈𝐾

∑

𝑝∈𝑃 𝑘|(𝑖,𝑗)∈𝑝

𝑥𝑘𝑝 , 1 −
∑

𝑘∈𝐾

∑

𝑝∈𝑃 𝑘|(𝑖,𝑗)∈𝑝

𝑥𝑘𝑝
⎞

⎟

⎟

⎠

. (25)

Besides branching, node selection strategies may play an important role in branch-and-price algorithms. Preliminary experiments
have shown that different branching rules do not show a big impact on the performance and the branch-and-bound node with the
best-bound is not outperformed by other node selection strategies. We, therefore, choose this approach in our branch-and-price
algorithm.

4.2. The pricing problem

The pricing problem consists of finding crew pairings of negative reduced cost 𝑐𝑘𝑝 , for each crew member 𝑘 ∈ . Note that
he pricing problem and accompanying solution procedure are both valid for regular-crew members and reserve-crew members.
n addition, note that every individual crew member has a specific set of duty-legality rules, as this depends on the overall crew
chedule for multiple days. Therefore, it is crucial to solve the pricing problem for each crew-member individually.

A crew pairing 𝑝 ∈ 𝑘 is described on a directed graph 𝑘 = (𝑘,𝑘), where the vertex set 𝑘 denotes airports at different
moments in time, and the arc set 𝑘 denotes the transitions between the airports (or the stay at the same airport).

The vertex set 𝑘 is further partitioned into a source node 𝑣𝑘𝑠 ∈ 𝑘 corresponding to the earliest possible starting time of crew
member 𝑘, a sink node 𝑣𝑘𝑒 ∈ 𝑘 corresponding to the airports where crew member 𝑘 may end their day, and a set of assignment
nodes A ⊂ 𝑘 denoting departure or arrival airports at a specific time so that flight legs can be represented by arcs between those.

Finding a crew pairing of negative reduced cost equals solving a Resource Constrained Shortest Path Problem (RCSPP) in 𝑘.
Consider the following illustrative example, accompanying to Fig. 4, to clarify the structure of 𝑘.

Example 3. In Fig. 4, we consider an example graph 𝑘 for an arbitrary crew member 𝑘 ∈ . Let the flight schedule be given as
denoted in Table 3. Let the shift of reserve-crew member 𝑘 start at 6:00 at AMS airport. Consider five flights as given in Table 3.
Transportation between the bases AMS, RTM and GRQ is possible by public transport and every flight is allowed to be re-timed
such that they depart 5 minutes earlier. In this example, crew member 𝑘 should arrive before 15:30 to not violate his minimum rest
time. As a consequence, the arc between GRQ at 13:05 to AMS at 15:30 is infeasible (as the travel time is 2:30 h) and therefore left
out of the graph. The minimum sit time equals 30 minutes, which renders some copy combinations infeasible. For instance, there is
o arc between arriving at BCN at 9:00 h and leaving BCN at 9:25, as this would only result in 25 min rest time between successive
light legs.

.3. Solving the pricing problem

In order to solve RL-RCRP, we need to solve its corresponding pricing problems (14) and (15), and add the generated crew
airings to RL-RCRP until no crew pairings of negative reduced cost can be found. Then, the corresponding dual solution is optimal,
nd we solved RL-RCRP to optimality in the current branch-and-bound node. Note that we enumerate the reserve-crew schedules
p front, i.e., they do not play a part in the pricing problem.

The pricing problem which we need to solve in the RCRP is a Resource Constrained Shortest Path Problem (RCSPP) that does not
xhibit linear patterns in the use of resources. To not rely on dominance criteria within classical labeling algorithms, we propose

pulse algorithm (see, e.g., Lozano et al., 2015; Schrotenboer et al., 2019) to solve the RCSPP. Besides that it does not rely on

Algorithm 1 Evaluation of a reserve schedule
Output: Expected shortfall of reserve schedule 𝛯(𝜃)

1: procedure Evaluate(𝜃, ,  , 𝑓𝑡)
2: 𝛯(𝜃) ← 0
3: 𝑄(𝜃) ← (1, 0,… , 0)
4: for 𝑡 ∈  do
5: 𝛯(𝜃) ← 𝛯(𝜃) + 𝜉𝑡(𝜃)
6: 𝑄(𝜃) ← 𝑄(𝜃) ⋅ 𝑃 𝐶𝜃

𝑡
7: 𝑄(𝜃) ← 𝑄(𝜃) ⋅ 𝑃𝐴𝜃

𝑡
8: 𝑄(𝜃) ← 𝑄(𝜃) ⋅ 𝑃 𝐵𝜃

𝑡
9: end for

10: return 𝛯(𝜃)
11: end procedure
11
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Table 3
Example flight schedule.
DEP ARR DEP time ARR time

AMS ALC 6:35 9:15
ALC AMS 9:50 12:30
RTM BCN 7:00 9:00
BCN AMS 9:30 11:30
AMS GRQ 12:20 13:05

Fig. 4. Illustrative example of a pricing problem for crew member 𝑘 corresponding to the illustrative flight schedule in Table 3.

dominance criteria, it is simple but effective in its use. In summary, the pulse algorithm contains in a depth-first search through
the graphs 𝑘 while using pre-processed upper bounds in order to effectively prune the search. The procedures to solve the pricing
problems are given in Algorithms 2 - 4. In (Algorithm 2), the general procedure of solving our pricing problem is considered. It
concerns a call to a bound procedure (i.e., Algorithm 3) and a call to the pulse algorithm (i.e., Algorithm 4). In the following, we
discuss these algorithms one by one.

The pulse algorithm (4) can be best characterized as a pulse propagating up and down in a depth-first search tree. At every
node, the algorithm either continues the partial path 𝜌 it is following or is pruned. The resource consumption for a partial path 𝜌 is
denoted using 𝛷1(𝜌) and 𝛷2(𝜌) for flying- and duty time, respectively. Reduced cost for a partial path 𝜌 is denoted using 𝑟(𝜌).

The pricing problem described in Algorithm 2 constitutes of two phases. In the first phase, a bounding scheme (refer to Algorithm
3) calculates lower bounds on the reduced costs. A step size parameter 𝛥𝑝 determines how many of these bounds are calculated.
The bounding phase can be done independently of the subproblem for crew number 𝑘 (that is, the bounding phase holds for all
crew members 𝑘 ∈ 𝐾) and is described using a lower bound matrix 𝐵 =

[

𝑏(𝑣𝑖, 𝜏)
]

, where 𝑣𝑖 corresponds to a given node and 𝜏 to
the amount of resources spent. Secondly, the subproblem for crew member 𝑘 is solved using the pulse algorithm with a depth-first
search of the solution space, where sub-optimal pairings are pruned using a combination of feasibility pruning (eliminating partial
pairings which exceed the duty or flying time limits) and lower bound pruning using the lower bounds as calculated in the previous
phase. Finally, if the pulse algorithm finds any pairing with negative reduced cost in subproblem 𝑘 ∈ 𝐾, the pairing with the most
negative reduced cost is added to the restricted master problem. That is, at each round of pricing, at most 𝑘 new pairings are added
to the problem.

We further elaborate on the pulse procedure (i.e., Algorithm 4). If we intend to add node 𝑣𝑖 to the current partial path 𝜌, the
function isFeasible checks whether adding this node does not exceed flight- or duty time limitations or violates feasibility in the
monthly schedule. The function checkBounds checks whether going to this node within the current path is guaranteed to be sub-
optimal given the current amount of flying spent 𝛷1(𝜌). That is, it prunes the search tree whenever 𝑟(𝜌) + 𝑏

[

𝑣𝑖, 𝛷1(𝜌)
]

≥ 𝑟(𝜌∗), where
𝑟(𝜌∗) corresponds to the current best found solution.

Bounds are only calculated for a finite number of possible amounts of flying time used, as determined by the parameter 𝛥𝑝. In
12

Algorithm 3, 𝑓𝑖 and 𝑑𝑖 denote the incurred flight and duty time when adding node 𝑖 to the current partial path. We ignore constraints



Transportation Research Part E 178 (2023) 103283A.H. Schrotenboer et al.

1
1
1
1
1
1
1
1
1
1

1
1
1
1

a

Algorithm 2 Pricing problem
Output: New columns for the restricted master problem (RL-RCRP)

1: procedure Pricing(𝛥𝑝)
2: bound(𝛥𝑝 , 𝜙𝐿1 )
3: for 𝑘 ∈ 𝐾∕𝐾𝑅 do
4: 𝜌← {}
5: 𝑟(𝜌) ← (−𝛿𝑘 + 𝑐a)
6: pulse(𝑣𝑘𝑠 , 0, 𝑟(𝜌), 0, 𝜌)
7: if 𝑟(𝜌∗) < 0 then
8: addPairing(𝜌∗)
9: end if
0: end for
1: for 𝑘 ∈ 𝐾𝑅 do
2: 𝜌← {}
3: 𝑟(𝜌) ← (−𝛿𝑘 − 𝜖𝑘)
4: pulse(𝑣𝑘𝑠 , 0, 𝑟(𝜌), 0, 𝜌)
5: if 𝑟(𝜌∗) < 0 then
6: addPairing(𝜌∗)
7: end if
8: end for
9: end procedure

on the duty time while constructing the lower bounds. In addition, note that the bound procedure is independent of the actual crew
member 𝑘 ∈ . Hence, when 𝜏 = 0, see Algorithm 3, the bound procedure does not provide us with optimal solutions to the RCSPP.

If no bound is known for 𝛷1(𝜌), one should round 𝛷1(𝜌) down to the highest amount of flying time which is in the bound matrix.
When adding the current node 𝑣𝑖 is feasible and possibly optimal, we attempt to add a further node to the current partial path of
the set 𝑈𝑘

𝑖 = {𝑣𝑗 ∈ 𝑘|(𝑣𝑖, 𝑣𝑗 ) ∈ 𝑘}. Whenever a partial path 𝜌 reaches the sink node 𝑣𝑘𝑒 with minimal reduced cost so far, we set
𝜌∗ = 𝜌 and 𝑟(𝜌∗) = 𝑟(𝜌).

Algorithm 3 Bound procedure
Output: Lower bound matrix 𝐵 = [𝑏(𝑣𝑖 , 𝜏)]

1: procedure bound(𝛥𝑝, 𝜙𝐿1 )
2: 𝜏 ← 𝜙𝐿1
3: while 𝜏 ≥ 0 do
4: 𝜏 ← 𝜏 − 𝛥𝑝
5: 𝜌← {}
6: for 𝑣𝑖 ∈ 𝐴 do
7: pulse(𝑣𝑖, 0, 𝜏, 0, 𝜌)
8: if 𝜌∗ = {} then
9: [𝑏(𝑣𝑖 , 𝜏)] ← ∞

10: else
11: [𝑏(𝑣𝑖 , 𝜏)] ← 𝑟(𝜌∗)
12: end if
13: end for
14: end while
15: end procedure

Algorithm 4 Pulse procedure
1: procedure Pulse(𝑣𝑖, 𝑟(𝜌), 𝛷1(𝜌), 𝛷2(𝜌), 𝜌)
2: if isFeasible(𝑣𝑖, 𝛷1(𝜌), 𝛷2(𝜌), 𝜌) then
3: if not checkBounds(𝑣𝑖, 𝛷1(𝜌), 𝑟(𝜌)) then
4: 𝜌′

← 𝜌 ∪ {𝑣𝑖}
5: 𝛷1(𝜌

′ ) ← 𝛷1(𝜌) + 𝑓𝑖
6: 𝛷2(𝜌

′ ) ← 𝛷2(𝜌) + 𝑑𝑖
7: for 𝑣𝑗 ∈ 𝑈𝑘

𝑖 do
8: 𝑟(𝜌′ ) ← 𝑟(𝜌) + 𝑟𝑖𝑗
9: pulse(𝑣𝑗 , 𝑟(𝜌

′ ), 𝛷1(𝜌
′ ), 𝛷2(𝜌

′ ), 𝜌′ )
0: end for
1: end if
2: end if
3: end procedure

5. Case study

The design of our model is based on a real-life case from a medium-sized Dutch international airline. We validate our model
nd solution technique based on the data of this airline. We follow the progress of their crew schedule over the tracking period and
13
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Fig. 5. Illustration of the experimental set-up.

he disruptions which they encounter. We then let our model recover their schedules accordingly. We compare the results with a
enchmark model, as we describe in Section 5.1.

.1. Benchmark model: Traditional crew recovery problem

We compare our results with that of a Traditional Crew Recovery Problem (TCRP). The TCRP, unlike our model, uses no penalties
or unfavorable characteristics to assess new pairings and penalizes reserve usage through a single cost parameter 𝑐𝑠 only. Hence, this

model focuses on the strict minimization of planned costs only. For a fair comparison, the TCRP is restricted to using a maximum
number of 𝑛 reserves when comparing its performance to that of the RCRP(n). The resulting MIP formulation can be found in
Appendix A.1. We show, through the upcoming experiments, that by applying a more reliable approach during the tracking period,
results on the day of execution can be improved.

5.2. Experimental setup

We consider two sets of each 10 instances. The first set of instances concerns 175 flights (39 aircraft) with 98 available crew-
members, of which 19 are scheduled for a reserve-shift. The second set of instances concerns 309 flights (75 aircraft) with 169
crew-members, of which 29 are assigned to be reserve crew. The number of included bases (i.e., airports where the crew members
start and end their day) differs between the experiments: it equals 4 for the first set and 1 for the second set of experiments.

In Fig. 5, we illustrate our experimental design. We consider a tracking period of 30 days throughout which disruptions might
occur. In the first experimental setup, as a test case, we consider all the disruptions throughout the 30 days and only update the
schedule once. In the second experimental setup, we partition the tracking period in four periods of equal length and update the
schedule four times (corresponding to a weekly update). Hereby, the first experiment serves as a validation of the RCRP in relation
to the TCRP, i.e., the differences in actual results should be comparable though the RCRP should perform more reliable. The second
set of experiments is in line with practice, where crew schedules are updated in a weekly basis in order to inform crew members
timely about the disruptions in their schedule.

The probability of a single disruption (for a flight leg not being covered) is denoted by 𝜓 𝑗𝑖 for each instance 𝑖, where 𝑗 denotes
the period in which we recover from the accumulated disruptions. For example, 𝜓0.25𝑇

𝑖 means the probability of a single disruption
occurring in the first quarter of the tracking period. For the first experimental setup, we only consider 𝜓𝑇𝑖 , as we accumulate all
disruptions throughout the tracking period. We denote the probability of a disrupted flight leg on the day of execution with 𝜓𝑂𝑖 .

his implies that, for a period 𝑗 with 𝑏𝑗 flights departing from the home base(s), the demand for reserve personnel can be described
sing a binomial distribution 𝐵(𝑏𝑗 ;𝜓

𝑗
𝑖 ). In Table 4, we provide the number of resulting disruptions, denoted by 𝜅𝑇𝑖 and 𝜅𝑂𝑖 , for

each recovering moment during the tracking phase. We named the instances according to the experimental setup they belong to
(𝐸1𝑖 or 𝐸2𝑖). In summary, instance set E1(1–10) is primarily used to demonstrate the effect of using the RCRP for different set
of scenarios based on probabilities 𝜓𝑇𝑖 and 𝜓𝑂𝑖 . This provides insights in how sensitive the model is to disruptions happening at
different configurations. In instance set E2(1–10), the probability of disruptions over time is based on historical data. Furthermore,
it more closely resembles a real life situation in which disruptions are periodically monitored.
14
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Table 4
Scenario descriptions and amount of disrupted (reserve) personnel.

Instance 𝜓0.25𝑇
𝑖 𝜓0.5𝑇

𝑖 𝜓0.75𝑇
𝑖 𝜓𝑇

𝑖 𝜓𝑂
𝑖 𝜅0.25𝑇𝑖 𝜅0.5𝑇𝑖 𝜅0.75𝑇𝑖 𝜅𝑇𝑖 𝜅𝑂𝑖

𝐸11 – – – 0.10 0.10 – – – 14 6
𝐸12 – – – 0.10 0.10 – – – 8 11
𝐸13 – – – 0.10 0.08 – – – 8 9
𝐸14 – – – 0.10 0.08 – – – 12 5
𝐸15 – – – 0.08 0.10 – – – 2 12
𝐸16 – – – 0.08 0.10 – – – 7 7
𝐸17 – – – 0.05 0.15 – – – 5 11
𝐸18 – – – 0.05 0.15 – – – 4 15
𝐸19 – – – 0.15 0.05 – – – 18 4
𝐸110 – – – 0.15 0.05 – – – 20 7
𝐸21 0.02 0.01 0.01 0.05 0.06 3 1 2 5 14
𝐸22 0.02 0.01 0.01 0.05 0.06 5 4 1 6 12
𝐸23 0.02 0.01 0.01 0.05 0.06 5 0 0 5 12
𝐸24 0.02 0.01 0.01 0.05 0.06 4 1 2 7 9
𝐸25 0.02 0.01 0.01 0.05 0.06 2 3 0 8 12
𝐸26 0.02 0.01 0.01 0.05 0.06 3 3 2 10 12
𝐸27 0.02 0.01 0.01 0.05 0.06 3 2 2 10 12
𝐸28 0.02 0.01 0.01 0.05 0.06 4 0 0 6 12
𝐸29 0.02 0.01 0.01 0.05 0.06 4 1 1 9 12
𝐸210 0.02 0.01 0.01 0.05 0.06 6 2 4 4 8

Table 5
Costs parameters relative to a minute of flying time.

Parameter Value Explanation

𝑐𝑑𝜔 {250, -1750} Deadheading costs for original (250) and re-timed flight copies (−1750)
𝑐c𝑓 1000000 Flight cancellation costs
𝑐s {2500, 360} Per unit cost of expected shortfall (RCRP - 2500) and reserve-crew cost (TCRP - 360)
𝑐r𝑓 2000 Re-timing costs
𝜉 5/8 Parameter to compare duty and flight time
𝑃𝐶min 360 Minimum pay-and-credit for a crew member
𝑐𝑡 60 Fixed transportation costs between bases
𝑐a 200 Schedule altering costs
𝑔1 360 Maximum penalty for flying time regulations
𝛥1 4 Per unit cost for exceeding maximum flying time
𝑔2 360 Maximum penalty for duty time regulations
𝛥2 4 Per unit cost for exceeding maximum duty time
𝑔3 180 Maximum penalty for rest time regulations
𝛥3 2 Per unit cost for exceeding minimum rest time
𝑔4 120 Maximum penalty for sit time regulations
𝛥4 12 Per unit cost for exceeding minimum sit time

All published duties are subject to change, but corresponding to labor regulations, the starting time of a regular crew member’s
uty may be at most two hours earlier than its originally planned duty. Furthermore, we set 𝜙𝐿1 = 9 ∶ 00ℎ, 𝜙𝑆1 = 12 ∶ 00ℎ,
𝐿
2 = 11 ∶ 00ℎ, 𝜙𝑆2 = 13 ∶ 00ℎ, 𝜙3 = 0 ∶ 30ℎ, and 𝜙4 = 10 ∶ 00ℎ. Recall that these parameters model the duty legality rules, as
xplained in Section 2. All the values of the cost parameters can be found in Table 5.

Finally, we consider 5 flight copies (with intervals of 5 min) for each flight leg to model the re-timings. In addition, we limit
he number of reserve schedules to

max
𝑚

{𝑚|
𝑚
∑

𝑖=0

𝑀!
𝑖!(𝑀 − 𝑖)!

≤ 𝛱},

here 𝑀 equals the total number of reserves and 𝛱 is a parameter limiting the amount of reserve schedules to be evaluated. We set
= 100, 000 for Experiment 1 and to 500,000 for Experiment 2. The pricing problem is solved with a pulse parameter of 𝛥𝑝 = 60.

5.3. Results

In this section, we present the results of solving the instances of both Experiment 1 and Experiment 2. Each instance is solved
as indicated in Fig. 5, and this solution is referred to as the RCRP solution. For benchmark purposes, we calculated the solutions
without explicitly considering reliable reserve-crew schedules, and we call these TCRP solutions. For each instance, we provide the
statistics of two solutions. First we focus on the proposed solutions at the end of the tracking period, and second, we present the
solutions after recovering from the disruptions on the day of execution.
15
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Table 6
Solution characteristics at the end of the tracking period. Each consecutive two numbers compare RCRP (left) with TCRP (right) for the indicated KPI.

Instance Alt Ret Res Canc Pen Shortfall Costs Time

𝐸11 9 7 0 0 9 9 0 0 3740 4620 2.01 2.81 31913 31953 11 2
𝐸12 0 0 0 0 6 6 0 0 1420 1380 0.79 1.01 32698 32578 8 0
𝐸13 0 0 0 0 6 6 0 0 1450 1670 0.91 1.31 32578 32578 8 1
𝐸14 3 1 0 0 9 9 0 0 2220 2450 2.01 3.19 32518 32383 10 2
𝐸15 0 0 0 0 2 2 0 0 1450 1610 0.29 0.29 32578 32578 5 0
𝐸16 2 0 0 0 7 7 0 0 1550 1980 2.34 3.29 32698 32818 8 2
𝐸17 1 0 0 0 4 4 0 0 1450 1450 0.40 0.87 32698 32578 4 0
𝐸18 1 0 0 0 4 4 0 0 1450 1450 0.39 0.68 32698 32578 6 0
𝐸19 11 11 1 1 9 9 4 4 5100 5120 2.06 4.11 30833 30543 7 3
𝐸110 11 11 3 3 9 9 9 9 5310 5430 4.10 5.01 29650 29854 9 2
𝐸21 3 1 0 0 8 8 0 0 2270 2270 0.42 1.87 57775 57775 45 2
𝐸22 8 0 0 0 12 12 0 0 2330 2320 0.72 4.99 57775 57775 108 18
𝐸23 5 0 0 0 8 8 0 0 2240 2300 0.32 1.66 57835 57835 83 3
𝐸24 5 0 0 0 11 11 0 0 2300 2480 0.38 1.91 57895 57835 60 11
𝐸25 4 0 0 0 11 10 0 0 2450 2280 0.36 2.13 57655 57655 70 9
𝐸26 4 0 0 0 11 11 0 0 2450 2470 0.36 3.20 57655 57775 52 6
𝐸27 11 1 0 0 14 15 0 0 4000 3840 0.38 1.60 57149 57610 59 7
𝐸28 1 0 0 0 8 8 0 0 2140 2450 0.29 1.22 57835 57835 26 10
𝐸29 5 0 0 0 13 12 0 0 2520 2870 0.38 0.87 57415 57480 87 11
𝐸210 14 2 0 0 15 14 0 0 15188 4730 0.46 2.67 59594 57744 75 22

Avg. 4.90 1.70 0.20 0.20 8.80 8.70 0.65 0.65 3151 2759 0.97 2.23 44972 44888 37 6

The branch-and-price algorithm is programmed in C++ by using SCIP 4.0 (Maher et al., 2017) in combination with SoPlex 3.0.1
o calculate the LP relaxations. All computational tests are performed on a Linux virtual machine running on a laptop with an Intel
ore i5-7200 CPU with 3 GB of random access memory.

At our case airline, the schedule is continuously maintained over the ‘‘Tracking’’ period (starting from the last 30 days before the
ay of execution). In the last 24 h before execution, the maintenance of the schedule moves towards the ‘Control’ phase, in which
different set of planners make sure the flights all go on as planned. In short, the focus in the tracking period is on ‘‘Maintaining’’,
hile the focus on the day of operation generally lies on ‘Making sure we fly as much as possible’. The resulting crew schedule at the
nd of a tracking period (with characteristics defined in Table 4) thus form the input schedule for the day of operation (and as such
mpact the robustness of the schedule). During the day of operation, planners deal with additional disruptions occurring on the crew
chedule. The resulting characteristics of dealing with these additional disruptions on the operation day are presented in Table 5.
n Tables 4 and 5, the column headings indicate the number of alterations (Alt), re-timings (Ret), reserves used (Res), cancellations
Canc), aggregated penalties (Pen), expected shortfall (Shortfall), aggregated costs (costs) and solution times in seconds (Time).

In Table 6, we observe that using the RCRP instead of the TCRP reduces the expected shortfall with 56.5%, while the cost-increase
s only 0.18%. The cause can be found in the number of alterations, which are on average 4.9 and 1.7 for the RCRP and TCRP,
espectively. Hence, additional alterations are taken in the RCRP in order to significantly lower the expected shortfall.

In addition, we observe that when possible, both recovery models attempt to primarily recover the disrupted schedule through
he use of reserve crew. Re-timing of flights is only considered as a last minute resort if cancellations cannot be prevented otherwise.
or the TCRP, this also holds for altering existing schedules, if reserves cannot be plugged in directly to replace the disrupted crew
ember. For the RCRP, altering some (additional) schedules is a viable option for reducing future risk. The main reason for doing so

rises through the objective of minimizing reserve schedule shortfall, which is significantly lower when using the RCRP than using
he TCRP. Through altering a few extra schedules, the RCRP can use the reserves which contribute the least to schedule shortfall.
verall, the RCRP provides solutions with less aggregated penalties but it may actually allow additional penalties, if this would
enefit the accompanying reserve schedule expected shortfall.

In Table 7, we provide the solution characteristics at the end of the day of execution. Note that these are the results of a final
ound of disruptions on the solutions presented in Table 6 and afterward solving it with the TCRP.

From Table 7, it is observed that the average number of (last-minute) alterations is reduced from on average 4.35 to 2.75 if one
ses the RCRP during the tracking period instead of the TCRP. It is also noted that the total penalty costs for the RCRP are lower
han that of the TCRP, indicating that incorporating the robust measures during the tracking period (by solving the RCRP) results
n more flexibility to avoid penalty costs on the day of execution.

While one may argue that the reduction in alterations is due to more alterations during the tracking phase (see Table 6), we
rgue that alterations on the final day are much more disruptive to the airline operations, creating delays and crew confusion. In
16

ddition, alterations close to execution have a strong negative impact on the crew-members’ personal lives and their satisfaction.
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Table 7
Solution characteristics at the end of day of execution. Each consecutive two numbers compare RCRP (left) with TCRP (right) for the indicated KPI.

Alt Ret Res Canc Pen Costs Time

𝐸11 1 2 0 0 6 6 0 0 3980 3960 32643 32438 1 1
𝐸12 7 6 1 1 10 11 0 0 2490 2660 32927 32945 2 1
𝐸13 2 3 0 0 8 9 1 1 1760 1940 33000 33000 0 0
𝐸14 1 2 0 0 4 4 0 0 2250 2630 32758 32623 1 2
𝐸15 0 0 0 0 9 9 0 0 1690 1670 32938 32938 1 1
𝐸16 5 6 1 1 6 6 2 2 2770 3190 32510 32510 1 1
𝐸17 1 1 0 0 9 9 0 0 2340 2520 32638 32638 1 1
𝐸18 5 6 2 2 13 13 1 1 2260 2230 33321 33201 1 1
𝐸19 3 5 0 1 6 6 0 1 5390 5660 32045 32068 2 2
𝐸110 4 2 0 1 7 5 8 10 5830 5990 30190 29854 1 1
𝐸21 9 12 4 3 11 9 2 4 5050 6650 57788 57049 131 161
𝐸22 0 6 0 0 12 9 0 0 2910 4760 57895 57629 21 37
𝐸23 2 5 0 0 10 9 0 0 2380 4760 57775 57475 37 48
𝐸24 3 5 0 0 8 7 0 0 3340 4710 57605 57470 28 60
𝐸25 3 7 0 0 11 10 0 0 4440 5140 57639 57564 54 145
𝐸26 3 5 0 0 11 8 0 0 4440 4680 57639 57389 59 63
𝐸27 0 1 0 0 10 8 0 0 4250 5090 57119 57480 24 46
𝐸28 2 3 0 0 10 10 0 0 3700 4210 57765 57765 19 25
𝐸29 0 1 0 0 10 10 0 0 3520 4050 57319 57355 19 53
𝐸210 4 9 0 0 6 7 0 0 13412 7540 58814 57440 16 81

Avg. 2.75 4.35 0.40 0.45 8.85 8.25 0.70 0.95 3910 4108 45116 45736 21 37

Table 8
Solution characteristics at the end of the tracking period for 7 flight copies. Each consecutive two numbers compare RCRP (left) with TCRP (right) for the
indicated KPI.

Instance Alt Ret Res Canc Pen Shortfall Costs Time

𝐸21 1 1 0 0 4 4 0 0 2370 2270 0.42 1.17 57775 57775 565 31
𝐸22 3 1 0 0 6 5 0 0 2310 3200 0.72 4.05 57775 57624 1014 524
𝐸23 1 0 0 0 3 4 0 0 2240 2300 0.34 1.66 57835 57835 1007 66
𝐸24 1 0 0 0 5 5 0 0 2420 2480 0.39 1.92 57895 57835 762 474
𝐸25 8 1 0 0 6 7 0 0 3760 2290 0.26 2.14 57364 57655 698 125
𝐸26 1 0 0 0 5 6 0 0 2670 2610 1.11 3.34 57775 57775 705 113
𝐸27 4 1 0 0 8 8 0 0 3100 3590 0.56 1.60 57535 57610 507 144
𝐸28 1 0 0 0 5 5 0 0 2140 2320 0.29 1.22 57835 57835 361 196
𝐸29 4 2 0 0 7 7 0 0 2520 2950 0.38 0.87 57415 57480 1020 175
𝐸210 2 0 0 0 4 4 0 0 4190 5930 0.39 1.35 57455 57354 1203 746

Avg. 2.6 0.6 0 0 5.3 5.5 0 0 2772 2994 0.49 1.93 57666 57678 784 259

Finally, reliable recovery during the tracking phase will even prevent cancellations during the final day of execution. In Instance
21, a grand total of 9 reserves are used in the final solution under TCRP, but 4 flights had to be cancelled regardless. While all

eserves are scheduled for a shift early in the morning, the disrupted flights are scheduled for departure late in the evening. In
he schedule as produced by the RCRP, reserves are more spread out and as a result the cancellations are reduced. In summary,
he advantage of the RCRP is the use of completely enumerated reserve-crew schedule, instead of just using reserve crew members
ithout considering the impact future recovering on the flight execution day. Thus recovering to feasible flight schedules using the
CRP leads to less extreme events on flight execution day.

As the instances of Experiment 2 are centered around a single basis, where crew starts and end their days, we conclude that
eliable reserve-crew management is especially important for a carrier operating in a hub-and-spoke network, in which reserve crew
embers are located at the main hub from which the aircraft rotations are departing. Here, a significant number of last-minute

lterations and even flight cancellations are prevented when one adopts the reliable reserve-crew scheduling approach.
We also test the computational performance of the our algorithm on Experiment 2 by increasing the number of flight copies. We

eport on the cost, total computation time, and the solution characteristics during the tracking phase and on the execution day in
ables 8–13. As expected, with an increasing number of flight copies, the computation time of our algorithm increases. However,
ven for larger sizes of instances we observe that the RCRP provides better performance in terms of the cost efficiency than the
CRP. The computation time 11 flight copies stays reasonable, within 2 h during the tracking phase and at most 1 h during the
xecution day approximately.
17
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Table 9
Solution characteristics at the end of the tracking period for 9 flight copies. Each consecutive two numbers compare RCRP (left) with TCRP (right) for the
indicated KPI.

Instance Alt Ret Res Canc Pen Shortfall Costs Time

𝐸21 2 1 0 0 4 4 0 0 2270 2440 0.31 1.17 57775 57775 923 77
𝐸22 3 1 0 0 6 5 0 0 2310 3330 0.72 4.05 57775 57624 2569 971
𝐸23 1 0 0 0 3 3 0 0 2240 2140 0.30 1.86 57835 57835 2627 149
𝐸24 1 0 0 0 5 5 0 0 2420 2440 0.38 1.91 57895 57835 2147 1515
𝐸25 1 1 0 0 7 7 0 0 2340 2310 0.36 2.21 57655 57655 1552 383
𝐸26 1 0 0 0 5 6 0 0 2630 2470 1.11 3.34 57775 57775 1654 173
𝐸27 4 1 0 0 8 8 0 0 3100 3840 0.56 1.51 57535 57610 1216 514
𝐸28 1 0 0 0 5 5 0 0 2140 2480 0.29 0.68 57835 57835 888 531
𝐸29 3 2 0 0 7 7 0 0 2630 2850 0.38 0.82 57470 57480 2210 542
𝐸210 2 0 0 0 6 3 0 0 3800 6380 0.47 1.61 57705 57404 2149 2175

Avg. 1.9 0.6 0 0 5.6 5.3 0 0 2588 3068 0.49 1.92 57726 57683 1794 703

Table 10
Solution characteristics at the end of the tracking period for 11 flight copies. Each consecutive two numbers compare RCRP (left) with TCRP (right) for the
indicated KPI.

Instance Alt Ret Res Canc Pen Shortfall Costs Time

𝐸21 2 1 0 0 4 4 0 0 2270 2270 0.31 1.96 57775 57775 2473 184
𝐸22 3 1 0 0 6 5 0 0 2310 3380 0.72 4.05 57775 57624 4396 4882
𝐸23 1 0 0 0 3 4 0 0 2240 2300 0.34 1.66 57835 57835 5850 1171
𝐸24 1 0 0 0 5 5 0 0 2420 2550 0.39 1.92 57895 57835 4690 3571
𝐸25 1 0 0 0 7 7 0 0 2450 2220 0.36 1.96 57655 57655 3343 971
𝐸26 1 0 0 0 6 7 0 0 2630 2430 1.11 3.34 57775 57775 3314 412
𝐸27 4 6 0 0 8 7 0 0 3040 5490 0.66 1.36 57530 57275 2999 1792
𝐸28 1 0 0 0 5 5 0 0 2140 2140 0.29 1.23 57835 57835 1176 1162
𝐸29 3 2 0 0 7 7 0 0 2630 3260 0.38 0.87 57470 57480 3972 1392
𝐸210 3 0 0 0 6 3 0 0 4000 6310 0.47 1.61 57355 57404 6290 4279

Avg. 2 1 0 0 5.7 5.4 0 0 2613 3235 0.50 1.99 57690 57649 3850 1982

Table 11
Solution characteristics at the end of day of execution for 7 flight copies. Each consecutive two numbers compare RCRP (left) with TCRP (right) for the indicated
KPI.

Instance Alt Ret Res Canc Pen Costs Time

𝐸21 9 14 3 2 11 11 0 0 5460 7590 57788 58014 673 1111
𝐸22 0 5 0 0 12 9 0 0 2800 5750 57895 57429 50 203
𝐸23 2 5 0 0 10 9 0 0 2560 3180 57775 57590 108 158
𝐸24 3 5 0 0 8 7 0 0 3380 4800 57605 57470 134 327
𝐸25 3 8 0 2 12 11 0 0 4610 5680 57544 57994 209 1094
𝐸26 2 4 0 0 10 10 0 0 3630 3940 57494 57550 37 350
𝐸27 0 1 0 0 10 9 0 0 3260 3480 57535 57610 57 166
𝐸28 2 3 0 0 10 10 0 0 3580 3910 57765 57765 79 152
𝐸29 0 1 0 0 10 11 0 0 3580 3750 57319 57355 170 233
𝐸210 2 6 0 0 7 7 0 0 6120 7790 57415 57175 138 359

Avg. 2.3 5.2 0.3 0.4 10 9.4 0 0 3898 4987 57614 57595 166 415

6. Conclusions

The increase in airline traffic is forcing the airline companies to deal with disruptions in a more effective way. Airline’s capability
o respond to these disruptions largely depend on its crew member scheduling. Reserve crew play an important role in disruption
anagement. It is therefore important to design a reliable crew member scheduling by using reserve-crew to mitigate the risks.

In this paper, we propose a formulation for the reliable crew recovery problem (RCRP), where the goal is to recover a disrupted
rew schedule in a cost-efficient manner while remaining capable of recovering from further disruptions. The RCRP explicitly
xamines the effect of using reserve crew on the resulting robustness of the schedule. We measure the effect on schedule robustness
n terms of the so-called expected shortfall. We model the underlying reserve schedules using Markov-chains. We solve the problem
sing a novel branch-and-price approach. New pairings are created using a variant of a pulse algorithm to solve a Resource
onstrained Shortest Path Problem.

Experiments on real-life data from a medium-sized Dutch carrier show that the RCRP outperforms traditional recovery models
18

n delivering a more stable schedule for the day of execution, which leads to a reduced amount of last-minute crew alterations
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Table 12
Solution characteristics at the end of day of execution for 9 flight copies. Each consecutive two numbers compare RCRP (left) with TCRP (right) for the indicated
KPI.

Instance Alt Ret Res Canc Pen Costs Time

𝐸21 9 13 0 3 12 10 0 0 5430 7920 57619 57429 1638 3632
𝐸22 0 4 0 0 12 10 0 0 2800 4880 57895 57524 209 658
𝐸23 2 5 0 0 10 9 0 0 2720 3180 57775 57590 533 610
𝐸24 3 6 0 0 8 7 0 0 3420 4360 57605 57420 328 940
𝐸25 4 7 0 0 11 10 0 0 4310 5110 57655 57504 1356 1376
𝐸26 2 4 0 0 10 10 0 0 3570 3800 57494 57550 116 989
𝐸27 0 1 0 0 10 8 0 0 3140 4600 57535 57419 187 377
𝐸28 2 3 0 0 10 11 0 0 3880 4280 57765 57765 417 813
𝐸29 0 1 0 0 10 11 0 0 3760 3870 57374 57355 359 710
𝐸210 2 7 0 0 7 7 0 0 5890 7880 57665 57135 935 964

Avg. 2.4 5.1 0 0.3 10 9.3 0 0 3892 4988 57638 57469 608 1107

Table 13
Solution characteristics at the end of day of execution for 11 flight copies. Each consecutive two numbers compare RCRP (left) with TCRP (right) for the indicated
KPI.

Instance Alt Ret Res Canc Pen Costs Time

𝐸21 10 18 0 2 12 10 0 0 5750 7840 57675 57509 3606 3747
𝐸22 0 4 0 0 12 10 0 0 2910 4480 57895 57524 818 2309
𝐸23 3 5 0 0 9 9 0 0 3320 3420 57570 57590 834 1453
𝐸24 3 5 0 0 8 7 0 0 3560 4870 57965 57470 3620 1650
𝐸25 4 7 0 0 11 10 0 0 4230 5300 57655 57509 3610 3479
𝐸26 2 5 0 0 10 9 0 0 3480 4020 57494 57324 357 1819
𝐸27 0 0 0 0 10 8 0 0 3120 5760 57530 57245 361 1311
𝐸28 2 3 0 0 10 10 0 0 3750 3920 57765 57765 876 1612
𝐸29 0 1 0 0 10 11 0 0 3630 4280 57374 57355 1453 2797
𝐸210 4 6 0 0 7 7 0 0 13812 8010 58689 57210 1072 2463

Avg. 2.8 5.4 0 0.2 9.9 9.1 0 0 4756.2 5190 57761 57450 1661 2264

(and subsequent delays) and even a reduced amount of cancellations due to lack of crew. This is especially important for a carrier
operating in a hub-and-spoke network, in which the reserve crew members are located at the main hub from which the aircraft
rotations are departing.

Some limitations exist in the current study that can be considered as the directions of future research. First, we assume
hat the demand for reserve-crew members is independently distributed among periods. To model the impact of disruption in a
ore realistic way, the demands in different periods may be correlated to each other. To tackle this challenge, some forecasting
odels could be used to model the demand correlation. Second, as an initial study of reliable reserve-crew scheduling, we mainly

nvestigate the recovery plan for a single execution day. It may be interesting to consider the plan for multiple flight execution
ays. Then, a more detailed model is required to track which individual crew members are deadheading. Finally, this study is
entered around the development of a reliable scheduling policy at the operational level. Notably, it intentionally confines itself
o addressing operational intricacies, without delving into the broader tactical or strategic concerns such as the optimal number of
eserve crew members. Consequently, there emerges a significant and compelling avenue for the creation of an integrated planning
ramework. This framework would inherently possess the capability to seamlessly explore and harmonize both operational nuances
nd tactical/strategic decisions.
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Appendix

A.1. Traditional Crew Recovery Problem (TCRP)

minimize
∑

𝑘∈𝐾

∑

𝑝∈𝑃 𝑘
𝑐𝑘𝑝𝑥

𝑘
𝑝 +

∑

𝜔∈𝛺
𝑐𝑑𝜔𝑦𝜔 +

∑

𝑓∈𝐹
𝑐𝑐𝑓 𝑧𝑓 , (26)

subject to
∑

𝑘∈𝐾

∑

𝑝∈𝑃 𝑘

∑

𝜔∈𝛺
𝑎𝑘𝜔𝑝𝑥

𝑘
𝑝 −

∑

𝜔∈𝛺
𝑦𝜔 + 𝑧𝑓 = 1 ∀𝑓 ∈  , (27)

𝑦𝜔 −
∑

𝑘∈

∑

𝑝∈𝑘
𝑎𝑘𝜔𝑝𝑥

𝑘
𝑝 ≤ 0 ∀𝜔 ∈ 𝛺 (28)

∑

𝑤∈𝛺𝑓

𝑦𝜔 ≤𝑀(1 − 𝑧𝑓 ) ∀𝑓 ∈  (29)

∑

𝑘∈𝐾

∑

𝑝∈𝑃 𝑘
(𝑎𝑘𝜔𝑝𝑥

𝑘
𝑝 − 𝑦𝜔) +

∑

𝑘∈𝐾

∑

𝑝∈𝑃 𝑘
(𝑎𝑘𝜔′𝑝𝑥

𝑘
𝑝 − 𝑦𝜔′ ) ≤ 1 ∀(𝜔,𝜔′) ∈ , (30)

∑

𝑝∈𝑃 𝑘
𝑥𝑘𝑝 ≤ 1 ∀𝑘 ∈ ∖𝑅, (31)

∑

𝑝∈𝑃 𝑘
𝑥𝑘𝑝 ≤ 1 ∀𝑘 ∈ 𝑅, (32)

∑

𝑘∈𝐾𝑅

∑

𝑝∈𝑃 𝑘
𝑥𝑘𝑝 ≤ 𝑛, (33)

𝑥𝑘𝑝 ∈ {0, 1} ∀𝑘 ∈ , ∀𝑝 ∈ 𝑘, (34)

𝑦𝜔 ≥ 0 ∀𝜔 ∈ 𝛺, (35)

𝜐+𝜔 ≥ 0, 𝜐−𝜔 ≥ 0 ∀𝜔 ∈ 𝛺. (36)

ere, 𝑛 denotes a limit on the maximum number of reserve crew. For a full description of the remaining parameters, we refer the
eader to Section 2.
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